converted generic.tex to Thy/Generic.thy;
authorwenzelm
Mon, 05 May 2008 15:23:21 +0200
changeset 2678219363c70b5c4
parent 26781 861e06a047c5
child 26783 1651ff6a34b5
converted generic.tex to Thy/Generic.thy;
doc-src/IsarRef/IsaMakefile
doc-src/IsarRef/Makefile
doc-src/IsarRef/Thy/Generic.thy
doc-src/IsarRef/Thy/ROOT.ML
doc-src/IsarRef/Thy/document/Generic.tex
doc-src/IsarRef/Thy/document/session.tex
doc-src/IsarRef/generic.tex
doc-src/IsarRef/isar-ref.tex
     1.1 --- a/doc-src/IsarRef/IsaMakefile	Sun May 04 21:34:44 2008 +0200
     1.2 +++ b/doc-src/IsarRef/IsaMakefile	Mon May 05 15:23:21 2008 +0200
     1.3 @@ -22,7 +22,7 @@
     1.4  Thy: $(LOG)/HOL-Thy.gz
     1.5  
     1.6  $(LOG)/HOL-Thy.gz: Thy/ROOT.ML ../antiquote_setup.ML Thy/intro.thy \
     1.7 -  Thy/pure.thy Thy/syntax.thy Thy/Quick_Reference.thy
     1.8 +  Thy/syntax.thy Thy/pure.thy Thy/Generic.thy Thy/Quick_Reference.thy
     1.9  	@$(USEDIR) HOL Thy
    1.10  
    1.11  
     2.1 --- a/doc-src/IsarRef/Makefile	Sun May 04 21:34:44 2008 +0200
     2.2 +++ b/doc-src/IsarRef/Makefile	Mon May 05 15:23:21 2008 +0200
     2.3 @@ -14,7 +14,7 @@
     2.4  NAME = isar-ref
     2.5  
     2.6  FILES = isar-ref.tex Thy/document/intro.tex basics.tex Thy/document/syntax.tex \
     2.7 -	Thy/document/pure.tex generic.tex logics.tex Thy/document/Quick_Reference.tex \
     2.8 +	Thy/document/pure.tex Thy/document/Generic.tex logics.tex Thy/document/Quick_Reference.tex \
     2.9          conversion.tex \
    2.10  	../isar.sty ../rail.sty ../railsetup.sty ../proof.sty \
    2.11  	../iman.sty ../extra.sty ../ttbox.sty ../manual.bib
     3.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     3.2 +++ b/doc-src/IsarRef/Thy/Generic.thy	Mon May 05 15:23:21 2008 +0200
     3.3 @@ -0,0 +1,2062 @@
     3.4 +(* $Id$ *)
     3.5 +
     3.6 +theory Generic
     3.7 +imports CPure
     3.8 +begin
     3.9 +
    3.10 +chapter {* Generic tools and packages \label{ch:gen-tools} *}
    3.11 +
    3.12 +section {* Specification commands *}
    3.13 +
    3.14 +subsection {* Derived specifications *}
    3.15 +
    3.16 +text {*
    3.17 +  \begin{matharray}{rcll}
    3.18 +    @{command_def "axiomatization"} & : & \isarkeep{local{\dsh}theory} & (axiomatic!)\\
    3.19 +    @{command_def "definition"} & : & \isarkeep{local{\dsh}theory} \\
    3.20 +    @{attribute_def "defn"} & : & \isaratt \\
    3.21 +    @{command_def "abbreviation"} & : & \isarkeep{local{\dsh}theory} \\
    3.22 +    @{command_def "print_abbrevs"}@{text "\<^sup>*"} & : & \isarkeep{theory~|~proof} \\
    3.23 +    @{command_def "notation"} & : & \isarkeep{local{\dsh}theory} \\
    3.24 +    @{command_def "no_notation"} & : & \isarkeep{local{\dsh}theory} \\
    3.25 +  \end{matharray}
    3.26 +
    3.27 +  These specification mechanisms provide a slightly more abstract view
    3.28 +  than the underlying primitives of @{command "consts"}, @{command
    3.29 +  "defs"} (see \secref{sec:consts}), and @{command "axioms"} (see
    3.30 +  \secref{sec:axms-thms}).  In particular, type-inference is commonly
    3.31 +  available, and result names need not be given.
    3.32 +
    3.33 +  \begin{rail}
    3.34 +    'axiomatization' target? fixes? ('where' specs)?
    3.35 +    ;
    3.36 +    'definition' target? (decl 'where')? thmdecl? prop
    3.37 +    ;
    3.38 +    'abbreviation' target? mode? (decl 'where')? prop
    3.39 +    ;
    3.40 +    ('notation' | 'no\_notation') target? mode? (nameref structmixfix + 'and')
    3.41 +    ;
    3.42 +
    3.43 +    fixes: ((name ('::' type)? mixfix? | vars) + 'and')
    3.44 +    ;
    3.45 +    specs: (thmdecl? props + 'and')
    3.46 +    ;
    3.47 +    decl: name ('::' type)? mixfix?
    3.48 +    ;
    3.49 +  \end{rail}
    3.50 +
    3.51 +  \begin{descr}
    3.52 +  
    3.53 +  \item [@{command "axiomatization"}~@{text "c\<^sub>1 \<dots> c\<^sub>m
    3.54 +  \<WHERE> \<phi>\<^sub>1 \<dots> \<phi>\<^sub>n"}] introduces several constants
    3.55 +  simultaneously and states axiomatic properties for these.  The
    3.56 +  constants are marked as being specified once and for all, which
    3.57 +  prevents additional specifications being issued later on.
    3.58 +  
    3.59 +  Note that axiomatic specifications are only appropriate when
    3.60 +  declaring a new logical system.  Normal applications should only use
    3.61 +  definitional mechanisms!
    3.62 +
    3.63 +  \item [@{command "definition"}~@{text "c \<WHERE> eq"}] produces an
    3.64 +  internal definition @{text "c \<equiv> t"} according to the specification
    3.65 +  given as @{text eq}, which is then turned into a proven fact.  The
    3.66 +  given proposition may deviate from internal meta-level equality
    3.67 +  according to the rewrite rules declared as @{attribute defn} by the
    3.68 +  object-logic.  This typically covers object-level equality @{text "x
    3.69 +  = t"} and equivalence @{text "A \<leftrightarrow> B"}.  End-users normally need not
    3.70 +  change the @{attribute defn} setup.
    3.71 +  
    3.72 +  Definitions may be presented with explicit arguments on the LHS, as
    3.73 +  well as additional conditions, e.g.\ @{text "f x y = t"} instead of
    3.74 +  @{text "f \<equiv> \<lambda>x y. t"} and @{text "y \<noteq> 0 \<Longrightarrow> g x y = u"} instead of an
    3.75 +  unrestricted @{text "g \<equiv> \<lambda>x y. u"}.
    3.76 +  
    3.77 +  \item [@{command "abbreviation"}~@{text "c \<WHERE> eq"}] introduces
    3.78 +  a syntactic constant which is associated with a certain term
    3.79 +  according to the meta-level equality @{text eq}.
    3.80 +  
    3.81 +  Abbreviations participate in the usual type-inference process, but
    3.82 +  are expanded before the logic ever sees them.  Pretty printing of
    3.83 +  terms involves higher-order rewriting with rules stemming from
    3.84 +  reverted abbreviations.  This needs some care to avoid overlapping
    3.85 +  or looping syntactic replacements!
    3.86 +  
    3.87 +  The optional @{text mode} specification restricts output to a
    3.88 +  particular print mode; using ``@{text input}'' here achieves the
    3.89 +  effect of one-way abbreviations.  The mode may also include an
    3.90 +  ``@{keyword "output"}'' qualifier that affects the concrete syntax
    3.91 +  declared for abbreviations, cf.\ @{command "syntax"} in
    3.92 +  \secref{sec:syn-trans}.
    3.93 +  
    3.94 +  \item [@{command "print_abbrevs"}] prints all constant abbreviations
    3.95 +  of the current context.
    3.96 +  
    3.97 +  \item [@{command "notation"}~@{text "c (mx)"}] associates mixfix
    3.98 +  syntax with an existing constant or fixed variable.  This is a
    3.99 +  robust interface to the underlying @{command "syntax"} primitive
   3.100 +  (\secref{sec:syn-trans}).  Type declaration and internal syntactic
   3.101 +  representation of the given entity is retrieved from the context.
   3.102 +  
   3.103 +  \item [@{command "no_notation"}] is similar to @{command
   3.104 +  "notation"}, but removes the specified syntax annotation from the
   3.105 +  present context.
   3.106 +
   3.107 +  \end{descr}
   3.108 +
   3.109 +  All of these specifications support local theory targets (cf.\
   3.110 +  \secref{sec:target}).
   3.111 +*}
   3.112 +
   3.113 +
   3.114 +subsection {* Generic declarations *}
   3.115 +
   3.116 +text {*
   3.117 +  Arbitrary operations on the background context may be wrapped-up as
   3.118 +  generic declaration elements.  Since the underlying concept of local
   3.119 +  theories may be subject to later re-interpretation, there is an
   3.120 +  additional dependency on a morphism that tells the difference of the
   3.121 +  original declaration context wrt.\ the application context
   3.122 +  encountered later on.  A fact declaration is an important special
   3.123 +  case: it consists of a theorem which is applied to the context by
   3.124 +  means of an attribute.
   3.125 +
   3.126 +  \begin{matharray}{rcl}
   3.127 +    @{command_def "declaration"} & : & \isarkeep{local{\dsh}theory} \\
   3.128 +    @{command_def "declare"} & : & \isarkeep{local{\dsh}theory} \\
   3.129 +  \end{matharray}
   3.130 +
   3.131 +  \begin{rail}
   3.132 +    'declaration' target? text
   3.133 +    ;
   3.134 +    'declare' target? (thmrefs + 'and')
   3.135 +    ;
   3.136 +  \end{rail}
   3.137 +
   3.138 +  \begin{descr}
   3.139 +
   3.140 +  \item [@{command "declaration"}~@{text d}] adds the declaration
   3.141 +  function @{text d} of ML type @{ML_type declaration}, to the current
   3.142 +  local theory under construction.  In later application contexts, the
   3.143 +  function is transformed according to the morphisms being involved in
   3.144 +  the interpretation hierarchy.
   3.145 +
   3.146 +  \item [@{command "declare"}~@{text thms}] declares theorems to the
   3.147 +  current local theory context.  No theorem binding is involved here,
   3.148 +  unlike @{command "theorems"} or @{command "lemmas"} (cf.\
   3.149 +  \secref{sec:axms-thms}), so @{command "declare"} only has the effect
   3.150 +  of applying attributes as included in the theorem specification.
   3.151 +
   3.152 +  \end{descr}
   3.153 +*}
   3.154 +
   3.155 +
   3.156 +subsection {* Local theory targets \label{sec:target} *}
   3.157 +
   3.158 +text {*
   3.159 +  A local theory target is a context managed separately within the
   3.160 +  enclosing theory.  Contexts may introduce parameters (fixed
   3.161 +  variables) and assumptions (hypotheses).  Definitions and theorems
   3.162 +  depending on the context may be added incrementally later on.  Named
   3.163 +  contexts refer to locales (cf.\ \secref{sec:locale}) or type classes
   3.164 +  (cf.\ \secref{sec:class}); the name ``@{text "-"}'' signifies the
   3.165 +  global theory context.
   3.166 +
   3.167 +  \begin{matharray}{rcll}
   3.168 +    @{command_def "context"} & : & \isartrans{theory}{local{\dsh}theory} \\
   3.169 +    @{command_def "end"} & : & \isartrans{local{\dsh}theory}{theory} \\
   3.170 +  \end{matharray}
   3.171 +
   3.172 +  \indexouternonterm{target}
   3.173 +  \begin{rail}
   3.174 +    'context' name 'begin'
   3.175 +    ;
   3.176 +
   3.177 +    target: '(' 'in' name ')'
   3.178 +    ;
   3.179 +  \end{rail}
   3.180 +
   3.181 +  \begin{descr}
   3.182 +  
   3.183 +  \item [@{command "context"}~@{text "c \<BEGIN>"}] recommences an
   3.184 +  existing locale or class context @{text c}.  Note that locale and
   3.185 +  class definitions allow to include the @{keyword_ref "begin"}
   3.186 +  keyword as well, in order to continue the local theory immediately
   3.187 +  after the initial specification.
   3.188 +  
   3.189 +  \item [@{command "end"}] concludes the current local theory and
   3.190 +  continues the enclosing global theory.  Note that a non-local
   3.191 +  @{command "end"} has a different meaning: it concludes the theory
   3.192 +  itself (\secref{sec:begin-thy}).
   3.193 +  
   3.194 +  \item [@{text "(\<IN> c)"}] given after any local theory command
   3.195 +  specifies an immediate target, e.g.\ ``@{command
   3.196 +  "definition"}~@{text "(\<IN> c) \<dots>"}'' or ``@{command
   3.197 +  "theorem"}~@{text "(\<IN> c) \<dots>"}''.  This works both in a local or
   3.198 +  global theory context; the current target context will be suspended
   3.199 +  for this command only.  Note that @{text "(\<IN> -)"} will always
   3.200 +  produce a global result independently of the current target context.
   3.201 +
   3.202 +  \end{descr}
   3.203 +
   3.204 +  The exact meaning of results produced within a local theory context
   3.205 +  depends on the underlying target infrastructure (locale, type class
   3.206 +  etc.).  The general idea is as follows, considering a context named
   3.207 +  @{text c} with parameter @{text x} and assumption @{text "A[x]"}.
   3.208 +  
   3.209 +  Definitions are exported by introducing a global version with
   3.210 +  additional arguments; a syntactic abbreviation links the long form
   3.211 +  with the abstract version of the target context.  For example,
   3.212 +  @{text "a \<equiv> t[x]"} becomes @{text "c.a ?x \<equiv> t[?x]"} at the theory
   3.213 +  level (for arbitrary @{text "?x"}), together with a local
   3.214 +  abbreviation @{text "c \<equiv> c.a x"} in the target context (for the
   3.215 +  fixed parameter @{text x}).
   3.216 +
   3.217 +  Theorems are exported by discharging the assumptions and
   3.218 +  generalizing the parameters of the context.  For example, @{text "a:
   3.219 +  B[x]"} becomes @{text "c.a: A[?x] \<Longrightarrow> B[?x]"} (again for arbitrary
   3.220 +  @{text "?x"}).
   3.221 +*}
   3.222 +
   3.223 +
   3.224 +subsection {* Locales \label{sec:locale} *}
   3.225 +
   3.226 +text {*
   3.227 +  Locales are named local contexts, consisting of a list of
   3.228 +  declaration elements that are modeled after the Isar proof context
   3.229 +  commands (cf.\ \secref{sec:proof-context}).
   3.230 +*}
   3.231 +
   3.232 +
   3.233 +subsubsection {* Locale specifications *}
   3.234 +
   3.235 +text {*
   3.236 +  \begin{matharray}{rcl}
   3.237 +    @{command_def "locale"} & : & \isartrans{theory}{local{\dsh}theory} \\
   3.238 +    @{command_def "print_locale"}@{text "\<^sup>*"} & : & \isarkeep{theory~|~proof} \\
   3.239 +    @{command_def "print_locales"}@{text "\<^sup>*"} & : & \isarkeep{theory~|~proof} \\
   3.240 +    @{method_def intro_locales} & : & \isarmeth \\
   3.241 +    @{method_def unfold_locales} & : & \isarmeth \\
   3.242 +  \end{matharray}
   3.243 +
   3.244 +  \indexouternonterm{contextexpr}\indexouternonterm{contextelem}
   3.245 +  \indexisarelem{fixes}\indexisarelem{constrains}\indexisarelem{assumes}
   3.246 +  \indexisarelem{defines}\indexisarelem{notes}\indexisarelem{includes}
   3.247 +  \begin{rail}
   3.248 +    'locale' ('(open)')? name ('=' localeexpr)? 'begin'?
   3.249 +    ;
   3.250 +    'print\_locale' '!'? localeexpr
   3.251 +    ;
   3.252 +    localeexpr: ((contextexpr '+' (contextelem+)) | contextexpr | (contextelem+))
   3.253 +    ;
   3.254 +
   3.255 +    contextexpr: nameref | '(' contextexpr ')' |
   3.256 +    (contextexpr (name mixfix? +)) | (contextexpr + '+')
   3.257 +    ;
   3.258 +    contextelem: fixes | constrains | assumes | defines | notes
   3.259 +    ;
   3.260 +    fixes: 'fixes' ((name ('::' type)? structmixfix? | vars) + 'and')
   3.261 +    ;
   3.262 +    constrains: 'constrains' (name '::' type + 'and')
   3.263 +    ;
   3.264 +    assumes: 'assumes' (thmdecl? props + 'and')
   3.265 +    ;
   3.266 +    defines: 'defines' (thmdecl? prop proppat? + 'and')
   3.267 +    ;
   3.268 +    notes: 'notes' (thmdef? thmrefs + 'and')
   3.269 +    ;
   3.270 +    includes: 'includes' contextexpr
   3.271 +    ;
   3.272 +  \end{rail}
   3.273 +
   3.274 +  \begin{descr}
   3.275 +  
   3.276 +  \item [@{command "locale"}~@{text "loc = import + body"}] defines a
   3.277 +  new locale @{text loc} as a context consisting of a certain view of
   3.278 +  existing locales (@{text import}) plus some additional elements
   3.279 +  (@{text body}).  Both @{text import} and @{text body} are optional;
   3.280 +  the degenerate form @{command "locale"}~@{text loc} defines an empty
   3.281 +  locale, which may still be useful to collect declarations of facts
   3.282 +  later on.  Type-inference on locale expressions automatically takes
   3.283 +  care of the most general typing that the combined context elements
   3.284 +  may acquire.
   3.285 +
   3.286 +  The @{text import} consists of a structured context expression,
   3.287 +  consisting of references to existing locales, renamed contexts, or
   3.288 +  merged contexts.  Renaming uses positional notation: @{text "c
   3.289 +  x\<^sub>1 \<dots> x\<^sub>n"} means that (a prefix of) the fixed
   3.290 +  parameters of context @{text c} are named @{text "x\<^sub>1, \<dots>,
   3.291 +  x\<^sub>n"}; a ``@{text _}'' (underscore) means to skip that
   3.292 +  position.  Renaming by default deletes concrete syntax, but new
   3.293 +  syntax may by specified with a mixfix annotation.  An exeption of
   3.294 +  this rule is the special syntax declared with ``@{text
   3.295 +  "(\<STRUCTURE>)"}'' (see below), which is neither deleted nor can it
   3.296 +  be changed.  Merging proceeds from left-to-right, suppressing any
   3.297 +  duplicates stemming from different paths through the import
   3.298 +  hierarchy.
   3.299 +
   3.300 +  The @{text body} consists of basic context elements, further context
   3.301 +  expressions may be included as well.
   3.302 +
   3.303 +  \begin{descr}
   3.304 +
   3.305 +  \item [@{element "fixes"}~@{text "x :: \<tau> (mx)"}] declares a local
   3.306 +  parameter of type @{text \<tau>} and mixfix annotation @{text mx} (both
   3.307 +  are optional).  The special syntax declaration ``@{text
   3.308 +  "(\<STRUCTURE>)"}'' means that @{text x} may be referenced
   3.309 +  implicitly in this context.
   3.310 +
   3.311 +  \item [@{element "constrains"}~@{text "x :: \<tau>"}] introduces a type
   3.312 +  constraint @{text \<tau>} on the local parameter @{text x}.
   3.313 +
   3.314 +  \item [@{element "assumes"}~@{text "a: \<phi>\<^sub>1 \<dots> \<phi>\<^sub>n"}]
   3.315 +  introduces local premises, similar to @{command "assume"} within a
   3.316 +  proof (cf.\ \secref{sec:proof-context}).
   3.317 +
   3.318 +  \item [@{element "defines"}~@{text "a: x \<equiv> t"}] defines a previously
   3.319 +  declared parameter.  This is close to @{command "def"} within a
   3.320 +  proof (cf.\ \secref{sec:proof-context}), but @{element "defines"}
   3.321 +  takes an equational proposition instead of variable-term pair.  The
   3.322 +  left-hand side of the equation may have additional arguments, e.g.\
   3.323 +  ``@{element "defines"}~@{text "f x\<^sub>1 \<dots> x\<^sub>n \<equiv> t"}''.
   3.324 +
   3.325 +  \item [@{element "notes"}~@{text "a = b\<^sub>1 \<dots> b\<^sub>n"}]
   3.326 +  reconsiders facts within a local context.  Most notably, this may
   3.327 +  include arbitrary declarations in any attribute specifications
   3.328 +  included here, e.g.\ a local @{attribute simp} rule.
   3.329 +
   3.330 +  \item [@{element "includes"}~@{text c}] copies the specified context
   3.331 +  in a statically scoped manner.  Only available in the long goal
   3.332 +  format of \secref{sec:goals}.
   3.333 +
   3.334 +  In contrast, the initial @{text import} specification of a locale
   3.335 +  expression maintains a dynamic relation to the locales being
   3.336 +  referenced (benefiting from any later fact declarations in the
   3.337 +  obvious manner).
   3.338 +
   3.339 +  \end{descr}
   3.340 +  
   3.341 +  Note that ``@{text "(\<IS> p\<^sub>1 \<dots> p\<^sub>n)"}'' patterns given
   3.342 +  in the syntax of @{element "assumes"} and @{element "defines"} above
   3.343 +  are illegal in locale definitions.  In the long goal format of
   3.344 +  \secref{sec:goals}, term bindings may be included as expected,
   3.345 +  though.
   3.346 +  
   3.347 +  \medskip By default, locale specifications are ``closed up'' by
   3.348 +  turning the given text into a predicate definition @{text
   3.349 +  loc_axioms} and deriving the original assumptions as local lemmas
   3.350 +  (modulo local definitions).  The predicate statement covers only the
   3.351 +  newly specified assumptions, omitting the content of included locale
   3.352 +  expressions.  The full cumulative view is only provided on export,
   3.353 +  involving another predicate @{text loc} that refers to the complete
   3.354 +  specification text.
   3.355 +  
   3.356 +  In any case, the predicate arguments are those locale parameters
   3.357 +  that actually occur in the respective piece of text.  Also note that
   3.358 +  these predicates operate at the meta-level in theory, but the locale
   3.359 +  packages attempts to internalize statements according to the
   3.360 +  object-logic setup (e.g.\ replacing @{text \<And>} by @{text \<forall>}, and
   3.361 +  @{text "\<Longrightarrow>"} by @{text "\<longrightarrow>"} in HOL; see also
   3.362 +  \secref{sec:object-logic}).  Separate introduction rules @{text
   3.363 +  loc_axioms.intro} and @{text loc.intro} are provided as well.
   3.364 +  
   3.365 +  The @{text "(open)"} option of a locale specification prevents both
   3.366 +  the current @{text loc_axioms} and cumulative @{text loc} predicate
   3.367 +  constructions.  Predicates are also omitted for empty specification
   3.368 +  texts.
   3.369 +
   3.370 +  \item [@{command "print_locale"}~@{text "import + body"}] prints the
   3.371 +  specified locale expression in a flattened form.  The notable
   3.372 +  special case @{command "print_locale"}~@{text loc} just prints the
   3.373 +  contents of the named locale, but keep in mind that type-inference
   3.374 +  will normalize type variables according to the usual alphabetical
   3.375 +  order.  The command omits @{element "notes"} elements by default.
   3.376 +  Use @{command "print_locale"}@{text "!"} to get them included.
   3.377 +
   3.378 +  \item [@{command "print_locales"}] prints the names of all locales
   3.379 +  of the current theory.
   3.380 +
   3.381 +  \item [@{method intro_locales} and @{method unfold_locales}]
   3.382 +  repeatedly expand all introduction rules of locale predicates of the
   3.383 +  theory.  While @{method intro_locales} only applies the @{text
   3.384 +  loc.intro} introduction rules and therefore does not decend to
   3.385 +  assumptions, @{method unfold_locales} is more aggressive and applies
   3.386 +  @{text loc_axioms.intro} as well.  Both methods are aware of locale
   3.387 +  specifications entailed by the context, both from target and
   3.388 +  @{element "includes"} statements, and from interpretations (see
   3.389 +  below).  New goals that are entailed by the current context are
   3.390 +  discharged automatically.
   3.391 +
   3.392 +  \end{descr}
   3.393 +*}
   3.394 +
   3.395 +
   3.396 +subsubsection {* Interpretation of locales *}
   3.397 +
   3.398 +text {*
   3.399 +  Locale expressions (more precisely, \emph{context expressions}) may
   3.400 +  be instantiated, and the instantiated facts added to the current
   3.401 +  context.  This requires a proof of the instantiated specification
   3.402 +  and is called \emph{locale interpretation}.  Interpretation is
   3.403 +  possible in theories and locales (command @{command
   3.404 +  "interpretation"}) and also within a proof body (@{command
   3.405 +  "interpret"}).
   3.406 +
   3.407 +  \begin{matharray}{rcl}
   3.408 +    @{command_def "interpretation"} & : & \isartrans{theory}{proof(prove)} \\
   3.409 +    @{command_def "interpret"} & : & \isartrans{proof(state) ~|~ proof(chain)}{proof(prove)} \\
   3.410 +    @{command_def "print_interps"}@{text "\<^sup>*"} & : &  \isarkeep{theory~|~proof} \\
   3.411 +  \end{matharray}
   3.412 +
   3.413 +  \indexouternonterm{interp}
   3.414 +  \begin{rail}
   3.415 +    'interpretation' (interp | name ('<' | subseteq) contextexpr)
   3.416 +    ;
   3.417 +    'interpret' interp
   3.418 +    ;
   3.419 +    'print\_interps' '!'? name
   3.420 +    ;
   3.421 +    instantiation: ('[' (inst+) ']')?
   3.422 +    ;
   3.423 +    interp: thmdecl? \\ (contextexpr instantiation |
   3.424 +      name instantiation 'where' (thmdecl? prop + 'and'))
   3.425 +    ;
   3.426 +  \end{rail}
   3.427 +
   3.428 +  \begin{descr}
   3.429 +
   3.430 +  \item [@{command "interpretation"}~@{text "expr insts \<WHERE> eqns"}]
   3.431 +
   3.432 +  The first form of @{command "interpretation"} interprets @{text
   3.433 +  expr} in the theory.  The instantiation is given as a list of terms
   3.434 +  @{text insts} and is positional.  All parameters must receive an
   3.435 +  instantiation term --- with the exception of defined parameters.
   3.436 +  These are, if omitted, derived from the defining equation and other
   3.437 +  instantiations.  Use ``@{text _}'' to omit an instantiation term.
   3.438 +  Free variables are automatically generalized.
   3.439 +
   3.440 +  The command generates proof obligations for the instantiated
   3.441 +  specifications (assumes and defines elements).  Once these are
   3.442 +  discharged by the user, instantiated facts are added to the theory
   3.443 +  in a post-processing phase.
   3.444 +
   3.445 +  Additional equations, which are unfolded in facts during
   3.446 +  post-processing, may be given after the keyword @{keyword "where"}.
   3.447 +  This is useful for interpreting concepts introduced through
   3.448 +  definition specification elements.  The equations must be proved.
   3.449 +  Note that if equations are present, the context expression is
   3.450 +  restricted to a locale name.
   3.451 +
   3.452 +  The command is aware of interpretations already active in the
   3.453 +  theory.  No proof obligations are generated for those, neither is
   3.454 +  post-processing applied to their facts.  This avoids duplication of
   3.455 +  interpreted facts, in particular.  Note that, in the case of a
   3.456 +  locale with import, parts of the interpretation may already be
   3.457 +  active.  The command will only generate proof obligations and
   3.458 +  process facts for new parts.
   3.459 +
   3.460 +  The context expression may be preceded by a name and/or attributes.
   3.461 +  These take effect in the post-processing of facts.  The name is used
   3.462 +  to prefix fact names, for example to avoid accidental hiding of
   3.463 +  other facts.  Attributes are applied after attributes of the
   3.464 +  interpreted facts.
   3.465 +
   3.466 +  Adding facts to locales has the effect of adding interpreted facts
   3.467 +  to the theory for all active interpretations also.  That is,
   3.468 +  interpretations dynamically participate in any facts added to
   3.469 +  locales.
   3.470 +
   3.471 +  \item [@{command "interpretation"}~@{text "name \<subseteq> expr"}]
   3.472 +
   3.473 +  This form of the command interprets @{text expr} in the locale
   3.474 +  @{text name}.  It requires a proof that the specification of @{text
   3.475 +  name} implies the specification of @{text expr}.  As in the
   3.476 +  localized version of the theorem command, the proof is in the
   3.477 +  context of @{text name}.  After the proof obligation has been
   3.478 +  dischared, the facts of @{text expr} become part of locale @{text
   3.479 +  name} as \emph{derived} context elements and are available when the
   3.480 +  context @{text name} is subsequently entered.  Note that, like
   3.481 +  import, this is dynamic: facts added to a locale part of @{text
   3.482 +  expr} after interpretation become also available in @{text name}.
   3.483 +  Like facts of renamed context elements, facts obtained by
   3.484 +  interpretation may be accessed by prefixing with the parameter
   3.485 +  renaming (where the parameters are separated by ``@{text _}'').
   3.486 +
   3.487 +  Unlike interpretation in theories, instantiation is confined to the
   3.488 +  renaming of parameters, which may be specified as part of the
   3.489 +  context expression @{text expr}.  Using defined parameters in @{text
   3.490 +  name} one may achieve an effect similar to instantiation, though.
   3.491 +
   3.492 +  Only specification fragments of @{text expr} that are not already
   3.493 +  part of @{text name} (be it imported, derived or a derived fragment
   3.494 +  of the import) are considered by interpretation.  This enables
   3.495 +  circular interpretations.
   3.496 +
   3.497 +  If interpretations of @{text name} exist in the current theory, the
   3.498 +  command adds interpretations for @{text expr} as well, with the same
   3.499 +  prefix and attributes, although only for fragments of @{text expr}
   3.500 +  that are not interpreted in the theory already.
   3.501 +
   3.502 +  \item [@{command "interpret"}~@{text "expr insts \<WHERE> eqns"}]
   3.503 +  interprets @{text expr} in the proof context and is otherwise
   3.504 +  similar to interpretation in theories.  Free variables in
   3.505 +  instantiations are not generalized, however.
   3.506 +
   3.507 +  \item [@{command "print_interps"}~@{text loc}] prints the
   3.508 +  interpretations of a particular locale @{text loc} that are active
   3.509 +  in the current context, either theory or proof context.  The
   3.510 +  exclamation point argument triggers printing of \emph{witness}
   3.511 +  theorems justifying interpretations.  These are normally omitted
   3.512 +  from the output.
   3.513 +  
   3.514 +  \end{descr}
   3.515 +
   3.516 +  \begin{warn}
   3.517 +    Since attributes are applied to interpreted theorems,
   3.518 +    interpretation may modify the context of common proof tools, e.g.\
   3.519 +    the Simplifier or Classical Reasoner.  Since the behavior of such
   3.520 +    automated reasoning tools is \emph{not} stable under
   3.521 +    interpretation morphisms, manual declarations might have to be
   3.522 +    issued.
   3.523 +  \end{warn}
   3.524 +
   3.525 +  \begin{warn}
   3.526 +    An interpretation in a theory may subsume previous
   3.527 +    interpretations.  This happens if the same specification fragment
   3.528 +    is interpreted twice and the instantiation of the second
   3.529 +    interpretation is more general than the interpretation of the
   3.530 +    first.  A warning is issued, since it is likely that these could
   3.531 +    have been generalized in the first place.  The locale package does
   3.532 +    not attempt to remove subsumed interpretations.
   3.533 +  \end{warn}
   3.534 +*}
   3.535 +
   3.536 +
   3.537 +subsection {* Classes \label{sec:class} *}
   3.538 +
   3.539 +text {*
   3.540 +  A class is a particular locale with \emph{exactly one} type variable
   3.541 +  @{text \<alpha>}.  Beyond the underlying locale, a corresponding type class
   3.542 +  is established which is interpreted logically as axiomatic type
   3.543 +  class \cite{Wenzel:1997:TPHOL} whose logical content are the
   3.544 +  assumptions of the locale.  Thus, classes provide the full
   3.545 +  generality of locales combined with the commodity of type classes
   3.546 +  (notably type-inference).  See \cite{isabelle-classes} for a short
   3.547 +  tutorial.
   3.548 +
   3.549 +  \begin{matharray}{rcl}
   3.550 +    @{command_def "class"} & : & \isartrans{theory}{local{\dsh}theory} \\
   3.551 +    @{command_def "instantiation"} & : & \isartrans{theory}{local{\dsh}theory} \\
   3.552 +    @{command_def "instance"} & : & \isartrans{local{\dsh}theory}{local{\dsh}theory} \\
   3.553 +    @{command_def "subclass"} & : & \isartrans{local{\dsh}theory}{local{\dsh}theory} \\
   3.554 +    @{command_def "print_classes"}@{text "\<^sup>*"} & : & \isarkeep{theory~|~proof} \\
   3.555 +    @{method_def intro_classes} & : & \isarmeth \\
   3.556 +  \end{matharray}
   3.557 +
   3.558 +  \begin{rail}
   3.559 +    'class' name '=' ((superclassexpr '+' (contextelem+)) | superclassexpr | (contextelem+)) \\
   3.560 +      'begin'?
   3.561 +    ;
   3.562 +    'instantiation' (nameref + 'and') '::' arity 'begin'
   3.563 +    ;
   3.564 +    'instance'
   3.565 +    ;
   3.566 +    'subclass' target? nameref
   3.567 +    ;
   3.568 +    'print\_classes'
   3.569 +    ;
   3.570 +
   3.571 +    superclassexpr: nameref | (nameref '+' superclassexpr)
   3.572 +    ;
   3.573 +  \end{rail}
   3.574 +
   3.575 +  \begin{descr}
   3.576 +
   3.577 +  \item [@{command "class"}~@{text "c = superclasses + body"}] defines
   3.578 +  a new class @{text c}, inheriting from @{text superclasses}.  This
   3.579 +  introduces a locale @{text c} with import of all locales @{text
   3.580 +  superclasses}.
   3.581 +
   3.582 +  Any @{element "fixes"} in @{text body} are lifted to the global
   3.583 +  theory level (\emph{class operations} @{text "f\<^sub>1, \<dots>,
   3.584 +  f\<^sub>n"} of class @{text c}), mapping the local type parameter
   3.585 +  @{text \<alpha>} to a schematic type variable @{text "?\<alpha> :: c"}.
   3.586 +
   3.587 +  Likewise, @{element "assumes"} in @{text body} are also lifted,
   3.588 +  mapping each local parameter @{text "f :: \<tau>[\<alpha>]"} to its
   3.589 +  corresponding global constant @{text "f :: \<tau>[?\<alpha> :: c]"}.  The
   3.590 +  corresponding introduction rule is provided as @{text
   3.591 +  c_class_axioms.intro}.  This rule should be rarely needed directly
   3.592 +  --- the @{method intro_classes} method takes care of the details of
   3.593 +  class membership proofs.
   3.594 +
   3.595 +  \item [@{command "instantiation"}~@{text "t :: (s\<^sub>1, \<dots>,
   3.596 +  s\<^sub>n) s \<BEGIN>"}] opens a theory target (cf.\
   3.597 +  \secref{sec:target}) which allows to specify class operations @{text
   3.598 +  "f\<^sub>1, \<dots>, f\<^sub>n"} corresponding to sort @{text s} at the
   3.599 +  particular type instance @{text "(\<alpha>\<^sub>1 :: s\<^sub>1, \<dots>,
   3.600 +  \<alpha>\<^sub>n :: s\<^sub>n) t"}.  An plain @{command "instance"} command
   3.601 +  in the target body poses a goal stating these type arities.  The
   3.602 +  target is concluded by an @{command_ref "end"} command.
   3.603 +
   3.604 +  Note that a list of simultaneous type constructors may be given;
   3.605 +  this corresponds nicely to mutual recursive type definitions, e.g.\
   3.606 +  in Isabelle/HOL.
   3.607 +
   3.608 +  \item [@{command "instance"}] in an instantiation target body sets
   3.609 +  up a goal stating the type arities claimed at the opening @{command
   3.610 +  "instantiation"}.  The proof would usually proceed by @{method
   3.611 +  intro_classes}, and then establish the characteristic theorems of
   3.612 +  the type classes involved.  After finishing the proof, the
   3.613 +  background theory will be augmented by the proven type arities.
   3.614 +
   3.615 +  \item [@{command "subclass"}~@{text c}] in a class context for class
   3.616 +  @{text d} sets up a goal stating that class @{text c} is logically
   3.617 +  contained in class @{text d}.  After finishing the proof, class
   3.618 +  @{text d} is proven to be subclass @{text c} and the locale @{text
   3.619 +  c} is interpreted into @{text d} simultaneously.
   3.620 +
   3.621 +  \item [@{command "print_classes"}] prints all classes in the current
   3.622 +  theory.
   3.623 +
   3.624 +  \item [@{method intro_classes}] repeatedly expands all class
   3.625 +  introduction rules of this theory.  Note that this method usually
   3.626 +  needs not be named explicitly, as it is already included in the
   3.627 +  default proof step (e.g.\ of @{command "proof"}).  In particular,
   3.628 +  instantiation of trivial (syntactic) classes may be performed by a
   3.629 +  single ``@{command ".."}'' proof step.
   3.630 +
   3.631 +  \end{descr}
   3.632 +*}
   3.633 +
   3.634 +
   3.635 +subsubsection {* The class target *}
   3.636 +
   3.637 +text {*
   3.638 +  %FIXME check
   3.639 +
   3.640 +  A named context may refer to a locale (cf.\ \secref{sec:target}).
   3.641 +  If this locale is also a class @{text c}, apart from the common
   3.642 +  locale target behaviour the following happens.
   3.643 +
   3.644 +  \begin{itemize}
   3.645 +
   3.646 +  \item Local constant declarations @{text "g[\<alpha>]"} referring to the
   3.647 +  local type parameter @{text \<alpha>} and local parameters @{text "f[\<alpha>]"}
   3.648 +  are accompanied by theory-level constants @{text "g[?\<alpha> :: c]"}
   3.649 +  referring to theory-level class operations @{text "f[?\<alpha> :: c]"}.
   3.650 +
   3.651 +  \item Local theorem bindings are lifted as are assumptions.
   3.652 +
   3.653 +  \item Local syntax refers to local operations @{text "g[\<alpha>]"} and
   3.654 +  global operations @{text "g[?\<alpha> :: c]"} uniformly.  Type inference
   3.655 +  resolves ambiguities.  In rare cases, manual type annotations are
   3.656 +  needed.
   3.657 +  
   3.658 +  \end{itemize}
   3.659 +*}
   3.660 +
   3.661 +
   3.662 +subsection {* Axiomatic type classes \label{sec:axclass} *}
   3.663 +
   3.664 +text {*
   3.665 +  \begin{matharray}{rcl}
   3.666 +    @{command_def "axclass"} & : & \isartrans{theory}{theory} \\
   3.667 +    @{command_def "instance"} & : & \isartrans{theory}{proof(prove)} \\
   3.668 +  \end{matharray}
   3.669 +
   3.670 +  Axiomatic type classes are Isabelle/Pure's primitive
   3.671 +  \emph{definitional} interface to type classes.  For practical
   3.672 +  applications, you should consider using classes
   3.673 +  (cf.~\secref{sec:classes}) which provide high level interface.
   3.674 +
   3.675 +  \begin{rail}
   3.676 +    'axclass' classdecl (axmdecl prop +)
   3.677 +    ;
   3.678 +    'instance' (nameref ('<' | subseteq) nameref | nameref '::' arity)
   3.679 +    ;
   3.680 +  \end{rail}
   3.681 +
   3.682 +  \begin{descr}
   3.683 +  
   3.684 +  \item [@{command "axclass"}~@{text "c \<subseteq> c\<^sub>1, \<dots>, c\<^sub>n
   3.685 +  axms"}] defines an axiomatic type class as the intersection of
   3.686 +  existing classes, with additional axioms holding.  Class axioms may
   3.687 +  not contain more than one type variable.  The class axioms (with
   3.688 +  implicit sort constraints added) are bound to the given names.
   3.689 +  Furthermore a class introduction rule is generated (being bound as
   3.690 +  @{text c_class.intro}); this rule is employed by method @{method
   3.691 +  intro_classes} to support instantiation proofs of this class.
