removed HOL/ex/Set_Algebras -- outdated clone, obsolete as example
authorkrauss
Sat, 14 Apr 2012 19:29:31 +0200
changeset 48339214bfaae738d
parent 48338 111cd6351613
child 48346 80ddf2016b6c
removed HOL/ex/Set_Algebras -- outdated clone, obsolete as example
src/HOL/IsaMakefile
src/HOL/ex/ROOT.ML
src/HOL/ex/Set_Algebras.thy
     1.1 --- a/src/HOL/IsaMakefile	Sat Apr 14 15:08:59 2012 +0100
     1.2 +++ b/src/HOL/IsaMakefile	Sat Apr 14 19:29:31 2012 +0200
     1.3 @@ -1027,7 +1027,7 @@
     1.4    ex/Quicksort.thy ex/ROOT.ML						\
     1.5    ex/Records.thy ex/ReflectionEx.thy ex/Refute_Examples.thy		\
     1.6    ex/SAT_Examples.thy ex/Serbian.thy ex/Set_Theory.thy			\
     1.7 -  ex/Set_Algebras.thy ex/Simproc_Tests.thy ex/SVC_Oracle.thy		\
     1.8 +  ex/Simproc_Tests.thy ex/SVC_Oracle.thy		\
     1.9    ex/sledgehammer_tactics.ML ex/Seq.thy ex/Sqrt.thy ex/Sqrt_Script.thy 	\
    1.10    ex/Sudoku.thy ex/Tarski.thy ex/Termination.thy ex/Transfer_Ex.thy	\
    1.11    ex/Tree23.thy	ex/Unification.thy ex/While_Combinator_Example.thy	\
     2.1 --- a/src/HOL/ex/ROOT.ML	Sat Apr 14 15:08:59 2012 +0100
     2.2 +++ b/src/HOL/ex/ROOT.ML	Sat Apr 14 19:29:31 2012 +0200
     2.3 @@ -67,7 +67,6 @@
     2.4    "Quicksort",
     2.5    "Birthday_Paradox",
     2.6    "List_to_Set_Comprehension_Examples",
     2.7 -  "Set_Algebras",
     2.8    "Seq",
     2.9    "Simproc_Tests",
    2.10    "Executable_Relation"
     3.1 --- a/src/HOL/ex/Set_Algebras.thy	Sat Apr 14 15:08:59 2012 +0100
     3.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     3.3 @@ -1,371 +0,0 @@
     3.4 -(*  Title:      HOL/ex/Set_Algebras.thy
     3.5 -    Author:     Jeremy Avigad and Kevin Donnelly; Florian Haftmann, TUM
     3.6 -*)
     3.7 -
     3.8 -header {* Algebraic operations on sets *}
     3.9 -
    3.10 -theory Set_Algebras
    3.11 -imports Main Interpretation_with_Defs
    3.12 -begin
    3.13 -
    3.14 -text {*
    3.15 -  This library lifts operations like addition and muliplication to
    3.16 -  sets.  It was designed to support asymptotic calculations. See the
    3.17 -  comments at the top of theory @{text BigO}.