   3.692 +  
   3.693 +  The ``class axioms'' are stored as theorems according to the given
   3.694 +  name specifications, adding @{text "c_class"} as name space prefix;
   3.695 +  the same facts are also stored collectively as @{text
   3.696 +  c_class.axioms}.
   3.697 +  
   3.698 +  \item [@{command "instance"}~@{text "c\<^sub>1 \<subseteq> c\<^sub>2"} and
   3.699 +  @{command "instance"}~@{text "t :: (s\<^sub>1, \<dots>, s\<^sub>n) s"}]
   3.700 +  setup a goal stating a class relation or type arity.  The proof
   3.701 +  would usually proceed by @{method intro_classes}, and then establish
   3.702 +  the characteristic theorems of the type classes involved.  After
   3.703 +  finishing the proof, the theory will be augmented by a type
   3.704 +  signature declaration corresponding to the resulting theorem.
   3.705 +
   3.706 +  \end{descr}
   3.707 +*}
   3.708 +
   3.709 +
   3.710 +subsection {* Arbitrary overloading *}
   3.711 +
   3.712 +text {*
   3.713 +  Isabelle/Pure's definitional schemes support certain forms of
   3.714 +  overloading (see \secref{sec:consts}).  At most occassions
   3.715 +  overloading will be used in a Haskell-like fashion together with
   3.716 +  type classes by means of @{command "instantiation"} (see
   3.717 +  \secref{sec:class}).  Sometimes low-level overloading is desirable.
   3.718 +  The @{command "overloading"} target provides a convenient view for
   3.719 +  end-users.
   3.720 +
   3.721 +  \begin{matharray}{rcl}
   3.722 +    @{command_def "overloading"} & : & \isartrans{theory}{local{\dsh}theory} \\
   3.723 +  \end{matharray}
   3.724 +
   3.725 +  \begin{rail}
   3.726 +    'overloading' \\
   3.727 +    ( string ( '==' | equiv ) term ( '(' 'unchecked' ')' )? + ) 'begin'
   3.728 +  \end{rail}
   3.729 +
   3.730 +  \begin{descr}
   3.731 +
   3.732 +  \item [@{command "overloading"}~@{text "x\<^sub>1 \<equiv> c\<^sub>1 ::
   3.733 +  \<tau>\<^sub>1 \<AND> \<dots> x\<^sub>n \<equiv> c\<^sub>n :: \<tau>\<^sub>n} \<BEGIN>"}]
   3.734 +  opens a theory target (cf.\ \secref{sec:target}) which allows to
   3.735 +  specify constants with overloaded definitions.  These are identified
   3.736 +  by an explicitly given mapping from variable names @{text
   3.737 +  "x\<^sub>i"} to constants @{text "c\<^sub>i"} at particular type
   3.738 +  instances.  The definitions themselves are established using common
   3.739 +  specification tools, using the names @{text "x\<^sub>i"} as
   3.740 +  reference to the corresponding constants.  The target is concluded
   3.741 +  by @{command "end"}.
   3.742 +
   3.743 +  A @{text "(unchecked)"} option disables global dependency checks for
   3.744 +  the corresponding definition, which is occasionally useful for
   3.745 +  exotic overloading.  It is at the discretion of the user to avoid
   3.746 +  malformed theory specifications!
   3.747 +
   3.748 +  \end{descr}
   3.749 +*}
   3.750 +
   3.751 +
   3.752 +subsection {* Configuration options *}
   3.753 +
   3.754 +text {*
   3.755 +  Isabelle/Pure maintains a record of named configuration options
   3.756 +  within the theory or proof context, with values of type @{ML_type
   3.757 +  bool}, @{ML_type int}, or @{ML_type string}.  Tools may declare
   3.758 +  options in ML, and then refer to these values (relative to the
   3.759 +  context).  Thus global reference variables are easily avoided.  The
   3.760 +  user may change the value of a configuration option by means of an
   3.761 +  associated attribute of the same name.  This form of context
   3.762 +  declaration works particularly well with commands such as @{command
   3.763 +  "declare"} or @{command "using"}.
   3.764 +
   3.765 +  For historical reasons, some tools cannot take the full proof
   3.766 +  context into account and merely refer to the background theory.
   3.767 +  This is accommodated by configuration options being declared as
   3.768 +  ``global'', which may not be changed within a local context.
   3.769 +
   3.770 +  \begin{matharray}{rcll}
   3.771 +    @{command_def "print_configs"} & : & \isarkeep{theory~|~proof} \\
   3.772 +  \end{matharray}
   3.773 +
   3.774 +  \begin{rail}
   3.775 +    name ('=' ('true' | 'false' | int | name))?
   3.776 +  \end{rail}
   3.777 +
   3.778 +  \begin{descr}
   3.779 +  
   3.780 +  \item [@{command "print_configs"}] prints the available
   3.781 +  configuration options, with names, types, and current values.
   3.782 +  
   3.783 +  \item [@{text "name = value"}] as an attribute expression modifies
   3.784 +  the named option, with the syntax of the value depending on the
   3.785 +  option's type.  For @{ML_type bool} the default value is @{text
   3.786 +  true}.  Any attempt to change a global option in a local context is
   3.787 +  ignored.
   3.788 +
   3.789 +  \end{descr}
   3.790 +*}
   3.791 +
   3.792 +
   3.793 +section {* Derived proof schemes *}
   3.794 +
   3.795 +subsection {* Generalized elimination \label{sec:obtain} *}
   3.796 +
   3.797 +text {*
   3.798 +  \begin{matharray}{rcl}
   3.799 +    @{command_def "obtain"} & : & \isartrans{proof(state)}{proof(prove)} \\
   3.800 +    @{command_def "guess"}@{text "\<^sup>*"} & : & \isartrans{proof(state)}{proof(prove)} \\
   3.801 +  \end{matharray}
   3.802 +
   3.803 +  Generalized elimination means that additional elements with certain
   3.804 +  properties may be introduced in the current context, by virtue of a
   3.805 +  locally proven ``soundness statement''.  Technically speaking, the
   3.806 +  @{command "obtain"} language element is like a declaration of
   3.807 +  @{command "fix"} and @{command "assume"} (see also see
   3.808 +  \secref{sec:proof-context}), together with a soundness proof of its
   3.809 +  additional claim.  According to the nature of existential reasoning,
   3.810 +  assumptions get eliminated from any result exported from the context
   3.811 +  later, provided that the corresponding parameters do \emph{not}
   3.812 +  occur in the conclusion.
   3.813 +
   3.814 +  \begin{rail}
   3.815 +    'obtain' parname? (vars + 'and') 'where' (props + 'and')
   3.816 +    ;
   3.817 +    'guess' (vars + 'and')
   3.818 +    ;
   3.819 +  \end{rail}
   3.820 +
   3.821 +  The derived Isar command @{command "obtain"} is defined as follows
   3.822 +  (where @{text "b\<^sub>1, \<dots>, b\<^sub>k"} shall refer to (optional)
   3.823 +  facts indicated for forward chaining).
   3.824 +  \begin{matharray}{l}
   3.825 +    @{text "\<langle>facts b\<^sub>1 \<dots> b\<^sub>k\<rangle>"} \\
   3.826 +    @{command "obtain"}~@{text "x\<^sub>1 \<dots> x\<^sub>m \<WHERE> a: \<phi>\<^sub>1 \<dots> \<phi>\<^sub>n  \<langle>proof\<rangle> \<equiv>"} \\[1ex]
   3.827 +    \quad @{command "have"}~@{text "\<And>thesis. (\<And>x\<^sub>1 \<dots> x\<^sub>m. \<phi>\<^sub>1 \<Longrightarrow> \<dots> \<phi>\<^sub>n \<Longrightarrow> thesis) \<Longrightarrow> thesis"} \\
   3.828 +    \quad @{command "proof"}~@{text succeed} \\
   3.829 +    \qquad @{command "fix"}~@{text thesis} \\
   3.830 +    \qquad @{command "assume"}~@{text "that [Pure.intro?]: \<And>x\<^sub>1 \<dots> x\<^sub>m. \<phi>\<^sub>1 \<Longrightarrow> \<dots> \<phi>\<^sub>n \<Longrightarrow> thesis"} \\
   3.831 +    \qquad @{command "then"}~@{command "show"}~@{text thesis} \\
   3.832 +    \quad\qquad @{command "apply"}~@{text -} \\
   3.833 +    \quad\qquad @{command "using"}~@{text "b\<^sub>1 \<dots> b\<^sub>k  \<langle>proof\<rangle>"} \\
   3.834 +    \quad @{command "qed"} \\
   3.835 +    \quad @{command "fix"}~@{text "x\<^sub>1 \<dots> x\<^sub>m"}~@{command "assume"}@{text "\<^sup>* a: \<phi>\<^sub>1 \<dots> \<phi>\<^sub>n"} \\
   3.836 +  \end{matharray}
   3.837 +
   3.838 +  Typically, the soundness proof is relatively straight-forward, often
   3.839 +  just by canonical automated tools such as ``@{command "by"}~@{text
   3.840 +  simp}'' or ``@{command "by"}~@{text blast}''.  Accordingly, the
   3.841 +  ``@{text that}'' reduction above is declared as simplification and
   3.842 +  introduction rule.
   3.843 +
   3.844 +  In a sense, @{command "obtain"} represents at the level of Isar
   3.845 +  proofs what would be meta-logical existential quantifiers and
   3.846 +  conjunctions.  This concept has a broad range of useful
   3.847 +  applications, ranging from plain elimination (or introduction) of
   3.848 +  object-level existential and conjunctions, to elimination over
   3.849 +  results of symbolic evaluation of recursive definitions, for
   3.850 +  example.  Also note that @{command "obtain"} without parameters acts
   3.851 +  much like @{command "have"}, where the result is treated as a
   3.852 +  genuine assumption.
   3.853 +
   3.854 +  An alternative name to be used instead of ``@{text that}'' above may
   3.855 +  be given in parentheses.
   3.856 +
   3.857 +  \medskip The improper variant @{command "guess"} is similar to
   3.858 +  @{command "obtain"}, but derives the obtained statement from the
   3.859 +  course of reasoning!  The proof starts with a fixed goal @{text
   3.860 +  thesis}.  The subsequent proof may refine this to anything of the
   3.861 +  form like @{text "\<And>x\<^sub>1 \<dots> x\<^sub>m. \<phi>\<^sub>1 \<Longrightarrow> \<dots>
   3.862 +  \<phi>\<^sub>n \<Longrightarrow> thesis"}, but must not introduce new subgoals.  The
   3.863 +  final goal state is then used as reduction rule for the obtain
   3.864 +  scheme described above.  Obtained parameters @{text "x\<^sub>1, \<dots>,
   3.865 +  x\<^sub>m"} are marked as internal by default, which prevents the
   3.866 +  proof context from being polluted by ad-hoc variables.  The variable
   3.867 +  names and type constraints given as arguments for @{command "guess"}
   3.868 +  specify a prefix of obtained parameters explicitly in the text.
   3.869 +
   3.870 +  It is important to note that the facts introduced by @{command
   3.871 +  "obtain"} and @{command "guess"} may not be polymorphic: any
   3.872 +  type-variables occurring here are fixed in the present context!
   3.873 +*}
   3.874 +
   3.875 +
   3.876 +subsection {* Calculational reasoning \label{sec:calculation} *}
   3.877 +
   3.878 +text {*
   3.879 +  \begin{matharray}{rcl}
   3.880 +    @{command_def "also"} & : & \isartrans{proof(state)}{proof(state)} \\
   3.881 +    @{command_def "finally"} & : & \isartrans{proof(state)}{proof(chain)} \\
   3.882 +    @{command_def "moreover"} & : & \isartrans{proof(state)}{proof(state)} \\
   3.883 +    @{command_def "ultimately"} & : & \isartrans{proof(state)}{proof(chain)} \\
   3.884 +    @{command_def "print_trans_rules"}@{text "\<^sup>*"} & : & \isarkeep{theory~|~proof} \\
   3.885 +    @{attribute trans} & : & \isaratt \\
   3.886 +    @{attribute sym} & : & \isaratt \\
   3.887 +    @{attribute symmetric} & : & \isaratt \\
   3.888 +  \end{matharray}
   3.889 +
   3.890 +  Calculational proof is forward reasoning with implicit application
   3.891 +  of transitivity rules (such those of @{text "="}, @{text "\<le>"},
   3.892 +  @{text "<"}).  Isabelle/Isar maintains an auxiliary fact register
   3.893 +  @{fact_ref calculation} for accumulating results obtained by
   3.894 +  transitivity composed with the current result.  Command @{command
   3.895 +  "also"} updates @{fact calculation} involving @{fact this}, while
   3.896 +  @{command "finally"} exhibits the final @{fact calculation} by
   3.897 +  forward chaining towards the next goal statement.  Both commands
   3.898 +  require valid current facts, i.e.\ may occur only after commands
   3.899 +  that produce theorems such as @{command "assume"}, @{command
   3.900 +  "note"}, or some finished proof of @{command "have"}, @{command
   3.901 +  "show"} etc.  The @{command "moreover"} and @{command "ultimately"}
   3.902 +  commands are similar to @{command "also"} and @{command "finally"},
   3.903 +  but only collect further results in @{fact calculation} without
   3.904 +  applying any rules yet.
   3.905 +
   3.906 +  Also note that the implicit term abbreviation ``@{text "\<dots>"}'' has
   3.907 +  its canonical application with calculational proofs.  It refers to
   3.908 +  the argument of the preceding statement. (The argument of a curried
   3.909 +  infix expression happens to be its right-hand side.)
   3.910 +
   3.911 +  Isabelle/Isar calculations are implicitly subject to block structure
   3.912 +  in the sense that new threads of calculational reasoning are
   3.913 +  commenced for any new block (as opened by a local goal, for
   3.914 +  example).  This means that, apart from being able to nest
   3.915 +  calculations, there is no separate \emph{begin-calculation} command
   3.916 +  required.
   3.917 +
   3.918 +  \medskip The Isar calculation proof commands may be defined as
   3.919 +  follows:\footnote{We suppress internal bookkeeping such as proper
   3.920 +  handling of block-structure.}
   3.921 +
   3.922 +  \begin{matharray}{rcl}
   3.923 +    @{command "also"}@{text "\<^sub>0"} & \equiv & @{command "note"}~@{text "calculation = this"} \\
   3.924 +    @{command "also"}@{text "\<^sub>n\<^sub>+\<^sub>1"} & \equiv & @{command "note"}~@{text "calculation = trans [OF calculation this]"} \\[0.5ex]
   3.925 +    @{command "finally"} & \equiv & @{command "also"}~@{command "from"}~@{text calculation} \\[0.5ex]
   3.926 +    @{command "moreover"} & \equiv & @{command "note"}~@{text "calculation = calculation this"} \\
   3.927 +    @{command "ultimately"} & \equiv & @{command "moreover"}~@{command "from"}~@{text calculation} \\
   3.928 +  \end{matharray}
   3.929 +
   3.930 +  \begin{rail}
   3.931 +    ('also' | 'finally') ('(' thmrefs ')')?
   3.932 +    ;
   3.933 +    'trans' (() | 'add' | 'del')
   3.934 +    ;
   3.935 +  \end{rail}
   3.936 +
   3.937 +  \begin{descr}
   3.938 +
   3.939 +  \item [@{command "also"}~@{text "(a\<^sub>1 \<dots> a\<^sub>n)"}]
   3.940 +  maintains the auxiliary @{fact calculation} register as follows.
   3.941 +  The first occurrence of @{command "also"} in some calculational
   3.942 +  thread initializes @{fact calculation} by @{fact this}. Any
   3.943 +  subsequent @{command "also"} on the same level of block-structure
   3.944 +  updates @{fact calculation} by some transitivity rule applied to
   3.945 +  @{fact calculation} and @{fact this} (in that order).  Transitivity
   3.946 +  rules are picked from the current context, unless alternative rules
   3.947 +  are given as explicit arguments.
   3.948 +
   3.949 +  \item [@{command "finally"}~@{text "(a\<^sub>1 \<dots> a\<^sub>n)"}]
   3.950 +  maintaining @{fact calculation} in the same way as @{command
   3.951 +  "also"}, and concludes the current calculational thread.  The final
   3.952 +  result is exhibited as fact for forward chaining towards the next
   3.953 +  goal. Basically, @{command "finally"} just abbreviates @{command
   3.954 +  "also"}~@{command "from"}~@{fact calculation}.  Typical idioms for
   3.955 +  concluding calculational proofs are ``@{command "finally"}~@{command
   3.956 +  "show"}~@{text ?thesis}~@{command "."}'' and ``@{command
   3.957 +  "finally"}~@{command "have"}~@{text \<phi>}~@{command "."}''.
   3.958 +
   3.959 +  \item [@{command "moreover"} and @{command "ultimately"}] are
   3.960 +  analogous to @{command "also"} and @{command "finally"}, but collect
   3.961 +  results only, without applying rules.
   3.962 +
   3.963 +  \item [@{command "print_trans_rules"}] prints the list of
   3.964 +  transitivity rules (for calculational commands @{command "also"} and
   3.965 +  @{command "finally"}) and symmetry rules (for the @{attribute
   3.966 +  symmetric} operation and single step elimination patters) of the
   3.967 +  current context.
   3.968 +
   3.969 +  \item [@{attribute trans}] declares theorems as transitivity rules.
   3.970 +
   3.971 +  \item [@{attribute sym}] declares symmetry rules, as well as
   3.972 +  @{attribute "Pure.elim?"} rules.
   3.973 +
   3.974 +  \item [@{attribute symmetric}] resolves a theorem with some rule
   3.975 +  declared as @{attribute sym} in the current context.  For example,
   3.976 +  ``@{command "assume"}~@{text "[symmetric]: x = y"}'' produces a
   3.977 +  swapped fact derived from that assumption.
   3.978 +
   3.979 +  In structured proof texts it is often more appropriate to use an
   3.980 +  explicit single-step elimination proof, such as ``@{command
   3.981 +  "assume"}~@{text "x = y"}~@{command "then"}~@{command "have"}~@{text
   3.982 +  "y = x"}~@{command ".."}''.
   3.983 +
   3.984 +  \end{descr}
   3.985 +*}
   3.986 +
   3.987 +
   3.988 +section {* Proof tools *}
   3.989 +
   3.990 +subsection {* Miscellaneous methods and attributes \label{sec:misc-meth-att} *}
   3.991 +
   3.992 +text {*
   3.993 +  \begin{matharray}{rcl}
   3.994 +    @{method_def unfold} & : & \isarmeth \\
   3.995 +    @{method_def fold} & : & \isarmeth \\
   3.996 +    @{method_def insert} & : & \isarmeth \\[0.5ex]
   3.997 +    @{method_def erule}@{text "\<^sup>*"} & : & \isarmeth \\
   3.998 +    @{method_def drule}@{text "\<^sup>*"} & : & \isarmeth \\
   3.999 +    @{method_def frule}@{text "\<^sup>*"} & : & \isarmeth \\
  3.1000 +    @{method_def succeed} & : & \isarmeth \\
  3.1001 +    @{method_def fail} & : & \isarmeth \\
  3.1002 +  \end{matharray}
  3.1003 +
  3.1004 +  \begin{rail}
  3.1005 +    ('fold' | 'unfold' | 'insert') thmrefs
  3.1006 +    ;
  3.1007 +    ('erule' | 'drule' | 'frule') ('('nat')')? thmrefs
  3.1008 +    ;
  3.1009 +  \end{rail}
  3.1010 +
  3.1011 +  \begin{descr}
  3.1012 +  
  3.1013 +  \item [@{method unfold}~@{text "a\<^sub>1 \<dots> a\<^sub>n"} and @{method
  3.1014 +  fold}~@{text "a\<^sub>1 \<dots> a\<^sub>n"}] expand (or fold back) the
  3.1015 +  given definitions throughout all goals; any chained facts provided
  3.1016 +  are inserted into the goal and subject to rewriting as well.
  3.1017 +
  3.1018 +  \item [@{method insert}~@{text "a\<^sub>1 \<dots> a\<^sub>n"}] inserts
  3.1019 +  theorems as facts into all goals of the proof state.  Note that
  3.1020 +  current facts indicated for forward chaining are ignored.
  3.1021 +
  3.1022 +  \item [@{method erule}~@{text "a\<^sub>1 \<dots> a\<^sub>n"}, @{method
  3.1023 +  drule}~@{text "a\<^sub>1 \<dots> a\<^sub>n"}, and @{method frule}~@{text
  3.1024 +  "a\<^sub>1 \<dots> a\<^sub>n"}] are similar to the basic @{method rule}
  3.1025 +  method (see \secref{sec:pure-meth-att}), but apply rules by
  3.1026 +  elim-resolution, destruct-resolution, and forward-resolution,
  3.1027 +  respectively \cite{isabelle-ref}.  The optional natural number
  3.1028 +  argument (default 0) specifies additional assumption steps to be
  3.1029 +  performed here.
  3.1030 +
  3.1031 +  Note that these methods are improper ones, mainly serving for
  3.1032 +  experimentation and tactic script emulation.  Different modes of
  3.1033 +  basic rule application are usually expressed in Isar at the proof
  3.1034 +  language level, rather than via implicit proof state manipulations.
  3.1035 +  For example, a proper single-step elimination would be done using
  3.1036 +  the plain @{method rule} method, with forward chaining of current
  3.1037 +  facts.
  3.1038 +
  3.1039 +  \item [@{method succeed}] yields a single (unchanged) result; it is
  3.1040 +  the identity of the ``@{text ","}'' method combinator (cf.\
  3.1041 +  \secref{sec:syn-meth}).
  3.1042 +
  3.1043 +  \item [@{method fail}] yields an empty result sequence; it is the
  3.1044 +  identity of the ``@{text "|"}'' method combinator (cf.\
  3.1045 +  \secref{sec:syn-meth}).
  3.1046 +
  3.1047 +  \end{descr}
  3.1048 +
  3.1049 +  \begin{matharray}{rcl}
  3.1050 +    @{attribute_def tagged} & : & \isaratt \\
  3.1051 +    @{attribute_def untagged} & : & \isaratt \\[0.5ex]
  3.1052 +    @{attribute_def THEN} & : & \isaratt \\
  3.1053 +    @{attribute_def COMP} & : & \isaratt \\[0.5ex]
  3.1054 +    @{attribute_def unfolded} & : & \isaratt \\
  3.1055 +    @{attribute_def folded} & : & \isaratt \\[0.5ex]
  3.1056 +    @{attribute_def rotated} & : & \isaratt \\
  3.1057 +    @{attribute_def (Pure) elim_format} & : & \isaratt \\
  3.1058 +    @{attribute_def standard}@{text "\<^sup>*"} & : & \isaratt \\
  3.1059 +    @{attribute_def no_vars}@{text "\<^sup>*"} & : & \isaratt \\
  3.1060 +  \end{matharray}
  3.1061 +
  3.1062 +  \begin{rail}
  3.1063 +    'tagged' nameref
  3.1064 +    ;
  3.1065 +    'untagged' name
  3.1066 +    ;
  3.1067 +    ('THEN' | 'COMP') ('[' nat ']')? thmref
  3.1068 +    ;
  3.1069 +    ('unfolded' | 'folded') thmrefs
  3.1070 +    ;
  3.1071 +    'rotated' ( int )?
  3.1072 +  \end{rail}
  3.1073 +
  3.1074 +  \begin{descr}
  3.1075 +
  3.1076 +  \item [@{attribute tagged}~@{text "name arg"} and @{attribute
  3.1077 +  untagged}~@{text name}] add and remove \emph{tags} of some theorem.
  3.1078 +  Tags may be any list of string pairs that serve as formal comment.
  3.1079 +  The first string is considered the tag name, the second its
  3.1080 +  argument.  Note that @{attribute untagged} removes any tags of the
  3.1081 +  same name.
  3.1082 +
  3.1083 +  \item [@{attribute THEN}~@{text a} and @{attribute COMP}~@{text a}]
  3.1084 +  compose rules by resolution.  @{attribute THEN} resolves with the
  3.1085 +  first premise of @{text a} (an alternative position may be also
  3.1086 +  specified); the @{attribute COMP} version skips the automatic
  3.1087 +  lifting process that is normally intended (cf.\ @{ML "op RS"} and
  3.1088 +  @{ML "op COMP"} in \cite[\S5]{isabelle-ref}).
  3.1089 +  
  3.1090 +  \item [@{attribute unfolded}~@{text "a\<^sub>1 \<dots> a\<^sub>n"} and
  3.1091 +  @{attribute folded}~@{text "a\<^sub>1 \<dots> a\<^sub>n"}] expand and fold
  3.1092 +  back again the given definitions throughout a rule.
  3.1093 +
  3.1094 +  \item [@{attribute rotated}~@{text n}] rotate the premises of a
  3.1095 +  theorem by @{text n} (default 1).
  3.1096 +
  3.1097 +  \item [@{attribute Pure.elim_format}] turns a destruction rule into
  3.1098 +  elimination rule format, by resolving with the rule @{prop [source]
  3.1099 +  "PROP A \<Longrightarrow> (PROP A \<Longrightarrow> PROP B) \<Longrightarrow> PROP B"}.
  3.1100 +  
  3.1101 +  Note that the Classical Reasoner (\secref{sec:classical}) provides
  3.1102 +  its own version of this operation.
  3.1103 +
  3.1104 +  \item [@{attribute standard}] puts a theorem into the standard form
  3.1105 +  of object-rules at the outermost theory level.  Note that this
  3.1106 +  operation violates the local proof context (including active
  3.1107 +  locales).
  3.1108 +
  3.1109 +  \item [@{attribute no_vars}] replaces schematic variables by free
  3.1110 +  ones; this is mainly for tuning output of pretty printed theorems.
  3.1111 +
  3.1112 +  \end{descr}
  3.1113 +*}
  3.1114 +
  3.1115 +
  3.1116 +subsection {* Further tactic emulations \label{sec:tactics} *}
  3.1117 +
  3.1118 +text {*
  3.1119 +  The following improper proof methods emulate traditional tactics.
  3.1120 +  These admit direct access to the goal state, which is normally
  3.1121 +  considered harmful!  In particular, this may involve both numbered
  3.1122 +  goal addressing (default 1), and dynamic instantiation within the
  3.1123 +  scope of some subgoal.
  3.1124 +
  3.1125 +  \begin{warn}
  3.1126 +    Dynamic instantiations refer to universally quantified parameters
  3.1127 +    of a subgoal (the dynamic context) rather than fixed variables and
  3.1128 +    term abbreviations of a (static) Isar context.
  3.1129 +  \end{warn}
  3.1130 +
  3.1131 +  Tactic emulation methods, unlike their ML counterparts, admit
  3.1132 +  simultaneous instantiation from both dynamic and static contexts.
  3.1133 +  If names occur in both contexts goal parameters hide locally fixed
  3.1134 +  variables.  Likewise, schematic variables refer to term
  3.1135 +  abbreviations, if present in the static context.  Otherwise the
  3.1136 +  schematic variable is interpreted as a schematic variable and left
  3.1137 +  to be solved by unification with certain parts of the subgoal.
  3.1138 +
  3.1139 +  Note that the tactic emulation proof methods in Isabelle/Isar are
  3.1140 +  consistently named @{text foo_tac}.  Note also that variable names
  3.1141 +  occurring on left hand sides of instantiations must be preceded by a
  3.1142 +  question mark if they coincide with a keyword or contain dots.  This
  3.1143 +  is consistent with the attribute @{attribute "where"} (see
  3.1144 +  \secref{sec:pure-meth-att}).
  3.1145 +
  3.1146 +  \begin{matharray}{rcl}
  3.1147 +    @{method_def rule_tac}@{text "\<^sup>*"} & : & \isarmeth \\
  3.1148 +    @{method_def erule_tac}@{text "\<^sup>*"} & : & \isarmeth \\
  3.1149 +    @{method_def drule_tac}@{text "\<^sup>*"} & : & \isarmeth \\
  3.1150 +    @{method_def frule_tac}@{text "\<^sup>*"} & : & \isarmeth \\
  3.1151 +    @{method_def cut_tac}@{text "\<^sup>*"} & : & \isarmeth \\
  3.1152 +    @{method_def thin_tac}@{text "\<^sup>*"} & : & \isarmeth \\
  3.1153 +    @{method_def subgoal_tac}@{text "\<^sup>*"} & : & \isarmeth \\
  3.1154 +    @{method_def rename_tac}@{text "\<^sup>*"} & : & \isarmeth \\
  3.1155 +    @{method_def rotate_tac}@{text "\<^sup>*"} & : & \isarmeth \\
  3.1156 +    @{method_def tactic}@{text "\<^sup>*"} & : & \isarmeth \\
  3.1157 +  \end{matharray}
  3.1158 +
  3.1159 +  \begin{rail}
  3.1160 +    ( 'rule\_tac' | 'erule\_tac' | 'drule\_tac' | 'frule\_tac' | 'cut\_tac' | 'thin\_tac' ) goalspec?
  3.1161 +    ( insts thmref | thmrefs )
  3.1162 +    ;
  3.1163 +    'subgoal\_tac' goalspec? (prop +)
  3.1164 +    ;
  3.1165 +    'rename\_tac' goalspec? (name +)
  3.1166 +    ;
  3.1167 +    'rotate\_tac' goalspec? int?
  3.1168 +    ;
  3.1169 +    'tactic' text
  3.1170 +    ;
  3.1171 +
  3.1172 +    insts: ((name '=' term) + 'and') 'in'
  3.1173 +    ;
  3.1174 +  \end{rail}
  3.1175 +
  3.1176 +\begin{descr}
  3.1177 +
  3.1178 +  \item [@{method rule_tac} etc.] do resolution of rules with explicit
  3.1179 +  instantiation.  This works the same way as the ML tactics @{ML
  3.1180 +  res_inst_tac} etc. (see \cite[\S3]{isabelle-ref}).
  3.1181 +
  3.1182 +  Multiple rules may be only given if there is no instantiation; then
  3.1183 +  @{method rule_tac} is the same as @{ML resolve_tac} in ML (see
  3.1184 +  \cite[\S3]{isabelle-ref}).
  3.1185 +
  3.1186 +  \item [@{method cut_tac}] inserts facts into the proof state as
  3.1187 +  assumption of a subgoal, see also @{ML cut_facts_tac} in
  3.1188 +  \cite[\S3]{isabelle-ref}.  Note that the scope of schematic
  3.1189 +  variables is spread over the main goal statement.  Instantiations
  3.1190 +  may be given as well, see also ML tactic @{ML cut_inst_tac} in
  3.1191 +  \cite[\S3]{isabelle-ref}.
  3.1192 +
  3.1193 +  \item [@{method thin_tac}~@{text \<phi>}] deletes the specified
  3.1194 +  assumption from a subgoal; note that @{text \<phi>} may contain schematic
  3.1195 +  variables.  See also @{ML thin_tac} in \cite[\S3]{isabelle-ref}.
  3.1196 +
  3.1197 +  \item [@{method subgoal_tac}~@{text \<phi>}] adds @{text \<phi>} as an
  3.1198 +  assumption to a subgoal.  See also @{ML subgoal_tac} and @{ML
  3.1199 +  subgoals_tac} in \cite[\S3]{isabelle-ref}.
  3.1200 +
  3.1201 +  \item [@{method rename_tac}~@{text "x\<^sub>1 \<dots> x\<^sub>n"}] renames
  3.1202 +  parameters of a goal according to the list @{text "x\<^sub>1, \<dots>,
  3.1203 +  x\<^sub>n"}, which refers to the \emph{suffix} of variables.
  3.1204 +
  3.1205 +  \item [@{method rotate_tac}~@{text n}] rotates the assumptions of a
  3.1206 +  goal by @{text n} positions: from right to left if @{text n} is
  3.1207 +  positive, and from left to right if @{text n} is negative; the
  3.1208 +  default value is 1.  See also @{ML rotate_tac} in
  3.1209 +  \cite[\S3]{isabelle-ref}.
  3.1210 +
  3.1211 +  \item [@{method tactic}~@{text "text"}] produces a proof method from
  3.1212 +  any ML text of type @{ML_type tactic}.  Apart from the usual ML
  3.1213 +  environment and the current implicit theory context, the ML code may
  3.1214 +  refer to the following locally bound values:
  3.1215 +
  3.1216 +%FIXME check
  3.1217 +{\footnotesize\begin{verbatim}
  3.1218 +val ctxt  : Proof.context
  3.1219 +val facts : thm list
  3.1220 +val thm   : string -> thm
  3.1221 +val thms  : string -> thm list
  3.1222 +\end{verbatim}}
  3.1223 +
  3.1224 +  Here @{ML_text ctxt} refers to the current proof context, @{ML_text
  3.1225 +  facts} indicates any current facts for forward-chaining, and @{ML
  3.1226 +  thm}~/~@{ML thms} retrieve named facts (including global theorems)
  3.1227 +  from the context.
  3.1228 +
  3.1229 +  \end{descr}
  3.1230 +*}
  3.1231 +
  3.1232 +
  3.1233 +subsection {* The Simplifier \label{sec:simplifier} *}
  3.1234 +
  3.1235 +subsubsection {* Simplification methods *}
  3.1236 +
  3.1237 +text {*
  3.1238 +  \begin{matharray}{rcl}
  3.1239 +    @{method_def simp} & : & \isarmeth \\
  3.1240 +    @{method_def simp_all} & : & \isarmeth \\
  3.1241 +  \end{matharray}
  3.1242 +
  3.1243 +  \indexouternonterm{simpmod}
  3.1244 +  \begin{rail}
  3.1245 +    ('simp' | 'simp\_all') ('!' ?) opt? (simpmod *)
  3.1246 +    ;
  3.1247 +
  3.1248 +    opt: '(' ('no\_asm' | 'no\_asm\_simp' | 'no\_asm\_use' | 'asm\_lr' | 'depth\_limit' ':' nat) ')'
  3.1249 +    ;
  3.1250 +    simpmod: ('add' | 'del' | 'only' | 'cong' (() | 'add' | 'del') |
  3.1251 +      'split' (() | 'add' | 'del')) ':' thmrefs
  3.1252 +    ;
  3.1253 +  \end{rail}
  3.1254 +
  3.1255 +  \begin{descr}
  3.1256 +
  3.1257 +  \item [@{method simp}] invokes the Simplifier, after declaring
  3.1258 +  additional rules according to the arguments given.  Note that the
  3.1259 +  \railtterm{only} modifier first removes all other rewrite rules,
  3.1260 +  congruences, and looper tactics (including splits), and then behaves
  3.1261 +  like \railtterm{add}.
  3.1262 +
  3.1263 +  \medskip The \railtterm{cong} modifiers add or delete Simplifier
  3.1264 +  congruence rules (see also \cite{isabelle-ref}), the default is to
  3.1265 +  add.
  3.1266 +
  3.1267 +  \medskip The \railtterm{split} modifiers add or delete rules for the
  3.1268 +  Splitter (see also \cite{isabelle-ref}), the default is to add.
  3.1269 +  This works only if the Simplifier method has been properly setup to
  3.1270 +  include the Splitter (all major object logics such HOL, HOLCF, FOL,
  3.1271 +  ZF do this already).
  3.1272 +
  3.1273 +  \item [@{method simp_all}] is similar to @{method simp}, but acts on
  3.1274 +  all goals (backwards from the last to the first one).
  3.1275 +
  3.1276 +  \end{descr}
  3.1277 +
  3.1278 +  By default the Simplifier methods take local assumptions fully into
  3.1279 +  account, using equational assumptions in the subsequent
  3.1280 +  normalization process, or simplifying assumptions themselves (cf.\
  3.1281 +  @{ML asm_full_simp_tac} in \cite[\S10]{isabelle-ref}).  In
  3.1282 +  structured proofs this is usually quite well behaved in practice:
  3.1283 +  just the local premises of the actual goal are involved, additional
  3.1284 +  facts may be inserted via explicit forward-chaining (via @{command
  3.1285 +  "then"}, @{command "from"}, @{command "using"} etc.).  The full
  3.1286 +  context of premises is only included if the ``@{text "!"}'' (bang)
  3.1287 +  argument is given, which should be used with some care, though.
  3.1288 +
  3.1289 +  Additional Simplifier options may be specified to tune the behavior
  3.1290 +  further (mostly for unstructured scripts with many accidental local
  3.1291 +  facts): ``@{text "(no_asm)"}'' means assumptions are ignored
  3.1292 +  completely (cf.\ @{ML simp_tac}), ``@{text "(no_asm_simp)"}'' means
  3.1293 +  assumptions are used in the simplification of the conclusion but are
  3.1294 +  not themselves simplified (cf.\ @{ML asm_simp_tac}), and ``@{text
  3.1295 +  "(no_asm_use)"}'' means assumptions are simplified but are not used
  3.1296 +  in the simplification of each other or the conclusion (cf.\ @{ML
  3.1297 +  full_simp_tac}).  For compatibility reasons, there is also an option
  3.1298 +  ``@{text "(asm_lr)"}'', which means that an assumption is only used
  3.1299 +  for simplifying assumptions which are to the right of it (cf.\ @{ML
  3.1300 +  asm_lr_simp_tac}).
  3.1301 +
  3.1302 +  Giving an option ``@{text "(depth_limit: n)"}'' limits the number of
  3.1303 +  recursive invocations of the simplifier during conditional
  3.1304 +  rewriting.
  3.1305 +
  3.1306 +  \medskip The Splitter package is usually configured to work as part
  3.1307 +  of the Simplifier.  The effect of repeatedly applying @{ML
  3.1308 +  split_tac} can be simulated by ``@{text "(simp only: split:
  3.1309 +  a\<^sub>1 \<dots> a\<^sub>n)"}''.  There is also a separate @{text split}
  3.1310 +  method available for single-step case splitting.
  3.1311 +*}
  3.1312 +
  3.1313 +
  3.1314 +subsubsection {* Declaring rules *}
  3.1315 +
  3.1316 +text {*
  3.1317 +  \begin{matharray}{rcl}
  3.1318 +    @{command_def "print_simpset"}@{text "\<^sup>*"} & : & \isarkeep{theory~|~proof} \\
  3.1319 +    @{attribute_def simp} & : & \isaratt \\
  3.1320 +    @{attribute_def cong} & : & \isaratt \\
  3.1321 +    @{attribute_def split} & : & \isaratt \\
  3.1322 +  \end{matharray}
  3.1323 +
  3.1324 +  \begin{rail}
  3.1325 +    ('simp' | 'cong' | 'split') (() | 'add' | 'del')
  3.1326 +    ;
  3.1327 +  \end{rail}
  3.1328 +
  3.1329 +  \begin{descr}
  3.1330 +
  3.1331 +  \item [@{command "print_simpset"}] prints the collection of rules
  3.1332 +  declared to the Simplifier, which is also known as ``simpset''
  3.1333 +  internally \cite{isabelle-ref}.
  3.1334 +
  3.1335 +  \item [@{attribute simp}] declares simplification rules.
  3.1336 +
  3.1337 +  \item [@{attribute cong}] declares congruence rules.
  3.1338 +
  3.1339 +  \item [@{attribute split}] declares case split rules.
  3.1340 +
  3.1341 +  \end{descr}
  3.1342 +*}
  3.1343 +
  3.1344 +
  3.1345 +subsubsection {* Simplification procedures *}
  3.1346 +
  3.1347 +text {*
  3.1348 +  \begin{matharray}{rcl}
  3.1349 +    @{command_def "simproc_setup"} & : & \isarkeep{local{\dsh}theory} \\
  3.1350 +    simproc & : & \isaratt \\
  3.1351 +  \end{matharray}
  3.1352 +
  3.1353 +  \begin{rail}
  3.1354 +    'simproc\_setup' name '(' (term + '|') ')' '=' text \\ ('identifier' (nameref+))?
  3.1355 +    ;
  3.1356 +
  3.1357 +    'simproc' (('add' ':')? | 'del' ':') (name+)
  3.1358 +    ;
  3.1359 +  \end{rail}
  3.1360 +
  3.1361 +  \begin{descr}
  3.1362 +
  3.1363 +  \item [@{command "simproc_setup"}] defines a named simplification
  3.1364 +  procedure that is invoked by the Simplifier whenever any of the
  3.1365 +  given term patterns match the current redex.  The implementation,
  3.1366 +  which is provided as ML source text, needs to be of type @{ML_type
  3.1367 +  "morphism -> simpset -> cterm -> thm option"}, where the @{ML_type
  3.1368 +  cterm} represents the current redex @{text r} and the result is
  3.1369 +  supposed to be some proven rewrite rule @{text "r \<equiv> r'"} (or a
  3.1370 +  generalized version), or @{ML NONE} to indicate failure.  The
  3.1371 +  @{ML_type simpset} argument holds the full context of the current
  3.1372 +  Simplifier invocation, including the actual Isar proof context.  The
  3.1373 +  @{ML_type morphism} informs about the difference of the original
  3.1374 +  compilation context wrt.\ the one of the actual application later
  3.1375 +  on.  The optional @{keyword "identifier"} specifies theorems that
  3.1376 +  represent the logical content of the abstract theory of this
  3.1377 +  simproc.