    3.18 -*}
    3.19 -
    3.20 -definition set_plus :: "'a::plus set \<Rightarrow> 'a set \<Rightarrow> 'a set"  (infixl "\<oplus>" 65) where
    3.21 -  "A \<oplus> B = {c. \<exists>a\<in>A. \<exists>b\<in>B. c = a + b}"
    3.22 -
    3.23 -definition set_times :: "'a::times set \<Rightarrow> 'a set \<Rightarrow> 'a set"  (infixl "\<otimes>" 70) where
    3.24 -  "A \<otimes> B = {c. \<exists>a\<in>A. \<exists>b\<in>B. c = a * b}"
    3.25 -
    3.26 -definition elt_set_plus :: "'a::plus \<Rightarrow> 'a set \<Rightarrow> 'a set"  (infixl "+o" 70) where
    3.27 -  "a +o B = {c. \<exists>b\<in>B. c = a + b}"
    3.28 -
    3.29 -definition elt_set_times :: "'a::times \<Rightarrow> 'a set \<Rightarrow> 'a set"  (infixl "*o" 80) where
    3.30 -  "a *o B = {c. \<exists>b\<in>B. c = a * b}"
    3.31 -
    3.32 -abbreviation (input) elt_set_eq :: "'a \<Rightarrow> 'a set \<Rightarrow> bool"  (infix "=o" 50) where
    3.33 -  "x =o A \<equiv> x \<in> A"
    3.34 -
    3.35 -interpretation set_add!: semigroup "set_plus :: 'a::semigroup_add set \<Rightarrow> 'a set \<Rightarrow> 'a set"
    3.36 -  by default (force simp add: set_plus_def add.assoc)
    3.37 -
    3.38 -interpretation set_add!: abel_semigroup "set_plus :: 'a::ab_semigroup_add set \<Rightarrow> 'a set \<Rightarrow> 'a set"
    3.39 -  by default (force simp add: set_plus_def add.commute)
    3.40 -
    3.41 -interpretation set_add!: monoid "set_plus :: 'a::monoid_add set \<Rightarrow> 'a set \<Rightarrow> 'a set" "{0}"
    3.42 -  by default (simp_all add: set_plus_def)
    3.43 -
    3.44 -interpretation set_add!: comm_monoid "set_plus :: 'a::comm_monoid_add set \<Rightarrow> 'a set \<Rightarrow> 'a set" "{0}"
    3.45 -  by default (simp add: set_plus_def)
    3.46 -
    3.47 -interpretation set_add!: monoid_add "set_plus :: 'a::monoid_add set \<Rightarrow> 'a set \<Rightarrow> 'a set" "{0}"
    3.48 -  defines listsum_set is set_add.listsum
    3.49 -  by default (simp_all add: set_add.assoc)
    3.50 -
    3.51 -interpretation
    3.52 -  set_add!: comm_monoid_add "set_plus :: 'a::comm_monoid_add set \<Rightarrow> 'a set \<Rightarrow> 'a set" "{0}"
    3.53 -  defines setsum_set is set_add.setsum
    3.54 -  where "monoid_add.listsum set_plus {0::'a} = listsum_set"
    3.55 -proof -
    3.56 -  show "class.comm_monoid_add (set_plus :: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set) {0}"
    3.57 -    by default (simp_all add: set_add.commute)
    3.58 -  then interpret set_add!: comm_monoid_add "set_plus :: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" "{0}" .
    3.59 -  show "monoid_add.listsum set_plus {0::'a} = listsum_set"
    3.60 -    by (simp only: listsum_set_def)
    3.61 -qed
    3.62 -
    3.63 -interpretation set_mult!: semigroup "set_times :: 'a::semigroup_mult set \<Rightarrow> 'a set \<Rightarrow> 'a set"
    3.64 -  by default (force simp add: set_times_def mult.assoc)
    3.65 -
    3.66 -interpretation
    3.67 -  set_mult!: abel_semigroup "set_times :: 'a::ab_semigroup_mult set \<Rightarrow> 'a set \<Rightarrow> 'a set"
    3.68 -  by default (force simp add: set_times_def mult.commute)
    3.69 -
    3.70 -interpretation set_mult!: monoid "set_times :: 'a::monoid_mult set \<Rightarrow> 'a set \<Rightarrow> 'a set" "{1}"
    3.71 -  by default (simp_all add: set_times_def)
    3.72 -
    3.73 -interpretation
    3.74 -  set_mult!: comm_monoid "set_times :: 'a::comm_monoid_mult set \<Rightarrow> 'a set \<Rightarrow> 'a set" "{1}"
    3.75 -  by default (simp add: set_times_def)
    3.76 -
    3.77 -interpretation set_mult!: monoid_mult "{1}" "set_times :: 'a::monoid_mult set \<Rightarrow> 'a set \<Rightarrow> 'a set"
    3.78 -  defines power_set is set_mult.power
    3.79 -  by default (simp_all add: set_mult.assoc)
    3.80 -
    3.81 -interpretation
    3.82 -  set_mult!: comm_monoid_mult "set_times :: 'a::comm_monoid_mult set \<Rightarrow> 'a set \<Rightarrow> 'a set" "{1}"
    3.83 -  defines setprod_set is set_mult.setprod
    3.84 -  where "power.power {1} set_times = power_set"
    3.85 -proof -
    3.86 -  show "class.comm_monoid_mult (set_times :: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set) {1}"
    3.87 -    by default (simp_all add: set_mult.commute)
    3.88 -  then interpret set_mult!: comm_monoid_mult "set_times :: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" "{1}" .