  3.1378 +
  3.1379 +  Morphisms and identifiers are only relevant for simprocs that are
  3.1380 +  defined within a local target context, e.g.\ in a locale.
  3.1381 +
  3.1382 +  \item [@{text "simproc add: name"} and @{text "simproc del: name"}]
  3.1383 +  add or delete named simprocs to the current Simplifier context.  The
  3.1384 +  default is to add a simproc.  Note that @{command "simproc_setup"}
  3.1385 +  already adds the new simproc to the subsequent context.
  3.1386 +
  3.1387 +  \end{descr}
  3.1388 +*}
  3.1389 +
  3.1390 +
  3.1391 +subsubsection {* Forward simplification *}
  3.1392 +
  3.1393 +text {*
  3.1394 +  \begin{matharray}{rcl}
  3.1395 +    @{attribute_def simplified} & : & \isaratt \\
  3.1396 +  \end{matharray}
  3.1397 +
  3.1398 +  \begin{rail}
  3.1399 +    'simplified' opt? thmrefs?
  3.1400 +    ;
  3.1401 +
  3.1402 +    opt: '(' (noasm | noasmsimp | noasmuse) ')'
  3.1403 +    ;
  3.1404 +  \end{rail}
  3.1405 +
  3.1406 +  \begin{descr}
  3.1407 +  
  3.1408 +  \item [@{attribute simplified}~@{text "a\<^sub>1 \<dots> a\<^sub>n"}]
  3.1409 +  causes a theorem to be simplified, either by exactly the specified
  3.1410 +  rules @{text "a\<^sub>1, \<dots>, a\<^sub>n"}, or the implicit Simplifier
  3.1411 +  context if no arguments are given.  The result is fully simplified
  3.1412 +  by default, including assumptions and conclusion; the options @{text
  3.1413 +  no_asm} etc.\ tune the Simplifier in the same way as the for the
  3.1414 +  @{text simp} method.
  3.1415 +
  3.1416 +  Note that forward simplification restricts the simplifier to its
  3.1417 +  most basic operation of term rewriting; solver and looper tactics
  3.1418 +  \cite{isabelle-ref} are \emph{not} involved here.  The @{text
  3.1419 +  simplified} attribute should be only rarely required under normal
  3.1420 +  circumstances.
  3.1421 +
  3.1422 +  \end{descr}
  3.1423 +*}
  3.1424 +
  3.1425 +
  3.1426 +subsubsection {* Low-level equational reasoning *}
  3.1427 +
  3.1428 +text {*
  3.1429 +  \begin{matharray}{rcl}
  3.1430 +    @{method_def subst}@{text "\<^sup>*"} & : & \isarmeth \\
  3.1431 +    @{method_def hypsubst}@{text "\<^sup>*"} & : & \isarmeth \\
  3.1432 +    @{method_def split}@{text "\<^sup>*"} & : & \isarmeth \\
  3.1433 +  \end{matharray}
  3.1434 +
  3.1435 +  \begin{rail}
  3.1436 +    'subst' ('(' 'asm' ')')? ('(' (nat+) ')')? thmref
  3.1437 +    ;
  3.1438 +    'split' ('(' 'asm' ')')? thmrefs
  3.1439 +    ;
  3.1440 +  \end{rail}
  3.1441 +
  3.1442 +  These methods provide low-level facilities for equational reasoning
  3.1443 +  that are intended for specialized applications only.  Normally,
  3.1444 +  single step calculations would be performed in a structured text
  3.1445 +  (see also \secref{sec:calculation}), while the Simplifier methods
  3.1446 +  provide the canonical way for automated normalization (see
  3.1447 +  \secref{sec:simplifier}).
  3.1448 +
  3.1449 +  \begin{descr}
  3.1450 +
  3.1451 +  \item [@{method subst}~@{text eq}] performs a single substitution
  3.1452 +  step using rule @{text eq}, which may be either a meta or object
  3.1453 +  equality.
  3.1454 +
  3.1455 +  \item [@{method subst}~@{text "(asm) eq"}] substitutes in an
  3.1456 +  assumption.
  3.1457 +
  3.1458 +  \item [@{method subst}~@{text "(i \<dots> j) eq"}] performs several
  3.1459 +  substitutions in the conclusion. The numbers @{text i} to @{text j}
  3.1460 +  indicate the positions to substitute at.  Positions are ordered from
  3.1461 +  the top of the term tree moving down from left to right. For
  3.1462 +  example, in @{text "(a + b) + (c + d)"} there are three positions
  3.1463 +  where commutativity of @{text "+"} is applicable: 1 refers to the
  3.1464 +  whole term, 2 to @{text "a + b"} and 3 to @{text "c + d"}.
  3.1465 +
  3.1466 +  If the positions in the list @{text "(i \<dots> j)"} are non-overlapping
  3.1467 +  (e.g.\ @{text "(2 3)"} in @{text "(a + b) + (c + d)"}) you may
  3.1468 +  assume all substitutions are performed simultaneously.  Otherwise
  3.1469 +  the behaviour of @{text subst} is not specified.
  3.1470 +
  3.1471 +  \item [@{method subst}~@{text "(asm) (i \<dots> j) eq"}] performs the
  3.1472 +  substitutions in the assumptions.  Positions @{text "1 \<dots> i\<^sub>1"}
  3.1473 +  refer to assumption 1, positions @{text "i\<^sub>1 + 1 \<dots> i\<^sub>2"}
  3.1474 +  to assumption 2, and so on.
  3.1475 +
  3.1476 +  \item [@{method hypsubst}] performs substitution using some
  3.1477 +  assumption; this only works for equations of the form @{text "x =
  3.1478 +  t"} where @{text x} is a free or bound variable.
  3.1479 +
  3.1480 +  \item [@{method split}~@{text "a\<^sub>1 \<dots> a\<^sub>n"}] performs
  3.1481 +  single-step case splitting using the given rules.  By default,
  3.1482 +  splitting is performed in the conclusion of a goal; the @{text
  3.1483 +  "(asm)"} option indicates to operate on assumptions instead.
  3.1484 +  
  3.1485 +  Note that the @{method simp} method already involves repeated
  3.1486 +  application of split rules as declared in the current context.
  3.1487 +
  3.1488 +  \end{descr}
  3.1489 +*}
  3.1490 +
  3.1491 +
  3.1492 +subsection {* The Classical Reasoner \label{sec:classical} *}
  3.1493 +
  3.1494 +subsubsection {* Basic methods *}
  3.1495 +
  3.1496 +text {*
  3.1497 +  \begin{matharray}{rcl}
  3.1498 +    @{method_def rule} & : & \isarmeth \\
  3.1499 +    @{method_def contradiction} & : & \isarmeth \\
  3.1500 +    @{method_def intro} & : & \isarmeth \\
  3.1501 +    @{method_def elim} & : & \isarmeth \\
  3.1502 +  \end{matharray}
  3.1503 +
  3.1504 +  \begin{rail}
  3.1505 +    ('rule' | 'intro' | 'elim') thmrefs?
  3.1506 +    ;
  3.1507 +  \end{rail}
  3.1508 +
  3.1509 +  \begin{descr}
  3.1510 +
  3.1511 +  \item [@{method rule}] as offered by the Classical Reasoner is a
  3.1512 +  refinement over the primitive one (see \secref{sec:pure-meth-att}).
  3.1513 +  Both versions essentially work the same, but the classical version
  3.1514 +  observes the classical rule context in addition to that of
  3.1515 +  Isabelle/Pure.
  3.1516 +
  3.1517 +  Common object logics (HOL, ZF, etc.) declare a rich collection of
  3.1518 +  classical rules (even if these would qualify as intuitionistic
  3.1519 +  ones), but only few declarations to the rule context of
  3.1520 +  Isabelle/Pure (\secref{sec:pure-meth-att}).
  3.1521 +
  3.1522 +  \item [@{method contradiction}] solves some goal by contradiction,
  3.1523 +  deriving any result from both @{text "\<not> A"} and @{text A}.  Chained
  3.1524 +  facts, which are guaranteed to participate, may appear in either
  3.1525 +  order.
  3.1526 +
  3.1527 +  \item [@{attribute intro} and @{attribute elim}] repeatedly refine
  3.1528 +  some goal by intro- or elim-resolution, after having inserted any
  3.1529 +  chained facts.  Exactly the rules given as arguments are taken into
  3.1530 +  account; this allows fine-tuned decomposition of a proof problem, in
  3.1531 +  contrast to common automated tools.
  3.1532 +
  3.1533 +  \end{descr}
  3.1534 +*}
  3.1535 +
  3.1536 +
  3.1537 +subsubsection {* Automated methods *}
  3.1538 +
  3.1539 +text {*
  3.1540 +  \begin{matharray}{rcl}
  3.1541 +    @{method_def blast} & : & \isarmeth \\
  3.1542 +    @{method_def fast} & : & \isarmeth \\
  3.1543 +    @{method_def slow} & : & \isarmeth \\
  3.1544 +    @{method_def best} & : & \isarmeth \\
  3.1545 +    @{method_def safe} & : & \isarmeth \\
  3.1546 +    @{method_def clarify} & : & \isarmeth \\
  3.1547 +  \end{matharray}
  3.1548 +
  3.1549 +  \indexouternonterm{clamod}
  3.1550 +  \begin{rail}
  3.1551 +    'blast' ('!' ?) nat? (clamod *)
  3.1552 +    ;
  3.1553 +    ('fast' | 'slow' | 'best' | 'safe' | 'clarify') ('!' ?) (clamod *)
  3.1554 +    ;
  3.1555 +
  3.1556 +    clamod: (('intro' | 'elim' | 'dest') ('!' | () | '?') | 'del') ':' thmrefs
  3.1557 +    ;
  3.1558 +  \end{rail}
  3.1559 +
  3.1560 +  \begin{descr}
  3.1561 +
  3.1562 +  \item [@{method blast}] refers to the classical tableau prover (see
  3.1563 +  @{ML blast_tac} in \cite[\S11]{isabelle-ref}).  The optional
  3.1564 +  argument specifies a user-supplied search bound (default 20).
  3.1565 +
  3.1566 +  \item [@{method fast}, @{method slow}, @{method best}, @{method
  3.1567 +  safe}, and @{method clarify}] refer to the generic classical
  3.1568 +  reasoner.  See @{ML fast_tac}, @{ML slow_tac}, @{ML best_tac}, @{ML
  3.1569 +  safe_tac}, and @{ML clarify_tac} in \cite[\S11]{isabelle-ref} for
  3.1570 +  more information.
  3.1571 +
  3.1572 +  \end{descr}
  3.1573 +
  3.1574 +  Any of the above methods support additional modifiers of the context
  3.1575 +  of classical rules.  Their semantics is analogous to the attributes
  3.1576 +  given before.  Facts provided by forward chaining are inserted into
  3.1577 +  the goal before commencing proof search.  The ``@{text
  3.1578 +  "!"}''~argument causes the full context of assumptions to be
  3.1579 +  included as well.
  3.1580 +*}
  3.1581 +
  3.1582 +
  3.1583 +subsubsection {* Combined automated methods \label{sec:clasimp} *}
  3.1584 +
  3.1585 +text {*
  3.1586 +  \begin{matharray}{rcl}
  3.1587 +    @{method_def auto} & : & \isarmeth \\
  3.1588 +    @{method_def force} & : & \isarmeth \\
  3.1589 +    @{method_def clarsimp} & : & \isarmeth \\
  3.1590 +    @{method_def fastsimp} & : & \isarmeth \\
  3.1591 +    @{method_def slowsimp} & : & \isarmeth \\
  3.1592 +    @{method_def bestsimp} & : & \isarmeth \\
  3.1593 +  \end{matharray}
  3.1594 +
  3.1595 +  \indexouternonterm{clasimpmod}
  3.1596 +  \begin{rail}
  3.1597 +    'auto' '!'? (nat nat)? (clasimpmod *)
  3.1598 +    ;
  3.1599 +    ('force' | 'clarsimp' | 'fastsimp' | 'slowsimp' | 'bestsimp') '!'? (clasimpmod *)
  3.1600 +    ;
  3.1601 +
  3.1602 +    clasimpmod: ('simp' (() | 'add' | 'del' | 'only') |
  3.1603 +      ('cong' | 'split') (() | 'add' | 'del') |
  3.1604 +      'iff' (((() | 'add') '?'?) | 'del') |
  3.1605 +      (('intro' | 'elim' | 'dest') ('!' | () | '?') | 'del')) ':' thmrefs
  3.1606 +  \end{rail}
  3.1607 +
  3.1608 +  \begin{descr}
  3.1609 +
  3.1610 +  \item [@{method auto}, @{method force}, @{method clarsimp}, @{method
  3.1611 +  fastsimp}, @{method slowsimp}, and @{method bestsimp}] provide
  3.1612 +  access to Isabelle's combined simplification and classical reasoning
  3.1613 +  tactics.  These correspond to @{ML auto_tac}, @{ML force_tac}, @{ML
  3.1614 +  clarsimp_tac}, and Classical Reasoner tactics with the Simplifier
  3.1615 +  added as wrapper, see \cite[\S11]{isabelle-ref} for more
  3.1616 +  information.  The modifier arguments correspond to those given in
  3.1617 +  \secref{sec:simplifier} and \secref{sec:classical}.  Just note that
  3.1618 +  the ones related to the Simplifier are prefixed by \railtterm{simp}
  3.1619 +  here.
  3.1620 +
  3.1621 +  Facts provided by forward chaining are inserted into the goal before
  3.1622 +  doing the search.  The ``@{text "!"}'' argument causes the full
  3.1623 +  context of assumptions to be included as well.
  3.1624 +
  3.1625 +  \end{descr}
  3.1626 +*}
  3.1627 +
  3.1628 +
  3.1629 +subsubsection {* Declaring rules *}
  3.1630 +
  3.1631 +text {*
  3.1632 +  \begin{matharray}{rcl}
  3.1633 +    @{command_def "print_claset"}@{text "\<^sup>*"} & : & \isarkeep{theory~|~proof} \\
  3.1634 +    @{attribute_def intro} & : & \isaratt \\
  3.1635 +    @{attribute_def elim} & : & \isaratt \\
  3.1636 +    @{attribute_def dest} & : & \isaratt \\
  3.1637 +    @{attribute_def rule} & : & \isaratt \\
  3.1638 +    @{attribute_def iff} & : & \isaratt \\
  3.1639 +  \end{matharray}
  3.1640 +
  3.1641 +  \begin{rail}
  3.1642 +    ('intro' | 'elim' | 'dest') ('!' | () | '?') nat?
  3.1643 +    ;
  3.1644 +    'rule' 'del'
  3.1645 +    ;
  3.1646 +    'iff' (((() | 'add') '?'?) | 'del')
  3.1647 +    ;
  3.1648 +  \end{rail}
  3.1649 +
  3.1650 +  \begin{descr}
  3.1651 +
  3.1652 +  \item [@{command "print_claset"}] prints the collection of rules
  3.1653 +  declared to the Classical Reasoner, which is also known as
  3.1654 +  ``claset'' internally \cite{isabelle-ref}.
  3.1655 +  
  3.1656 +  \item [@{attribute intro}, @{attribute elim}, and @{attribute dest}]
  3.1657 +  declare introduction, elimination, and destruction rules,
  3.1658 +  respectively.  By default, rules are considered as \emph{unsafe}
  3.1659 +  (i.e.\ not applied blindly without backtracking), while ``@{text
  3.1660 +  "!"}'' classifies as \emph{safe}.  Rule declarations marked by
  3.1661 +  ``@{text "?"}'' coincide with those of Isabelle/Pure, cf.\
  3.1662 +  \secref{sec:pure-meth-att} (i.e.\ are only applied in single steps
  3.1663 +  of the @{method rule} method).  The optional natural number
  3.1664 +  specifies an explicit weight argument, which is ignored by automated
  3.1665 +  tools, but determines the search order of single rule steps.
  3.1666 +
  3.1667 +  \item [@{attribute rule}~@{text del}] deletes introduction,
  3.1668 +  elimination, or destruction rules from the context.
  3.1669 +
  3.1670 +  \item [@{attribute iff}] declares logical equivalences to the
  3.1671 +  Simplifier and the Classical reasoner at the same time.
  3.1672 +  Non-conditional rules result in a ``safe'' introduction and
  3.1673 +  elimination pair; conditional ones are considered ``unsafe''.  Rules
  3.1674 +  with negative conclusion are automatically inverted (using @{text
  3.1675 +  "\<not>"} elimination internally).
  3.1676 +
  3.1677 +  The ``@{text "?"}'' version of @{attribute iff} declares rules to
  3.1678 +  the Isabelle/Pure context only, and omits the Simplifier
  3.1679 +  declaration.
  3.1680 +
  3.1681 +  \end{descr}
  3.1682 +*}
  3.1683 +
  3.1684 +
  3.1685 +subsubsection {* Classical operations *}
  3.1686 +
  3.1687 +text {*
  3.1688 +  \begin{matharray}{rcl}
  3.1689 +    @{attribute_def swapped} & : & \isaratt \\
  3.1690 +  \end{matharray}
  3.1691 +
  3.1692 +  \begin{descr}
  3.1693 +
  3.1694 +  \item [@{attribute swapped}] turns an introduction rule into an
  3.1695 +  elimination, by resolving with the classical swap principle @{text
  3.1696 +  "(\<not> B \<Longrightarrow> A) \<Longrightarrow> (\<not> A \<Longrightarrow> B)"}.
  3.1697 +
  3.1698 +  \end{descr}
  3.1699 +*}
  3.1700 +
  3.1701 +
  3.1702 +subsection {* Proof by cases and induction \label{sec:cases-induct} *}
  3.1703 +
  3.1704 +subsubsection {* Rule contexts *}
  3.1705 +
  3.1706 +text {*
  3.1707 +  \begin{matharray}{rcl}
  3.1708 +    @{command_def "case"} & : & \isartrans{proof(state)}{proof(state)} \\
  3.1709 +    @{command_def "print_cases"}@{text "\<^sup>*"} & : & \isarkeep{proof} \\
  3.1710 +    @{attribute_def case_names} & : & \isaratt \\
  3.1711 +    @{attribute_def case_conclusion} & : & \isaratt \\
  3.1712 +    @{attribute_def params} & : & \isaratt \\
  3.1713 +    @{attribute_def consumes} & : & \isaratt \\
  3.1714 +  \end{matharray}
  3.1715 +
  3.1716 +  The puristic way to build up Isar proof contexts is by explicit
  3.1717 +  language elements like @{command "fix"}, @{command "assume"},
  3.1718 +  @{command "let"} (see \secref{sec:proof-context}).  This is adequate
  3.1719 +  for plain natural deduction, but easily becomes unwieldy in concrete
  3.1720 +  verification tasks, which typically involve big induction rules with
  3.1721 +  several cases.
  3.1722 +
  3.1723 +  The @{command "case"} command provides a shorthand to refer to a
  3.1724 +  local context symbolically: certain proof methods provide an
  3.1725 +  environment of named ``cases'' of the form @{text "c: x\<^sub>1, \<dots>,
  3.1726 +  x\<^sub>m, \<phi>\<^sub>1, \<dots>, \<phi>\<^sub>n"}; the effect of
  3.1727 +  ``@{command "case"}@{text c}'' is then equivalent to ``@{command
  3.1728 +  "fix"}~@{text "x\<^sub>1 \<dots> x\<^sub>m"}~@{command "assume"}~@{text
  3.1729 +  "c: \<phi>\<^sub>1 \<dots> \<phi>\<^sub>n"}''.  Term bindings may be
  3.1730 +  covered as well, notably @{variable ?case} for the main conclusion.
  3.1731 +
  3.1732 +  By default, the ``terminology'' @{text "x\<^sub>1, \<dots>, x\<^sub>m"} of
  3.1733 +  a case value is marked as hidden, i.e.\ there is no way to refer to
  3.1734 +  such parameters in the subsequent proof text.  After all, original
  3.1735 +  rule parameters stem from somewhere outside of the current proof
  3.1736 +  text.  By using the explicit form ``@{command "case"}~@{text "(c
  3.1737 +  y\<^sub>1 \<dots> y\<^sub>m)"}'' instead, the proof author is able to
  3.1738 +  chose local names that fit nicely into the current context.
  3.1739 +
  3.1740 +  \medskip It is important to note that proper use of @{command
  3.1741 +  "case"} does not provide means to peek at the current goal state,
  3.1742 +  which is not directly observable in Isar!  Nonetheless, goal
  3.1743 +  refinement commands do provide named cases @{text "goal\<^sub>i"}
  3.1744 +  for each subgoal @{text "i = 1, \<dots>, n"} of the resulting goal state.
  3.1745 +  Using this extra feature requires great care, because some bits of
  3.1746 +  the internal tactical machinery intrude the proof text.  In
  3.1747 +  particular, parameter names stemming from the left-over of automated
  3.1748 +  reasoning tools are usually quite unpredictable.
  3.1749 +
  3.1750 +  Under normal circumstances, the text of cases emerge from standard
  3.1751 +  elimination or induction rules, which in turn are derived from
  3.1752 +  previous theory specifications in a canonical way (say from
  3.1753 +  @{command "inductive"} definitions).
  3.1754 +
  3.1755 +  \medskip Proper cases are only available if both the proof method
  3.1756 +  and the rules involved support this.  By using appropriate
  3.1757 +  attributes, case names, conclusions, and parameters may be also
  3.1758 +  declared by hand.  Thus variant versions of rules that have been
  3.1759 +  derived manually become ready to use in advanced case analysis
  3.1760 +  later.
  3.1761 +
  3.1762 +  \begin{rail}
  3.1763 +    'case' (caseref | '(' caseref ((name | underscore) +) ')')
  3.1764 +    ;
  3.1765 +    caseref: nameref attributes?
  3.1766 +    ;
  3.1767 +
  3.1768 +    'case\_names' (name +)
  3.1769 +    ;
  3.1770 +    'case\_conclusion' name (name *)
  3.1771 +    ;
  3.1772 +    'params' ((name *) + 'and')
  3.1773 +    ;
  3.1774 +    'consumes' nat?
  3.1775 +    ;
  3.1776 +  \end{rail}
  3.1777 +
  3.1778 +  \begin{descr}
  3.1779 +  
  3.1780 +  \item [@{command "case"}~@{text "(c x\<^sub>1 \<dots> x\<^sub>m)"}]
  3.1781 +  invokes a named local context @{text "c: x\<^sub>1, \<dots>, x\<^sub>m,
  3.1782 +  \<phi>\<^sub>1, \<dots>, \<phi>\<^sub>m"}, as provided by an appropriate
  3.1783 +  proof method (such as @{method_ref cases} and @{method_ref induct}).
  3.1784 +  The command ``@{command "case"}~@{text "(c x\<^sub>1 \<dots>
  3.1785 +  x\<^sub>m)"}'' abbreviates ``@{command "fix"}~@{text "x\<^sub>1 \<dots>
  3.1786 +  x\<^sub>m"}~@{command "assume"}~@{text "c: \<phi>\<^sub>1 \<dots>
  3.1787 +  \<phi>\<^sub>n"}''.
  3.1788 +
  3.1789 +  \item [@{command "print_cases"}] prints all local contexts of the
  3.1790 +  current state, using Isar proof language notation.
  3.1791 +  
  3.1792 +  \item [@{attribute case_names}~@{text "c\<^sub>1 \<dots> c\<^sub>k"}]
  3.1793 +  declares names for the local contexts of premises of a theorem;
  3.1794 +  @{text "c\<^sub>1, \<dots>, c\<^sub>k"} refers to the \emph{suffix} of the
  3.1795 +  list of premises.
  3.1796 +  
  3.1797 +  \item [@{attribute case_conclusion}~@{text "c d\<^sub>1 \<dots>
  3.1798 +  d\<^sub>k"}] declares names for the conclusions of a named premise
  3.1799 +  @{text c}; here @{text "d\<^sub>1, \<dots>, d\<^sub>k"} refers to the
  3.1800 +  prefix of arguments of a logical formula built by nesting a binary
  3.1801 +  connective (e.g.\ @{text "\<or>"}).
  3.1802 +  
  3.1803 +  Note that proof methods such as @{method induct} and @{method
  3.1804 +  coinduct} already provide a default name for the conclusion as a
  3.1805 +  whole.  The need to name subformulas only arises with cases that
  3.1806 +  split into several sub-cases, as in common co-induction rules.
  3.1807 +
  3.1808 +  \item [@{attribute params}~@{text "p\<^sub>1 \<dots> p\<^sub>m \<AND> \<dots>
  3.1809 +  q\<^sub>1 \<dots> q\<^sub>n"}] renames the innermost parameters of
  3.1810 +  premises @{text "1, \<dots>, n"} of some theorem.  An empty list of names
  3.1811 +  may be given to skip positions, leaving the present parameters
  3.1812 +  unchanged.
  3.1813 +  
  3.1814 +  Note that the default usage of case rules does \emph{not} directly
  3.1815 +  expose parameters to the proof context.
  3.1816 +  
  3.1817 +  \item [@{attribute consumes}~@{text n}] declares the number of
  3.1818 +  ``major premises'' of a rule, i.e.\ the number of facts to be
  3.1819 +  consumed when it is applied by an appropriate proof method.  The
  3.1820 +  default value of @{attribute consumes} is @{text "n = 1"}, which is
  3.1821 +  appropriate for the usual kind of cases and induction rules for
  3.1822 +  inductive sets (cf.\ \secref{sec:hol-inductive}).  Rules without any
  3.1823 +  @{attribute consumes} declaration given are treated as if
  3.1824 +  @{attribute consumes}~@{text 0} had been specified.
  3.1825 +  
  3.1826 +  Note that explicit @{attribute consumes} declarations are only
  3.1827 +  rarely needed; this is already taken care of automatically by the
  3.1828 +  higher-level @{attribute cases}, @{attribute induct}, and
  3.1829 +  @{attribute coinduct} declarations.
  3.1830 +
  3.1831 +  \end{descr}
  3.1832 +*}
  3.1833 +
  3.1834 +
  3.1835 +subsubsection {* Proof methods *}
  3.1836 +
  3.1837 +text {*
  3.1838 +  \begin{matharray}{rcl}
  3.1839 +    @{method_def cases} & : & \isarmeth \\
  3.1840 +    @{method_def induct} & : & \isarmeth \\
  3.1841 +    @{method_def coinduct} & : & \isarmeth \\
  3.1842 +  \end{matharray}
  3.1843 +
  3.1844 +  The @{method cases}, @{method induct}, and @{method coinduct}
  3.1845 +  methods provide a uniform interface to common proof techniques over
  3.1846 +  datatypes, inductive predicates (or sets), recursive functions etc.
  3.1847 +  The corresponding rules may be specified and instantiated in a
  3.1848 +  casual manner.  Furthermore, these methods provide named local
  3.1849 +  contexts that may be invoked via the @{command "case"} proof command
  3.1850 +  within the subsequent proof text.  This accommodates compact proof
  3.1851 +  texts even when reasoning about large specifications.
  3.1852 +
  3.1853 +  The @{method induct} method also provides some additional
  3.1854 +  infrastructure in order to be applicable to structure statements
  3.1855 +  (either using explicit meta-level connectives, or including facts
  3.1856 +  and parameters separately).  This avoids cumbersome encoding of
  3.1857 +  ``strengthened'' inductive statements within the object-logic.
  3.1858 +
  3.1859 +  \begin{rail}
  3.1860 +    'cases' (insts * 'and') rule?
  3.1861 +    ;
  3.1862 +    'induct' (definsts * 'and') \\ arbitrary? taking? rule?
  3.1863 +    ;
  3.1864 +    'coinduct' insts taking rule?
  3.1865 +    ;
  3.1866 +
  3.1867 +    rule: ('type' | 'pred' | 'set') ':' (nameref +) | 'rule' ':' (thmref +)
  3.1868 +    ;
  3.1869 +    definst: name ('==' | equiv) term | inst
  3.1870 +    ;
  3.1871 +    definsts: ( definst *)
  3.1872 +    ;
  3.1873 +    arbitrary: 'arbitrary' ':' ((term *) 'and' +)
  3.1874 +    ;
  3.1875 +    taking: 'taking' ':' insts
  3.1876 +    ;
  3.1877 +  \end{rail}
  3.1878 +
  3.1879 +  \begin{descr}
  3.1880 +
  3.1881 +  \item [@{method cases}~@{text "insts R"}] applies method @{method
  3.1882 +  rule} with an appropriate case distinction theorem, instantiated to
  3.1883 +  the subjects @{text insts}.  Symbolic case names are bound according
  3.1884 +  to the rule's local contexts.
  3.1885 +
  3.1886 +  The rule is determined as follows, according to the facts and
  3.1887 +  arguments passed to the @{method cases} method:
  3.1888 +
  3.1889 +  \medskip
  3.1890 +  \begin{tabular}{llll}
  3.1891 +    facts    &                 & arguments & rule \\\hline
  3.1892 +             & @{method cases} &           & classical case split \\
  3.1893 +             & @{method cases} & @{text t} & datatype exhaustion (type of @{text t}) \\
  3.1894 +    @{text "\<turnstile> A t"} & @{method cases} & @{text "\<dots>"} & inductive predicate/set elimination (of @{text A}) \\
  3.1895 +    @{text "\<dots>"} & @{method cases} & @{text "\<dots> rule: R"} & explicit rule @{text R} \\
  3.1896 +  \end{tabular}
  3.1897 +  \medskip
  3.1898 +
  3.1899 +  Several instantiations may be given, referring to the \emph{suffix}
  3.1900 +  of premises of the case rule; within each premise, the \emph{prefix}
  3.1901 +  of variables is instantiated.  In most situations, only a single
  3.1902 +  term needs to be specified; this refers to the first variable of the
  3.1903 +  last premise (it is usually the same for all cases).
  3.1904 +
  3.1905 +  \item [@{method induct}~@{text "insts R"}] is analogous to the
  3.1906 +  @{method cases} method, but refers to induction rules, which are
  3.1907 +  determined as follows:
  3.1908 +
  3.1909 +  \medskip
  3.1910 +  \begin{tabular}{llll}
  3.1911 +    facts    &        & arguments & rule \\\hline
  3.1912 +             & @{method induct} & @{text "P x \<dots>"} & datatype induction (type of @{text x}) \\
  3.1913 +    @{text "\<turnstile> A x"} & @{method induct} & @{text "\<dots>"} & predicate/set induction (of @{text A}) \\
  3.1914 +    @{text "\<dots>"} & @{method induct} & @{text "\<dots> rule: R"} & explicit rule @{text R} \\
  3.1915 +  \end{tabular}
  3.1916 +  \medskip
  3.1917 +  
  3.1918 +  Several instantiations may be given, each referring to some part of
  3.1919 +  a mutual inductive definition or datatype --- only related partial
  3.1920 +  induction rules may be used together, though.  Any of the lists of
  3.1921 +  terms @{text "P, x, \<dots>"} refers to the \emph{suffix} of variables
  3.1922 +  present in the induction rule.  This enables the writer to specify
  3.1923 +  only induction variables, or both predicates and variables, for
  3.1924 +  example.
  3.1925 +  
  3.1926 +  Instantiations may be definitional: equations @{text "x \<equiv> t"}
  3.1927 +  introduce local definitions, which are inserted into the claim and
  3.1928 +  discharged after applying the induction rule.  Equalities reappear
  3.1929 +  in the inductive cases, but have been transformed according to the
  3.1930 +  induction principle being involved here.  In order to achieve
  3.1931 +  practically useful induction hypotheses, some variables occurring in
  3.1932 +  @{text t} need to be fixed (see below).
  3.1933 +  
  3.1934 +  The optional ``@{text "arbitrary: x\<^sub>1 \<dots> x\<^sub>m"}''
  3.1935 +  specification generalizes variables @{text "x\<^sub>1, \<dots>,
  3.1936 +  x\<^sub>m"} of the original goal before applying induction.  Thus
  3.1937 +  induction hypotheses may become sufficiently general to get the
  3.1938 +  proof through.  Together with definitional instantiations, one may
  3.1939 +  effectively perform induction over expressions of a certain
  3.1940 +  structure.
  3.1941 +  
  3.1942 +  The optional ``@{text "taking: t\<^sub>1 \<dots> t\<^sub>n"}''
  3.1943 +  specification provides additional instantiations of a prefix of
  3.1944 +  pending variables in the rule.  Such schematic induction rules
  3.1945 +  rarely occur in practice, though.
  3.1946 +
  3.1947 +  \item [@{method coinduct}~@{text "inst R"}] is analogous to the
  3.1948 +  @{method induct} method, but refers to coinduction rules, which are
  3.1949 +  determined as follows:
  3.1950 +
  3.1951 +  \medskip
  3.1952 +  \begin{tabular}{llll}
  3.1953 +    goal     &          & arguments & rule \\\hline
  3.1954 +             & @{method coinduct} & @{text "x \<dots>"} & type coinduction (type of @{text x}) \\
  3.1955 +    @{text "A x"} & @{method coinduct} & @{text "\<dots>"} & predicate/set coinduction (of @{text A}) \\
  3.1956 +    @{text "\<dots>"} & @{method coinduct} & @{text "\<dots> R"} & explicit rule @{text R} \\
  3.1957 +  \end{tabular}
  3.1958 +  
  3.1959 +  Coinduction is the dual of induction.  Induction essentially
  3.1960 +  eliminates @{text "A x"} towards a generic result @{text "P x"},
  3.1961 +  while coinduction introduces @{text "A x"} starting with @{text "B
  3.1962 +  x"}, for a suitable ``bisimulation'' @{text B}.  The cases of a
  3.1963 +  coinduct rule are typically named after the predicates or sets being
  3.1964 +  covered, while the conclusions consist of several alternatives being
  3.1965 +  named after the individual destructor patterns.
  3.1966 +  
  3.1967 +  The given instantiation refers to the \emph{suffix} of variables
  3.1968 +  occurring in the rule's major premise, or conclusion if unavailable.
  3.1969 +  An additional ``@{text "taking: t\<^sub>1 \<dots> t\<^sub>n"}''
  3.1970 +  specification may be required in order to specify the bisimulation
  3.1971 +  to be used in the coinduction step.
  3.1972 +
  3.1973 +  \end{descr}
  3.1974 +
  3.1975 +  Above methods produce named local contexts, as determined by the
  3.1976 +  instantiated rule as given in the text.  Beyond that, the @{method
  3.1977 +  induct} and @{method coinduct} methods guess further instantiations
  3.1978 +  from the goal specification itself.  Any persisting unresolved
  3.1979 +  schematic variables of the resulting rule will render the the
  3.1980 +  corresponding case invalid.  The term binding @{variable ?case} for
  3.1981 +  the conclusion will be provided with each case, provided that term
  3.1982 +  is fully specified.
  3.1983 +
  3.1984 +  The @{command "print_cases"} command prints all named cases present
  3.1985 +  in the current proof state.
  3.1986 +
  3.1987 +  \medskip Despite the additional infrastructure, both @{method cases}
  3.1988 +  and @{method coinduct} merely apply a certain rule, after
  3.1989 +  instantiation, while conforming due to the usual way of monotonic
  3.1990 +  natural deduction: the context of a structured statement @{text
  3.1991 +  "\<And>x\<^sub>1 \<dots> x\<^sub>m. \<phi>\<^sub>1 \<Longrightarrow> \<dots> \<phi>\<^sub>n \<Longrightarrow> \<dots>"}
  3.1992 +  reappears unchanged after the case split.
  3.1993 +
  3.1994 +  The @{method induct} method is fundamentally different in this
  3.1995 +  respect: the meta-level structure is passed through the
  3.1996 +  ``recursive'' course involved in the induction.  Thus the original
  3.1997 +  statement is basically replaced by separate copies, corresponding to
  3.1998 +  the induction hypotheses and conclusion; the original goal context
  3.1999 +  is no longer available.  Thus local assumptions, fixed parameters
  3.2000 +  and definitions effectively participate in the inductive rephrasing
  3.2001 +  of the original statement.
  3.2002 +
  3.2003 +  In induction proofs, local assumptions introduced by cases are split
  3.2004 +  into two different kinds: @{text hyps} stemming from the rule and
  3.2005 +  @{text prems} from the goal statement.  This is reflected in the
  3.2006 +  extracted cases accordingly, so invoking ``@{command "case"}~@{text
  3.2007 +  c}'' will provide separate facts @{text c.hyps} and @{text c.prems},
  3.2008 +  as well as fact @{text c} to hold the all-inclusive list.
  3.2009 +
  3.2010 +  \medskip Facts presented to either method are consumed according to
  3.2011 +  the number of ``major premises'' of the rule involved, which is
  3.2012 +  usually 0 for plain cases and induction rules of datatypes etc.\ and
  3.2013 +  1 for rules of inductive predicates or sets and the like.  The
  3.2014 +  remaining facts are inserted into the goal verbatim before the
  3.2015 +  actual @{text cases}, @{text induct}, or @{text coinduct} rule is
  3.2016 +  applied.
  3.2017 +*}
  3.2018 +
  3.2019 +
  3.2020 +subsubsection {* Declaring rules *}
  3.2021 +
  3.2022 +text {*
  3.2023 +  \begin{matharray}{rcl}
  3.2024 +    @{command_def "print_induct_rules"}@{text "\<^sup>*"} & : & \isarkeep{theory~|~proof} \\
  3.2025 +    @{attribute_def cases} & : & \isaratt \\
  3.2026 +    @{attribute_def induct} & : & \isaratt \\
  3.2027 +    @{attribute_def coinduct} & : & \isaratt \\
  3.2028 +  \end{matharray}
  3.2029 +
  3.2030 +  \begin{rail}
  3.2031 +    'cases' spec
  3.2032 +    ;
  3.2033 +    'induct' spec
  3.2034 +    ;
  3.2035 +    'coinduct' spec
  3.2036 +    ;
  3.2037 +
  3.2038 +    spec: ('type' | 'pred' | 'set') ':' nameref
  3.2039 +    ;
  3.2040 +  \end{rail}
  3.2041 +
  3.2042 +  \begin{descr}
  3.2043 +
  3.2044 +  \item [@{command "print_induct_rules"}] prints cases and induct
  3.2045 +  rules for predicates (or sets) and types of the current context.
  3.2046 +  
  3.2047 +  \item [@{attribute cases}, @{attribute induct}, and @{attribute
  3.2048 +  coinduct}] (as attributes) augment the corresponding context of
  3.2049 +  rules for reasoning about (co)inductive predicates (or sets) and
  3.2050 +  types, using the corresponding methods of the same name.  Certain
  3.2051 +  definitional packages of object-logics usually declare emerging
  3.2052 +  cases and induction rules as expected, so users rarely need to
  3.2053 +  intervene.
  3.2054 +  
  3.2055 +  Manual rule declarations usually refer to the @{attribute
  3.2056 +  case_names} and @{attribute params} attributes to adjust names of
  3.2057 +  cases and parameters of a rule; the @{attribute consumes}
  3.2058 +  declaration is taken care of automatically: @{attribute
  3.2059 +  consumes}~@{text 0} is specified for ``type'' rules and @{attribute
  3.2060 +  consumes}~@{text 1} for ``predicate'' / ``set'' rules.
  3.2061 +
  3.2062 +  \end{descr}
  3.2063 +*}
  3.2064 +
  3.2065 +end
     4.1 --- a/doc-src/IsarRef/Thy/ROOT.ML	Sun May 04 21:34:44 2008 +0200
     4.2 +++ b/doc-src/IsarRef/Thy/ROOT.ML	Mon May 05 15:23:21 2008 +0200
     4.3 @@ -5,4 +5,5 @@
     4.4  use_thy "intro";
     4.5  use_thy "syntax";
     4.6  use_thy "pure";
     4.7 +use_thy "Generic";
     4.8  use_thy "Quick_Reference";
     5.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     5.2 +++ b/doc-src/IsarRef/Thy/document/Generic.tex	Mon May 05 15:23:21 2008 +0200
     5.3 @@ -0,0 +1,2062 @@
     5.4 +%
     5.5 +\begin{isabellebody}%
     5.6 +\def\isabellecontext{Generic}%
     5.7 +%
     5.8 +\isadelimtheory
     5.9 +\isanewline
    5.10 +\isanewline
    5.11 +%
    5.12 +\endisadelimtheory
    5.13 +%
    5.14 +\isatagtheory
    5.15 +\isacommand{theory}\isamarkupfalse%
    5.16 +\ Generic\isanewline
    5.17 +\isakeyword{imports}\ CPure\isanewline
    5.18 +\isakeyword{begin}%
    5.19 +\endisatagtheory
    5.20 +{\isafoldtheory}%
    5.21 +%
    5.22 +\isadelimtheory
    5.23 +%
    5.24 +\endisadelimtheory
    5.25 +%
    5.26 +\isamarkupchapter{Generic tools and packages \label{ch:gen-tools}%
    5.27 +}
    5.28 +\isamarkuptrue%
    5.29 +%
    5.30 +\isamarkupsection{Specification commands%
    5.31 +}
    5.32 +\isamarkuptrue%
    5.33 +%
    5.34 +\isamarkupsubsection{Derived specifications%
    5.35 +}
    5.36 +\isamarkuptrue%
    5.37 +%
    5.38 +\begin{isamarkuptext}%
    5.39 +\begin{matharray}{rcll}
    5.40 +    \indexdef{}{command}{axiomatization}\mbox{\isa{\isacommand{axiomatization}}} & : & \isarkeep{local{\dsh}theory} & (axiomatic!)\\
    5.41 +    \indexdef{}{command}{definition}\mbox{\isa{\isacommand{definition}}} & : & \isarkeep{local{\dsh}theory} \\
    5.42 +    \indexdef{}{attribute}{defn}\mbox{\isa{defn}} & : & \isaratt \\
    5.43 +    \indexdef{}{command}{abbreviation}\mbox{\isa{\isacommand{abbreviation}}} & : & \isarkeep{local{\dsh}theory} \\
    5.44 +    \indexdef{}{command}{print-abbrevs}\mbox{\isa{\isacommand{print{\isacharunderscore}abbrevs}}}\isa{\isactrlsup {\isacharasterisk}} & : & \isarkeep{theory~|~proof} \\
    5.45 +    \indexdef{}{command}{notation}\mbox{\isa{\isacommand{notation}}} & : & \isarkeep{local{\dsh}theory} \\
    5.46 +    \indexdef{}{command}{no-notation}\mbox{\isa{\isacommand{no{\isacharunderscore}notation}}} & : & \isarkeep{local{\dsh}theory} \\
    5.47 +  \end{matharray}
    5.48 +
    5.49 +  These specification mechanisms provide a slightly more abstract view
    5.50 +  than the underlying primitives of \mbox{\isa{\isacommand{consts}}}, \mbox{\isa{\isacommand{defs}}} (see \secref{sec:consts}), and \mbox{\isa{\isacommand{axioms}}} (see
    5.51 +  \secref{sec:axms-thms}).  In particular, type-inference is commonly
    5.52 +  available, and result names need not be given.
    5.53 +
    5.54 +  \begin{rail}
    5.55 +    'axiomatization' target? fixes? ('where' specs)?
    5.56 +    ;
    5.57 +    'definition' target? (decl 'where')? thmdecl? prop
    5.58 +    ;
    5.59 +    'abbreviation' target? mode? (decl 'where')? prop
    5.60 +    ;
    5.61 +    ('notation' | 'no\_notation') target? mode? (nameref structmixfix + 'and')
    5.62 +    ;
    5.63 +
    5.64 +    fixes: ((name ('::' type)? mixfix? | vars) + 'and')
    5.65 +    ;
    5.66 +    specs: (thmdecl? props + 'and')
    5.67 +    ;
    5.68 +    decl: name ('::' type)? mixfix?
    5.69 +    ;
    5.70 +  \end{rail}
    5.71 +
    5.72 +  \begin{descr}
    5.73 +  
    5.74 +  \item [\mbox{\isa{\isacommand{axiomatization}}}~\isa{c\isactrlsub {\isadigit{1}}\ {\isasymdots}\ c\isactrlsub m\ {\isasymWHERE}\ {\isasymphi}\isactrlsub {\isadigit{1}}\ {\isasymdots}\ {\isasymphi}\isactrlsub n}] introduces several constants
    5.75 +  simultaneously and states axiomatic properties for these.  The
    5.76 +  constants are marked as being specified once and for all, which
    5.77 +  prevents additional specifications being issued later on.
    5.78 +  
    5.79 +  Note that axiomatic specifications are only appropriate when
    5.80 +  declaring a new logical system.  Normal applications should only use
    5.81 +  definitional mechanisms!
    5.82 +
    5.83 +  \item [\mbox{\isa{\isacommand{definition}}}~\isa{c\ {\isasymWHERE}\ eq}] produces an
    5.84 +  internal definition \isa{c\ {\isasymequiv}\ t} according to the specification
    5.85 +  given as \isa{eq}, which is then turned into a proven fact.  The
    5.86 +  given proposition may deviate from internal meta-level equality
    5.87 +  according to the rewrite rules declared as \mbox{\isa{defn}} by the
    5.88 +  object-logic.  This typically covers object-level equality \isa{x\ {\isacharequal}\ t} and equivalence \isa{A\ {\isasymleftrightarrow}\ B}.  End-users normally need not
    5.89 +  change the \mbox{\isa{defn}} setup.
    5.90 +  
    5.91 +  Definitions may be presented with explicit arguments on the LHS, as
    5.92 +  well as additional conditions, e.g.\ \isa{f\ x\ y\ {\isacharequal}\ t} instead of
    5.93 +  \isa{f\ {\isasymequiv}\ {\isasymlambda}x\ y{\isachardot}\ t} and \isa{y\ {\isasymnoteq}\ {\isadigit{0}}\ {\isasymLongrightarrow}\ g\ x\ y\ {\isacharequal}\ u} instead of an
    5.94 +  unrestricted \isa{g\ {\isasymequiv}\ {\isasymlambda}x\ y{\isachardot}\ u}.
    5.95 +  
    5.96 +  \item [\mbox{\isa{\isacommand{abbreviation}}}~\isa{c\ {\isasymWHERE}\ eq}] introduces
    5.97 +  a syntactic constant which is associated with a certain term
    5.98 +  according to the meta-level equality \isa{eq}.
    5.99 +  
   5.100 +  Abbreviations participate in the usual type-inference process, but
   5.101 +  are expanded before the logic ever sees them.  Pretty printing of
   5.102 +  terms involves higher-order rewriting with rules stemming from
   5.103 +  reverted abbreviations.  This needs some care to avoid overlapping
   5.104 +  or looping syntactic replacements!
   5.105 +  
   5.106 +  The optional \isa{mode} specification restricts output to a
   5.107 +  particular print mode; using ``\isa{input}'' here achieves the
   5.108 +  effect of one-way abbreviations.  The mode may also include an
   5.109 +  ``\mbox{\isa{\isakeyword{output}}}'' qualifier that affects the concrete syntax
   5.110 +  declared for abbreviations, cf.\ \mbox{\isa{\isacommand{syntax}}} in
   5.111 +  \secref{sec:syn-trans}.
   5.112 +  
   5.113 +  \item [\mbox{\isa{\isacommand{print{\isacharunderscore}abbrevs}}}] prints all constant abbreviations
   5.114 +  of the current context.
   5.115 +  
   5.116 +  \item [\mbox{\isa{\isacommand{notation}}}~\isa{c\ {\isacharparenleft}mx{\isacharparenright}}] associates mixfix
   5.117 +  syntax with an existing constant or fixed variable.  This is a
   5.118 +  robust interface to the underlying \mbox{\isa{\isacommand{syntax}}} primitive
   5.119 +  (\secref{sec:syn-trans}).  Type declaration and internal syntactic
   5.120 +  representation of the given entity is retrieved from the context.
   5.121 +  
   5.122 +  \item [\mbox{\isa{\isacommand{no{\isacharunderscore}notation}}}] is similar to \mbox{\isa{\isacommand{notation}}}, but removes the specified syntax annotation from the
   5.123 +  present context.
   5.124 +
   5.125 +  \end{descr}
   5.126 +
   5.127 +  All of these specifications support local theory targets (cf.\
   5.128 +  \secref{sec:target}).%
   5.129 +\end{isamarkuptext}%
   5.130 +\isamarkuptrue%
   5.131 +%
   5.132 +\isamarkupsubsection{Generic declarations%
   5.133 +}
   5.134 +\isamarkuptrue%
   5.135 +%
   5.136 +\begin{isamarkuptext}%
   5.137 +Arbitrary operations on the background context may be wrapped-up as
   5.138 +  generic declaration elements.  Since the underlying concept of local
   5.139 +  theories may be subject to later re-interpretation, there is an
   5.140 +  additional dependency on a morphism that tells the difference of the
   5.141 +  original declaration context wrt.\ the application context
   5.142 +  encountered later on.  A fact declaration is an important special
   5.143 +  case: it consists of a theorem which is applied to the context by
   5.144 +  means of an attribute.
   5.145 +
   5.146 +  \begin{matharray}{rcl}
   5.147 +    \indexdef{}{command}{declaration}\mbox{\isa{\isacommand{declaration}}} & : & \isarkeep{local{\dsh}theory} \\
   5.148 +    \indexdef{}{command}{declare}\mbox{\isa{\isacommand{declare}}} & : & \isarkeep{local{\dsh}theory} \\
   5.149 +  \end{matharray}
   5.150 +
   5.151 +  \begin{rail}
   5.152 +    'declaration' target? text
   5.153 +    ;
   5.154 +    'declare' target? (thmrefs + 'and')
   5.155 +    ;
   5.156 +  \end{rail}
   5.157 +
   5.158 +  \begin{descr}
   5.159 +
   5.160 +  \item [\mbox{\isa{\isacommand{declaration}}}~\isa{d}] adds the declaration
   5.161 +  function \isa{d} of ML type \verb|declaration|, to the current
   5.162 +  local theory under construction.  In later application contexts, the
   5.163 +  function is transformed according to the morphisms being involved in
   5.164 +  the interpretation hierarchy.
   5.165 +
   5.166 +  \item [\mbox{\isa{\isacommand{declare}}}~\isa{thms}] declares theorems to the
   5.167 +  current local theory context.  No theorem binding is involved here,
   5.168 +  unlike \mbox{\isa{\isacommand{theorems}}} or \mbox{\isa{\isacommand{lemmas}}} (cf.\
   5.169 +  \secref{sec:axms-thms}), so \mbox{\isa{\isacommand{declare}}} only has the effect
   5.170 +  of applying attributes as included in the theorem specification.
   5.171 +
   5.172 +  \end{descr}%
   5.173 +\end{isamarkuptext}%
   5.174 +\isamarkuptrue%
   5.175 +%
   5.176 +\isamarkupsubsection{Local theory targets \label{sec:target}%
   5.177 +}
   5.178 +\isamarkuptrue%
   5.179 +%
   5.180 +\begin{isamarkuptext}%
   5.181 +A local theory target is a context managed separately within the
   5.182 +  enclosing theory.  Contexts may introduce parameters (fixed
   5.183 +  variables) and assumptions (hypotheses).  Definitions and theorems
   5.184 +  depending on the context may be added incrementally later on.  Named
   5.185 +  contexts refer to locales (cf.\ \secref{sec:locale}) or type classes
   5.186 +  (cf.\ \secref{sec:class}); the name ``\isa{{\isacharminus}}'' signifies the
   5.187 +  global theory context.
   5.188 +
   5.189 +  \begin{matharray}{rcll}
   5.190 +    \indexdef{}{command}{context}\mbox{\isa{\isacommand{context}}} & : & \isartrans{theory}{local{\dsh}theory} \\
   5.191 +    \indexdef{}{command}{end}\mbox{\isa{\isacommand{end}}} & : & \isartrans{local{\dsh}theory}{theory} \\
   5.192 +  \end{matharray}
   5.193 +
   5.194 +  \indexouternonterm{target}
   5.195 +  \begin{rail}
   5.196 +    'context' name 'begin'
   5.197 +    ;
   5.198 +
   5.199 +    target: '(' 'in' name ')'
   5.200 +    ;
   5.201 +  \end{rail}
   5.202 +
   5.203 +  \begin{descr}
   5.204 +  
   5.205 +  \item [\mbox{\isa{\isacommand{context}}}~\isa{c\ {\isasymBEGIN}}] recommences an
   5.206 +  existing locale or class context \isa{c}.  Note that locale and
   5.207 +  class definitions allow to include the \indexref{}{keyword}{begin}\mbox{\isa{\isakeyword{begin}}}
   5.208 +  keyword as well, in order to continue the local theory immediately
   5.209 +  after the initial specification.
   5.210 +  
   5.211 +  \item [\mbox{\isa{\isacommand{end}}}] concludes the current local theory and
   5.212 +  continues the enclosing global theory.  Note that a non-local
   5.213 +  \mbox{\isa{\isacommand{end}}} has a different meaning: it concludes the theory
   5.214 +  itself (\secref{sec:begin-thy}).
   5.215 +  
   5.216 +  \item [\isa{{\isacharparenleft}{\isasymIN}\ c{\isacharparenright}}] given after any local theory command
   5.217 +  specifies an immediate target, e.g.\ ``\mbox{\isa{\isacommand{definition}}}~\isa{{\isacharparenleft}{\isasymIN}\ c{\isacharparenright}\ {\isasymdots}}'' or ``\mbox{\isa{\isacommand{theorem}}}~\isa{{\isacharparenleft}{\isasymIN}\ c{\isacharparenright}\ {\isasymdots}}''.  This works both in a local or
   5.218 +  global theory context; the current target context will be suspended
   5.219 +  for this command only.  Note that \isa{{\isacharparenleft}{\isasymIN}\ {\isacharminus}{\isacharparenright}} will always
   5.220 +  produce a global result independently of the current target context.
   5.221 +
   5.222 +  \end{descr}
   5.223 +
   5.224 +  The exact meaning of results produced within a local theory context
   5.225 +  depends on the underlying target infrastructure (locale, type class
   5.226 +  etc.).  The general idea is as follows, considering a context named
   5.227 +  \isa{c} with parameter \isa{x} and assumption \isa{A{\isacharbrackleft}x{\isacharbrackright}}.
   5.228 +  
   5.229 +  Definitions are exported by introducing a global version with
   5.230 +  additional arguments; a syntactic abbreviation links the long form
   5.231 +  with the abstract version of the target context.  For example,
   5.232 +  \isa{a\ {\isasymequiv}\ t{\isacharbrackleft}x{\isacharbrackright}} becomes \isa{c{\isachardot}a\ {\isacharquery}x\ {\isasymequiv}\ t{\isacharbrackleft}{\isacharquery}x{\isacharbrackright}} at the theory
   5.233 +  level (for arbitrary \isa{{\isacharquery}x}), together with a local
   5.234 +  abbreviation \isa{c\ {\isasymequiv}\ c{\isachardot}a\ x} in the target context (for the
   5.235 +  fixed parameter \isa{x}).
   5.236 +
   5.237 +  Theorems are exported by discharging the assumptions and
   5.238 +  generalizing the parameters of the context.  For example, \isa{a{\isacharcolon}\ B{\isacharbrackleft}x{\isacharbrackright}} becomes \isa{c{\isachardot}a{\isacharcolon}\ A{\isacharbrackleft}{\isacharquery}x{\isacharbrackright}\ {\isasymLongrightarrow}\ B{\isacharbrackleft}{\isacharquery}x{\isacharbrackright}} (again for arbitrary
   5.239 +  \isa{{\isacharquery}x}).%
   5.240 +\end{isamarkuptext}%
   5.241 +\isamarkuptrue%
   5.242 +%
   5.243 +\isamarkupsubsection{Locales \label{sec:locale}%
   5.244 +}
   5.245 +\isamarkuptrue%
   5.246 +%
   5.247 +\begin{isamarkuptext}%
   5.248 +Locales are named local contexts, consisting of a list of
   5.249 +  declaration elements that are modeled after the Isar proof context
   5.250 +  commands (cf.\ \secref{sec:proof-context}).%
   5.251 +\end{isamarkuptext}%
   5.252 +\isamarkuptrue%
   5.253 +%
   5.254 +\isamarkupsubsubsection{Locale specifications%
   5.255 +}
   5.256 +\isamarkuptrue%
   5.257 +%
   5.258 +\begin{isamarkuptext}%
   5.259 +\begin{matharray}{rcl}
   5.260 +    \indexdef{}{command}{locale}\mbox{\isa{\isacommand{locale}}} & : & \isartrans{theory}{local{\dsh}theory} \\
   5.261 +    \indexdef{}{command}{print-locale}\mbox{\isa{\isacommand{print{\isacharunderscore}locale}}}\isa{\isactrlsup {\isacharasterisk}} & : & \isarkeep{theory~|~proof} \\
   5.262 +    \indexdef{}{command}{print-locales}\mbox{\isa{\isacommand{print{\isacharunderscore}locales}}}\isa{\isactrlsup {\isacharasterisk}} & : & \isarkeep{theory~|~proof} \\
   5.263 +    \indexdef{}{method}{intro-locales}\mbox{\isa{intro{\isacharunderscore}locales}} & : & \isarmeth \\
   5.264 +    \indexdef{}{method}{unfold-locales}\mbox{\isa{unfold{\isacharunderscore}locales}} & : & \isarmeth \\
   5.265 +  \end{matharray}
   5.266 +
   5.267 +  \indexouternonterm{contextexpr}\indexouternonterm{contextelem}
   5.268 +  \indexisarelem{fixes}\indexisarelem{constrains}\indexisarelem{assumes}
   5.269 +  \indexisarelem{defines}\indexisarelem{notes}\indexisarelem{includes}
   5.270 +  \begin{rail}
   5.271 +    'locale' ('(open)')? name ('=' localeexpr)? 'begin'?
   5.272 +    ;
   5.273 +    'print\_locale' '!'? localeexpr
   5.274 +    ;
   5.275 +    localeexpr: ((contextexpr '+' (contextelem+)) | contextexpr | (contextelem+))
   5.276 +    ;
   5.277 +
   5.278 +    contextexpr: nameref | '(' contextexpr ')' |
   5.279 +    (contextexpr (name mixfix? +)) | (contextexpr + '+')
   5.280 +    ;
   5.281 +    contextelem: fixes | constrains | assumes | defines | notes
   5.282 +    ;
   5.283 +    fixes: 'fixes' ((name ('::' type)? structmixfix? | vars) + 'and')
   5.284 +    ;
   5.285 +    constrains: 'constrains' (name '::' type + 'and')
   5.286 +    ;
   5.287 +    assumes: 'assumes' (thmdecl? props + 'and')
   5.288 +    ;
   5.289 +    defines: 'defines' (thmdecl? prop proppat? + 'and')
   5.290 +    ;
   5.291 +    notes: 'notes' (thmdef? thmrefs + 'and')
   5.292 +    ;
   5.293 +    includes: 'includes' contextexpr
   5.294 +    ;
   5.295 +  \end{rail}
   5.296 +
   5.297 +  \begin{descr}
   5.298 +  
   5.299 +  \item [\mbox{\isa{\isacommand{locale}}}~\isa{loc\ {\isacharequal}\ import\ {\isacharplus}\ body}] defines a
   5.300 +  new locale \isa{loc} as a context consisting of a certain view of
   5.301 +  existing locales (\isa{import}) plus some additional elements
   5.302 +  (\isa{body}).  Both \isa{import} and \isa{body} are optional;
   5.303 +  the degenerate form \mbox{\isa{\isacommand{locale}}}~\isa{loc} defines an empty
   5.304 +  locale, which may still be useful to collect declarations of facts
   5.305 +  later on.  Type-inference on locale expressions automatically takes
   5.306 +  care of the most general typing that the combined context elements
   5.307 +  may acquire.
   5.308 +
   5.309 +  The \isa{import} consists of a structured context expression,
   5.310 +  consisting of references to existing locales, renamed contexts, or
   5.311 +  merged contexts.  Renaming uses positional notation: \isa{c\ x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub n} means that (a prefix of) the fixed
   5.312 +  parameters of context \isa{c} are named \isa{x\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ x\isactrlsub n}; a ``\isa{{\isacharunderscore}}'' (underscore) means to skip that
   5.313 +  position.  Renaming by default deletes concrete syntax, but new
   5.314 +  syntax may by specified with a mixfix annotation.  An exeption of
   5.315 +  this rule is the special syntax declared with ``\isa{{\isacharparenleft}{\isasymSTRUCTURE}{\isacharparenright}}'' (see below), which is neither deleted nor can it
   5.316 +  be changed.  Merging proceeds from left-to-right, suppressing any
   5.317 +  duplicates stemming from different paths through the import
   5.318 +  hierarchy.
   5.319 +
   5.320 +  The \isa{body} consists of basic context elements, further context
   5.321 +  expressions may be included as well.
   5.322 +
   5.323 +  \begin{descr}
   5.324 +
   5.325 +  \item [\mbox{\isa{fixes}}~\isa{x\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}\ {\isacharparenleft}mx{\isacharparenright}}] declares a local
   5.326 +  parameter of type \isa{{\isasymtau}} and mixfix annotation \isa{mx} (both
   5.327 +  are optional).  The special syntax declaration ``\isa{{\isacharparenleft}{\isasymSTRUCTURE}{\isacharparenright}}'' means that \isa{x} may be referenced
   5.328 +  implicitly in this context.
   5.329 +
   5.330 +  \item [\mbox{\isa{constrains}}~\isa{x\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}}] introduces a type
   5.331 +  constraint \isa{{\isasymtau}} on the local parameter \isa{x}.
   5.332 +
   5.333 +  \item [\mbox{\isa{assumes}}~\isa{a{\isacharcolon}\ {\isasymphi}\isactrlsub {\isadigit{1}}\ {\isasymdots}\ {\isasymphi}\isactrlsub n}]
   5.334 +  introduces local premises, similar to \mbox{\isa{\isacommand{assume}}} within a
   5.335 +  proof (cf.\ \secref{sec:proof-context}).
   5.336 +
   5.337 +  \item [\mbox{\isa{defines}}~\isa{a{\isacharcolon}\ x\ {\isasymequiv}\ t}] defines a previously
   5.338 +  declared parameter.  This is close to \mbox{\isa{\isacommand{def}}} within a
   5.339 +  proof (cf.\ \secref{sec:proof-context}), but \mbox{\isa{defines}}
   5.340 +  takes an equational proposition instead of variable-term pair.  The
   5.341 +  left-hand side of the equation may have additional arguments, e.g.\
   5.342 +  ``\mbox{\isa{defines}}~\isa{f\ x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub n\ {\isasymequiv}\ t}''.
   5.343 +
   5.344 +  \item [\mbox{\isa{notes}}~\isa{a\ {\isacharequal}\ b\isactrlsub {\isadigit{1}}\ {\isasymdots}\ b\isactrlsub n}]
   5.345 +  reconsiders facts within a local context.  Most notably, this may
   5.346 +  include arbitrary declarations in any attribute specifications
   5.347 +  included here, e.g.\ a local \mbox{\isa{simp}} rule.
   5.348 +
   5.349 +  \item [\mbox{\isa{includes}}~\isa{c}] copies the specified context
   5.350 +  in a statically scoped manner.  Only available in the long goal
   5.351 +  format of \secref{sec:goals}.
   5.352 +
   5.353 +  In contrast, the initial \isa{import} specification of a locale
   5.354 +  expression maintains a dynamic relation to the locales being
   5.355 +  referenced (benefiting from any later fact declarations in the
   5.356 +  obvious manner).
   5.357 +
   5.358 +  \end{descr}
   5.359 +  
   5.360 +  Note that ``\isa{{\isacharparenleft}{\isasymIS}\ p\isactrlsub {\isadigit{1}}\ {\isasymdots}\ p\isactrlsub n{\isacharparenright}}'' patterns given
   5.361 +  in the syntax of \mbox{\isa{assumes}} and \mbox{\isa{defines}} above
   5.362 +  are illegal in locale definitions.  In the long goal format of
   5.363 +  \secref{sec:goals}, term bindings may be included as expected,
   5.364 +  though.
   5.365 +  
   5.366 +  \medskip By default, locale specifications are ``closed up'' by
   5.367 +  turning the given text into a predicate definition \isa{loc{\isacharunderscore}axioms} and deriving the original assumptions as local lemmas
   5.368 +  (modulo local definitions).  The predicate statement covers only the
   5.369 +  newly specified assumptions, omitting the content of included locale
   5.370 +  expressions.  The full cumulative view is only provided on export,
   5.371 +  involving another predicate \isa{loc} that refers to the complete
   5.372 +  specification text.
   5.373 +  
   5.374 +  In any case, the predicate arguments are those locale parameters
   5.375 +  that actually occur in the respective piece of text.  Also note that
   5.376 +  these predicates operate at the meta-level in theory, but the locale
   5.377 +  packages attempts to internalize statements according to the
   5.378 +  object-logic setup (e.g.\ replacing \isa{{\isasymAnd}} by \isa{{\isasymforall}}, and
   5.379 +  \isa{{\isasymLongrightarrow}} by \isa{{\isasymlongrightarrow}} in HOL; see also
   5.380 +  \secref{sec:object-logic}).  Separate introduction rules \isa{loc{\isacharunderscore}axioms{\isachardot}intro} and \isa{loc{\isachardot}intro} are provided as well.
   5.381 +  
   5.382 +  The \isa{{\isacharparenleft}open{\isacharparenright}} option of a locale specification prevents both
   5.383 +  the current \isa{loc{\isacharunderscore}axioms} and cumulative \isa{loc} predicate
   5.384 +  constructions.  Predicates are also omitted for empty specification
   5.385 +  texts.
   5.386 +
   5.387 +  \item [\mbox{\isa{\isacommand{print{\isacharunderscore}locale}}}~\isa{import\ {\isacharplus}\ body}] prints the
   5.388 +  specified locale expression in a flattened form.  The notable
   5.389 +  special case \mbox{\isa{\isacommand{print{\isacharunderscore}locale}}}~\isa{loc} just prints the
   5.390 +  contents of the named locale, but keep in mind that type-inference
   5.391 +  will normalize type variables according to the usual alphabetical
   5.392 +  order.  The command omits \mbox{\isa{notes}} elements by default.
   5.393 +  Use \mbox{\isa{\isacommand{print{\isacharunderscore}locale}}}\isa{{\isacharbang}} to get them included.
   5.394 +
   5.395 +  \item [\mbox{\isa{\isacommand{print{\isacharunderscore}locales}}}] prints the names of all locales
   5.396 +  of the current theory.
   5.397 +
   5.398 +  \item [\mbox{\isa{intro{\isacharunderscore}locales}} and \mbox{\isa{unfold{\isacharunderscore}locales}}]
   5.399 +  repeatedly expand all introduction rules of locale predicates of the
   5.400 +  theory.  While \mbox{\isa{intro{\isacharunderscore}locales}} only applies the \isa{loc{\isachardot}intro} introduction rules and therefore does not decend to
   5.401 +  assumptions, \mbox{\isa{unfold{\isacharunderscore}locales}} is more aggressive and applies
   5.402 +  \isa{loc{\isacharunderscore}axioms{\isachardot}intro} as well.  Both methods are aware of locale
   5.403 +  specifications entailed by the context, both from target and
   5.404 +  \mbox{\isa{includes}} statements, and from interpretations (see
   5.405 +  below).  New goals that are entailed by the current context are
   5.406 +  discharged automatically.
   5.407 +
   5.408 +  \end{descr}%
   5.409 +\end{isamarkuptext}%
   5.410 +\isamarkuptrue%
   5.411 +%
   5.412 +\isamarkupsubsubsection{Interpretation of locales%
   5.413 +}
   5.414 +\isamarkuptrue%
   5.415 +%
   5.416 +\begin{isamarkuptext}%
   5.417 +Locale expressions (more precisely, \emph{context expressions}) may
   5.418 +  be instantiated, and the instantiated facts added to the current
   5.419 +  context.  This requires a proof of the instantiated specification
   5.420 +  and is called \emph{locale interpretation}.  Interpretation is
   5.421 +  possible in theories and locales (command \mbox{\isa{\isacommand{interpretation}}}) and also within a proof body (\mbox{\isa{\isacommand{interpret}}}).
   5.422 +
   5.423 +  \begin{matharray}{rcl}
   5.424 +    \indexdef{}{command}{interpretation}\mbox{\isa{\isacommand{interpretation}}} & : & \isartrans{theory}{proof(prove)} \\
   5.425 +    \indexdef{}{command}{interpret}\mbox{\isa{\isacommand{interpret}}} & : & \isartrans{proof(state) ~|~ proof(chain)}{proof(prove)} \\
   5.426 +    \indexdef{}{command}{print-interps}\mbox{\isa{\isacommand{print{\isacharunderscore}interps}}}\isa{\isactrlsup {\isacharasterisk}} & : &  \isarkeep{theory~|~proof} \\
   5.427 +  \end{matharray}
   5.428 +
   5.429 +  \indexouternonterm{interp}
   5.430 +  \begin{rail}
   5.431 +    'interpretation' (interp | name ('<' | subseteq) contextexpr)
   5.432 +    ;
   5.433 +    'interpret' interp
   5.434 +    ;
   5.435 +    'print\_interps' '!'? name
   5.436 +    ;
   5.437 +    instantiation: ('[' (inst+) ']')?
   5.438 +    ;
   5.439 +    interp: thmdecl? \\ (contextexpr instantiation |
   5.440 +      name instantiation 'where' (thmdecl? prop + 'and'))
   5.441 +    ;
   5.442 +  \end{rail}
   5.443 +
   5.444 +  \begin{descr}
   5.445 +
   5.446 +  \item [\mbox{\isa{\isacommand{interpretation}}}~\isa{expr\ insts\ {\isasymWHERE}\ eqns}]
   5.447 +
   5.448 +  The first form of \mbox{\isa{\isacommand{interpretation}}} interprets \isa{expr} in the theory.  The instantiation is given as a list of terms
   5.449 +  \isa{insts} and is positional.  All parameters must receive an
   5.450 +  instantiation term --- with the exception of defined parameters.
   5.451 +  These are, if omitted, derived from the defining equation and other
   5.452 +  instantiations.  Use ``\isa{{\isacharunderscore}}'' to omit an instantiation term.
   5.453 +  Free variables are automatically generalized.
   5.454 +
   5.455 +  The command generates proof obligations for the instantiated
   5.456 +  specifications (assumes and defines elements).  Once these are
   5.457 +  discharged by the user, instantiated facts are added to the theory
   5.458 +  in a post-processing phase.
   5.459 +
   5.460 +  Additional equations, which are unfolded in facts during
   5.461 +  post-processing, may be given after the keyword \mbox{\isa{\isakeyword{where}}}.
   5.462 +  This is useful for interpreting concepts introduced through
   5.463 +  definition specification elements.  The equations must be proved.
   5.464 +  Note that if equations are present, the context expression is
   5.465 +  restricted to a locale name.
   5.466 +
   5.467 +  The command is aware of interpretations already active in the
   5.468 +  theory.  No proof obligations are generated for those, neither is
   5.469 +  post-processing applied to their facts.  This avoids duplication of
   5.470 +  interpreted facts, in particular.  Note that, in the case of a
   5.471 +  locale with import, parts of the interpretation may already be
   5.472 +  active.  The command will only generate proof obligations and
   5.473 +  process facts for new parts.
   5.474 +
   5.475 +  The context expression may be preceded by a name and/or attributes.
   5.476 +  These take effect in the post-processing of facts.  The name is used
   5.477 +  to prefix fact names, for example to avoid accidental hiding of
   5.478 +  other facts.  Attributes are applied after attributes of the
   5.479 +  interpreted facts.
   5.480 +
   5.481 +  Adding facts to locales has the effect of adding interpreted facts
   5.482 +  to the theory for all active interpretations also.  That is,
   5.483 +  interpretations dynamically participate in any facts added to
   5.484 +  locales.
   5.485 +
   5.486 +  \item [\mbox{\isa{\isacommand{interpretation}}}~\isa{name\ {\isasymsubseteq}\ expr}]
   5.487 +
   5.488 +  This form of the command interprets \isa{expr} in the locale
   5.489 +  \isa{name}.  It requires a proof that the specification of \isa{name} implies the specification of \isa{expr}.  As in the
   5.490 +  localized version of the theorem command, the proof is in the
   5.491 +  context of \isa{name}.  After the proof obligation has been
   5.492 +  dischared, the facts of \isa{expr} become part of locale \isa{name} as \emph{derived} context elements and are available when the
   5.493 +  context \isa{name} is subsequently entered.  Note that, like
   5.494 +  import, this is dynamic: facts added to a locale part of \isa{expr} after interpretation become also available in \isa{name}.
   5.495 +  Like facts of renamed context elements, facts obtained by
   5.496 +  interpretation may be accessed by prefixing with the parameter
   5.497 +  renaming (where the parameters are separated by ``\isa{{\isacharunderscore}}'').
   5.498 +
   5.499 +  Unlike interpretation in theories, instantiation is confined to the
   5.500 +  renaming of parameters, which may be specified as part of the
   5.501 +  context expression \isa{expr}.  Using defined parameters in \isa{name} one may achieve an effect similar to instantiation, though.
   5.502 +
   5.503 +  Only specification fragments of \isa{expr} that are not already
   5.504 +  part of \isa{name} (be it imported, derived or a derived fragment
   5.505 +  of the import) are considered by interpretation.  This enables
   5.506 +  circular interpretations.
   5.507 +
   5.508 +  If interpretations of \isa{name} exist in the current theory, the
   5.509 +  command adds interpretations for \isa{expr} as well, with the same
   5.510 +  prefix and attributes, although only for fragments of \isa{expr}
   5.511 +  that are not interpreted in the theory already.
   5.512 +
   5.513 +  \item [\mbox{\isa{\isacommand{interpret}}}~\isa{expr\ insts\ {\isasymWHERE}\ eqns}]
   5.514 +  interprets \isa{expr} in the proof context and is otherwise
   5.515 +  similar to interpretation in theories.  Free variables in
   5.516 +  instantiations are not generalized, however.
   5.517 +
   5.518 +  \item [\mbox{\isa{\isacommand{print{\isacharunderscore}interps}}}~\isa{loc}] prints the
   5.519 +  interpretations of a particular locale \isa{loc} that are active
   5.520 +  in the current context, either theory or proof context.  The
   5.521 +  exclamation point argument triggers printing of \emph{witness}
   5.522 +  theorems justifying interpretations.  These are normally omitted
   5.523 +  from the output.
   5.524 +  
   5.525 +  \end{descr}
   5.526 +
   5.527 +  \begin{warn}
   5.528 +    Since attributes are applied to interpreted theorems,
   5.529 +    interpretation may modify the context of common proof tools, e.g.\
   5.530 +    the Simplifier or Classical Reasoner.  Since the behavior of such
   5.531 +    automated reasoning tools is \emph{not} stable under
   5.532 +    interpretation morphisms, manual declarations might have to be
   5.533 +    issued.
   5.534 +  \end{warn}
   5.535 +
   5.536 +  \begin{warn}
   5.537 +    An interpretation in a theory may subsume previous
   5.538 +    interpretations.  This happens if the same specification fragment
   5.539 +    is interpreted twice and the instantiation of the second
   5.540 +    interpretation is more general than the interpretation of the
   5.541 +    first.  A warning is issued, since it is likely that these could
   5.542 +    have been generalized in the first place.  The locale package does
   5.543 +    not attempt to remove subsumed interpretations.
   5.544 +  \end{warn}%
   5.545 +\end{isamarkuptext}%
   5.546 +\isamarkuptrue%
   5.547 +%
   5.548 +\isamarkupsubsection{Classes \label{sec:class}%
   5.549 +}
   5.550 +\isamarkuptrue%
   5.551 +%
   5.552 +\begin{isamarkuptext}%
   5.553 +A class is a particular locale with \emph{exactly one} type variable
   5.554 +  \isa{{\isasymalpha}}.  Beyond the underlying locale, a corresponding type class
   5.555 +  is established which is interpreted logically as axiomatic type
   5.556 +  class \cite{Wenzel:1997:TPHOL} whose logical content are the
   5.557 +  assumptions of the locale.  Thus, classes provide the full
   5.558 +  generality of locales combined with the commodity of type classes
   5.559 +  (notably type-inference).  See \cite{isabelle-classes} for a short
   5.560 +  tutorial.
   5.561 +
   5.562 +  \begin{matharray}{rcl}
   5.563 +    \indexdef{}{command}{class}\mbox{\isa{\isacommand{class}}} & : & \isartrans{theory}{local{\dsh}theory} \\
   5.564 +    \indexdef{}{command}{instantiation}\mbox{\isa{\isacommand{instantiation}}} & : & \isartrans{theory}{local{\dsh}theory} \\
   5.565 +    \indexdef{}{command}{instance}\mbox{\isa{\isacommand{instance}}} & : & \isartrans{local{\dsh}theory}{local{\dsh}theory} \\
   5.566 +    \indexdef{}{command}{subclass}\mbox{\isa{\isacommand{subclass}}} & : & \isartrans{local{\dsh}theory}{local{\dsh}theory} \\
   5.567 +    \indexdef{}{command}{print-classes}\mbox{\isa{\isacommand{print{\isacharunderscore}classes}}}\isa{\isactrlsup {\isacharasterisk}} & : & \isarkeep{theory~|~proof} \\
   5.568 +    \indexdef{}{method}{intro-classes}\mbox{\isa{intro{\isacharunderscore}classes}} & : & \isarmeth \\
   5.569 +  \end{matharray}
   5.570 +
   5.571 +  \begin{rail}
   5.572 +    'class' name '=' ((superclassexpr '+' (contextelem+)) | superclassexpr | (contextelem+)) \\
   5.573 +      'begin'?
   5.574 +    ;
   5.575 +    'instantiation' (nameref + 'and') '::' arity 'begin'
   5.576 +    ;
   5.577 +    'instance'
   5.578 +    ;
   5.579 +    'subclass' target? nameref
   5.580 +    ;
   5.581 +    'print\_classes'
   5.582 +    ;
   5.583 +
   5.584 +    superclassexpr: nameref | (nameref '+' superclassexpr)
   5.585 +    ;
   5.586 +  \end{rail}
   5.587 +
   5.588 +  \begin{descr}
   5.589 +
   5.590 +  \item [\mbox{\isa{\isacommand{class}}}~\isa{c\ {\isacharequal}\ superclasses\ {\isacharplus}\ body}] defines
   5.591 +  a new class \isa{c}, inheriting from \isa{superclasses}.  This
   5.592 +  introduces a locale \isa{c} with import of all locales \isa{superclasses}.
   5.593 +
   5.594 +  Any \mbox{\isa{fixes}} in \isa{body} are lifted to the global
   5.595 +  theory level (\emph{class operations} \isa{f\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ f\isactrlsub n} of class \isa{c}), mapping the local type parameter
   5.596 +  \isa{{\isasymalpha}} to a schematic type variable \isa{{\isacharquery}{\isasymalpha}\ {\isacharcolon}{\isacharcolon}\ c}.
   5.597 +
   5.598 +  Likewise, \mbox{\isa{assumes}} in \isa{body} are also lifted,
   5.599 +  mapping each local parameter \isa{f\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}{\isacharbrackleft}{\isasymalpha}{\isacharbrackright}} to its
   5.600 +  corresponding global constant \isa{f\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}{\isacharbrackleft}{\isacharquery}{\isasymalpha}\ {\isacharcolon}{\isacharcolon}\ c{\isacharbrackright}}.  The
   5.601 +  corresponding introduction rule is provided as \isa{c{\isacharunderscore}class{\isacharunderscore}axioms{\isachardot}intro}.  This rule should be rarely needed directly
   5.602 +  --- the \mbox{\isa{intro{\isacharunderscore}classes}} method takes care of the details of
   5.603 +  class membership proofs.
   5.604 +
   5.605 +  \item [\mbox{\isa{\isacommand{instantiation}}}~\isa{t\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}s\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ s\isactrlsub n{\isacharparenright}\ s\ {\isasymBEGIN}}] opens a theory target (cf.\
   5.606 +  \secref{sec:target}) which allows to specify class operations \isa{f\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ f\isactrlsub n} corresponding to sort \isa{s} at the
   5.607 +  particular type instance \isa{{\isacharparenleft}{\isasymalpha}\isactrlsub {\isadigit{1}}\ {\isacharcolon}{\isacharcolon}\ s\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlsub n\ {\isacharcolon}{\isacharcolon}\ s\isactrlsub n{\isacharparenright}\ t}.  An plain \mbox{\isa{\isacommand{instance}}} command
   5.608 +  in the target body poses a goal stating these type arities.  The
   5.609 +  target is concluded by an \indexref{}{command}{end}\mbox{\isa{\isacommand{end}}} command.