    3.89 -  show "power.power {1} set_times = power_set"
    3.90 -    by (simp add: power_set_def)
    3.91 -qed
    3.92 -
    3.93 -lemma set_plus_intro [intro]: "a : C ==> b : D ==> a + b : C \<oplus> D"
    3.94 -  by (auto simp add: set_plus_def)
    3.95 -
    3.96 -lemma set_plus_intro2 [intro]: "b : C ==> a + b : a +o C"
    3.97 -  by (auto simp add: elt_set_plus_def)
    3.98 -
    3.99 -lemma set_plus_rearrange: "((a::'a::comm_monoid_add) +o C) \<oplus> (b +o D) = (a + b) +o (C \<oplus> D)"
   3.100 -  apply (auto simp add: elt_set_plus_def set_plus_def add_ac)
   3.101 -   apply (rule_tac x = "ba + bb" in exI)
   3.102 -  apply (auto simp add: add_ac)
   3.103 -  apply (rule_tac x = "aa + a" in exI)
   3.104 -  apply (auto simp add: add_ac)
   3.105 -  done
   3.106 -
   3.107 -lemma set_plus_rearrange2: "(a::'a::semigroup_add) +o (b +o C) = (a + b) +o C"
   3.108 -  by (auto simp add: elt_set_plus_def add_assoc)
   3.109 -
   3.110 -lemma set_plus_rearrange3: "((a::'a::semigroup_add) +o B) \<oplus> C = a +o (B \<oplus> C)"
   3.111 -  apply (auto simp add: elt_set_plus_def set_plus_def)
   3.112 -   apply (blast intro: add_ac)
   3.113 -  apply (rule_tac x = "a + aa" in exI)
   3.114 -  apply (rule conjI)
   3.115 -   apply (rule_tac x = "aa" in bexI)
   3.116 -    apply auto
   3.117 -  apply (rule_tac x = "ba" in bexI)
   3.118 -   apply (auto simp add: add_ac)
   3.119 -  done
   3.120 -
   3.121 -theorem set_plus_rearrange4: "C \<oplus> ((a::'a::comm_monoid_add) +o D) = a +o (C \<oplus> D)"
   3.122 -  apply (auto intro!: simp add: elt_set_plus_def set_plus_def add_ac)
   3.123 -   apply (rule_tac x = "aa + ba" in exI)
   3.124 -   apply (auto simp add: add_ac)
   3.125 -  done
   3.126 -
   3.127 -theorems set_plus_rearranges = set_plus_rearrange set_plus_rearrange2
   3.128 -  set_plus_rearrange3 set_plus_rearrange4
   3.129 -
   3.130 -lemma set_plus_mono [intro!]: "C <= D ==> a +o C <= a +o D"
   3.131 -  by (auto simp add: elt_set_plus_def)
   3.132 -
   3.133 -lemma set_plus_mono2 [intro]: "(C::('a::plus) set) <= D ==> E <= F ==>
   3.134 -    C \<oplus> E <= D \<oplus> F"
   3.135 -  by (auto simp add: set_plus_def)
   3.136 -
   3.137 -lemma set_plus_mono3 [intro]: "a : C ==> a +o D <= C \<oplus> D"
   3.138 -  by (auto simp add: elt_set_plus_def set_plus_def)
   3.139 -
   3.140 -lemma set_plus_mono4 [intro]: "(a::'a::comm_monoid_add) : C ==>
   3.141 -    a +o D <= D \<oplus> C"
   3.142 -  by (auto simp add: elt_set_plus_def set_plus_def add_ac)
   3.143 -
   3.144 -lemma set_plus_mono5: "a:C ==> B <= D ==> a +o B <= C \<oplus> D"
   3.145 -  apply (subgoal_tac "a +o B <= a +o D")
   3.146 -   apply (erule order_trans)
   3.147 -   apply (erule set_plus_mono3)
   3.148 -  apply (erule set_plus_mono)
   3.149 -  done
   3.150 -
   3.151 -lemma set_plus_mono_b: "C <= D ==> x : a +o C
   3.152 -    ==> x : a +o D"
   3.153 -  apply (frule set_plus_mono)
   3.154 -  apply auto
   3.155 -  done
   3.156 -
   3.157 -lemma set_plus_mono2_b: "C <= D ==> E <= F ==> x : C \<oplus> E ==>
   3.158 -    x : D \<oplus> F"