   5.610 +
   5.611 +  Note that a list of simultaneous type constructors may be given;
   5.612 +  this corresponds nicely to mutual recursive type definitions, e.g.\
   5.613 +  in Isabelle/HOL.
   5.614 +
   5.615 +  \item [\mbox{\isa{\isacommand{instance}}}] in an instantiation target body sets
   5.616 +  up a goal stating the type arities claimed at the opening \mbox{\isa{\isacommand{instantiation}}}.  The proof would usually proceed by \mbox{\isa{intro{\isacharunderscore}classes}}, and then establish the characteristic theorems of
   5.617 +  the type classes involved.  After finishing the proof, the
   5.618 +  background theory will be augmented by the proven type arities.
   5.619 +
   5.620 +  \item [\mbox{\isa{\isacommand{subclass}}}~\isa{c}] in a class context for class
   5.621 +  \isa{d} sets up a goal stating that class \isa{c} is logically
   5.622 +  contained in class \isa{d}.  After finishing the proof, class
   5.623 +  \isa{d} is proven to be subclass \isa{c} and the locale \isa{c} is interpreted into \isa{d} simultaneously.
   5.624 +
   5.625 +  \item [\mbox{\isa{\isacommand{print{\isacharunderscore}classes}}}] prints all classes in the current
   5.626 +  theory.
   5.627 +
   5.628 +  \item [\mbox{\isa{intro{\isacharunderscore}classes}}] repeatedly expands all class
   5.629 +  introduction rules of this theory.  Note that this method usually
   5.630 +  needs not be named explicitly, as it is already included in the
   5.631 +  default proof step (e.g.\ of \mbox{\isa{\isacommand{proof}}}).  In particular,
   5.632 +  instantiation of trivial (syntactic) classes may be performed by a
   5.633 +  single ``\mbox{\isa{\isacommand{{\isachardot}{\isachardot}}}}'' proof step.
   5.634 +
   5.635 +  \end{descr}%
   5.636 +\end{isamarkuptext}%
   5.637 +\isamarkuptrue%
   5.638 +%
   5.639 +\isamarkupsubsubsection{The class target%
   5.640 +}
   5.641 +\isamarkuptrue%
   5.642 +%
   5.643 +\begin{isamarkuptext}%
   5.644 +%FIXME check
   5.645 +
   5.646 +  A named context may refer to a locale (cf.\ \secref{sec:target}).
   5.647 +  If this locale is also a class \isa{c}, apart from the common
   5.648 +  locale target behaviour the following happens.
   5.649 +
   5.650 +  \begin{itemize}
   5.651 +
   5.652 +  \item Local constant declarations \isa{g{\isacharbrackleft}{\isasymalpha}{\isacharbrackright}} referring to the
   5.653 +  local type parameter \isa{{\isasymalpha}} and local parameters \isa{f{\isacharbrackleft}{\isasymalpha}{\isacharbrackright}}
   5.654 +  are accompanied by theory-level constants \isa{g{\isacharbrackleft}{\isacharquery}{\isasymalpha}\ {\isacharcolon}{\isacharcolon}\ c{\isacharbrackright}}
   5.655 +  referring to theory-level class operations \isa{f{\isacharbrackleft}{\isacharquery}{\isasymalpha}\ {\isacharcolon}{\isacharcolon}\ c{\isacharbrackright}}.
   5.656 +
   5.657 +  \item Local theorem bindings are lifted as are assumptions.
   5.658 +
   5.659 +  \item Local syntax refers to local operations \isa{g{\isacharbrackleft}{\isasymalpha}{\isacharbrackright}} and
   5.660 +  global operations \isa{g{\isacharbrackleft}{\isacharquery}{\isasymalpha}\ {\isacharcolon}{\isacharcolon}\ c{\isacharbrackright}} uniformly.  Type inference
   5.661 +  resolves ambiguities.  In rare cases, manual type annotations are
   5.662 +  needed.
   5.663 +  
   5.664 +  \end{itemize}%
   5.665 +\end{isamarkuptext}%
   5.666 +\isamarkuptrue%
   5.667 +%
   5.668 +\isamarkupsubsection{Axiomatic type classes \label{sec:axclass}%
   5.669 +}
   5.670 +\isamarkuptrue%
   5.671 +%
   5.672 +\begin{isamarkuptext}%
   5.673 +\begin{matharray}{rcl}
   5.674 +    \indexdef{}{command}{axclass}\mbox{\isa{\isacommand{axclass}}} & : & \isartrans{theory}{theory} \\
   5.675 +    \indexdef{}{command}{instance}\mbox{\isa{\isacommand{instance}}} & : & \isartrans{theory}{proof(prove)} \\
   5.676 +  \end{matharray}
   5.677 +
   5.678 +  Axiomatic type classes are Isabelle/Pure's primitive
   5.679 +  \emph{definitional} interface to type classes.  For practical
   5.680 +  applications, you should consider using classes
   5.681 +  (cf.~\secref{sec:classes}) which provide high level interface.
   5.682 +
   5.683 +  \begin{rail}
   5.684 +    'axclass' classdecl (axmdecl prop +)
   5.685 +    ;
   5.686 +    'instance' (nameref ('<' | subseteq) nameref | nameref '::' arity)
   5.687 +    ;
   5.688 +  \end{rail}
   5.689 +
   5.690 +  \begin{descr}
   5.691 +  
   5.692 +  \item [\mbox{\isa{\isacommand{axclass}}}~\isa{c\ {\isasymsubseteq}\ c\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ c\isactrlsub n\ axms}] defines an axiomatic type class as the intersection of
   5.693 +  existing classes, with additional axioms holding.  Class axioms may
   5.694 +  not contain more than one type variable.  The class axioms (with
   5.695 +  implicit sort constraints added) are bound to the given names.
   5.696 +  Furthermore a class introduction rule is generated (being bound as
   5.697 +  \isa{c{\isacharunderscore}class{\isachardot}intro}); this rule is employed by method \mbox{\isa{intro{\isacharunderscore}classes}} to support instantiation proofs of this class.
   5.698 +  
   5.699 +  The ``class axioms'' are stored as theorems according to the given
   5.700 +  name specifications, adding \isa{c{\isacharunderscore}class} as name space prefix;
   5.701 +  the same facts are also stored collectively as \isa{c{\isacharunderscore}class{\isachardot}axioms}.
   5.702 +  
   5.703 +  \item [\mbox{\isa{\isacommand{instance}}}~\isa{c\isactrlsub {\isadigit{1}}\ {\isasymsubseteq}\ c\isactrlsub {\isadigit{2}}} and
   5.704 +  \mbox{\isa{\isacommand{instance}}}~\isa{t\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}s\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ s\isactrlsub n{\isacharparenright}\ s}]
   5.705 +  setup a goal stating a class relation or type arity.  The proof
   5.706 +  would usually proceed by \mbox{\isa{intro{\isacharunderscore}classes}}, and then establish
   5.707 +  the characteristic theorems of the type classes involved.  After
   5.708 +  finishing the proof, the theory will be augmented by a type
   5.709 +  signature declaration corresponding to the resulting theorem.
   5.710 +
   5.711 +  \end{descr}%
   5.712 +\end{isamarkuptext}%
   5.713 +\isamarkuptrue%
   5.714 +%
   5.715 +\isamarkupsubsection{Arbitrary overloading%
   5.716 +}
   5.717 +\isamarkuptrue%
   5.718 +%
   5.719 +\begin{isamarkuptext}%
   5.720 +Isabelle/Pure's definitional schemes support certain forms of
   5.721 +  overloading (see \secref{sec:consts}).  At most occassions
   5.722 +  overloading will be used in a Haskell-like fashion together with
   5.723 +  type classes by means of \mbox{\isa{\isacommand{instantiation}}} (see
   5.724 +  \secref{sec:class}).  Sometimes low-level overloading is desirable.
   5.725 +  The \mbox{\isa{\isacommand{overloading}}} target provides a convenient view for
   5.726 +  end-users.
   5.727 +
   5.728 +  \begin{matharray}{rcl}
   5.729 +    \indexdef{}{command}{overloading}\mbox{\isa{\isacommand{overloading}}} & : & \isartrans{theory}{local{\dsh}theory} \\
   5.730 +  \end{matharray}
   5.731 +
   5.732 +  \begin{rail}
   5.733 +    'overloading' \\
   5.734 +    ( string ( '==' | equiv ) term ( '(' 'unchecked' ')' )? + ) 'begin'
   5.735 +  \end{rail}
   5.736 +
   5.737 +  \begin{descr}
   5.738 +
   5.739 +  \item [\mbox{\isa{\isacommand{overloading}}}~\isa{x\isactrlsub {\isadigit{1}}\ {\isasymequiv}\ c\isactrlsub {\isadigit{1}}\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}\isactrlsub {\isadigit{1}}\ {\isasymAND}\ {\isasymdots}\ x\isactrlsub n\ {\isasymequiv}\ c\isactrlsub n\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}\isactrlsub n{\isacharbraceright}\ {\isasymBEGIN}}]
   5.740 +  opens a theory target (cf.\ \secref{sec:target}) which allows to
   5.741 +  specify constants with overloaded definitions.  These are identified
   5.742 +  by an explicitly given mapping from variable names \isa{x\isactrlsub i} to constants \isa{c\isactrlsub i} at particular type
   5.743 +  instances.  The definitions themselves are established using common
   5.744 +  specification tools, using the names \isa{x\isactrlsub i} as
   5.745 +  reference to the corresponding constants.  The target is concluded
   5.746 +  by \mbox{\isa{\isacommand{end}}}.
   5.747 +
   5.748 +  A \isa{{\isacharparenleft}unchecked{\isacharparenright}} option disables global dependency checks for
   5.749 +  the corresponding definition, which is occasionally useful for
   5.750 +  exotic overloading.  It is at the discretion of the user to avoid
   5.751 +  malformed theory specifications!
   5.752 +
   5.753 +  \end{descr}%
   5.754 +\end{isamarkuptext}%
   5.755 +\isamarkuptrue%
   5.756 +%
   5.757 +\isamarkupsubsection{Configuration options%
   5.758 +}
   5.759 +\isamarkuptrue%
   5.760 +%
   5.761 +\begin{isamarkuptext}%
   5.762 +Isabelle/Pure maintains a record of named configuration options
   5.763 +  within the theory or proof context, with values of type \verb|bool|, \verb|int|, or \verb|string|.  Tools may declare
   5.764 +  options in ML, and then refer to these values (relative to the
   5.765 +  context).  Thus global reference variables are easily avoided.  The
   5.766 +  user may change the value of a configuration option by means of an
   5.767 +  associated attribute of the same name.  This form of context
   5.768 +  declaration works particularly well with commands such as \mbox{\isa{\isacommand{declare}}} or \mbox{\isa{\isacommand{using}}}.
   5.769 +
   5.770 +  For historical reasons, some tools cannot take the full proof
   5.771 +  context into account and merely refer to the background theory.
   5.772 +  This is accommodated by configuration options being declared as
   5.773 +  ``global'', which may not be changed within a local context.
   5.774 +
   5.775 +  \begin{matharray}{rcll}
   5.776 +    \indexdef{}{command}{print-configs}\mbox{\isa{\isacommand{print{\isacharunderscore}configs}}} & : & \isarkeep{theory~|~proof} \\
   5.777 +  \end{matharray}
   5.778 +
   5.779 +  \begin{rail}
   5.780 +    name ('=' ('true' | 'false' | int | name))?
   5.781 +  \end{rail}
   5.782 +
   5.783 +  \begin{descr}
   5.784 +  
   5.785 +  \item [\mbox{\isa{\isacommand{print{\isacharunderscore}configs}}}] prints the available
   5.786 +  configuration options, with names, types, and current values.
   5.787 +  
   5.788 +  \item [\isa{name\ {\isacharequal}\ value}] as an attribute expression modifies
   5.789 +  the named option, with the syntax of the value depending on the
   5.790 +  option's type.  For \verb|bool| the default value is \isa{true}.  Any attempt to change a global option in a local context is
   5.791 +  ignored.
   5.792 +
   5.793 +  \end{descr}%
   5.794 +\end{isamarkuptext}%
   5.795 +\isamarkuptrue%
   5.796 +%
   5.797 +\isamarkupsection{Derived proof schemes%
   5.798 +}
   5.799 +\isamarkuptrue%
   5.800 +%
   5.801 +\isamarkupsubsection{Generalized elimination \label{sec:obtain}%
   5.802 +}
   5.803 +\isamarkuptrue%
   5.804 +%
   5.805 +\begin{isamarkuptext}%
   5.806 +\begin{matharray}{rcl}
   5.807 +    \indexdef{}{command}{obtain}\mbox{\isa{\isacommand{obtain}}} & : & \isartrans{proof(state)}{proof(prove)} \\
   5.808 +    \indexdef{}{command}{guess}\mbox{\isa{\isacommand{guess}}}\isa{\isactrlsup {\isacharasterisk}} & : & \isartrans{proof(state)}{proof(prove)} \\
   5.809 +  \end{matharray}
   5.810 +
   5.811 +  Generalized elimination means that additional elements with certain
   5.812 +  properties may be introduced in the current context, by virtue of a
   5.813 +  locally proven ``soundness statement''.  Technically speaking, the
   5.814 +  \mbox{\isa{\isacommand{obtain}}} language element is like a declaration of
   5.815 +  \mbox{\isa{\isacommand{fix}}} and \mbox{\isa{\isacommand{assume}}} (see also see
   5.816 +  \secref{sec:proof-context}), together with a soundness proof of its
   5.817 +  additional claim.  According to the nature of existential reasoning,
   5.818 +  assumptions get eliminated from any result exported from the context
   5.819 +  later, provided that the corresponding parameters do \emph{not}
   5.820 +  occur in the conclusion.
   5.821 +
   5.822 +  \begin{rail}
   5.823 +    'obtain' parname? (vars + 'and') 'where' (props + 'and')
   5.824 +    ;
   5.825 +    'guess' (vars + 'and')
   5.826 +    ;
   5.827 +  \end{rail}
   5.828 +
   5.829 +  The derived Isar command \mbox{\isa{\isacommand{obtain}}} is defined as follows
   5.830 +  (where \isa{b\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ b\isactrlsub k} shall refer to (optional)
   5.831 +  facts indicated for forward chaining).
   5.832 +  \begin{matharray}{l}
   5.833 +    \isa{{\isasymlangle}facts\ b\isactrlsub {\isadigit{1}}\ {\isasymdots}\ b\isactrlsub k{\isasymrangle}} \\
   5.834 +    \mbox{\isa{\isacommand{obtain}}}~\isa{x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub m\ {\isasymWHERE}\ a{\isacharcolon}\ {\isasymphi}\isactrlsub {\isadigit{1}}\ {\isasymdots}\ {\isasymphi}\isactrlsub n\ \ {\isasymlangle}proof{\isasymrangle}\ {\isasymequiv}} \\[1ex]
   5.835 +    \quad \mbox{\isa{\isacommand{have}}}~\isa{{\isasymAnd}thesis{\isachardot}\ {\isacharparenleft}{\isasymAnd}x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub m{\isachardot}\ {\isasymphi}\isactrlsub {\isadigit{1}}\ {\isasymLongrightarrow}\ {\isasymdots}\ {\isasymphi}\isactrlsub n\ {\isasymLongrightarrow}\ thesis{\isacharparenright}\ {\isasymLongrightarrow}\ thesis} \\
   5.836 +    \quad \mbox{\isa{\isacommand{proof}}}~\isa{succeed} \\
   5.837 +    \qquad \mbox{\isa{\isacommand{fix}}}~\isa{thesis} \\
   5.838 +    \qquad \mbox{\isa{\isacommand{assume}}}~\isa{that\ {\isacharbrackleft}Pure{\isachardot}intro{\isacharquery}{\isacharbrackright}{\isacharcolon}\ {\isasymAnd}x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub m{\isachardot}\ {\isasymphi}\isactrlsub {\isadigit{1}}\ {\isasymLongrightarrow}\ {\isasymdots}\ {\isasymphi}\isactrlsub n\ {\isasymLongrightarrow}\ thesis} \\
   5.839 +    \qquad \mbox{\isa{\isacommand{then}}}~\mbox{\isa{\isacommand{show}}}~\isa{thesis} \\
   5.840 +    \quad\qquad \mbox{\isa{\isacommand{apply}}}~\isa{{\isacharminus}} \\
   5.841 +    \quad\qquad \mbox{\isa{\isacommand{using}}}~\isa{b\isactrlsub {\isadigit{1}}\ {\isasymdots}\ b\isactrlsub k\ \ {\isasymlangle}proof{\isasymrangle}} \\
   5.842 +    \quad \mbox{\isa{\isacommand{qed}}} \\
   5.843 +    \quad \mbox{\isa{\isacommand{fix}}}~\isa{x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub m}~\mbox{\isa{\isacommand{assume}}}\isa{\isactrlsup {\isacharasterisk}\ a{\isacharcolon}\ {\isasymphi}\isactrlsub {\isadigit{1}}\ {\isasymdots}\ {\isasymphi}\isactrlsub n} \\
   5.844 +  \end{matharray}
   5.845 +
   5.846 +  Typically, the soundness proof is relatively straight-forward, often
   5.847 +  just by canonical automated tools such as ``\mbox{\isa{\isacommand{by}}}~\isa{simp}'' or ``\mbox{\isa{\isacommand{by}}}~\isa{blast}''.  Accordingly, the
   5.848 +  ``\isa{that}'' reduction above is declared as simplification and
   5.849 +  introduction rule.
   5.850 +
   5.851 +  In a sense, \mbox{\isa{\isacommand{obtain}}} represents at the level of Isar
   5.852 +  proofs what would be meta-logical existential quantifiers and
   5.853 +  conjunctions.  This concept has a broad range of useful
   5.854 +  applications, ranging from plain elimination (or introduction) of
   5.855 +  object-level existential and conjunctions, to elimination over
   5.856 +  results of symbolic evaluation of recursive definitions, for
   5.857 +  example.  Also note that \mbox{\isa{\isacommand{obtain}}} without parameters acts
   5.858 +  much like \mbox{\isa{\isacommand{have}}}, where the result is treated as a
   5.859 +  genuine assumption.
   5.860 +
   5.861 +  An alternative name to be used instead of ``\isa{that}'' above may
   5.862 +  be given in parentheses.
   5.863 +
   5.864 +  \medskip The improper variant \mbox{\isa{\isacommand{guess}}} is similar to
   5.865 +  \mbox{\isa{\isacommand{obtain}}}, but derives the obtained statement from the
   5.866 +  course of reasoning!  The proof starts with a fixed goal \isa{thesis}.  The subsequent proof may refine this to anything of the
   5.867 +  form like \isa{{\isasymAnd}x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub m{\isachardot}\ {\isasymphi}\isactrlsub {\isadigit{1}}\ {\isasymLongrightarrow}\ {\isasymdots}\ {\isasymphi}\isactrlsub n\ {\isasymLongrightarrow}\ thesis}, but must not introduce new subgoals.  The
   5.868 +  final goal state is then used as reduction rule for the obtain
   5.869 +  scheme described above.  Obtained parameters \isa{x\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ x\isactrlsub m} are marked as internal by default, which prevents the
   5.870 +  proof context from being polluted by ad-hoc variables.  The variable
   5.871 +  names and type constraints given as arguments for \mbox{\isa{\isacommand{guess}}}
   5.872 +  specify a prefix of obtained parameters explicitly in the text.
   5.873 +
   5.874 +  It is important to note that the facts introduced by \mbox{\isa{\isacommand{obtain}}} and \mbox{\isa{\isacommand{guess}}} may not be polymorphic: any
   5.875 +  type-variables occurring here are fixed in the present context!%
   5.876 +\end{isamarkuptext}%
   5.877 +\isamarkuptrue%
   5.878 +%
   5.879 +\isamarkupsubsection{Calculational reasoning \label{sec:calculation}%
   5.880 +}
   5.881 +\isamarkuptrue%
   5.882 +%
   5.883 +\begin{isamarkuptext}%
   5.884 +\begin{matharray}{rcl}
   5.885 +    \indexdef{}{command}{also}\mbox{\isa{\isacommand{also}}} & : & \isartrans{proof(state)}{proof(state)} \\
   5.886 +    \indexdef{}{command}{finally}\mbox{\isa{\isacommand{finally}}} & : & \isartrans{proof(state)}{proof(chain)} \\
   5.887 +    \indexdef{}{command}{moreover}\mbox{\isa{\isacommand{moreover}}} & : & \isartrans{proof(state)}{proof(state)} \\
   5.888 +    \indexdef{}{command}{ultimately}\mbox{\isa{\isacommand{ultimately}}} & : & \isartrans{proof(state)}{proof(chain)} \\
   5.889 +    \indexdef{}{command}{print-trans-rules}\mbox{\isa{\isacommand{print{\isacharunderscore}trans{\isacharunderscore}rules}}}\isa{\isactrlsup {\isacharasterisk}} & : & \isarkeep{theory~|~proof} \\
   5.890 +    \mbox{\isa{trans}} & : & \isaratt \\
   5.891 +    \mbox{\isa{sym}} & : & \isaratt \\
   5.892 +    \mbox{\isa{symmetric}} & : & \isaratt \\
   5.893 +  \end{matharray}
   5.894 +
   5.895 +  Calculational proof is forward reasoning with implicit application
   5.896 +  of transitivity rules (such those of \isa{{\isacharequal}}, \isa{{\isasymle}},
   5.897 +  \isa{{\isacharless}}).  Isabelle/Isar maintains an auxiliary fact register
   5.898 +  \indexref{}{fact}{calculation}\mbox{\isa{calculation}} for accumulating results obtained by
   5.899 +  transitivity composed with the current result.  Command \mbox{\isa{\isacommand{also}}} updates \mbox{\isa{calculation}} involving \mbox{\isa{this}}, while
   5.900 +  \mbox{\isa{\isacommand{finally}}} exhibits the final \mbox{\isa{calculation}} by
   5.901 +  forward chaining towards the next goal statement.  Both commands
   5.902 +  require valid current facts, i.e.\ may occur only after commands
   5.903 +  that produce theorems such as \mbox{\isa{\isacommand{assume}}}, \mbox{\isa{\isacommand{note}}}, or some finished proof of \mbox{\isa{\isacommand{have}}}, \mbox{\isa{\isacommand{show}}} etc.  The \mbox{\isa{\isacommand{moreover}}} and \mbox{\isa{\isacommand{ultimately}}}
   5.904 +  commands are similar to \mbox{\isa{\isacommand{also}}} and \mbox{\isa{\isacommand{finally}}},
   5.905 +  but only collect further results in \mbox{\isa{calculation}} without
   5.906 +  applying any rules yet.
   5.907 +
   5.908 +  Also note that the implicit term abbreviation ``\isa{{\isasymdots}}'' has
   5.909 +  its canonical application with calculational proofs.  It refers to
   5.910 +  the argument of the preceding statement. (The argument of a curried
   5.911 +  infix expression happens to be its right-hand side.)
   5.912 +
   5.913 +  Isabelle/Isar calculations are implicitly subject to block structure
   5.914 +  in the sense that new threads of calculational reasoning are
   5.915 +  commenced for any new block (as opened by a local goal, for
   5.916 +  example).  This means that, apart from being able to nest
   5.917 +  calculations, there is no separate \emph{begin-calculation} command
   5.918 +  required.
   5.919 +
   5.920 +  \medskip The Isar calculation proof commands may be defined as
   5.921 +  follows:\footnote{We suppress internal bookkeeping such as proper
   5.922 +  handling of block-structure.}
   5.923 +
   5.924 +  \begin{matharray}{rcl}
   5.925 +    \mbox{\isa{\isacommand{also}}}\isa{\isactrlsub {\isadigit{0}}} & \equiv & \mbox{\isa{\isacommand{note}}}~\isa{calculation\ {\isacharequal}\ this} \\
   5.926 +    \mbox{\isa{\isacommand{also}}}\isa{\isactrlsub n\isactrlsub {\isacharplus}\isactrlsub {\isadigit{1}}} & \equiv & \mbox{\isa{\isacommand{note}}}~\isa{calculation\ {\isacharequal}\ trans\ {\isacharbrackleft}OF\ calculation\ this{\isacharbrackright}} \\[0.5ex]
   5.927 +    \mbox{\isa{\isacommand{finally}}} & \equiv & \mbox{\isa{\isacommand{also}}}~\mbox{\isa{\isacommand{from}}}~\isa{calculation} \\[0.5ex]
   5.928 +    \mbox{\isa{\isacommand{moreover}}} & \equiv & \mbox{\isa{\isacommand{note}}}~\isa{calculation\ {\isacharequal}\ calculation\ this} \\
   5.929 +    \mbox{\isa{\isacommand{ultimately}}} & \equiv & \mbox{\isa{\isacommand{moreover}}}~\mbox{\isa{\isacommand{from}}}~\isa{calculation} \\
   5.930 +  \end{matharray}
   5.931 +
   5.932 +  \begin{rail}
   5.933 +    ('also' | 'finally') ('(' thmrefs ')')?
   5.934 +    ;
   5.935 +    'trans' (() | 'add' | 'del')
   5.936 +    ;
   5.937 +  \end{rail}
   5.938 +
   5.939 +  \begin{descr}
   5.940 +
   5.941 +  \item [\mbox{\isa{\isacommand{also}}}~\isa{{\isacharparenleft}a\isactrlsub {\isadigit{1}}\ {\isasymdots}\ a\isactrlsub n{\isacharparenright}}]
   5.942 +  maintains the auxiliary \mbox{\isa{calculation}} register as follows.
   5.943 +  The first occurrence of \mbox{\isa{\isacommand{also}}} in some calculational
   5.944 +  thread initializes \mbox{\isa{calculation}} by \mbox{\isa{this}}. Any
   5.945 +  subsequent \mbox{\isa{\isacommand{also}}} on the same level of block-structure
   5.946 +  updates \mbox{\isa{calculation}} by some transitivity rule applied to
   5.947 +  \mbox{\isa{calculation}} and \mbox{\isa{this}} (in that order).  Transitivity
   5.948 +  rules are picked from the current context, unless alternative rules
   5.949 +  are given as explicit arguments.
   5.950 +
   5.951 +  \item [\mbox{\isa{\isacommand{finally}}}~\isa{{\isacharparenleft}a\isactrlsub {\isadigit{1}}\ {\isasymdots}\ a\isactrlsub n{\isacharparenright}}]
   5.952 +  maintaining \mbox{\isa{calculation}} in the same way as \mbox{\isa{\isacommand{also}}}, and concludes the current calculational thread.  The final
   5.953 +  result is exhibited as fact for forward chaining towards the next
   5.954 +  goal. Basically, \mbox{\isa{\isacommand{finally}}} just abbreviates \mbox{\isa{\isacommand{also}}}~\mbox{\isa{\isacommand{from}}}~\mbox{\isa{calculation}}.  Typical idioms for
   5.955 +  concluding calculational proofs are ``\mbox{\isa{\isacommand{finally}}}~\mbox{\isa{\isacommand{show}}}~\isa{{\isacharquery}thesis}~\mbox{\isa{\isacommand{{\isachardot}}}}'' and ``\mbox{\isa{\isacommand{finally}}}~\mbox{\isa{\isacommand{have}}}~\isa{{\isasymphi}}~\mbox{\isa{\isacommand{{\isachardot}}}}''.
   5.956 +
   5.957 +  \item [\mbox{\isa{\isacommand{moreover}}} and \mbox{\isa{\isacommand{ultimately}}}] are
   5.958 +  analogous to \mbox{\isa{\isacommand{also}}} and \mbox{\isa{\isacommand{finally}}}, but collect
   5.959 +  results only, without applying rules.
   5.960 +
   5.961 +  \item [\mbox{\isa{\isacommand{print{\isacharunderscore}trans{\isacharunderscore}rules}}}] prints the list of
   5.962 +  transitivity rules (for calculational commands \mbox{\isa{\isacommand{also}}} and
   5.963 +  \mbox{\isa{\isacommand{finally}}}) and symmetry rules (for the \mbox{\isa{symmetric}} operation and single step elimination patters) of the
   5.964 +  current context.
   5.965 +
   5.966 +  \item [\mbox{\isa{trans}}] declares theorems as transitivity rules.
   5.967 +
   5.968 +  \item [\mbox{\isa{sym}}] declares symmetry rules, as well as
   5.969 +  \mbox{\isa{Pure{\isachardot}elim{\isacharquery}}} rules.
   5.970 +
   5.971 +  \item [\mbox{\isa{symmetric}}] resolves a theorem with some rule
   5.972 +  declared as \mbox{\isa{sym}} in the current context.  For example,
   5.973 +  ``\mbox{\isa{\isacommand{assume}}}~\isa{{\isacharbrackleft}symmetric{\isacharbrackright}{\isacharcolon}\ x\ {\isacharequal}\ y}'' produces a
   5.974 +  swapped fact derived from that assumption.
   5.975 +
   5.976 +  In structured proof texts it is often more appropriate to use an
   5.977 +  explicit single-step elimination proof, such as ``\mbox{\isa{\isacommand{assume}}}~\isa{x\ {\isacharequal}\ y}~\mbox{\isa{\isacommand{then}}}~\mbox{\isa{\isacommand{have}}}~\isa{y\ {\isacharequal}\ x}~\mbox{\isa{\isacommand{{\isachardot}{\isachardot}}}}''.
   5.978 +
   5.979 +  \end{descr}%
   5.980 +\end{isamarkuptext}%
   5.981 +\isamarkuptrue%
   5.982 +%
   5.983 +\isamarkupsection{Proof tools%
   5.984 +}
   5.985 +\isamarkuptrue%
   5.986 +%
   5.987 +\isamarkupsubsection{Miscellaneous methods and attributes \label{sec:misc-meth-att}%
   5.988 +}
   5.989 +\isamarkuptrue%
   5.990 +%
   5.991 +\begin{isamarkuptext}%
   5.992 +\begin{matharray}{rcl}
   5.993 +    \indexdef{}{method}{unfold}\mbox{\isa{unfold}} & : & \isarmeth \\
   5.994 +    \indexdef{}{method}{fold}\mbox{\isa{fold}} & : & \isarmeth \\
   5.995 +    \indexdef{}{method}{insert}\mbox{\isa{insert}} & : & \isarmeth \\[0.5ex]
   5.996 +    \indexdef{}{method}{erule}\mbox{\isa{erule}}\isa{\isactrlsup {\isacharasterisk}} & : & \isarmeth \\
   5.997 +    \indexdef{}{method}{drule}\mbox{\isa{drule}}\isa{\isactrlsup {\isacharasterisk}} & : & \isarmeth \\
   5.998 +    \indexdef{}{method}{frule}\mbox{\isa{frule}}\isa{\isactrlsup {\isacharasterisk}} & : & \isarmeth \\
   5.999 +    \indexdef{}{method}{succeed}\mbox{\isa{succeed}} & : & \isarmeth \\
  5.1000 +    \indexdef{}{method}{fail}\mbox{\isa{fail}} & : & \isarmeth \\
  5.1001 +  \end{matharray}
  5.1002 +
  5.1003 +  \begin{rail}
  5.1004 +    ('fold' | 'unfold' | 'insert') thmrefs
  5.1005 +    ;
  5.1006 +    ('erule' | 'drule' | 'frule') ('('nat')')? thmrefs
  5.1007 +    ;
  5.1008 +  \end{rail}
  5.1009 +
  5.1010 +  \begin{descr}
  5.1011 +  
  5.1012 +  \item [\mbox{\isa{unfold}}~\isa{a\isactrlsub {\isadigit{1}}\ {\isasymdots}\ a\isactrlsub n} and \mbox{\isa{fold}}~\isa{a\isactrlsub {\isadigit{1}}\ {\isasymdots}\ a\isactrlsub n}] expand (or fold back) the
  5.1013 +  given definitions throughout all goals; any chained facts provided
  5.1014 +  are inserted into the goal and subject to rewriting as well.
  5.1015 +
  5.1016 +  \item [\mbox{\isa{insert}}~\isa{a\isactrlsub {\isadigit{1}}\ {\isasymdots}\ a\isactrlsub n}] inserts
  5.1017 +  theorems as facts into all goals of the proof state.  Note that
  5.1018 +  current facts indicated for forward chaining are ignored.
  5.1019 +
  5.1020 +  \item [\mbox{\isa{erule}}~\isa{a\isactrlsub {\isadigit{1}}\ {\isasymdots}\ a\isactrlsub n}, \mbox{\isa{drule}}~\isa{a\isactrlsub {\isadigit{1}}\ {\isasymdots}\ a\isactrlsub n}, and \mbox{\isa{frule}}~\isa{a\isactrlsub {\isadigit{1}}\ {\isasymdots}\ a\isactrlsub n}] are similar to the basic \mbox{\isa{rule}}
  5.1021 +  method (see \secref{sec:pure-meth-att}), but apply rules by
  5.1022 +  elim-resolution, destruct-resolution, and forward-resolution,
  5.1023 +  respectively \cite{isabelle-ref}.  The optional natural number
  5.1024 +  argument (default 0) specifies additional assumption steps to be
  5.1025 +  performed here.
  5.1026 +
  5.1027 +  Note that these methods are improper ones, mainly serving for
  5.1028 +  experimentation and tactic script emulation.  Different modes of
  5.1029 +  basic rule application are usually expressed in Isar at the proof
  5.1030 +  language level, rather than via implicit proof state manipulations.
  5.1031 +  For example, a proper single-step elimination would be done using
  5.1032 +  the plain \mbox{\isa{rule}} method, with forward chaining of current
  5.1033 +  facts.
  5.1034 +
  5.1035 +  \item [\mbox{\isa{succeed}}] yields a single (unchanged) result; it is
  5.1036 +  the identity of the ``\isa{{\isacharcomma}}'' method combinator (cf.\
  5.1037 +  \secref{sec:syn-meth}).
  5.1038 +
  5.1039 +  \item [\mbox{\isa{fail}}] yields an empty result sequence; it is the
  5.1040 +  identity of the ``\isa{{\isacharbar}}'' method combinator (cf.\
  5.1041 +  \secref{sec:syn-meth}).
  5.1042 +
  5.1043 +  \end{descr}
  5.1044 +
  5.1045 +  \begin{matharray}{rcl}
  5.1046 +    \indexdef{}{attribute}{tagged}\mbox{\isa{tagged}} & : & \isaratt \\
  5.1047 +    \indexdef{}{attribute}{untagged}\mbox{\isa{untagged}} & : & \isaratt \\[0.5ex]
  5.1048 +    \indexdef{}{attribute}{THEN}\mbox{\isa{THEN}} & : & \isaratt \\
  5.1049 +    \indexdef{}{attribute}{COMP}\mbox{\isa{COMP}} & : & \isaratt \\[0.5ex]
  5.1050 +    \indexdef{}{attribute}{unfolded}\mbox{\isa{unfolded}} & : & \isaratt \\
  5.1051 +    \indexdef{}{attribute}{folded}\mbox{\isa{folded}} & : & \isaratt \\[0.5ex]
  5.1052 +    \indexdef{}{attribute}{rotated}\mbox{\isa{rotated}} & : & \isaratt \\
  5.1053 +    \indexdef{Pure}{attribute}{elim-format}\mbox{\isa{elim{\isacharunderscore}format}} & : & \isaratt \\
  5.1054 +    \indexdef{}{attribute}{standard}\mbox{\isa{standard}}\isa{\isactrlsup {\isacharasterisk}} & : & \isaratt \\
  5.1055 +    \indexdef{}{attribute}{no-vars}\mbox{\isa{no{\isacharunderscore}vars}}\isa{\isactrlsup {\isacharasterisk}} & : & \isaratt \\
  5.1056 +  \end{matharray}
  5.1057 +
  5.1058 +  \begin{rail}
  5.1059 +    'tagged' nameref
  5.1060 +    ;
  5.1061 +    'untagged' name
  5.1062 +    ;
  5.1063 +    ('THEN' | 'COMP') ('[' nat ']')? thmref
  5.1064 +    ;
  5.1065 +    ('unfolded' | 'folded') thmrefs
  5.1066 +    ;
  5.1067 +    'rotated' ( int )?
  5.1068 +  \end{rail}
  5.1069 +
  5.1070 +  \begin{descr}
  5.1071 +
  5.1072 +  \item [\mbox{\isa{tagged}}~\isa{name\ arg} and \mbox{\isa{untagged}}~\isa{name}] add and remove \emph{tags} of some theorem.
  5.1073 +  Tags may be any list of string pairs that serve as formal comment.
  5.1074 +  The first string is considered the tag name, the second its
  5.1075 +  argument.  Note that \mbox{\isa{untagged}} removes any tags of the
  5.1076 +  same name.
  5.1077 +
  5.1078 +  \item [\mbox{\isa{THEN}}~\isa{a} and \mbox{\isa{COMP}}~\isa{a}]
  5.1079 +  compose rules by resolution.  \mbox{\isa{THEN}} resolves with the
  5.1080 +  first premise of \isa{a} (an alternative position may be also
  5.1081 +  specified); the \mbox{\isa{COMP}} version skips the automatic
  5.1082 +  lifting process that is normally intended (cf.\ \verb|op RS| and
  5.1083 +  \verb|op COMP| in \cite[\S5]{isabelle-ref}).
  5.1084 +  
  5.1085 +  \item [\mbox{\isa{unfolded}}~\isa{a\isactrlsub {\isadigit{1}}\ {\isasymdots}\ a\isactrlsub n} and
  5.1086 +  \mbox{\isa{folded}}~\isa{a\isactrlsub {\isadigit{1}}\ {\isasymdots}\ a\isactrlsub n}] expand and fold
  5.1087 +  back again the given definitions throughout a rule.
  5.1088 +
  5.1089 +  \item [\mbox{\isa{rotated}}~\isa{n}] rotate the premises of a
  5.1090 +  theorem by \isa{n} (default 1).
  5.1091 +
  5.1092 +  \item [\mbox{\isa{Pure{\isachardot}elim{\isacharunderscore}format}}] turns a destruction rule into
  5.1093 +  elimination rule format, by resolving with the rule \isa{{\isachardoublequote}PROP\ A\ {\isasymLongrightarrow}\ {\isacharparenleft}PROP\ A\ {\isasymLongrightarrow}\ PROP\ B{\isacharparenright}\ {\isasymLongrightarrow}\ PROP\ B{\isachardoublequote}}.
  5.1094 +  
  5.1095 +  Note that the Classical Reasoner (\secref{sec:classical}) provides
  5.1096 +  its own version of this operation.
  5.1097 +
  5.1098 +  \item [\mbox{\isa{standard}}] puts a theorem into the standard form
  5.1099 +  of object-rules at the outermost theory level.  Note that this
  5.1100 +  operation violates the local proof context (including active
  5.1101 +  locales).
  5.1102 +
  5.1103 +  \item [\mbox{\isa{no{\isacharunderscore}vars}}] replaces schematic variables by free
  5.1104 +  ones; this is mainly for tuning output of pretty printed theorems.
  5.1105 +
  5.1106 +  \end{descr}%
  5.1107 +\end{isamarkuptext}%
  5.1108 +\isamarkuptrue%
  5.1109 +%
  5.1110 +\isamarkupsubsection{Further tactic emulations \label{sec:tactics}%
  5.1111 +}
  5.1112 +\isamarkuptrue%
  5.1113 +%
  5.1114 +\begin{isamarkuptext}%
  5.1115 +The following improper proof methods emulate traditional tactics.
  5.1116 +  These admit direct access to the goal state, which is normally
  5.1117 +  considered harmful!  In particular, this may involve both numbered
  5.1118 +  goal addressing (default 1), and dynamic instantiation within the
  5.1119 +  scope of some subgoal.
  5.1120 +
  5.1121 +  \begin{warn}
  5.1122 +    Dynamic instantiations refer to universally quantified parameters
  5.1123 +    of a subgoal (the dynamic context) rather than fixed variables and
  5.1124 +    term abbreviations of a (static) Isar context.
  5.1125 +  \end{warn}
  5.1126 +
  5.1127 +  Tactic emulation methods, unlike their ML counterparts, admit
  5.1128 +  simultaneous instantiation from both dynamic and static contexts.