   3.159 -  apply (frule set_plus_mono2)
   3.160 -   prefer 2
   3.161 -   apply force
   3.162 -  apply assumption
   3.163 -  done
   3.164 -
   3.165 -lemma set_plus_mono3_b: "a : C ==> x : a +o D ==> x : C \<oplus> D"
   3.166 -  apply (frule set_plus_mono3)
   3.167 -  apply auto
   3.168 -  done
   3.169 -
   3.170 -lemma set_plus_mono4_b: "(a::'a::comm_monoid_add) : C ==>
   3.171 -    x : a +o D ==> x : D \<oplus> C"
   3.172 -  apply (frule set_plus_mono4)
   3.173 -  apply auto
   3.174 -  done
   3.175 -
   3.176 -lemma set_zero_plus [simp]: "(0::'a::comm_monoid_add) +o C = C"
   3.177 -  by (auto simp add: elt_set_plus_def)
   3.178 -
   3.179 -lemma set_zero_plus2: "(0::'a::comm_monoid_add) : A ==> B <= A \<oplus> B"
   3.180 -  apply (auto intro!: simp add: set_plus_def)
   3.181 -  apply (rule_tac x = 0 in bexI)
   3.182 -   apply (rule_tac x = x in bexI)
   3.183 -    apply (auto simp add: add_ac)
   3.184 -  done
   3.185 -
   3.186 -lemma set_plus_imp_minus: "(a::'a::ab_group_add) : b +o C ==> (a - b) : C"
   3.187 -  by (auto simp add: elt_set_plus_def add_ac diff_minus)
   3.188 -
   3.189 -lemma set_minus_imp_plus: "(a::'a::ab_group_add) - b : C ==> a : b +o C"
   3.190 -  apply (auto simp add: elt_set_plus_def add_ac diff_minus)
   3.191 -  apply (subgoal_tac "a = (a + - b) + b")
   3.192 -   apply (rule bexI, assumption, assumption)
   3.193 -  apply (auto simp add: add_ac)
   3.194 -  done
   3.195 -
   3.196 -lemma set_minus_plus: "((a::'a::ab_group_add) - b : C) = (a : b +o C)"
   3.197 -  by (rule iffI, rule set_minus_imp_plus, assumption, rule set_plus_imp_minus,
   3.198 -    assumption)
   3.199 -
   3.200 -lemma set_times_intro [intro]: "a : C ==> b : D ==> a * b : C \<otimes> D"
   3.201 -  by (auto simp add: set_times_def)
   3.202 -
   3.203 -lemma set_times_intro2 [intro!]: "b : C ==> a * b : a *o C"
   3.204 -  by (auto simp add: elt_set_times_def)
   3.205 -
   3.206 -lemma set_times_rearrange: "((a::'a::comm_monoid_mult) *o C) \<otimes>
   3.207 -    (b *o D) = (a * b) *o (C \<otimes> D)"
   3.208 -  apply (auto simp add: elt_set_times_def set_times_def)
   3.209 -   apply (rule_tac x = "ba * bb" in exI)
   3.210 -   apply (auto simp add: mult_ac)
   3.211 -  apply (rule_tac x = "aa * a" in exI)
   3.212 -  apply (auto simp add: mult_ac)
   3.213 -  done
   3.214 -
   3.215 -lemma set_times_rearrange2: "(a::'a::semigroup_mult) *o (b *o C) =
   3.216 -    (a * b) *o C"
   3.217 -  by (auto simp add: elt_set_times_def mult_assoc)
   3.218 -
   3.219 -lemma set_times_rearrange3: "((a::'a::semigroup_mult) *o B) \<otimes> C =
   3.220 -    a *o (B \<otimes> C)"
   3.221 -  apply (auto simp add: elt_set_times_def set_times_def)
   3.222 -   apply (blast intro: mult_ac)
   3.223 -  apply (rule_tac x = "a * aa" in exI)
   3.224 -  apply (rule conjI)
   3.225 -   apply (rule_tac x = "aa" in bexI)
   3.226 -    apply auto
   3.227 -  apply (rule_tac x = "ba" in bexI)
   3.228 -   apply (auto simp add: mult_ac)
   3.229 -  done
   3.230 -
   3.231 -theorem set_times_rearrange4: "C \<otimes> ((a::'a::comm_monoid_mult) *o D) =
   3.232 -    a *o (C \<otimes> D)"
   3.233 -  apply (auto intro!: simp add: elt_set_times_def set_times_def
   3.234 -    mult_ac)
   3.235 -   apply (rule_tac x = "aa * ba" in exI)
   3.236 -   apply (auto simp add: mult_ac)
   3.237 -  done
   3.238 -
   3.239 -theorems set_times_rearranges = set_times_rearrange set_times_rearrange2
   3.240 -  set_times_rearrange3 set_times_rearrange4
   3.241 -
   3.242 -lemma set_times_mono [intro]: "C <= D ==> a *o C <= a *o D"
   3.243 -  by (auto simp add: elt_set_times_def)
   3.244 -
   3.245 -lemma set_times_mono2 [intro]: "(C::('a::times) set) <= D ==> E <= F ==>
   3.246 -    C \<otimes> E <= D \<otimes> F"
   3.247 -  by (auto simp add: set_times_def)
   3.248 -
   3.249 -lemma set_times_mono3 [intro]: "a : C ==> a *o D <= C \<otimes> D"
   3.250 -  by (auto simp add: elt_set_times_def set_times_def)
   3.251 -
   3.252 -lemma set_times_mono4 [intro]: "(a::'a::comm_monoid_mult) : C ==>
   3.253 -    a *o D <= D \<otimes> C"
   3.254 -  by (auto simp add: elt_set_times_def set_times_def mult_ac)
   3.255 -
   3.256 -lemma set_times_mono5: "a:C ==> B <= D ==> a *o B <= C \<otimes> D"
   3.257 -  apply (subgoal_tac "a *o B <= a *o D")
   3.258 -   apply (erule order_trans)
   3.259 -   apply (erule set_times_mono3)
   3.260 -  apply (erule set_times_mono)
   3.261 -  done
   3.262 -
   3.263 -lemma set_times_mono_b: "C <= D ==> x : a *o C
   3.264 -    ==> x : a *o D"
   3.265 -  apply (frule set_times_mono)
   3.266 -  apply auto
   3.267 -  done
   3.268 -
   3.269 -lemma set_times_mono2_b: "C <= D ==> E <= F ==> x : C \<otimes> E ==>
   3.270 -    x : D \<otimes> F"
   3.271 -  apply (frule set_times_mono2)
   3.272 -   prefer 2
   3.273 -   apply force
   3.274 -  apply assumption
   3.275 -  done
   3.276 -
   3.277 -lemma set_times_mono3_b: "a : C ==> x : a *o D ==> x : C \<otimes> D"
   3.278 -  apply (frule set_times_mono3)
   3.279 -  apply auto
   3.280 -  done
   3.281 -
   3.282 -lemma set_times_mono4_b: "(a::'a::comm_monoid_mult) : C ==>
   3.283 -    x : a *o D ==> x : D \<otimes> C"
   3.284 -  apply (frule set_times_mono4)
   3.285 -  apply auto
   3.286 -  done
   3.287 -
   3.288 -lemma set_one_times [simp]: "(1::'a::comm_monoid_mult) *o C = C"
   3.289 -  by (auto simp add: elt_set_times_def)
   3.290 -
   3.291 -lemma set_times_plus_distrib: "(a::'a::semiring) *o (b +o C)=
   3.292 -    (a * b) +o (a *o C)"
   3.293 -  by (auto simp add: elt_set_plus_def elt_set_times_def ring_distribs)
   3.294 -
   3.295 -lemma set_times_plus_distrib2: "(a::'a::semiring) *o (B \<oplus> C) =
   3.296 -    (a *o B) \<oplus> (a *o C)"
   3.297 -  apply (auto simp add: set_plus_def elt_set_times_def ring_distribs)
   3.298 -   apply blast
   3.299 -  apply (rule_tac x = "b + bb" in exI)
   3.300 -  apply (auto simp add: ring_distribs)
   3.301 -  done
   3.302 -
   3.303 -lemma set_times_plus_distrib3: "((a::'a::semiring) +o C) \<otimes> D <=
   3.304 -    a *o D \<oplus> C \<otimes> D"
   3.305 -  apply (auto simp add:
   3.306 -    elt_set_plus_def elt_set_times_def set_times_def
   3.307 -    set_plus_def ring_distribs)