  5.1129 +  If names occur in both contexts goal parameters hide locally fixed
  5.1130 +  variables.  Likewise, schematic variables refer to term
  5.1131 +  abbreviations, if present in the static context.  Otherwise the
  5.1132 +  schematic variable is interpreted as a schematic variable and left
  5.1133 +  to be solved by unification with certain parts of the subgoal.
  5.1134 +
  5.1135 +  Note that the tactic emulation proof methods in Isabelle/Isar are
  5.1136 +  consistently named \isa{foo{\isacharunderscore}tac}.  Note also that variable names
  5.1137 +  occurring on left hand sides of instantiations must be preceded by a
  5.1138 +  question mark if they coincide with a keyword or contain dots.  This
  5.1139 +  is consistent with the attribute \mbox{\isa{where}} (see
  5.1140 +  \secref{sec:pure-meth-att}).
  5.1141 +
  5.1142 +  \begin{matharray}{rcl}
  5.1143 +    \indexdef{}{method}{rule-tac}\mbox{\isa{rule{\isacharunderscore}tac}}\isa{\isactrlsup {\isacharasterisk}} & : & \isarmeth \\
  5.1144 +    \indexdef{}{method}{erule-tac}\mbox{\isa{erule{\isacharunderscore}tac}}\isa{\isactrlsup {\isacharasterisk}} & : & \isarmeth \\
  5.1145 +    \indexdef{}{method}{drule-tac}\mbox{\isa{drule{\isacharunderscore}tac}}\isa{\isactrlsup {\isacharasterisk}} & : & \isarmeth \\
  5.1146 +    \indexdef{}{method}{frule-tac}\mbox{\isa{frule{\isacharunderscore}tac}}\isa{\isactrlsup {\isacharasterisk}} & : & \isarmeth \\
  5.1147 +    \indexdef{}{method}{cut-tac}\mbox{\isa{cut{\isacharunderscore}tac}}\isa{\isactrlsup {\isacharasterisk}} & : & \isarmeth \\
  5.1148 +    \indexdef{}{method}{thin-tac}\mbox{\isa{thin{\isacharunderscore}tac}}\isa{\isactrlsup {\isacharasterisk}} & : & \isarmeth \\
  5.1149 +    \indexdef{}{method}{subgoal-tac}\mbox{\isa{subgoal{\isacharunderscore}tac}}\isa{\isactrlsup {\isacharasterisk}} & : & \isarmeth \\
  5.1150 +    \indexdef{}{method}{rename-tac}\mbox{\isa{rename{\isacharunderscore}tac}}\isa{\isactrlsup {\isacharasterisk}} & : & \isarmeth \\
  5.1151 +    \indexdef{}{method}{rotate-tac}\mbox{\isa{rotate{\isacharunderscore}tac}}\isa{\isactrlsup {\isacharasterisk}} & : & \isarmeth \\
  5.1152 +    \indexdef{}{method}{tactic}\mbox{\isa{tactic}}\isa{\isactrlsup {\isacharasterisk}} & : & \isarmeth \\
  5.1153 +  \end{matharray}
  5.1154 +
  5.1155 +  \begin{rail}
  5.1156 +    ( 'rule\_tac' | 'erule\_tac' | 'drule\_tac' | 'frule\_tac' | 'cut\_tac' | 'thin\_tac' ) goalspec?
  5.1157 +    ( insts thmref | thmrefs )
  5.1158 +    ;
  5.1159 +    'subgoal\_tac' goalspec? (prop +)
  5.1160 +    ;
  5.1161 +    'rename\_tac' goalspec? (name +)
  5.1162 +    ;
  5.1163 +    'rotate\_tac' goalspec? int?
  5.1164 +    ;
  5.1165 +    'tactic' text
  5.1166 +    ;
  5.1167 +
  5.1168 +    insts: ((name '=' term) + 'and') 'in'
  5.1169 +    ;
  5.1170 +  \end{rail}
  5.1171 +
  5.1172 +\begin{descr}
  5.1173 +
  5.1174 +  \item [\mbox{\isa{rule{\isacharunderscore}tac}} etc.] do resolution of rules with explicit
  5.1175 +  instantiation.  This works the same way as the ML tactics \verb|res_inst_tac| etc. (see \cite[\S3]{isabelle-ref}).
  5.1176 +
  5.1177 +  Multiple rules may be only given if there is no instantiation; then
  5.1178 +  \mbox{\isa{rule{\isacharunderscore}tac}} is the same as \verb|resolve_tac| in ML (see
  5.1179 +  \cite[\S3]{isabelle-ref}).
  5.1180 +
  5.1181 +  \item [\mbox{\isa{cut{\isacharunderscore}tac}}] inserts facts into the proof state as
  5.1182 +  assumption of a subgoal, see also \verb|cut_facts_tac| in
  5.1183 +  \cite[\S3]{isabelle-ref}.  Note that the scope of schematic
  5.1184 +  variables is spread over the main goal statement.  Instantiations
  5.1185 +  may be given as well, see also ML tactic \verb|cut_inst_tac| in
  5.1186 +  \cite[\S3]{isabelle-ref}.
  5.1187 +
  5.1188 +  \item [\mbox{\isa{thin{\isacharunderscore}tac}}~\isa{{\isasymphi}}] deletes the specified
  5.1189 +  assumption from a subgoal; note that \isa{{\isasymphi}} may contain schematic
  5.1190 +  variables.  See also \verb|thin_tac| in \cite[\S3]{isabelle-ref}.
  5.1191 +
  5.1192 +  \item [\mbox{\isa{subgoal{\isacharunderscore}tac}}~\isa{{\isasymphi}}] adds \isa{{\isasymphi}} as an
  5.1193 +  assumption to a subgoal.  See also \verb|subgoal_tac| and \verb|subgoals_tac| in \cite[\S3]{isabelle-ref}.
  5.1194 +
  5.1195 +  \item [\mbox{\isa{rename{\isacharunderscore}tac}}~\isa{x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub n}] renames
  5.1196 +  parameters of a goal according to the list \isa{x\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ x\isactrlsub n}, which refers to the \emph{suffix} of variables.
  5.1197 +
  5.1198 +  \item [\mbox{\isa{rotate{\isacharunderscore}tac}}~\isa{n}] rotates the assumptions of a
  5.1199 +  goal by \isa{n} positions: from right to left if \isa{n} is
  5.1200 +  positive, and from left to right if \isa{n} is negative; the
  5.1201 +  default value is 1.  See also \verb|rotate_tac| in
  5.1202 +  \cite[\S3]{isabelle-ref}.
  5.1203 +
  5.1204 +  \item [\mbox{\isa{tactic}}~\isa{text}] produces a proof method from
  5.1205 +  any ML text of type \verb|tactic|.  Apart from the usual ML
  5.1206 +  environment and the current implicit theory context, the ML code may
  5.1207 +  refer to the following locally bound values:
  5.1208 +
  5.1209 +%FIXME check
  5.1210 +{\footnotesize\begin{verbatim}
  5.1211 +val ctxt  : Proof.context
  5.1212 +val facts : thm list
  5.1213 +val thm   : string -> thm
  5.1214 +val thms  : string -> thm list
  5.1215 +\end{verbatim}}
  5.1216 +
  5.1217 +  Here \verb|ctxt| refers to the current proof context, \verb|facts| indicates any current facts for forward-chaining, and \verb|thm|~/~\verb|thms| retrieve named facts (including global theorems)
  5.1218 +  from the context.
  5.1219 +
  5.1220 +  \end{descr}%
  5.1221 +\end{isamarkuptext}%
  5.1222 +\isamarkuptrue%
  5.1223 +%
  5.1224 +\isamarkupsubsection{The Simplifier \label{sec:simplifier}%
  5.1225 +}
  5.1226 +\isamarkuptrue%
  5.1227 +%
  5.1228 +\isamarkupsubsubsection{Simplification methods%
  5.1229 +}
  5.1230 +\isamarkuptrue%
  5.1231 +%
  5.1232 +\begin{isamarkuptext}%
  5.1233 +\begin{matharray}{rcl}
  5.1234 +    \indexdef{}{method}{simp}\mbox{\isa{simp}} & : & \isarmeth \\
  5.1235 +    \indexdef{}{method}{simp-all}\mbox{\isa{simp{\isacharunderscore}all}} & : & \isarmeth \\
  5.1236 +  \end{matharray}
  5.1237 +
  5.1238 +  \indexouternonterm{simpmod}
  5.1239 +  \begin{rail}
  5.1240 +    ('simp' | 'simp\_all') ('!' ?) opt? (simpmod *)
  5.1241 +    ;
  5.1242 +
  5.1243 +    opt: '(' ('no\_asm' | 'no\_asm\_simp' | 'no\_asm\_use' | 'asm\_lr' | 'depth\_limit' ':' nat) ')'
  5.1244 +    ;
  5.1245 +    simpmod: ('add' | 'del' | 'only' | 'cong' (() | 'add' | 'del') |
  5.1246 +      'split' (() | 'add' | 'del')) ':' thmrefs
  5.1247 +    ;
  5.1248 +  \end{rail}
  5.1249 +
  5.1250 +  \begin{descr}
  5.1251 +
  5.1252 +  \item [\mbox{\isa{simp}}] invokes the Simplifier, after declaring
  5.1253 +  additional rules according to the arguments given.  Note that the
  5.1254 +  \railtterm{only} modifier first removes all other rewrite rules,
  5.1255 +  congruences, and looper tactics (including splits), and then behaves
  5.1256 +  like \railtterm{add}.
  5.1257 +
  5.1258 +  \medskip The \railtterm{cong} modifiers add or delete Simplifier
  5.1259 +  congruence rules (see also \cite{isabelle-ref}), the default is to
  5.1260 +  add.
  5.1261 +
  5.1262 +  \medskip The \railtterm{split} modifiers add or delete rules for the
  5.1263 +  Splitter (see also \cite{isabelle-ref}), the default is to add.
  5.1264 +  This works only if the Simplifier method has been properly setup to
  5.1265 +  include the Splitter (all major object logics such HOL, HOLCF, FOL,
  5.1266 +  ZF do this already).
  5.1267 +
  5.1268 +  \item [\mbox{\isa{simp{\isacharunderscore}all}}] is similar to \mbox{\isa{simp}}, but acts on
  5.1269 +  all goals (backwards from the last to the first one).
  5.1270 +
  5.1271 +  \end{descr}
  5.1272 +
  5.1273 +  By default the Simplifier methods take local assumptions fully into
  5.1274 +  account, using equational assumptions in the subsequent
  5.1275 +  normalization process, or simplifying assumptions themselves (cf.\
  5.1276 +  \verb|asm_full_simp_tac| in \cite[\S10]{isabelle-ref}).  In
  5.1277 +  structured proofs this is usually quite well behaved in practice:
  5.1278 +  just the local premises of the actual goal are involved, additional
  5.1279 +  facts may be inserted via explicit forward-chaining (via \mbox{\isa{\isacommand{then}}}, \mbox{\isa{\isacommand{from}}}, \mbox{\isa{\isacommand{using}}} etc.).  The full
  5.1280 +  context of premises is only included if the ``\isa{{\isacharbang}}'' (bang)
  5.1281 +  argument is given, which should be used with some care, though.
  5.1282 +
  5.1283 +  Additional Simplifier options may be specified to tune the behavior
  5.1284 +  further (mostly for unstructured scripts with many accidental local
  5.1285 +  facts): ``\isa{{\isacharparenleft}no{\isacharunderscore}asm{\isacharparenright}}'' means assumptions are ignored
  5.1286 +  completely (cf.\ \verb|simp_tac|), ``\isa{{\isacharparenleft}no{\isacharunderscore}asm{\isacharunderscore}simp{\isacharparenright}}'' means
  5.1287 +  assumptions are used in the simplification of the conclusion but are
  5.1288 +  not themselves simplified (cf.\ \verb|asm_simp_tac|), and ``\isa{{\isacharparenleft}no{\isacharunderscore}asm{\isacharunderscore}use{\isacharparenright}}'' means assumptions are simplified but are not used
  5.1289 +  in the simplification of each other or the conclusion (cf.\ \verb|full_simp_tac|).  For compatibility reasons, there is also an option
  5.1290 +  ``\isa{{\isacharparenleft}asm{\isacharunderscore}lr{\isacharparenright}}'', which means that an assumption is only used
  5.1291 +  for simplifying assumptions which are to the right of it (cf.\ \verb|asm_lr_simp_tac|).
  5.1292 +
  5.1293 +  Giving an option ``\isa{{\isacharparenleft}depth{\isacharunderscore}limit{\isacharcolon}\ n{\isacharparenright}}'' limits the number of
  5.1294 +  recursive invocations of the simplifier during conditional
  5.1295 +  rewriting.
  5.1296 +
  5.1297 +  \medskip The Splitter package is usually configured to work as part
  5.1298 +  of the Simplifier.  The effect of repeatedly applying \verb|split_tac| can be simulated by ``\isa{{\isacharparenleft}simp\ only{\isacharcolon}\ split{\isacharcolon}\ a\isactrlsub {\isadigit{1}}\ {\isasymdots}\ a\isactrlsub n{\isacharparenright}}''.  There is also a separate \isa{split}
  5.1299 +  method available for single-step case splitting.%
  5.1300 +\end{isamarkuptext}%
  5.1301 +\isamarkuptrue%
  5.1302 +%
  5.1303 +\isamarkupsubsubsection{Declaring rules%
  5.1304 +}
  5.1305 +\isamarkuptrue%
  5.1306 +%
  5.1307 +\begin{isamarkuptext}%
  5.1308 +\begin{matharray}{rcl}
  5.1309 +    \indexdef{}{command}{print-simpset}\mbox{\isa{\isacommand{print{\isacharunderscore}simpset}}}\isa{\isactrlsup {\isacharasterisk}} & : & \isarkeep{theory~|~proof} \\
  5.1310 +    \indexdef{}{attribute}{simp}\mbox{\isa{simp}} & : & \isaratt \\
  5.1311 +    \indexdef{}{attribute}{cong}\mbox{\isa{cong}} & : & \isaratt \\
  5.1312 +    \indexdef{}{attribute}{split}\mbox{\isa{split}} & : & \isaratt \\
  5.1313 +  \end{matharray}
  5.1314 +
  5.1315 +  \begin{rail}
  5.1316 +    ('simp' | 'cong' | 'split') (() | 'add' | 'del')
  5.1317 +    ;
  5.1318 +  \end{rail}
  5.1319 +
  5.1320 +  \begin{descr}
  5.1321 +
  5.1322 +  \item [\mbox{\isa{\isacommand{print{\isacharunderscore}simpset}}}] prints the collection of rules
  5.1323 +  declared to the Simplifier, which is also known as ``simpset''
  5.1324 +  internally \cite{isabelle-ref}.
  5.1325 +
  5.1326 +  \item [\mbox{\isa{simp}}] declares simplification rules.
  5.1327 +
  5.1328 +  \item [\mbox{\isa{cong}}] declares congruence rules.
  5.1329 +
  5.1330 +  \item [\mbox{\isa{split}}] declares case split rules.
  5.1331 +
  5.1332 +  \end{descr}%
  5.1333 +\end{isamarkuptext}%
  5.1334 +\isamarkuptrue%
  5.1335 +%
  5.1336 +\isamarkupsubsubsection{Simplification procedures%
  5.1337 +}
  5.1338 +\isamarkuptrue%
  5.1339 +%
  5.1340 +\begin{isamarkuptext}%
  5.1341 +\begin{matharray}{rcl}
  5.1342 +    \indexdef{}{command}{simproc-setup}\mbox{\isa{\isacommand{simproc{\isacharunderscore}setup}}} & : & \isarkeep{local{\dsh}theory} \\
  5.1343 +    simproc & : & \isaratt \\
  5.1344 +  \end{matharray}
  5.1345 +
  5.1346 +  \begin{rail}
  5.1347 +    'simproc\_setup' name '(' (term + '|') ')' '=' text \\ ('identifier' (nameref+))?
  5.1348 +    ;
  5.1349 +
  5.1350 +    'simproc' (('add' ':')? | 'del' ':') (name+)
  5.1351 +    ;
  5.1352 +  \end{rail}
  5.1353 +
  5.1354 +  \begin{descr}
  5.1355 +
  5.1356 +  \item [\mbox{\isa{\isacommand{simproc{\isacharunderscore}setup}}}] defines a named simplification
  5.1357 +  procedure that is invoked by the Simplifier whenever any of the
  5.1358 +  given term patterns match the current redex.  The implementation,
  5.1359 +  which is provided as ML source text, needs to be of type \verb|morphism -> simpset -> cterm -> thm option|, where the \verb|cterm| represents the current redex \isa{r} and the result is
  5.1360 +  supposed to be some proven rewrite rule \isa{r\ {\isasymequiv}\ r{\isacharprime}} (or a
  5.1361 +  generalized version), or \verb|NONE| to indicate failure.  The
  5.1362 +  \verb|simpset| argument holds the full context of the current
  5.1363 +  Simplifier invocation, including the actual Isar proof context.  The
  5.1364 +  \verb|morphism| informs about the difference of the original
  5.1365 +  compilation context wrt.\ the one of the actual application later
  5.1366 +  on.  The optional \mbox{\isa{\isakeyword{identifier}}} specifies theorems that
  5.1367 +  represent the logical content of the abstract theory of this
  5.1368 +  simproc.
  5.1369 +
  5.1370 +  Morphisms and identifiers are only relevant for simprocs that are
  5.1371 +  defined within a local target context, e.g.\ in a locale.
  5.1372 +
  5.1373 +  \item [\isa{simproc\ add{\isacharcolon}\ name} and \isa{simproc\ del{\isacharcolon}\ name}]
  5.1374 +  add or delete named simprocs to the current Simplifier context.  The
  5.1375 +  default is to add a simproc.  Note that \mbox{\isa{\isacommand{simproc{\isacharunderscore}setup}}}
  5.1376 +  already adds the new simproc to the subsequent context.
  5.1377 +
  5.1378 +  \end{descr}%
  5.1379 +\end{isamarkuptext}%
  5.1380 +\isamarkuptrue%
  5.1381 +%
  5.1382 +\isamarkupsubsubsection{Forward simplification%
  5.1383 +}
  5.1384 +\isamarkuptrue%
  5.1385 +%
  5.1386 +\begin{isamarkuptext}%
  5.1387 +\begin{matharray}{rcl}
  5.1388 +    \indexdef{}{attribute}{simplified}\mbox{\isa{simplified}} & : & \isaratt \\
  5.1389 +  \end{matharray}
  5.1390 +
  5.1391 +  \begin{rail}
  5.1392 +    'simplified' opt? thmrefs?
  5.1393 +    ;
  5.1394 +
  5.1395 +    opt: '(' (noasm | noasmsimp | noasmuse) ')'
  5.1396 +    ;
  5.1397 +  \end{rail}
  5.1398 +
  5.1399 +  \begin{descr}
  5.1400 +  
  5.1401 +  \item [\mbox{\isa{simplified}}~\isa{a\isactrlsub {\isadigit{1}}\ {\isasymdots}\ a\isactrlsub n}]
  5.1402 +  causes a theorem to be simplified, either by exactly the specified
  5.1403 +  rules \isa{a\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ a\isactrlsub n}, or the implicit Simplifier
  5.1404 +  context if no arguments are given.  The result is fully simplified
  5.1405 +  by default, including assumptions and conclusion; the options \isa{no{\isacharunderscore}asm} etc.\ tune the Simplifier in the same way as the for the
  5.1406 +  \isa{simp} method.
  5.1407 +
  5.1408 +  Note that forward simplification restricts the simplifier to its
  5.1409 +  most basic operation of term rewriting; solver and looper tactics
  5.1410 +  \cite{isabelle-ref} are \emph{not} involved here.  The \isa{simplified} attribute should be only rarely required under normal
  5.1411 +  circumstances.
  5.1412 +
  5.1413 +  \end{descr}%
  5.1414 +\end{isamarkuptext}%
  5.1415 +\isamarkuptrue%
  5.1416 +%
  5.1417 +\isamarkupsubsubsection{Low-level equational reasoning%
  5.1418 +}
  5.1419 +\isamarkuptrue%
  5.1420 +%
  5.1421 +\begin{isamarkuptext}%
  5.1422 +\begin{matharray}{rcl}
  5.1423 +    \indexdef{}{method}{subst}\mbox{\isa{subst}}\isa{\isactrlsup {\isacharasterisk}} & : & \isarmeth \\
  5.1424 +    \indexdef{}{method}{hypsubst}\mbox{\isa{hypsubst}}\isa{\isactrlsup {\isacharasterisk}} & : & \isarmeth \\
  5.1425 +    \indexdef{}{method}{split}\mbox{\isa{split}}\isa{\isactrlsup {\isacharasterisk}} & : & \isarmeth \\
  5.1426 +  \end{matharray}
  5.1427 +
  5.1428 +  \begin{rail}
  5.1429 +    'subst' ('(' 'asm' ')')? ('(' (nat+) ')')? thmref
  5.1430 +    ;
  5.1431 +    'split' ('(' 'asm' ')')? thmrefs
  5.1432 +    ;
  5.1433 +  \end{rail}
  5.1434 +
  5.1435 +  These methods provide low-level facilities for equational reasoning
  5.1436 +  that are intended for specialized applications only.  Normally,
  5.1437 +  single step calculations would be performed in a structured text
  5.1438 +  (see also \secref{sec:calculation}), while the Simplifier methods
  5.1439 +  provide the canonical way for automated normalization (see
  5.1440 +  \secref{sec:simplifier}).
  5.1441 +
  5.1442 +  \begin{descr}
  5.1443 +
  5.1444 +  \item [\mbox{\isa{subst}}~\isa{eq}] performs a single substitution
  5.1445 +  step using rule \isa{eq}, which may be either a meta or object
  5.1446 +  equality.
  5.1447 +
  5.1448 +  \item [\mbox{\isa{subst}}~\isa{{\isacharparenleft}asm{\isacharparenright}\ eq}] substitutes in an
  5.1449 +  assumption.
  5.1450 +
  5.1451 +  \item [\mbox{\isa{subst}}~\isa{{\isacharparenleft}i\ {\isasymdots}\ j{\isacharparenright}\ eq}] performs several
  5.1452 +  substitutions in the conclusion. The numbers \isa{i} to \isa{j}
  5.1453 +  indicate the positions to substitute at.  Positions are ordered from
  5.1454 +  the top of the term tree moving down from left to right. For
  5.1455 +  example, in \isa{{\isacharparenleft}a\ {\isacharplus}\ b{\isacharparenright}\ {\isacharplus}\ {\isacharparenleft}c\ {\isacharplus}\ d{\isacharparenright}} there are three positions
  5.1456 +  where commutativity of \isa{{\isacharplus}} is applicable: 1 refers to the
  5.1457 +  whole term, 2 to \isa{a\ {\isacharplus}\ b} and 3 to \isa{c\ {\isacharplus}\ d}.
  5.1458 +
  5.1459 +  If the positions in the list \isa{{\isacharparenleft}i\ {\isasymdots}\ j{\isacharparenright}} are non-overlapping
  5.1460 +  (e.g.\ \isa{{\isacharparenleft}{\isadigit{2}}\ {\isadigit{3}}{\isacharparenright}} in \isa{{\isacharparenleft}a\ {\isacharplus}\ b{\isacharparenright}\ {\isacharplus}\ {\isacharparenleft}c\ {\isacharplus}\ d{\isacharparenright}}) you may
  5.1461 +  assume all substitutions are performed simultaneously.  Otherwise
  5.1462 +  the behaviour of \isa{subst} is not specified.
  5.1463 +
  5.1464 +  \item [\mbox{\isa{subst}}~\isa{{\isacharparenleft}asm{\isacharparenright}\ {\isacharparenleft}i\ {\isasymdots}\ j{\isacharparenright}\ eq}] performs the
  5.1465 +  substitutions in the assumptions.  Positions \isa{{\isadigit{1}}\ {\isasymdots}\ i\isactrlsub {\isadigit{1}}}
  5.1466 +  refer to assumption 1, positions \isa{i\isactrlsub {\isadigit{1}}\ {\isacharplus}\ {\isadigit{1}}\ {\isasymdots}\ i\isactrlsub {\isadigit{2}}}
  5.1467 +  to assumption 2, and so on.
  5.1468 +
  5.1469 +  \item [\mbox{\isa{hypsubst}}] performs substitution using some
  5.1470 +  assumption; this only works for equations of the form \isa{x\ {\isacharequal}\ t} where \isa{x} is a free or bound variable.
  5.1471 +
  5.1472 +  \item [\mbox{\isa{split}}~\isa{a\isactrlsub {\isadigit{1}}\ {\isasymdots}\ a\isactrlsub n}] performs
  5.1473 +  single-step case splitting using the given rules.  By default,
  5.1474 +  splitting is performed in the conclusion of a goal; the \isa{{\isacharparenleft}asm{\isacharparenright}} option indicates to operate on assumptions instead.
  5.1475 +  
  5.1476 +  Note that the \mbox{\isa{simp}} method already involves repeated
  5.1477 +  application of split rules as declared in the current context.
  5.1478 +
  5.1479 +  \end{descr}%
  5.1480 +\end{isamarkuptext}%
  5.1481 +\isamarkuptrue%
  5.1482 +%
  5.1483 +\isamarkupsubsection{The Classical Reasoner \label{sec:classical}%
  5.1484 +}
  5.1485 +\isamarkuptrue%
  5.1486 +%
  5.1487 +\isamarkupsubsubsection{Basic methods%
  5.1488 +}
  5.1489 +\isamarkuptrue%
  5.1490 +%
  5.1491 +\begin{isamarkuptext}%
  5.1492 +\begin{matharray}{rcl}
  5.1493 +    \indexdef{}{method}{rule}\mbox{\isa{rule}} & : & \isarmeth \\
  5.1494 +    \indexdef{}{method}{contradiction}\mbox{\isa{contradiction}} & : & \isarmeth \\
  5.1495 +    \indexdef{}{method}{intro}\mbox{\isa{intro}} & : & \isarmeth \\
  5.1496 +    \indexdef{}{method}{elim}\mbox{\isa{elim}} & : & \isarmeth \\
  5.1497 +  \end{matharray}
  5.1498 +
  5.1499 +  \begin{rail}
  5.1500 +    ('rule' | 'intro' | 'elim') thmrefs?
  5.1501 +    ;
  5.1502 +  \end{rail}
  5.1503 +
  5.1504 +  \begin{descr}
  5.1505 +
  5.1506 +  \item [\mbox{\isa{rule}}] as offered by the Classical Reasoner is a
  5.1507 +  refinement over the primitive one (see \secref{sec:pure-meth-att}).
  5.1508 +  Both versions essentially work the same, but the classical version
  5.1509 +  observes the classical rule context in addition to that of
  5.1510 +  Isabelle/Pure.
  5.1511 +
  5.1512 +  Common object logics (HOL, ZF, etc.) declare a rich collection of
  5.1513 +  classical rules (even if these would qualify as intuitionistic
  5.1514 +  ones), but only few declarations to the rule context of
  5.1515 +  Isabelle/Pure (\secref{sec:pure-meth-att}).
  5.1516 +
  5.1517 +  \item [\mbox{\isa{contradiction}}] solves some goal by contradiction,
  5.1518 +  deriving any result from both \isa{{\isasymnot}\ A} and \isa{A}.  Chained
  5.1519 +  facts, which are guaranteed to participate, may appear in either
  5.1520 +  order.
  5.1521 +
  5.1522 +  \item [\mbox{\isa{intro}} and \mbox{\isa{elim}}] repeatedly refine
  5.1523 +  some goal by intro- or elim-resolution, after having inserted any
  5.1524 +  chained facts.  Exactly the rules given as arguments are taken into
  5.1525 +  account; this allows fine-tuned decomposition of a proof problem, in
  5.1526 +  contrast to common automated tools.
  5.1527 +
  5.1528 +  \end{descr}%
  5.1529 +\end{isamarkuptext}%
  5.1530 +\isamarkuptrue%
  5.1531 +%
  5.1532 +\isamarkupsubsubsection{Automated methods%
  5.1533 +}
  5.1534 +\isamarkuptrue%
  5.1535 +%
  5.1536 +\begin{isamarkuptext}%
  5.1537 +\begin{matharray}{rcl}
  5.1538 +    \indexdef{}{method}{blast}\mbox{\isa{blast}} & : & \isarmeth \\
  5.1539 +    \indexdef{}{method}{fast}\mbox{\isa{fast}} & : & \isarmeth \\
  5.1540 +    \indexdef{}{method}{slow}\mbox{\isa{slow}} & : & \isarmeth \\
  5.1541 +    \indexdef{}{method}{best}\mbox{\isa{best}} & : & \isarmeth \\
  5.1542 +    \indexdef{}{method}{safe}\mbox{\isa{safe}} & : & \isarmeth \\
  5.1543 +    \indexdef{}{method}{clarify}\mbox{\isa{clarify}} & : & \isarmeth \\
  5.1544 +  \end{matharray}
  5.1545 +
  5.1546 +  \indexouternonterm{clamod}
  5.1547 +  \begin{rail}
  5.1548 +    'blast' ('!' ?) nat? (clamod *)
  5.1549 +    ;
  5.1550 +    ('fast' | 'slow' | 'best' | 'safe' | 'clarify') ('!' ?) (clamod *)
  5.1551 +    ;
  5.1552 +
  5.1553 +    clamod: (('intro' | 'elim' | 'dest') ('!' | () | '?') | 'del') ':' thmrefs
  5.1554 +    ;
  5.1555 +  \end{rail}
  5.1556 +
  5.1557 +  \begin{descr}
  5.1558 +
  5.1559 +  \item [\mbox{\isa{blast}}] refers to the classical tableau prover (see
  5.1560 +  \verb|blast_tac| in \cite[\S11]{isabelle-ref}).  The optional
  5.1561 +  argument specifies a user-supplied search bound (default 20).
  5.1562 +
  5.1563 +  \item [\mbox{\isa{fast}}, \mbox{\isa{slow}}, \mbox{\isa{best}}, \mbox{\isa{safe}}, and \mbox{\isa{clarify}}] refer to the generic classical
  5.1564 +  reasoner.  See \verb|fast_tac|, \verb|slow_tac|, \verb|best_tac|, \verb|safe_tac|, and \verb|clarify_tac| in \cite[\S11]{isabelle-ref} for
  5.1565 +  more information.
  5.1566 +
  5.1567 +  \end{descr}
  5.1568 +
  5.1569 +  Any of the above methods support additional modifiers of the context
  5.1570 +  of classical rules.  Their semantics is analogous to the attributes
  5.1571 +  given before.  Facts provided by forward chaining are inserted into
  5.1572 +  the goal before commencing proof search.  The ``\isa{{\isacharbang}}''~argument causes the full context of assumptions to be
  5.1573 +  included as well.%
  5.1574 +\end{isamarkuptext}%
  5.1575 +\isamarkuptrue%
  5.1576 +%
  5.1577 +\isamarkupsubsubsection{Combined automated methods \label{sec:clasimp}%
  5.1578 +}
  5.1579 +\isamarkuptrue%
  5.1580 +%
  5.1581 +\begin{isamarkuptext}%
  5.1582 +\begin{matharray}{rcl}
  5.1583 +    \indexdef{}{method}{auto}\mbox{\isa{auto}} & : & \isarmeth \\
  5.1584 +    \indexdef{}{method}{force}\mbox{\isa{force}} & : & \isarmeth \\
  5.1585 +    \indexdef{}{method}{clarsimp}\mbox{\isa{clarsimp}} & : & \isarmeth \\
  5.1586 +    \indexdef{}{method}{fastsimp}\mbox{\isa{fastsimp}} & : & \isarmeth \\
  5.1587 +    \indexdef{}{method}{slowsimp}\mbox{\isa{slowsimp}} & : & \isarmeth \\
  5.1588 +    \indexdef{}{method}{bestsimp}\mbox{\isa{bestsimp}} & : & \isarmeth \\
  5.1589 +  \end{matharray}
  5.1590 +
  5.1591 +  \indexouternonterm{clasimpmod}
  5.1592 +  \begin{rail}
  5.1593 +    'auto' '!'? (nat nat)? (clasimpmod *)
  5.1594 +    ;
  5.1595 +    ('force' | 'clarsimp' | 'fastsimp' | 'slowsimp' | 'bestsimp') '!'? (clasimpmod *)
  5.1596 +    ;
  5.1597 +
  5.1598 +    clasimpmod: ('simp' (() | 'add' | 'del' | 'only') |
  5.1599 +      ('cong' | 'split') (() | 'add' | 'del') |
  5.1600 +      'iff' (((() | 'add') '?'?) | 'del') |
  5.1601 +      (('intro' | 'elim' | 'dest') ('!' | () | '?') | 'del')) ':' thmrefs
  5.1602 +  \end{rail}
  5.1603 +
  5.1604 +  \begin{descr}
  5.1605 +
  5.1606 +  \item [\mbox{\isa{auto}}, \mbox{\isa{force}}, \mbox{\isa{clarsimp}}, \mbox{\isa{fastsimp}}, \mbox{\isa{slowsimp}}, and \mbox{\isa{bestsimp}}] provide
  5.1607 +  access to Isabelle's combined simplification and classical reasoning
  5.1608 +  tactics.  These correspond to \verb|auto_tac|, \verb|force_tac|, \verb|clarsimp_tac|, and Classical Reasoner tactics with the Simplifier
  5.1609 +  added as wrapper, see \cite[\S11]{isabelle-ref} for more
  5.1610 +  information.  The modifier arguments correspond to those given in
  5.1611 +  \secref{sec:simplifier} and \secref{sec:classical}.  Just note that
  5.1612 +  the ones related to the Simplifier are prefixed by \railtterm{simp}
  5.1613 +  here.
  5.1614 +
  5.1615 +  Facts provided by forward chaining are inserted into the goal before
  5.1616 +  doing the search.  The ``\isa{{\isacharbang}}'' argument causes the full
  5.1617 +  context of assumptions to be included as well.
  5.1618 +
  5.1619 +  \end{descr}%
  5.1620 +\end{isamarkuptext}%
  5.1621 +\isamarkuptrue%
  5.1622 +%
  5.1623 +\isamarkupsubsubsection{Declaring rules%
  5.1624 +}
  5.1625 +\isamarkuptrue%
  5.1626 +%
  5.1627 +\begin{isamarkuptext}%
  5.1628 +\begin{matharray}{rcl}
  5.1629 +    \indexdef{}{command}{print-claset}\mbox{\isa{\isacommand{print{\isacharunderscore}claset}}}\isa{\isactrlsup {\isacharasterisk}} & : & \isarkeep{theory~|~proof} \\
  5.1630 +    \indexdef{}{attribute}{intro}\mbox{\isa{intro}} & : & \isaratt \\
  5.1631 +    \indexdef{}{attribute}{elim}\mbox{\isa{elim}} & : & \isaratt \\
  5.1632 +    \indexdef{}{attribute}{dest}\mbox{\isa{dest}} & : & \isaratt \\
  5.1633 +    \indexdef{}{attribute}{rule}\mbox{\isa{rule}} & : & \isaratt \\
  5.1634 +    \indexdef{}{attribute}{iff}\mbox{\isa{iff}} & : & \isaratt \\
  5.1635 +  \end{matharray}
  5.1636 +
  5.1637 +  \begin{rail}
  5.1638 +    ('intro' | 'elim' | 'dest') ('!' | () | '?') nat?
  5.1639 +    ;
  5.1640 +    'rule' 'del'
  5.1641 +    ;
  5.1642 +    'iff' (((() | 'add') '?'?) | 'del')
  5.1643 +    ;
  5.1644 +  \end{rail}
  5.1645 +
  5.1646 +  \begin{descr}
  5.1647 +
  5.1648 +  \item [\mbox{\isa{\isacommand{print{\isacharunderscore}claset}}}] prints the collection of rules
  5.1649 +  declared to the Classical Reasoner, which is also known as
  5.1650 +  ``claset'' internally \cite{isabelle-ref}.
  5.1651 +  
  5.1652 +  \item [\mbox{\isa{intro}}, \mbox{\isa{elim}}, and \mbox{\isa{dest}}]
  5.1653 +  declare introduction, elimination, and destruction rules,
  5.1654 +  respectively.  By default, rules are considered as \emph{unsafe}
  5.1655 +  (i.e.\ not applied blindly without backtracking), while ``\isa{{\isacharbang}}'' classifies as \emph{safe}.  Rule declarations marked by
  5.1656 +  ``\isa{{\isacharquery}}'' coincide with those of Isabelle/Pure, cf.\
  5.1657 +  \secref{sec:pure-meth-att} (i.e.\ are only applied in single steps
  5.1658 +  of the \mbox{\isa{rule}} method).  The optional natural number
  5.1659 +  specifies an explicit weight argument, which is ignored by automated
  5.1660 +  tools, but determines the search order of single rule steps.
  5.1661 +
  5.1662 +  \item [\mbox{\isa{rule}}~\isa{del}] deletes introduction,
  5.1663 +  elimination, or destruction rules from the context.
  5.1664 +
  5.1665 +  \item [\mbox{\isa{iff}}] declares logical equivalences to the
  5.1666 +  Simplifier and the Classical reasoner at the same time.
  5.1667 +  Non-conditional rules result in a ``safe'' introduction and
  5.1668 +  elimination pair; conditional ones are considered ``unsafe''.  Rules
  5.1669 +  with negative conclusion are automatically inverted (using \isa{{\isasymnot}} elimination internally).
  5.1670 +
  5.1671 +  The ``\isa{{\isacharquery}}'' version of \mbox{\isa{iff}} declares rules to
  5.1672 +  the Isabelle/Pure context only, and omits the Simplifier
  5.1673 +  declaration.
  5.1674 +
  5.1675 +  \end{descr}%
  5.1676 +\end{isamarkuptext}%
  5.1677 +\isamarkuptrue%
  5.1678 +%
  5.1679 +\isamarkupsubsubsection{Classical operations%
  5.1680 +}
  5.1681 +\isamarkuptrue%
  5.1682 +%
  5.1683 +\begin{isamarkuptext}%
  5.1684 +\begin{matharray}{rcl}
  5.1685 +    \indexdef{}{attribute}{swapped}\mbox{\isa{swapped}} & : & \isaratt \\
  5.1686 +  \end{matharray}
  5.1687 +
  5.1688 +  \begin{descr}
  5.1689 +
  5.1690 +  \item [\mbox{\isa{swapped}}] turns an introduction rule into an
  5.1691 +  elimination, by resolving with the classical swap principle \isa{{\isacharparenleft}{\isasymnot}\ B\ {\isasymLongrightarrow}\ A{\isacharparenright}\ {\isasymLongrightarrow}\ {\isacharparenleft}{\isasymnot}\ A\ {\isasymLongrightarrow}\ B{\isacharparenright}}.
  5.1692 +
  5.1693 +  \end{descr}%
  5.1694 +\end{isamarkuptext}%
  5.1695 +\isamarkuptrue%
  5.1696 +%
  5.1697 +\isamarkupsubsection{Proof by cases and induction \label{sec:cases-induct}%
  5.1698 +}
  5.1699 +\isamarkuptrue%
  5.1700 +%
  5.1701 +\isamarkupsubsubsection{Rule contexts%
  5.1702 +}
  5.1703 +\isamarkuptrue%
  5.1704 +%
  5.1705 +\begin{isamarkuptext}%
  5.1706 +\begin{matharray}{rcl}
  5.1707 +    \indexdef{}{command}{case}\mbox{\isa{\isacommand{case}}} & : & \isartrans{proof(state)}{proof(state)} \\
  5.1708 +    \indexdef{}{command}{print-cases}\mbox{\isa{\isacommand{print{\isacharunderscore}cases}}}\isa{\isactrlsup {\isacharasterisk}} & : & \isarkeep{proof} \\
  5.1709 +    \indexdef{}{attribute}{case-names}\mbox{\isa{case{\isacharunderscore}names}} & : & \isaratt \\
  5.1710 +    \indexdef{}{attribute}{case-conclusion}\mbox{\isa{case{\isacharunderscore}conclusion}} & : & \isaratt \\
  5.1711 +    \indexdef{}{attribute}{params}\mbox{\isa{params}} & : & \isaratt \\
  5.1712 +    \indexdef{}{attribute}{consumes}\mbox{\isa{consumes}} & : & \isaratt \\
  5.1713 +  \end{matharray}
  5.1714 +
  5.1715 +  The puristic way to build up Isar proof contexts is by explicit
  5.1716 +  language elements like \mbox{\isa{\isacommand{fix}}}, \mbox{\isa{\isacommand{assume}}},
  5.1717 +  \mbox{\isa{\isacommand{let}}} (see \secref{sec:proof-context}).  This is adequate
  5.1718 +  for plain natural deduction, but easily becomes unwieldy in concrete
  5.1719 +  verification tasks, which typically involve big induction rules with
  5.1720 +  several cases.