   3.308 -  apply auto
   3.309 -  done
   3.310 -
   3.311 -theorems set_times_plus_distribs =
   3.312 -  set_times_plus_distrib
   3.313 -  set_times_plus_distrib2
   3.314 -
   3.315 -lemma set_neg_intro: "(a::'a::ring_1) : (- 1) *o C ==>
   3.316 -    - a : C"
   3.317 -  by (auto simp add: elt_set_times_def)
   3.318 -
   3.319 -lemma set_neg_intro2: "(a::'a::ring_1) : C ==>
   3.320 -    - a : (- 1) *o C"
   3.321 -  by (auto simp add: elt_set_times_def)
   3.322 -
   3.323 -lemma set_plus_image:
   3.324 -  fixes S T :: "'n::semigroup_add set" shows "S \<oplus> T = (\<lambda>(x, y). x + y) ` (S \<times> T)"
   3.325 -  unfolding set_plus_def by (fastforce simp: image_iff)
   3.326 -
   3.327 -lemma set_setsum_alt:
   3.328 -  assumes fin: "finite I"
   3.329 -  shows "setsum_set S I = {setsum s I |s. \<forall>i\<in>I. s i \<in> S i}"
   3.330 -    (is "_ = ?setsum I")
   3.331 -using fin
   3.332 -proof induct
   3.333 -  case (insert x F)
   3.334 -  have "setsum_set S (insert x F) = S x \<oplus> ?setsum F"
   3.335 -    using insert.hyps by auto
   3.336 -  also have "...= {s x + setsum s F |s. \<forall> i\<in>insert x F. s i \<in> S i}"
   3.337 -  proof -
   3.338 -    {
   3.339 -      fix y s assume "y \<in> S x" "\<forall>i\<in>F. s i \<in> S i"
   3.340 -      then have "\<exists>s'. y + setsum s F = s' x + setsum s' F \<and> (\<forall>i\<in>insert x F. s' i \<in> S i)"
   3.341 -        using insert.hyps
   3.342 -        by (intro exI[of _ "\<lambda>i. if i \<in> F then s i else y"]) (auto simp add: set_plus_def)
   3.343 -    }
   3.344 -    then show ?thesis
   3.345 -      unfolding set_plus_def by auto
   3.346 -  qed
   3.347 -  finally show ?case
   3.348 -    using insert.hyps by auto
   3.349 -qed auto
   3.350 -
   3.351 -lemma setsum_set_cond_linear:
   3.352 -  fixes f :: "('a::comm_monoid_add) set \<Rightarrow> ('b::comm_monoid_add) set"
   3.353 -  assumes [intro!]: "\<And>A B. P A  \<Longrightarrow> P B  \<Longrightarrow> P (A \<oplus> B)" "P {0}"
   3.354 -    and f: "\<And>A B. P A  \<Longrightarrow> P B \<Longrightarrow> f (A \<oplus> B) = f A \<oplus> f B" "f {0} = {0}"
   3.355 -  assumes all: "\<And>i. i \<in> I \<Longrightarrow> P (S i)"
   3.356 -  shows "f (setsum_set S I) = setsum_set (f \<circ> S) I"
   3.357 -proof cases
   3.358 -  assume "finite I" from this all show ?thesis
   3.359 -  proof induct
   3.360 -    case (insert x F)
   3.361 -    from `finite F` `\<And>i. i \<in> insert x F \<Longrightarrow> P (S i)` have "P (setsum_set S F)"
   3.362 -      by induct auto
   3.363 -    with insert show ?case
   3.364 -      by (simp, subst f) auto
   3.365 -  qed (auto intro!: f)
   3.366 -qed (auto intro!: f)
   3.367 -
   3.368 -lemma setsum_set_linear:
   3.369 -  fixes f :: "('a::comm_monoid_add) set => ('b::comm_monoid_add) set"
   3.370 -  assumes "\<And>A B. f(A) \<oplus> f(B) = f(A \<oplus> B)" "f {0} = {0}"
   3.371 -  shows "f (setsum_set S I) = setsum_set (f \<circ> S) I"
   3.372 -  using setsum_set_cond_linear[of "\<lambda>x. True" f I S] assms by auto
   3.373 -
   3.374 -end