  5.1721 +
  5.1722 +  The \mbox{\isa{\isacommand{case}}} command provides a shorthand to refer to a
  5.1723 +  local context symbolically: certain proof methods provide an
  5.1724 +  environment of named ``cases'' of the form \isa{c{\isacharcolon}\ x\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ x\isactrlsub m{\isacharcomma}\ {\isasymphi}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymphi}\isactrlsub n}; the effect of
  5.1725 +  ``\mbox{\isa{\isacommand{case}}}\isa{c}'' is then equivalent to ``\mbox{\isa{\isacommand{fix}}}~\isa{x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub m}~\mbox{\isa{\isacommand{assume}}}~\isa{c{\isacharcolon}\ {\isasymphi}\isactrlsub {\isadigit{1}}\ {\isasymdots}\ {\isasymphi}\isactrlsub n}''.  Term bindings may be
  5.1726 +  covered as well, notably \mbox{\isa{{\isacharquery}case}} for the main conclusion.
  5.1727 +
  5.1728 +  By default, the ``terminology'' \isa{x\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ x\isactrlsub m} of
  5.1729 +  a case value is marked as hidden, i.e.\ there is no way to refer to
  5.1730 +  such parameters in the subsequent proof text.  After all, original
  5.1731 +  rule parameters stem from somewhere outside of the current proof
  5.1732 +  text.  By using the explicit form ``\mbox{\isa{\isacommand{case}}}~\isa{{\isacharparenleft}c\ y\isactrlsub {\isadigit{1}}\ {\isasymdots}\ y\isactrlsub m{\isacharparenright}}'' instead, the proof author is able to
  5.1733 +  chose local names that fit nicely into the current context.
  5.1734 +
  5.1735 +  \medskip It is important to note that proper use of \mbox{\isa{\isacommand{case}}} does not provide means to peek at the current goal state,
  5.1736 +  which is not directly observable in Isar!  Nonetheless, goal
  5.1737 +  refinement commands do provide named cases \isa{goal\isactrlsub i}
  5.1738 +  for each subgoal \isa{i\ {\isacharequal}\ {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ n} of the resulting goal state.
  5.1739 +  Using this extra feature requires great care, because some bits of
  5.1740 +  the internal tactical machinery intrude the proof text.  In
  5.1741 +  particular, parameter names stemming from the left-over of automated
  5.1742 +  reasoning tools are usually quite unpredictable.
  5.1743 +
  5.1744 +  Under normal circumstances, the text of cases emerge from standard
  5.1745 +  elimination or induction rules, which in turn are derived from
  5.1746 +  previous theory specifications in a canonical way (say from
  5.1747 +  \mbox{\isa{\isacommand{inductive}}} definitions).
  5.1748 +
  5.1749 +  \medskip Proper cases are only available if both the proof method
  5.1750 +  and the rules involved support this.  By using appropriate
  5.1751 +  attributes, case names, conclusions, and parameters may be also
  5.1752 +  declared by hand.  Thus variant versions of rules that have been
  5.1753 +  derived manually become ready to use in advanced case analysis
  5.1754 +  later.
  5.1755 +
  5.1756 +  \begin{rail}
  5.1757 +    'case' (caseref | '(' caseref ((name | underscore) +) ')')
  5.1758 +    ;
  5.1759 +    caseref: nameref attributes?
  5.1760 +    ;
  5.1761 +
  5.1762 +    'case\_names' (name +)
  5.1763 +    ;
  5.1764 +    'case\_conclusion' name (name *)
  5.1765 +    ;
  5.1766 +    'params' ((name *) + 'and')
  5.1767 +    ;
  5.1768 +    'consumes' nat?
  5.1769 +    ;
  5.1770 +  \end{rail}
  5.1771 +
  5.1772 +  \begin{descr}
  5.1773 +  
  5.1774 +  \item [\mbox{\isa{\isacommand{case}}}~\isa{{\isacharparenleft}c\ x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub m{\isacharparenright}}]
  5.1775 +  invokes a named local context \isa{c{\isacharcolon}\ x\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ x\isactrlsub m{\isacharcomma}\ {\isasymphi}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymphi}\isactrlsub m}, as provided by an appropriate
  5.1776 +  proof method (such as \indexref{}{method}{cases}\mbox{\isa{cases}} and \indexref{}{method}{induct}\mbox{\isa{induct}}).
  5.1777 +  The command ``\mbox{\isa{\isacommand{case}}}~\isa{{\isacharparenleft}c\ x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub m{\isacharparenright}}'' abbreviates ``\mbox{\isa{\isacommand{fix}}}~\isa{x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub m}~\mbox{\isa{\isacommand{assume}}}~\isa{c{\isacharcolon}\ {\isasymphi}\isactrlsub {\isadigit{1}}\ {\isasymdots}\ {\isasymphi}\isactrlsub n}''.
  5.1778 +
  5.1779 +  \item [\mbox{\isa{\isacommand{print{\isacharunderscore}cases}}}] prints all local contexts of the
  5.1780 +  current state, using Isar proof language notation.
  5.1781 +  
  5.1782 +  \item [\mbox{\isa{case{\isacharunderscore}names}}~\isa{c\isactrlsub {\isadigit{1}}\ {\isasymdots}\ c\isactrlsub k}]
  5.1783 +  declares names for the local contexts of premises of a theorem;
  5.1784 +  \isa{c\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ c\isactrlsub k} refers to the \emph{suffix} of the
  5.1785 +  list of premises.
  5.1786 +  
  5.1787 +  \item [\mbox{\isa{case{\isacharunderscore}conclusion}}~\isa{c\ d\isactrlsub {\isadigit{1}}\ {\isasymdots}\ d\isactrlsub k}] declares names for the conclusions of a named premise
  5.1788 +  \isa{c}; here \isa{d\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ d\isactrlsub k} refers to the
  5.1789 +  prefix of arguments of a logical formula built by nesting a binary
  5.1790 +  connective (e.g.\ \isa{{\isasymor}}).
  5.1791 +  
  5.1792 +  Note that proof methods such as \mbox{\isa{induct}} and \mbox{\isa{coinduct}} already provide a default name for the conclusion as a
  5.1793 +  whole.  The need to name subformulas only arises with cases that
  5.1794 +  split into several sub-cases, as in common co-induction rules.
  5.1795 +
  5.1796 +  \item [\mbox{\isa{params}}~\isa{p\isactrlsub {\isadigit{1}}\ {\isasymdots}\ p\isactrlsub m\ {\isasymAND}\ {\isasymdots}\ q\isactrlsub {\isadigit{1}}\ {\isasymdots}\ q\isactrlsub n}] renames the innermost parameters of
  5.1797 +  premises \isa{{\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ n} of some theorem.  An empty list of names
  5.1798 +  may be given to skip positions, leaving the present parameters
  5.1799 +  unchanged.
  5.1800 +  
  5.1801 +  Note that the default usage of case rules does \emph{not} directly
  5.1802 +  expose parameters to the proof context.
  5.1803 +  
  5.1804 +  \item [\mbox{\isa{consumes}}~\isa{n}] declares the number of
  5.1805 +  ``major premises'' of a rule, i.e.\ the number of facts to be
  5.1806 +  consumed when it is applied by an appropriate proof method.  The
  5.1807 +  default value of \mbox{\isa{consumes}} is \isa{n\ {\isacharequal}\ {\isadigit{1}}}, which is
  5.1808 +  appropriate for the usual kind of cases and induction rules for
  5.1809 +  inductive sets (cf.\ \secref{sec:hol-inductive}).  Rules without any
  5.1810 +  \mbox{\isa{consumes}} declaration given are treated as if
  5.1811 +  \mbox{\isa{consumes}}~\isa{{\isadigit{0}}} had been specified.
  5.1812 +  
  5.1813 +  Note that explicit \mbox{\isa{consumes}} declarations are only
  5.1814 +  rarely needed; this is already taken care of automatically by the
  5.1815 +  higher-level \mbox{\isa{cases}}, \mbox{\isa{induct}}, and
  5.1816 +  \mbox{\isa{coinduct}} declarations.
  5.1817 +
  5.1818 +  \end{descr}%
  5.1819 +\end{isamarkuptext}%
  5.1820 +\isamarkuptrue%
  5.1821 +%
  5.1822 +\isamarkupsubsubsection{Proof methods%
  5.1823 +}
  5.1824 +\isamarkuptrue%
  5.1825 +%
  5.1826 +\begin{isamarkuptext}%
  5.1827 +\begin{matharray}{rcl}
  5.1828 +    \indexdef{}{method}{cases}\mbox{\isa{cases}} & : & \isarmeth \\
  5.1829 +    \indexdef{}{method}{induct}\mbox{\isa{induct}} & : & \isarmeth \\
  5.1830 +    \indexdef{}{method}{coinduct}\mbox{\isa{coinduct}} & : & \isarmeth \\
  5.1831 +  \end{matharray}
  5.1832 +
  5.1833 +  The \mbox{\isa{cases}}, \mbox{\isa{induct}}, and \mbox{\isa{coinduct}}
  5.1834 +  methods provide a uniform interface to common proof techniques over
  5.1835 +  datatypes, inductive predicates (or sets), recursive functions etc.
  5.1836 +  The corresponding rules may be specified and instantiated in a
  5.1837 +  casual manner.  Furthermore, these methods provide named local
  5.1838 +  contexts that may be invoked via the \mbox{\isa{\isacommand{case}}} proof command
  5.1839 +  within the subsequent proof text.  This accommodates compact proof
  5.1840 +  texts even when reasoning about large specifications.
  5.1841 +
  5.1842 +  The \mbox{\isa{induct}} method also provides some additional
  5.1843 +  infrastructure in order to be applicable to structure statements
  5.1844 +  (either using explicit meta-level connectives, or including facts
  5.1845 +  and parameters separately).  This avoids cumbersome encoding of
  5.1846 +  ``strengthened'' inductive statements within the object-logic.
  5.1847 +
  5.1848 +  \begin{rail}
  5.1849 +    'cases' (insts * 'and') rule?
  5.1850 +    ;
  5.1851 +    'induct' (definsts * 'and') \\ arbitrary? taking? rule?
  5.1852 +    ;
  5.1853 +    'coinduct' insts taking rule?
  5.1854 +    ;
  5.1855 +
  5.1856 +    rule: ('type' | 'pred' | 'set') ':' (nameref +) | 'rule' ':' (thmref +)
  5.1857 +    ;
  5.1858 +    definst: name ('==' | equiv) term | inst
  5.1859 +    ;
  5.1860 +    definsts: ( definst *)
  5.1861 +    ;
  5.1862 +    arbitrary: 'arbitrary' ':' ((term *) 'and' +)
  5.1863 +    ;
  5.1864 +    taking: 'taking' ':' insts
  5.1865 +    ;
  5.1866 +  \end{rail}
  5.1867 +
  5.1868 +  \begin{descr}
  5.1869 +
  5.1870 +  \item [\mbox{\isa{cases}}~\isa{insts\ R}] applies method \mbox{\isa{rule}} with an appropriate case distinction theorem, instantiated to
  5.1871 +  the subjects \isa{insts}.  Symbolic case names are bound according
  5.1872 +  to the rule's local contexts.
  5.1873 +
  5.1874 +  The rule is determined as follows, according to the facts and
  5.1875 +  arguments passed to the \mbox{\isa{cases}} method:
  5.1876 +
  5.1877 +  \medskip
  5.1878 +  \begin{tabular}{llll}
  5.1879 +    facts    &                 & arguments & rule \\\hline
  5.1880 +             & \mbox{\isa{cases}} &           & classical case split \\
  5.1881 +             & \mbox{\isa{cases}} & \isa{t} & datatype exhaustion (type of \isa{t}) \\
  5.1882 +    \isa{{\isasymturnstile}\ A\ t} & \mbox{\isa{cases}} & \isa{{\isasymdots}} & inductive predicate/set elimination (of \isa{A}) \\
  5.1883 +    \isa{{\isasymdots}} & \mbox{\isa{cases}} & \isa{{\isasymdots}\ rule{\isacharcolon}\ R} & explicit rule \isa{R} \\
  5.1884 +  \end{tabular}
  5.1885 +  \medskip
  5.1886 +
  5.1887 +  Several instantiations may be given, referring to the \emph{suffix}
  5.1888 +  of premises of the case rule; within each premise, the \emph{prefix}
  5.1889 +  of variables is instantiated.  In most situations, only a single
  5.1890 +  term needs to be specified; this refers to the first variable of the
  5.1891 +  last premise (it is usually the same for all cases).
  5.1892 +
  5.1893 +  \item [\mbox{\isa{induct}}~\isa{insts\ R}] is analogous to the
  5.1894 +  \mbox{\isa{cases}} method, but refers to induction rules, which are
  5.1895 +  determined as follows:
  5.1896 +
  5.1897 +  \medskip
  5.1898 +  \begin{tabular}{llll}
  5.1899 +    facts    &        & arguments & rule \\\hline
  5.1900 +             & \mbox{\isa{induct}} & \isa{P\ x\ {\isasymdots}} & datatype induction (type of \isa{x}) \\
  5.1901 +    \isa{{\isasymturnstile}\ A\ x} & \mbox{\isa{induct}} & \isa{{\isasymdots}} & predicate/set induction (of \isa{A}) \\
  5.1902 +    \isa{{\isasymdots}} & \mbox{\isa{induct}} & \isa{{\isasymdots}\ rule{\isacharcolon}\ R} & explicit rule \isa{R} \\
  5.1903 +  \end{tabular}
  5.1904 +  \medskip
  5.1905 +  
  5.1906 +  Several instantiations may be given, each referring to some part of
  5.1907 +  a mutual inductive definition or datatype --- only related partial
  5.1908 +  induction rules may be used together, though.  Any of the lists of
  5.1909 +  terms \isa{P{\isacharcomma}\ x{\isacharcomma}\ {\isasymdots}} refers to the \emph{suffix} of variables
  5.1910 +  present in the induction rule.  This enables the writer to specify
  5.1911 +  only induction variables, or both predicates and variables, for
  5.1912 +  example.
  5.1913 +  
  5.1914 +  Instantiations may be definitional: equations \isa{x\ {\isasymequiv}\ t}
  5.1915 +  introduce local definitions, which are inserted into the claim and
  5.1916 +  discharged after applying the induction rule.  Equalities reappear
  5.1917 +  in the inductive cases, but have been transformed according to the
  5.1918 +  induction principle being involved here.  In order to achieve
  5.1919 +  practically useful induction hypotheses, some variables occurring in
  5.1920 +  \isa{t} need to be fixed (see below).
  5.1921 +  
  5.1922 +  The optional ``\isa{arbitrary{\isacharcolon}\ x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub m}''
  5.1923 +  specification generalizes variables \isa{x\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ x\isactrlsub m} of the original goal before applying induction.  Thus
  5.1924 +  induction hypotheses may become sufficiently general to get the
  5.1925 +  proof through.  Together with definitional instantiations, one may
  5.1926 +  effectively perform induction over expressions of a certain
  5.1927 +  structure.
  5.1928 +  
  5.1929 +  The optional ``\isa{taking{\isacharcolon}\ t\isactrlsub {\isadigit{1}}\ {\isasymdots}\ t\isactrlsub n}''
  5.1930 +  specification provides additional instantiations of a prefix of
  5.1931 +  pending variables in the rule.  Such schematic induction rules
  5.1932 +  rarely occur in practice, though.
  5.1933 +
  5.1934 +  \item [\mbox{\isa{coinduct}}~\isa{inst\ R}] is analogous to the
  5.1935 +  \mbox{\isa{induct}} method, but refers to coinduction rules, which are
  5.1936 +  determined as follows:
  5.1937 +
  5.1938 +  \medskip
  5.1939 +  \begin{tabular}{llll}
  5.1940 +    goal     &          & arguments & rule \\\hline
  5.1941 +             & \mbox{\isa{coinduct}} & \isa{x\ {\isasymdots}} & type coinduction (type of \isa{x}) \\
  5.1942 +    \isa{A\ x} & \mbox{\isa{coinduct}} & \isa{{\isasymdots}} & predicate/set coinduction (of \isa{A}) \\
  5.1943 +    \isa{{\isasymdots}} & \mbox{\isa{coinduct}} & \isa{{\isasymdots}\ R} & explicit rule \isa{R} \\
  5.1944 +  \end{tabular}
  5.1945 +  
  5.1946 +  Coinduction is the dual of induction.  Induction essentially
  5.1947 +  eliminates \isa{A\ x} towards a generic result \isa{P\ x},
  5.1948 +  while coinduction introduces \isa{A\ x} starting with \isa{B\ x}, for a suitable ``bisimulation'' \isa{B}.  The cases of a
  5.1949 +  coinduct rule are typically named after the predicates or sets being
  5.1950 +  covered, while the conclusions consist of several alternatives being
  5.1951 +  named after the individual destructor patterns.
  5.1952 +  
  5.1953 +  The given instantiation refers to the \emph{suffix} of variables
  5.1954 +  occurring in the rule's major premise, or conclusion if unavailable.
  5.1955 +  An additional ``\isa{taking{\isacharcolon}\ t\isactrlsub {\isadigit{1}}\ {\isasymdots}\ t\isactrlsub n}''
  5.1956 +  specification may be required in order to specify the bisimulation
  5.1957 +  to be used in the coinduction step.
  5.1958 +
  5.1959 +  \end{descr}
  5.1960 +
  5.1961 +  Above methods produce named local contexts, as determined by the
  5.1962 +  instantiated rule as given in the text.  Beyond that, the \mbox{\isa{induct}} and \mbox{\isa{coinduct}} methods guess further instantiations
  5.1963 +  from the goal specification itself.  Any persisting unresolved
  5.1964 +  schematic variables of the resulting rule will render the the
  5.1965 +  corresponding case invalid.  The term binding \mbox{\isa{{\isacharquery}case}} for
  5.1966 +  the conclusion will be provided with each case, provided that term
  5.1967 +  is fully specified.
  5.1968 +
  5.1969 +  The \mbox{\isa{\isacommand{print{\isacharunderscore}cases}}} command prints all named cases present
  5.1970 +  in the current proof state.
  5.1971 +
  5.1972 +  \medskip Despite the additional infrastructure, both \mbox{\isa{cases}}
  5.1973 +  and \mbox{\isa{coinduct}} merely apply a certain rule, after
  5.1974 +  instantiation, while conforming due to the usual way of monotonic
  5.1975 +  natural deduction: the context of a structured statement \isa{{\isasymAnd}x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub m{\isachardot}\ {\isasymphi}\isactrlsub {\isadigit{1}}\ {\isasymLongrightarrow}\ {\isasymdots}\ {\isasymphi}\isactrlsub n\ {\isasymLongrightarrow}\ {\isasymdots}}
  5.1976 +  reappears unchanged after the case split.
  5.1977 +
  5.1978 +  The \mbox{\isa{induct}} method is fundamentally different in this
  5.1979 +  respect: the meta-level structure is passed through the
  5.1980 +  ``recursive'' course involved in the induction.  Thus the original
  5.1981 +  statement is basically replaced by separate copies, corresponding to
  5.1982 +  the induction hypotheses and conclusion; the original goal context
  5.1983 +  is no longer available.  Thus local assumptions, fixed parameters
  5.1984 +  and definitions effectively participate in the inductive rephrasing
  5.1985 +  of the original statement.
  5.1986 +
  5.1987 +  In induction proofs, local assumptions introduced by cases are split
  5.1988 +  into two different kinds: \isa{hyps} stemming from the rule and
  5.1989 +  \isa{prems} from the goal statement.  This is reflected in the
  5.1990 +  extracted cases accordingly, so invoking ``\mbox{\isa{\isacommand{case}}}~\isa{c}'' will provide separate facts \isa{c{\isachardot}hyps} and \isa{c{\isachardot}prems},
  5.1991 +  as well as fact \isa{c} to hold the all-inclusive list.
  5.1992 +
  5.1993 +  \medskip Facts presented to either method are consumed according to
  5.1994 +  the number of ``major premises'' of the rule involved, which is
  5.1995 +  usually 0 for plain cases and induction rules of datatypes etc.\ and
  5.1996 +  1 for rules of inductive predicates or sets and the like.  The
  5.1997 +  remaining facts are inserted into the goal verbatim before the
  5.1998 +  actual \isa{cases}, \isa{induct}, or \isa{coinduct} rule is
  5.1999 +  applied.%
  5.2000 +\end{isamarkuptext}%
  5.2001 +\isamarkuptrue%
  5.2002 +%
  5.2003 +\isamarkupsubsubsection{Declaring rules%
  5.2004 +}
  5.2005 +\isamarkuptrue%
  5.2006 +%
  5.2007 +\begin{isamarkuptext}%
  5.2008 +\begin{matharray}{rcl}
  5.2009 +    \indexdef{}{command}{print-induct-rules}\mbox{\isa{\isacommand{print{\isacharunderscore}induct{\isacharunderscore}rules}}}\isa{\isactrlsup {\isacharasterisk}} & : & \isarkeep{theory~|~proof} \\
  5.2010 +    \indexdef{}{attribute}{cases}\mbox{\isa{cases}} & : & \isaratt \\
  5.2011 +    \indexdef{}{attribute}{induct}\mbox{\isa{induct}} & : & \isaratt \\
  5.2012 +    \indexdef{}{attribute}{coinduct}\mbox{\isa{coinduct}} & : & \isaratt \\
  5.2013 +  \end{matharray}
  5.2014 +
  5.2015 +  \begin{rail}
  5.2016 +    'cases' spec
  5.2017 +    ;
  5.2018 +    'induct' spec
  5.2019 +    ;
  5.2020 +    'coinduct' spec
  5.2021 +    ;
  5.2022 +
  5.2023 +    spec: ('type' | 'pred' | 'set') ':' nameref
  5.2024 +    ;
  5.2025 +  \end{rail}
  5.2026 +
  5.2027 +  \begin{descr}
  5.2028 +
  5.2029 +  \item [\mbox{\isa{\isacommand{print{\isacharunderscore}induct{\isacharunderscore}rules}}}] prints cases and induct
  5.2030 +  rules for predicates (or sets) and types of the current context.
  5.2031 +  
  5.2032 +  \item [\mbox{\isa{cases}}, \mbox{\isa{induct}}, and \mbox{\isa{coinduct}}] (as attributes) augment the corresponding context of
  5.2033 +  rules for reasoning about (co)inductive predicates (or sets) and
  5.2034 +  types, using the corresponding methods of the same name.  Certain
  5.2035 +  definitional packages of object-logics usually declare emerging
  5.2036 +  cases and induction rules as expected, so users rarely need to
  5.2037 +  intervene.
  5.2038 +  
  5.2039 +  Manual rule declarations usually refer to the \mbox{\isa{case{\isacharunderscore}names}} and \mbox{\isa{params}} attributes to adjust names of
  5.2040 +  cases and parameters of a rule; the \mbox{\isa{consumes}}
  5.2041 +  declaration is taken care of automatically: \mbox{\isa{consumes}}~\isa{{\isadigit{0}}} is specified for ``type'' rules and \mbox{\isa{consumes}}~\isa{{\isadigit{1}}} for ``predicate'' / ``set'' rules.
  5.2042 +
  5.2043 +  \end{descr}%
  5.2044 +\end{isamarkuptext}%
  5.2045 +\isamarkuptrue%
  5.2046 +%
  5.2047 +\isadelimtheory
  5.2048 +%
  5.2049 +\endisadelimtheory
  5.2050 +%
  5.2051 +\isatagtheory
  5.2052 +\isacommand{end}\isamarkupfalse%
  5.2053 +%
  5.2054 +\endisatagtheory
  5.2055 +{\isafoldtheory}%
  5.2056 +%
  5.2057 +\isadelimtheory
  5.2058 +%
  5.2059 +\endisadelimtheory
  5.2060 +\isanewline
  5.2061 +\end{isabellebody}%
  5.2062 +%%% Local Variables:
  5.2063 +%%% mode: latex
  5.2064 +%%% TeX-master: "root"
  5.2065 +%%% End:
     6.1 --- a/doc-src/IsarRef/Thy/document/session.tex	Sun May 04 21:34:44 2008 +0200
     6.2 +++ b/doc-src/IsarRef/Thy/document/session.tex	Mon May 05 15:23:21 2008 +0200
     6.3 @@ -4,6 +4,8 @@
     6.4  
     6.5  \input{pure.tex}
     6.6  
     6.7 +\input{Generic.tex}
     6.8 +
     6.9  \input{Quick_Reference.tex}
    6.10  
    6.11  %%% Local Variables:
     7.1 --- a/doc-src/IsarRef/generic.tex	Sun May 04 21:34:44 2008 +0200
     7.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     7.3 @@ -1,1930 +0,0 @@
     7.4 -\chapter{Generic tools and packages}\label{ch:gen-tools}
     7.5 -
     7.6 -\section{Specification commands}
     7.7 -
     7.8 -\subsection{Derived specifications}
     7.9 -
    7.10 -\indexisarcmd{axiomatization}
    7.11 -\indexisarcmd{definition}\indexisaratt{defn}
    7.12 -\indexisarcmd{abbreviation}\indexisarcmd{print-abbrevs}
    7.13 -\indexisarcmd{notation}\indexisarcmd{no-notation}
    7.14 -\begin{matharray}{rcll}
    7.15 -  \isarcmd{axiomatization} & : & \isarkeep{local{\dsh}theory} & (axiomatic!)\\
    7.16 -  \isarcmd{definition} & : & \isarkeep{local{\dsh}theory} \\
    7.17 -  defn & : & \isaratt \\
    7.18 -  \isarcmd{abbreviation} & : & \isarkeep{local{\dsh}theory} \\
    7.19 -  \isarcmd{print_abbrevs}^* & : & \isarkeep{theory~|~proof} \\
    7.20 -  \isarcmd{notation} & : & \isarkeep{local{\dsh}theory} \\
    7.21 -  \isarcmd{no_notation} & : & \isarkeep{local{\dsh}theory} \\
    7.22 -\end{matharray}
    7.23 -
    7.24 -These specification mechanisms provide a slightly more abstract view
    7.25 -than the underlying primitives of $\CONSTS$, $\DEFS$ (see
    7.26 -\S\ref{sec:consts}), and $\isarkeyword{axioms}$ (see
    7.27 -\S\ref{sec:axms-thms}).  In particular, type-inference is commonly
    7.28 -available, and result names need not be given.
    7.29 -
    7.30 -\begin{rail}
    7.31 -  'axiomatization' target? fixes? ('where' specs)?
    7.32 -  ;
    7.33 -  'definition' target? (decl 'where')? thmdecl? prop
    7.34 -  ;
    7.35 -  'abbreviation' target? mode? (decl 'where')? prop
    7.36 -  ;
    7.37 -  ('notation' | 'no\_notation') target? mode? (nameref structmixfix + 'and')
    7.38 -  ;
    7.39 -
    7.40 -  fixes: ((name ('::' type)? mixfix? | vars) + 'and')
    7.41 -  ;
    7.42 -  specs: (thmdecl? props + 'and')
    7.43 -  ;
    7.44 -  decl: name ('::' type)? mixfix?
    7.45 -  ;
    7.46 -\end{rail}
    7.47 -
    7.48 -\begin{descr}
    7.49 -  
    7.50 -\item $\isarkeyword{axiomatization} ~ c@1 \dots c@n ~
    7.51 -  \isarkeyword{where} ~ A@1 \dots A@m$ introduces several constants
    7.52 -  simultaneously and states axiomatic properties for these.  The
    7.53 -  constants are marked as being specified once and for all, which
    7.54 -  prevents additional specifications being issued later on.
    7.55 -  
    7.56 -  Note that axiomatic specifications are only appropriate when
    7.57 -  declaring a new logical system.  Normal applications should only use
    7.58 -  definitional mechanisms!
    7.59 -
    7.60 -\item $\isarkeyword{definition}~c~\isarkeyword{where}~eq$ produces an
    7.61 -  internal definition $c \equiv t$ according to the specification
    7.62 -  given as $eq$, which is then turned into a proven fact.  The given
    7.63 -  proposition may deviate from internal meta-level equality according
    7.64 -  to the rewrite rules declared as $defn$ by the object-logic.  This
    7.65 -  typically covers object-level equality $x = t$ and equivalence $A
    7.66 -  \leftrightarrow B$.  Users normally need not change the $defn$
    7.67 -  setup.
    7.68 -  
    7.69 -  Definitions may be presented with explicit arguments on the LHS, as
    7.70 -  well as additional conditions, e.g.\ $f\;x\;y = t$ instead of $f
    7.71 -  \equiv \lambda x\;y. t$ and $y \not= 0 \Imp g\;x\;y = u$ instead of
    7.72 -  an unguarded $g \equiv \lambda x\;y. u$.
    7.73 -  
    7.74 -\item $\isarkeyword{abbreviation}~c~\isarkeyword{where}~eq$ introduces
    7.75 -  a syntactic constant which is associated with a certain term
    7.76 -  according to the meta-level equality $eq$.
    7.77 -  
    7.78 -  Abbreviations participate in the usual type-inference process, but
    7.79 -  are expanded before the logic ever sees them.  Pretty printing of
    7.80 -  terms involves higher-order rewriting with rules stemming from
    7.81 -  reverted abbreviations.  This needs some care to avoid overlapping
    7.82 -  or looping syntactic replacements!
    7.83 -  
    7.84 -  The optional $mode$ specification restricts output to a particular
    7.85 -  print mode; using ``$input$'' here achieves the effect of one-way
    7.86 -  abbreviations.  The mode may also include an ``$output$'' qualifier
    7.87 -  that affects the concrete syntax declared for abbreviations, cf.\ 
    7.88 -  $\isarkeyword{syntax}$ in \S\ref{sec:syn-trans}.
    7.89 -  
    7.90 -\item $\isarkeyword{print_abbrevs}$ prints all constant abbreviations
    7.91 -  of the current context.
    7.92 -  
    7.93 -\item $\isarkeyword{notation}~c~mx$ associates mixfix syntax with an
    7.94 -  existing constant or fixed variable.  This is a robust interface to
    7.95 -  the underlying $\isarkeyword{syntax}$ primitive
    7.96 -  (\S\ref{sec:syn-trans}).  Type declaration and internal syntactic
    7.97 -  representation of the given entity is retrieved from the context.
    7.98 -  
    7.99 -\item $\isarkeyword{no_notation}$ is similar to
   7.100 -  $\isarkeyword{notation}$, but removes the specified syntax
   7.101 -  annotation from the present context.
   7.102 -
   7.103 -\end{descr}
   7.104 -
   7.105 -All of these specifications support local theory targets (cf.\
   7.106 -\S\ref{sec:target}).
   7.107 -
   7.108 -
   7.109 -\subsection{Generic declarations}
   7.110 -
   7.111 -Arbitrary operations on the background context may be wrapped-up as
   7.112 -generic declaration elements.  Since the underlying concept of local
   7.113 -theories may be subject to later re-interpretation, there is an
   7.114 -additional dependency on a morphism that tells the difference of the
   7.115 -original declaration context wrt.\ the application context encountered
   7.116 -later on.  A fact declaration is an important special case: it
   7.117 -consists of a theorem which is applied to the context by means of an
   7.118 -attribute.
   7.119 -
   7.120 -\indexisarcmd{declaration}\indexisarcmd{declare}
   7.121 -\begin{matharray}{rcl}
   7.122 -  \isarcmd{declaration} & : & \isarkeep{local{\dsh}theory} \\
   7.123 -  \isarcmd{declare} & : & \isarkeep{local{\dsh}theory} \\
   7.124 -\end{matharray}
   7.125 -
   7.126 -\begin{rail}
   7.127 -  'declaration' target? text
   7.128 -  ;
   7.129 -  'declare' target? (thmrefs + 'and')
   7.130 -  ;
   7.131 -\end{rail}
   7.132 -
   7.133 -\begin{descr}
   7.134 -
   7.135 -\item [$\isarkeyword{declaration}~d$] adds the declaration function
   7.136 -  $d$ of ML type \verb,declaration, to the current local theory under
   7.137 -  construction.  In later application contexts, the function is
   7.138 -  transformed according to the morphisms being involved in the
   7.139 -  interpretation hierarchy.
   7.140 -
   7.141 -\item [$\isarkeyword{declare}~thms$] declares theorems to the current
   7.142 -  local theory context.  No theorem binding is involved here, unlike
   7.143 -  $\isarkeyword{theorems}$ or $\isarkeyword{lemmas}$ (cf.\
   7.144 -  \S\ref{sec:axms-thms}), so $\isarkeyword{declare}$ only has the
   7.145 -  effect of applying attributes as included in the theorem
   7.146 -  specification.
   7.147 -
   7.148 -\end{descr}
   7.149 -
   7.150 -
   7.151 -\subsection{Local theory targets}\label{sec:target}
   7.152 -
   7.153 -A local theory target is a context managed separately within the
   7.154 -enclosing theory.  Contexts may introduce parameters (fixed variables)
   7.155 -and assumptions (hypotheses).  Definitions and theorems depending on
   7.156 -the context may be added incrementally later on.  Named contexts refer
   7.157 -to locales (cf.\ \S\ref{sec:locale}) or type classes (cf.\ 
   7.158 -\S\ref{sec:class}); the name ``$-$'' signifies the global theory
   7.159 -context.
   7.160 -
   7.161 -\indexisarcmd{context}\indexisarcmd{end}
   7.162 -\begin{matharray}{rcll}
   7.163 -  \isarcmd{context} & : & \isartrans{theory}{local{\dsh}theory} \\
   7.164 -  \isarcmd{end} & : & \isartrans{local{\dsh}theory}{theory} \\
   7.165 -\end{matharray}
   7.166 -
   7.167 -\indexouternonterm{target}
   7.168 -\begin{rail}
   7.169 -  'context' name 'begin'
   7.170 -  ;
   7.171 -
   7.172 -  target: '(' 'in' name ')'
   7.173 -  ;
   7.174 -\end{rail}
   7.175 -
   7.176 -\begin{descr}
   7.177 -  
   7.178 -\item $\isarkeyword{context}~c~\isarkeyword{begin}$ recommences an
   7.179 -  existing locale or class context $c$.  Note that locale and class
   7.180 -  definitions allow to include the $\isarkeyword{begin}$ keyword as
   7.181 -  well, in order to continue the local theory immediately after the
   7.182 -  initial specification.
   7.183 -  
   7.184 -\item $\END$ concludes the current local theory and continues the
   7.185 -  enclosing global theory.  Note that a non-local $\END$ has a
   7.186 -  different meaning: it concludes the theory itself
   7.187 -  (\S\ref{sec:begin-thy}).
   7.188 -  
   7.189 -\item $(\IN~loc)$ given after any local theory command specifies an
   7.190 -  immediate target, e.g.\ 
   7.191 -  ``$\isarkeyword{definition}~(\IN~loc)~\dots$'' or
   7.192 -  ``$\THEOREMNAME~(\IN~loc)~\dots$''.  This works both in a local or
   7.193 -  global theory context; the current target context will be suspended
   7.194 -  for this command only.  Note that $(\IN~-)$ will always produce a
   7.195 -  global result independently of the current target context.
   7.196 -
   7.197 -\end{descr}
   7.198 -
   7.199 -The exact meaning of results produced within a local theory context
   7.200 -depends on the underlying target infrastructure (locale, type class
   7.201 -etc.).  The general idea is as follows, considering a context named
   7.202 -$c$ with parameter $x$ and assumption $A[x]$.
   7.203 -
   7.204 -Definitions are exported by introducing a global version with
   7.205 -additional arguments; a syntactic abbreviation links the long form
   7.206 -with the abstract version of the target context.  For example, $a
   7.207 -\equiv t[x]$ becomes $c\dtt a \; ?x \equiv t[?x]$ at the theory level
   7.208 -(for arbitrary $?x$), together with a local abbreviation $c \equiv
   7.209 -c\dtt a\; x$ in the target context (for fixed $x$).
   7.210 -
   7.211 -Theorems are exported by discharging the assumptions and generalizing
   7.212 -the parameters of the context.  For example, $a: B[x]$ becomes $c\dtt
   7.213 -a: A[?x] \Imp B[?x]$ (for arbitrary $?x$).
   7.214 -
   7.215 -
   7.216 -\subsection{Locales}\label{sec:locale}
   7.217 -
   7.218 -Locales are named local contexts, consisting of a list of declaration elements
   7.219 -that are modeled after the Isar proof context commands (cf.\
   7.220 -\S\ref{sec:proof-context}).
   7.221 -
   7.222 -
   7.223 -\subsubsection{Locale specifications}
   7.224 -
   7.225 -\indexisarcmd{locale}\indexisarcmd{print-locale}\indexisarcmd{print-locales}
   7.226 -\begin{matharray}{rcl}
   7.227 -  \isarcmd{locale} & : & \isartrans{theory}{local{\dsh}theory} \\
   7.228 -  \isarcmd{print_locale}^* & : & \isarkeep{theory~|~proof} \\
   7.229 -  \isarcmd{print_locales}^* & : & \isarkeep{theory~|~proof} \\
   7.230 -  intro_locales & : & \isarmeth \\
   7.231 -  unfold_locales & : & \isarmeth \\
   7.232 -\end{matharray}
   7.233 -
   7.234 -\indexouternonterm{contextexpr}\indexouternonterm{contextelem}
   7.235 -\indexisarelem{fixes}\indexisarelem{constrains}\indexisarelem{assumes}
   7.236 -\indexisarelem{defines}\indexisarelem{notes}\indexisarelem{includes}
   7.237 -
   7.238 -\begin{rail}
   7.239 -  'locale' ('(open)')? name ('=' localeexpr)? 'begin'?
   7.240 -  ;
   7.241 -  'print\_locale' '!'? localeexpr
   7.242 -  ;
   7.243 -  localeexpr: ((contextexpr '+' (contextelem+)) | contextexpr | (contextelem+))
   7.244 -  ;
   7.245 -
   7.246 -  contextexpr: nameref | '(' contextexpr ')' |
   7.247 -  (contextexpr (name mixfix? +)) | (contextexpr + '+')
   7.248 -  ;
   7.249 -  contextelem: fixes | constrains | assumes | defines | notes
   7.250 -  ;
   7.251 -  fixes: 'fixes' ((name ('::' type)? structmixfix? | vars) + 'and')
   7.252 -  ;
   7.253 -  constrains: 'constrains' (name '::' type + 'and')
   7.254 -  ;
   7.255 -  assumes: 'assumes' (thmdecl? props + 'and')
   7.256 -  ;
   7.257 -  defines: 'defines' (thmdecl? prop proppat? + 'and')
   7.258 -  ;
   7.259 -  notes: 'notes' (thmdef? thmrefs + 'and')
   7.260 -  ;
   7.261 -  includes: 'includes' contextexpr
   7.262 -  ;
   7.263 -\end{rail}
   7.264 -
   7.265 -\begin{descr}
   7.266 -  
   7.267 -\item [$\LOCALE~loc~=~import~+~body$] defines a new locale $loc$ as a context
   7.268 -  consisting of a certain view of existing locales ($import$) plus some
   7.269 -  additional elements ($body$).  Both $import$ and $body$ are optional; the
   7.270 -  degenerate form $\LOCALE~loc$ defines an empty locale, which may still be
   7.271 -  useful to collect declarations of facts later on.  Type-inference on locale
   7.272 -  expressions automatically takes care of the most general typing that the
   7.273 -  combined context elements may acquire.
   7.274 -
   7.275 -  The $import$ consists of a structured context expression, consisting of
   7.276 -  references to existing locales, renamed contexts, or merged contexts.
   7.277 -  Renaming uses positional notation: $c~\vec x$ means that (a prefix of) the
   7.278 -  fixed parameters of context $c$ are named according to $\vec x$; a
   7.279 -  ``\texttt{_}'' (underscore) \indexisarthm{_@\texttt{_}} means to skip that
   7.280 -  position.  Renaming by default deletes existing syntax.  Optionally,
   7.281 -  new syntax may by specified with a mixfix annotation.  Note that the
   7.282 -  special syntax declared with ``$(structure)$'' (see below) is
   7.283 -  neither deleted nor can it be changed.
   7.284 -  Merging proceeds from left-to-right, suppressing any duplicates stemming
   7.285 -  from different paths through the import hierarchy.
   7.286 -
   7.287 -  The $body$ consists of basic context elements, further context expressions
   7.288 -  may be included as well.
   7.289 -
   7.290 -  \begin{descr}
   7.291 -
   7.292 -  \item [$\FIXES{~x::\tau~(mx)}$] declares a local parameter of type $\tau$
   7.293 -    and mixfix annotation $mx$ (both are optional).  The special syntax
   7.294 -    declaration ``$(structure)$'' means that $x$ may be referenced
   7.295 -    implicitly in this context.
   7.296 -
   7.297 -  \item [$\CONSTRAINS{~x::\tau}$] introduces a type constraint $\tau$
   7.298 -    on the local parameter $x$.
   7.299 -
   7.300 -  \item [$\ASSUMES{a}{\vec\phi}$] introduces local premises, similar to
   7.301 -    $\ASSUMENAME$ within a proof (cf.\ \S\ref{sec:proof-context}).
   7.302 -
   7.303 -  \item [$\DEFINES{a}{x \equiv t}$] defines a previously declared parameter.
   7.304 -    This is close to $\DEFNAME$ within a proof (cf.\
   7.305 -    \S\ref{sec:proof-context}), but $\DEFINESNAME$ takes an equational
   7.306 -    proposition instead of variable-term pair.  The left-hand side of the
   7.307 -    equation may have additional arguments, e.g.\ ``$\DEFINES{}{f~\vec x
   7.308 -      \equiv t}$''.
   7.309 -
   7.310 -  \item [$\NOTES{a}{\vec b}$] reconsiders facts within a local context.  Most
   7.311 -    notably, this may include arbitrary declarations in any attribute
   7.312 -    specifications included here, e.g.\ a local $simp$ rule.
   7.313 -
   7.314 -  \item [$\INCLUDES{c}$] copies the specified context in a statically scoped
   7.315 -    manner.  Only available in the long goal format of \S\ref{sec:goals}.
   7.316 -
   7.317 -    In contrast, the initial $import$ specification of a locale expression
   7.318 -    maintains a dynamic relation to the locales being referenced (benefiting
   7.319 -    from any later fact declarations in the obvious manner).
   7.320 -  \end{descr}
   7.321 -  
   7.322 -  Note that ``$\IS{p}$'' patterns given in the syntax of $\ASSUMESNAME$ and
   7.323 -  $\DEFINESNAME$ above are illegal in locale definitions.  In the long goal
   7.324 -  format of \S\ref{sec:goals}, term bindings may be included as expected,
   7.325 -  though.
   7.326 -  
   7.327 -  \medskip By default, locale specifications are ``closed up'' by turning the
   7.328 -  given text into a predicate definition $loc_axioms$ and deriving the
   7.329 -  original assumptions as local lemmas (modulo local definitions).  The
   7.330 -  predicate statement covers only the newly specified assumptions, omitting
   7.331 -  the content of included locale expressions.  The full cumulative view is
   7.332 -  only provided on export, involving another predicate $loc$ that refers to
   7.333 -  the complete specification text.
   7.334 -  
   7.335 -  In any case, the predicate arguments are those locale parameters that
   7.336 -  actually occur in the respective piece of text.  Also note that these
   7.337 -  predicates operate at the meta-level in theory, but the locale packages
   7.338 -  attempts to internalize statements according to the object-logic setup
   7.339 -  (e.g.\ replacing $\Forall$ by $\forall$, and $\Imp$ by $\imp$ in HOL; see
   7.340 -  also \S\ref{sec:object-logic}).  Separate introduction rules
   7.341 -  $loc_axioms.intro$ and $loc.intro$ are declared as well.
   7.342 -  
   7.343 -  The $(open)$ option of a locale specification prevents both the current
   7.344 -  $loc_axioms$ and cumulative $loc$ predicate constructions.  Predicates are
   7.345 -  also omitted for empty specification texts.
   7.346 -
   7.347 -\item [$\isarkeyword{print_locale}~import~+~body$] prints the specified locale
   7.348 -  expression in a flattened form.  The notable special case
   7.349 -  $\isarkeyword{print_locale}~loc$ just prints the contents of the named
   7.350 -  locale, but keep in mind that type-inference will normalize type variables
   7.351 -  according to the usual alphabetical order.  The command omits
   7.352 -  $\isarkeyword{notes}$ elements by default.  Use
   7.353 -  $\isarkeyword{print_locale}!$ to get them included.
   7.354 -
   7.355 -\item [$\isarkeyword{print_locales}$] prints the names of all locales of the
   7.356 -  current theory.
   7.357 -
   7.358 -\item [$intro_locales$ and $unfold_locales$] repeatedly expand
   7.359 -  all introduction rules of locale predicates of the theory.  While
   7.360 -  $intro_locales$ only applies the $loc.intro$ introduction rules and
   7.361 -  therefore does not decend to assumptions, $unfold_locales$ is more
   7.362 -  aggressive and applies $loc_axioms.intro$ as well.  Both methods are
   7.363 -  aware of locale specifications entailed by the context, both from
   7.364 -  target and $\isarkeyword{includes}$ statements, and from
   7.365 -  interpretations (see below).  New goals that are entailed by the
   7.366 -  current context are discharged automatically.
   7.367 -
   7.368 -\end{descr}
   7.369 -
   7.370 -
   7.371 -\subsubsection{Interpretation of locales}
   7.372 -
   7.373 -Locale expressions (more precisely, \emph{context expressions}) may be
   7.374 -instantiated, and the instantiated facts added to the current context.
   7.375 -This requires a proof of the instantiated specification and is called
   7.376 -\emph{locale interpretation}.  Interpretation is possible in theories
   7.377 -and locales (command $\isarcmd{interpretation}$) and also in proof
   7.378 -contexts ($\isarcmd{interpret}$).
   7.379 -
   7.380 -\indexisarcmd{interpretation}\indexisarcmd{interpret}
   7.381 -\indexisarcmd{print-interps}
   7.382 -\begin{matharray}{rcl}
   7.383 -  \isarcmd{interpretation} & : & \isartrans{theory}{proof(prove)} \\
   7.384 -  \isarcmd{interpret} & : & \isartrans{proof(state) ~|~ proof(chain)}{proof(prove)} \\
   7.385 -  \isarcmd{print_interps}^* & : &  \isarkeep{theory~|~proof} \\
   7.386 -\end{matharray}
   7.387 -
   7.388 -\indexouternonterm{interp}
   7.389 -
   7.390 -\railalias{printinterps}{print\_interps}
   7.391 -\railterm{printinterps}
   7.392 -
   7.393 -\begin{rail}
   7.394 -  'interpretation' (interp | name ('<' | subseteq) contextexpr)
   7.395 -  ;
   7.396 -  'interpret' interp
   7.397 -  ;
   7.398 -  printinterps '!'? name
   7.399 -  ;
   7.400 -  instantiation: ('[' (inst+) ']')?
   7.401 -  ;
   7.402 -  interp: thmdecl? \\ (contextexpr instantiation |
   7.403 -    name instantiation 'where' (thmdecl? prop + 'and'))
   7.404 -  ;
   7.405 -\end{rail}
   7.406 -
   7.407 -
   7.408 -\begin{descr}
   7.409 -
   7.410 -\item [$\isarcmd{interpretation}~expr~insts~\isarkeyword{where}~eqns$]
   7.411 -
   7.412 -  The first form of $\isarcmd{interpretation}$ interprets $expr$ in
   7.413 -  the theory.  The instantiation is given as a list of terms $insts$
   7.414 -  and is positional.  All parameters must receive an instantiation
   7.415 -  term --- with the exception of defined parameters.  These are, if
   7.416 -  omitted, derived from the defining equation and other
   7.417 -  instantiations.  Use ``\_'' to omit an instantiation term.  Free
   7.418 -  variables are automatically generalized.
   7.419 -
   7.420 -  The command generates proof obligations for the instantiated
   7.421 -  specifications (assumes and defines elements).  Once these are
   7.422 -  discharged by the user, instantiated facts are added to the theory in
   7.423 -  a post-processing phase.
   7.424 -
   7.425 -  Additional equations, which are unfolded in facts during
   7.426 -  post-processing, may be given after the keyword
   7.427 -  $\isarkeyword{where}$.  This is useful for interpreting concepts
   7.428 -  introduced through definition specification elements.  The equations
   7.429 -  must be proved.  Note that if equations are present, the context
   7.430 -  expression is restricted to a locale name.
   7.431 -
   7.432 -  The command is aware of interpretations already active in the
   7.433 -  theory.  No proof obligations are generated for those, neither is
   7.434 -  post-processing applied to their facts.  This avoids duplication of
   7.435 -  interpreted facts, in particular.  Note that, in the case of a
   7.436 -  locale with import, parts of the interpretation may already be
   7.437 -  active.  The command will only generate proof obligations and process
   7.438 -  facts for new parts.
   7.439 -
   7.440 -  The context expression may be preceded by a name and/or attributes.
   7.441 -  These take effect in the post-processing of facts.  The name is used
   7.442 -  to prefix fact names, for example to avoid accidental hiding of
   7.443 -  other facts.  Attributes are applied after attributes of the
   7.444 -  interpreted facts.
   7.445 -
   7.446 -  Adding facts to locales has the
   7.447 -  effect of adding interpreted facts to the theory for all active
   7.448 -  interpretations also.  That is, interpretations dynamically
   7.449 -  participate in any facts added to locales.
   7.450 -
   7.451 -\item [$\isarcmd{interpretation}~name~\subseteq~expr$]
   7.452 -
   7.453 -  This form of the command interprets $expr$ in the locale $name$.  It
   7.454 -  requires a proof that the specification of $name$ implies the
   7.455 -  specification of $expr$.  As in the localized version of the theorem
   7.456 -  command, the proof is in the context of $name$.  After the proof
   7.457 -  obligation has been dischared, the facts of $expr$
   7.458 -  become part of locale $name$ as \emph{derived} context elements and
   7.459 -  are available when the context $name$ is subsequently entered.
   7.460 -  Note that, like import, this is dynamic: facts added to a locale
   7.461 -  part of $expr$ after interpretation become also available in
   7.462 -  $name$.  Like facts
   7.463 -  of renamed context elements, facts obtained by interpretation may be
   7.464 -  accessed by prefixing with the parameter renaming (where the parameters
   7.465 -  are separated by `\_').
   7.466 -
   7.467 -  Unlike interpretation in theories, instantiation is confined to the
   7.468 -  renaming of parameters, which may be specified as part of the context
   7.469 -  expression $expr$.  Using defined parameters in $name$ one may
   7.470 -  achieve an effect similar to instantiation, though.
   7.471 -
   7.472 -  Only specification fragments of $expr$ that are not already part of
   7.473 -  $name$ (be it imported, derived or a derived fragment of the import)
   7.474 -  are considered by interpretation.  This enables circular
   7.475 -  interpretations.
   7.476 -
   7.477 -  If interpretations of $name$ exist in the current theory, the
   7.478 -  command adds interpretations for $expr$ as well, with the same
   7.479 -  prefix and attributes, although only for fragments of $expr$ that
   7.480 -  are not interpreted in the theory already.
   7.481 -
   7.482 -\item [$\isarcmd{interpret}~expr~insts~\isarkeyword{where}~eqns$]
   7.483 -  interprets $expr$ in the proof context and is otherwise similar to
   7.484 -  interpretation in theories.  Free variables in instantiations are not
   7.485 -  generalized, however.
   7.486 -
   7.487 -\item [$\isarcmd{print_interps}~loc$]
   7.488 -  prints the interpretations of a particular locale $loc$ that are
   7.489 -  active in the current context, either theory or proof context.  The
   7.490 -  exclamation point argument triggers printing of
   7.491 -  \emph{witness} theorems justifying interpretations.  These are
   7.492 -  normally omitted from the output.
   7.493 -
   7.494 -  
   7.495 -\end{descr}
   7.496 -
   7.497 -\begin{warn}
   7.498 -  Since attributes are applied to interpreted theorems, interpretation
   7.499 -  may modify the context of common proof tools, e.g.\ the Simplifier
   7.500 -  or Classical Reasoner.  Since the behavior of such automated
   7.501 -  reasoning tools is \emph{not} stable under interpretation morphisms,
   7.502 -  manual declarations might have to be issued.
   7.503 -\end{warn}
   7.504 -
   7.505 -\begin{warn}
   7.506 -  An interpretation in a theory may subsume previous interpretations.
   7.507 -  This happens if the same specification fragment is interpreted twice
   7.508 -  and the instantiation of the second interpretation is more general
   7.509 -  than the interpretation of the first.  A warning is issued, since it
   7.510 -  is likely that these could have been generalized in the first place.
   7.511 -  The locale package does not attempt to remove subsumed
   7.512 -  interpretations.
   7.513 -\end{warn}
   7.514 -
   7.515 -
   7.516 -\subsection{Classes}\label{sec:class}
   7.517 -
   7.518 -A class is a peculiarity of a locale with \emph{exactly one} type variable.
   7.519 -Beyond the underlying locale, a corresponding type class is established which
   7.520 -is interpreted logically as axiomatic type class \cite{Wenzel:1997:TPHOL}
   7.521 -whose logical content are the assumptions of the locale.  Thus, classes provide
   7.522 -the full generality of locales combined with the commodity of type classes
   7.523 -(notably type-inference).  See \cite{isabelle-classes} for a short tutorial.
   7.524 -
   7.525 -\indexisarcmd{class}\indexisarcmd{instantiation}\indexisarcmd{subclass}\indexisarcmd{class}\indexisarcmd{print-classes}
   7.526 -\begin{matharray}{rcl}
   7.527 -  \isarcmd{class} & : & \isartrans{theory}{local{\dsh}theory} \\
   7.528 -  \isarcmd{instantiation} & : & \isartrans{theory}{local{\dsh}theory} \\
   7.529 -  \isarcmd{instance} & : & \isartrans{local{\dsh}theory}{local{\dsh}theory} \\
   7.530 -  \isarcmd{subclass} & : & \isartrans{local{\dsh}theory}{local{\dsh}theory} \\
   7.531 -  \isarcmd{print_classes}^* & : & \isarkeep{theory~|~proof} \\
   7.532 -  intro_classes & : & \isarmeth
   7.533 -\end{matharray}
   7.534 -
   7.535 -\begin{rail}
   7.536 -  'class' name '=' ((superclassexpr '+' (contextelem+)) | superclassexpr | (contextelem+)) \\
   7.537 -    'begin'?
   7.538 -  ;
   7.539 -  'instantiation' (nameref + 'and') '::' arity 'begin'
   7.540 -  ;
   7.541 -  'instance'
   7.542 -  ;
   7.543 -  'subclass' target? nameref
   7.544 -  ;
   7.545 -  'print\_classes'
   7.546 -  ;
   7.547 -
   7.548 -  superclassexpr: nameref | (nameref '+' superclassexpr)
   7.549 -  ;
   7.550 -\end{rail}
   7.551 -
   7.552 -\begin{descr}
   7.553 -
   7.554 -\item [$\CLASS~c = superclasses~+~body$] defines a new class $c$,
   7.555 -  inheriting from $superclasses$.  This introduces a locale $c$
   7.556 -  inheriting from all the locales $superclasses$.  Correspondingly,
   7.557 -  a type class $c$, inheriting from type classes $superclasses$.
   7.558 -  $\FIXESNAME$ in $body$ are lifted to the global theory level
   7.559 -  (\emph{class operations} $\vec f$ of class $c$),
   7.560 -  mapping the local type parameter $\alpha$ to a schematic
   7.561 -  type variable $?\alpha::c$.
   7.562 -  $\ASSUMESNAME$ in $body$ are also lifted, mapping each local parameter
   7.563 -  $f::\tau [\alpha]$ to its corresponding global constant
   7.564 -  $f::\tau [?\alpha::c]$.
   7.565 -  A suitable introduction rule is provided as $c_class_axioms.intro$.
   7.566 -  Explicit references to this should rarely be needed;  mostly
   7.567 -  this rules will be applied implicitly by the $intro_classes$ method.
   7.568 -
   7.569 -\item [$\INSTANTIATION~\vec t~::~(\vec s)~s~\isarkeyword{begin}$]
   7.570 -  opens a theory target (cf.\S\ref{sec:target}) which allows to specify
   7.571 -  class operations $\vec f$ corresponding to sort $s$ at particular
   7.572 -  type instances $\vec{\alpha::s}~t$ for each $t$ in $\vec t$.
   7.573 -  An $\INSTANCE$ command in the target body sets up a goal stating
   7.574 -  the type arities given after the $\INSTANTIATION$ keyword.
   7.575 -  The possibility to give a list of type constructors with same arity
   7.576 -  nicely corresponds to mutual recursive type definitions in Isabelle/HOL.
   7.577 -  The target is concluded by an $\isarkeyword{end}$ keyword.
   7.578 -
   7.579 -\item [$\INSTANCE$] in an instantiation target body sets up a goal stating
   7.580 -  the type arities claimed at the opening $\INSTANTIATION$ keyword.
   7.581 -  The proof would usually proceed by $intro_classes$, and then establish the
   7.582 -  characteristic theorems of the type classes involved.
   7.583 -  After finishing the proof, the background theory will be
   7.584 -  augmented by the proven type arities.
   7.585 -
   7.586 -\item [$\SUBCLASS~c$] in a class context for class $d$
   7.587 -  sets up a goal stating that class $c$ is logically
   7.588 -  contained in class $d$.  After finishing the proof, class $d$ is proven
   7.589 -  to be subclass $c$ and the locale $c$ is interpreted into $d$ simultaneously.
   7.590 -
   7.591 -\item [$\isarkeyword{print_classes}$] prints all classes
   7.592 -  in the current theory.
   7.593 -
   7.594 -\item [$intro_classes$] repeatedly expands all class introduction rules of
   7.595 -  this theory.  Note that this method usually needs not be named explicitly,
   7.596 -  as it is already included in the default proof step (of $\PROOFNAME$ etc.).
   7.597 -  In particular, instantiation of trivial (syntactic) classes may be performed
   7.598 -  by a single ``$\DDOT$'' proof step.
   7.599 -
   7.600 -\end{descr}
   7.601 -
   7.602 -
   7.603 -\subsubsection{Class target}
   7.604 -
   7.605 -A named context may refer to a locale (cf.~\S\ref{sec:target}).  If this
   7.606 -locale is also a class $c$, beside the common locale target behaviour
   7.607 -the following occurs:
   7.608 -
   7.609 -\begin{itemize}
   7.610 -  \item Local constant declarations $g [\alpha]$ referring to the local type
   7.611 -    parameter $\alpha$ and local parameters $\vec f [\alpha]$ are accompagnied
   7.612 -    by theory-level constants $g [?\alpha::c]$ referring to theory-level
   7.613 -    class operations $\vec f [?\alpha::c]$
   7.614 -  \item Local theorem bindings are lifted as are assumptions.
   7.615 -  \item Local syntax refers to local operations $g [\alpha]$ and
   7.616 -    global operations $g [?\alpha::c]$ uniformly.  Type inference
   7.617 -    resolves ambiguities;  in rare cases, manual type annotations are needed.
   7.618 -\end{itemize}
   7.619 -
   7.620 -
   7.621 -\subsection{Axiomatic type classes}\label{sec:axclass}
   7.622 -
   7.623 -\indexisarcmd{axclass}\indexisarmeth{intro-classes}
   7.624 -\begin{matharray}{rcl}
   7.625 -  \isarcmd{axclass} & : & \isartrans{theory}{theory} \\
   7.626 -  \isarcmd{instance} & : & \isartrans{theory}{proof(prove)} \\
   7.627 -\end{matharray}
   7.628 -
   7.629 -Axiomatic type classes are Isabelle/Pure's primitive \emph{definitional} interface
   7.630 -to type classes.  For practical applications, you should consider using classes
   7.631 -(cf.~\S\ref{sec:classes}) which provide a convenient user interface.
   7.632 -
   7.633 -\begin{rail}
   7.634 -  'axclass' classdecl (axmdecl prop +)
   7.635 -  ;
   7.636 -  'instance' (nameref ('<' | subseteq) nameref | nameref '::' arity)
   7.637 -  ;
   7.638 -\end{rail}
   7.639 -
   7.640 -\begin{descr}
   7.641 -  
   7.642 -\item [$\AXCLASS~c \subseteq \vec c~~axms$] defines an axiomatic type class as
   7.643 -  the intersection of existing classes, with additional axioms holding.  Class
   7.644 -  axioms may not contain more than one type variable.  The class axioms (with
   7.645 -  implicit sort constraints added) are bound to the given names.  Furthermore
   7.646 -  a class introduction rule is generated (being bound as
   7.647 -  $c_class{\dtt}intro$); this rule is employed by method $intro_classes$ to
   7.648 -  support instantiation proofs of this class.
   7.649 -  
   7.650 -  The ``axioms'' are stored as theorems according to the given name
   7.651 -  specifications, adding the class name $c$ as name space prefix; the same
   7.652 -  facts are also stored collectively as $c_class{\dtt}axioms$.
   7.653 -  
   7.654 -\item [$\INSTANCE~c@1 \subseteq c@2$ and $\INSTANCE~t :: (\vec s)s$] setup a
   7.655 -  goal stating a class relation or type arity.  The proof would usually
   7.656 -  proceed by $intro_classes$, and then establish the characteristic theorems
   7.657 -  of the type classes involved.  After finishing the proof, the theory will be
   7.658 -  augmented by a type signature declaration corresponding to the resulting
   7.659 -  theorem.
   7.660 -
   7.661 -\end{descr}
   7.662 -
   7.663 -
   7.664 -\subsection{Arbitrary overloading}
   7.665 -
   7.666 -Isabelle/Pure's definitional schemes support certain forms of overloading
   7.667 -(see \S\ref{sec:consts}).  At most occassions overloading will be used
   7.668 -in a Haskell-like fashion together with type classes by means of
   7.669 -$\isarcmd{instantiation}$ (see \S\ref{sec:class}).  However in some cases
   7.670 -low-level overloaded definitions are desirable, together with some specification
   7.671 -tool.  A convenient user-view is provided by the $\isarcmd{overloading}$ target.
   7.672 -
   7.673 -\indexisarcmd{overloading}
   7.674 -\begin{matharray}{rcl}
   7.675 -  \isarcmd{overloading} & : & \isartrans{theory}{local{\dsh}theory} \\
   7.676 -\end{matharray}
   7.677 -
   7.678 -\begin{rail}
   7.679 -  'overloading' \\
   7.680 -  ( string ( '==' | equiv ) term ( '(' 'unchecked' ')' )? + ) 'begin'
   7.681 -\end{rail}
   7.682 -
   7.683 -\begin{descr}
   7.684 -
   7.685 -\item [$\OVERLOADING~\vec{v \equiv f :: \tau}~\isarkeyword{begin}$]
   7.686 -  opens a theory target (cf.\S\ref{sec:target}) which allows to specify
   7.687 -  constants with overloaded definitions.  These are identified
   7.688 -  by an explicitly given mapping from variable names $v$ to
   7.689 -  constants $f$ at a particular type instance $\tau$.  The definitions
   7.690 -  themselves are established using common specification tools,
   7.691 -  using the names $v$ as reference to the corresponding constants.
   7.692 -  A $(unchecked)$ option disables global dependency checks for the corresponding
   7.693 -  definition, which is occasionally useful for exotic overloading.  It
   7.694 -  is at the discretion of the user to avoid malformed theory
   7.695 -  specifications!  The target is concluded by an $\isarkeyword{end}$ keyword.
   7.696 -
   7.697 -\end{descr}
   7.698 -
   7.699 -
   7.700 -\subsection{Configuration options}
   7.701 -
   7.702 -Isabelle/Pure maintains a record of named configuration options within the
   7.703 -theory or proof context, with values of type $bool$, $int$, or $string$.
   7.704 -Tools may declare options in ML, and then refer to these values (relative to
   7.705 -the context).  Thus global reference variables are easily avoided.  The user
   7.706 -may change the value of a configuration option by means of an associated
   7.707 -attribute of the same name.  This form of context declaration works
   7.708 -particularly well with commands such as $\isarkeyword{declare}$ or
   7.709 -$\isarkeyword{using}$.
   7.710 -
   7.711 -For historical reasons, some tools cannot take the full proof context
   7.712 -into account and merely refer to the background theory.  This is
   7.713 -accommodated by configuration options being declared as ``global'',
   7.714 -which may not be changed within a local context.
   7.715 -
   7.716 -\indexisarcmd{print-configs}
   7.717 -\begin{matharray}{rcll}
   7.718 -  \isarcmd{print_configs} & : & \isarkeep{theory~|~proof} \\
   7.719 -\end{matharray}
   7.720 -
   7.721 -\begin{rail}
   7.722 -  name ('=' ('true' | 'false' | int | name))?
   7.723 -\end{rail}
   7.724 -
   7.725 -\begin{descr}
   7.726 -  
   7.727 -\item [$\isarkeyword{print_configs}$] prints the available configuration
   7.728 -  options, with names, types, and current values.
   7.729 -  
   7.730 -\item [$name = value$] as an attribute expression modifies the named option,
   7.731 -  with the syntax of the value depending on the option's type.  For $bool$ the
   7.732 -  default value is $true$.  Any attempt to change a global option in a local
   7.733 -  context is ignored.
   7.734 -
   7.735 -\end{descr}
   7.736 -
   7.737 -
   7.738 -\section{Derived proof schemes}
   7.739 -
   7.740 -\subsection{Generalized elimination}\label{sec:obtain}
   7.741 -
   7.742 -\indexisarcmd{obtain}\indexisarcmd{guess}
   7.743 -\begin{matharray}{rcl}
   7.744 -  \isarcmd{obtain} & : & \isartrans{proof(state)}{proof(prove)} \\
   7.745 -  \isarcmd{guess}^* & : & \isartrans{proof(state)}{proof(prove)} \\
   7.746 -\end{matharray}
   7.747 -
   7.748 -Generalized elimination means that additional elements with certain properties
   7.749 -may be introduced in the current context, by virtue of a locally proven
   7.750 -``soundness statement''.  Technically speaking, the $\OBTAINNAME$ language
   7.751 -element is like a declaration of $\FIXNAME$ and $\ASSUMENAME$ (see also see
   7.752 -\S\ref{sec:proof-context}), together with a soundness proof of its additional
   7.753 -claim.  According to the nature of existential reasoning, assumptions get
   7.754 -eliminated from any result exported from the context later, provided that the
   7.755 -corresponding parameters do \emph{not} occur in the conclusion.
   7.756 -
   7.757 -\begin{rail}
   7.758 -  'obtain' parname? (vars + 'and') 'where' (props + 'and')
   7.759 -  ;
   7.760 -  'guess' (vars + 'and')
   7.761 -  ;
   7.762 -\end{rail}
   7.763 -
   7.764 -$\OBTAINNAME$ is defined as a derived Isar command as follows, where $\vec b$
   7.765 -shall refer to (optional) facts indicated for forward chaining.
   7.766 -\begin{matharray}{l}
   7.767 -  \langle facts~\vec b\rangle \\
   7.768 -  \OBTAIN{\vec x}{a}{\vec \phi}~~\langle proof\rangle \equiv {} \\[1ex]
   7.769 -  \quad \HAVE{}{\All{thesis} (\All{\vec x} \vec\phi \Imp thesis) \Imp thesis} \\
   7.770 -  \quad \PROOF{succeed} \\
   7.771 -  \qquad \FIX{thesis} \\
   7.772 -  \qquad \ASSUME{that~[intro?]}{\All{\vec x} \vec\phi \Imp thesis} \\
   7.773 -  \qquad \THUS{}{thesis} \\
   7.774 -  \quad\qquad \APPLY{-} \\
   7.775 -  \quad\qquad \USING{\vec b}~~\langle proof\rangle \\
   7.776 -  \quad \QED{} \\
   7.777 -  \quad \FIX{\vec x}~\ASSUMENAME^\ast~a\colon~\vec\phi \\
   7.778 -\end{matharray}
   7.779 -
   7.780 -Typically, the soundness proof is relatively straight-forward, often just by
   7.781 -canonical automated tools such as ``$\BY{simp}$'' or ``$\BY{blast}$''.
   7.782 -Accordingly, the ``$that$'' reduction above is declared as simplification and
   7.783 -introduction rule.
   7.784 -
   7.785 -In a sense, $\OBTAINNAME$ represents at the level of Isar proofs what would be
   7.786 -meta-logical existential quantifiers and conjunctions.  This concept has a
   7.787 -broad range of useful applications, ranging from plain elimination (or
   7.788 -introduction) of object-level existential and conjunctions, to elimination
   7.789 -over results of symbolic evaluation of recursive definitions, for example.
   7.790 -Also note that $\OBTAINNAME$ without parameters acts much like $\HAVENAME$,
   7.791 -where the result is treated as a genuine assumption.
   7.792 -
   7.793 -An alternative name to be used instead of ``$that$'' above may be
   7.794 -given in parentheses.
   7.795 -
   7.796 -\medskip
   7.797 -
   7.798 -The improper variant $\isarkeyword{guess}$ is similar to $\OBTAINNAME$, but
   7.799 -derives the obtained statement from the course of reasoning!  The proof starts
   7.800 -with a fixed goal $thesis$.  The subsequent proof may refine this to anything
   7.801 -of the form like $\All{\vec x} \vec\phi \Imp thesis$, but must not introduce
   7.802 -new subgoals.  The final goal state is then used as reduction rule for the
   7.803 -obtain scheme described above.  Obtained parameters $\vec x$ are marked as
   7.804 -internal by default, which prevents the proof context from being polluted by
   7.805 -ad-hoc variables.  The variable names and type constraints given as arguments
   7.806 -for $\isarkeyword{guess}$ specify a prefix of obtained parameters explicitly
   7.807 -in the text.
   7.808 -
   7.809 -It is important to note that the facts introduced by $\OBTAINNAME$ and
   7.810 -$\isarkeyword{guess}$ may not be polymorphic: any type-variables occurring
   7.811 -here are fixed in the present context!
   7.812 -
   7.813 -
   7.814 -\subsection{Calculational reasoning}\label{sec:calculation}
   7.815 -
   7.816 -\indexisarcmd{also}\indexisarcmd{finally}
   7.817 -\indexisarcmd{moreover}\indexisarcmd{ultimately}
   7.818 -\indexisarcmd{print-trans-rules}
   7.819 -\indexisaratt{trans}\indexisaratt{sym}\indexisaratt{symmetric}
   7.820 -\begin{matharray}{rcl}
   7.821 -  \isarcmd{also} & : & \isartrans{proof(state)}{proof(state)} \\
   7.822 -  \isarcmd{finally} & : & \isartrans{proof(state)}{proof(chain)} \\
   7.823 -  \isarcmd{moreover} & : & \isartrans{proof(state)}{proof(state)} \\
   7.824 -  \isarcmd{ultimately} & : & \isartrans{proof(state)}{proof(chain)} \\
   7.825 -  \isarcmd{print_trans_rules}^* & : & \isarkeep{theory~|~proof} \\
   7.826 -  trans & : & \isaratt \\
   7.827 -  sym & : & \isaratt \\
   7.828 -  symmetric & : & \isaratt \\
   7.829 -\end{matharray}
   7.830 -
   7.831 -Calculational proof is forward reasoning with implicit application of
   7.832 -transitivity rules (such those of $=$, $\leq$, $<$).  Isabelle/Isar maintains
   7.833 -an auxiliary register $calculation$\indexisarthm{calculation} for accumulating
   7.834 -results obtained by transitivity composed with the current result.  Command
   7.835 -$\ALSO$ updates $calculation$ involving $this$, while $\FINALLY$ exhibits the
   7.836 -final $calculation$ by forward chaining towards the next goal statement.  Both
   7.837 -commands require valid current facts, i.e.\ may occur only after commands that
   7.838 -produce theorems such as $\ASSUMENAME$, $\NOTENAME$, or some finished proof of
   7.839 -$\HAVENAME$, $\SHOWNAME$ etc.  The $\MOREOVER$ and $\ULTIMATELY$ commands are
   7.840 -similar to $\ALSO$ and $\FINALLY$, but only collect further results in
   7.841 -$calculation$ without applying any rules yet.
   7.842 -
   7.843 -Also note that the implicit term abbreviation ``$\dots$'' has its canonical
   7.844 -application with calculational proofs.  It refers to the argument of the
   7.845 -preceding statement. (The argument of a curried infix expression happens to be
   7.846 -its right-hand side.)
   7.847 -
   7.848 -Isabelle/Isar calculations are implicitly subject to block structure in the
   7.849 -sense that new threads of calculational reasoning are commenced for any new
   7.850 -block (as opened by a local goal, for example).  This means that, apart from
   7.851 -being able to nest calculations, there is no separate \emph{begin-calculation}
   7.852 -command required.
   7.853 -
   7.854 -\medskip
   7.855 -
   7.856 -The Isar calculation proof commands may be defined as follows:\footnote{We
   7.857 -  suppress internal bookkeeping such as proper handling of block-structure.}
   7.858 -\begin{matharray}{rcl}
   7.859 -  \ALSO@0 & \equiv & \NOTE{calculation}{this} \\
   7.860 -  \ALSO@{n+1} & \equiv & \NOTE{calculation}{trans~[OF~calculation~this]} \\[0.5ex]
   7.861 -  \FINALLY & \equiv & \ALSO~\FROM{calculation} \\
   7.862 -  \MOREOVER & \equiv & \NOTE{calculation}{calculation~this} \\
   7.863 -  \ULTIMATELY & \equiv & \MOREOVER~\FROM{calculation} \\
   7.864 -\end{matharray}
   7.865 -
   7.866 -\begin{rail}
   7.867 -  ('also' | 'finally') ('(' thmrefs ')')?
   7.868 -  ;
   7.869 -  'trans' (() | 'add' | 'del')
   7.870 -  ;
   7.871 -\end{rail}
   7.872 -
   7.873 -\begin{descr}
   7.874 -
   7.875 -\item [$\ALSO~(\vec a)$] maintains the auxiliary $calculation$ register as
   7.876 -  follows.  The first occurrence of $\ALSO$ in some calculational thread
   7.877 -  initializes $calculation$ by $this$. Any subsequent $\ALSO$ on the same
   7.878 -  level of block-structure updates $calculation$ by some transitivity rule
   7.879 -  applied to $calculation$ and $this$ (in that order).  Transitivity rules are
   7.880 -  picked from the current context, unless alternative rules are given as
   7.881 -  explicit arguments.
   7.882 -
   7.883 -\item [$\FINALLY~(\vec a)$] maintaining $calculation$ in the same way as
   7.884 -  $\ALSO$, and concludes the current calculational thread.  The final result
   7.885 -  is exhibited as fact for forward chaining towards the next goal. Basically,
   7.886 -  $\FINALLY$ just abbreviates $\ALSO~\FROM{calculation}$.  Note that
   7.887 -  ``$\FINALLY~\SHOW{}{\Var{thesis}}~\DOT$'' and
   7.888 -  ``$\FINALLY~\HAVE{}{\phi}~\DOT$'' are typical idioms for concluding
   7.889 -  calculational proofs.
   7.890 -
   7.891 -\item [$\MOREOVER$ and $\ULTIMATELY$] are analogous to $\ALSO$ and $\FINALLY$,
   7.892 -  but collect results only, without applying rules.
   7.893 -
   7.894 -\item [$\isarkeyword{print_trans_rules}$] prints the list of transitivity
   7.895 -  rules (for calculational commands $\ALSO$ and $\FINALLY$) and symmetry rules
   7.896 -  (for the $symmetric$ operation and single step elimination patters) of the
   7.897 -  current context.
   7.898 -
   7.899 -\item [$trans$] declares theorems as transitivity rules.
   7.900 -
   7.901 -\item [$sym$] declares symmetry rules.
   7.902 -
   7.903 -\item [$symmetric$] resolves a theorem with some rule declared as $sym$ in the
   7.904 -  current context.  For example, ``$\ASSUME{[symmetric]}{x = y}$'' produces a
   7.905 -  swapped fact derived from that assumption.
   7.906 -
   7.907 -  In structured proof texts it is often more appropriate to use an explicit
   7.908 -  single-step elimination proof, such as ``$\ASSUME{}{x = y}~\HENCE{}{y =
   7.909 -    x}~\DDOT$''.  The very same rules known to $symmetric$ are declared as
   7.910 -  $elim?$ as well.
   7.911 -
   7.912 -\end{descr}
   7.913 -
   7.914 -
   7.915 -\section{Proof tools}
   7.916 -
   7.917 -\subsection{Miscellaneous methods and attributes}\label{sec:misc-meth-att}
   7.918 -
   7.919 -\indexisarmeth{unfold}\indexisarmeth{fold}\indexisarmeth{insert}
   7.920 -\indexisarmeth{erule}\indexisarmeth{drule}\indexisarmeth{frule}
   7.921 -\indexisarmeth{fail}\indexisarmeth{succeed}
   7.922 -\begin{matharray}{rcl}
   7.923 -  unfold & : & \isarmeth \\
   7.924 -  fold & : & \isarmeth \\
   7.925 -  insert & : & \isarmeth \\[0.5ex]
   7.926 -  erule^* & : & \isarmeth \\
   7.927 -  drule^* & : & \isarmeth \\
   7.928 -  frule^* & : & \isarmeth \\
   7.929 -  succeed & : & \isarmeth \\
   7.930 -  fail & : & \isarmeth \\
   7.931 -\end{matharray}
   7.932 -
   7.933 -\begin{rail}
   7.934 -  ('fold' | 'unfold' | 'insert') thmrefs
   7.935 -  ;
   7.936 -  ('erule' | 'drule' | 'frule') ('('nat')')? thmrefs
   7.937 -  ;
   7.938 -\end{rail}
   7.939 -
   7.940 -\begin{descr}
   7.941 -  
   7.942 -\item [$unfold~\vec a$ and $fold~\vec a$] expand (or fold back again)
   7.943 -  the given definitions throughout all goals; any chained facts
   7.944 -  provided are inserted into the goal and subject to rewriting as
   7.945 -  well.
   7.946 -
   7.947 -\item [$insert~\vec a$] inserts theorems as facts into all goals of the proof
   7.948 -  state.  Note that current facts indicated for forward chaining are ignored.
   7.949 -
   7.950 -\item [$erule~\vec a$, $drule~\vec a$, and $frule~\vec a$] are similar to the
   7.951 -  basic $rule$ method (see \S\ref{sec:pure-meth-att}), but apply rules by
   7.952 -  elim-resolution, destruct-resolution, and forward-resolution, respectively
   7.953 -  \cite{isabelle-ref}.  The optional natural number argument (default $0$)
   7.954 -  specifies additional assumption steps to be performed here.
   7.955 -
   7.956 -  Note that these methods are improper ones, mainly serving for
   7.957 -  experimentation and tactic script emulation.  Different modes of basic rule
   7.958 -  application are usually expressed in Isar at the proof language level,
   7.959 -  rather than via implicit proof state manipulations.  For example, a proper
   7.960 -  single-step elimination would be done using the plain $rule$ method, with
   7.961 -  forward chaining of current facts.
   7.962 -
   7.963 -\item [$succeed$] yields a single (unchanged) result; it is the identity of
   7.964 -  the ``\texttt{,}'' method combinator (cf.\ \S\ref{sec:syn-meth}).
   7.965 -
   7.966 -\item [$fail$] yields an empty result sequence; it is the identity of the
   7.967 -  ``\texttt{|}'' method combinator (cf.\ \S\ref{sec:syn-meth}).
   7.968 -
   7.969 -\end{descr}
   7.970 -
   7.971 -\indexisaratt{tagged}\indexisaratt{untagged}
   7.972 -\indexisaratt{THEN}\indexisaratt{COMP}
   7.973 -\indexisaratt{unfolded}\indexisaratt{folded}
   7.974 -\indexisaratt{standard}\indexisarattof{Pure}{elim-format}
   7.975 -\indexisaratt{no-vars}
   7.976 -\begin{matharray}{rcl}
   7.977 -  tagged & : & \isaratt \\
   7.978 -  untagged & : & \isaratt \\[0.5ex]
   7.979 -  THEN & : & \isaratt \\
   7.980 -  COMP & : & \isaratt \\[0.5ex]
   7.981 -  unfolded & : & \isaratt \\
   7.982 -  folded & : & \isaratt \\[0.5ex]
   7.983 -  rotated & : & \isaratt \\
   7.984 -  elim_format & : & \isaratt \\
   7.985 -  standard^* & : & \isaratt \\
   7.986 -  no_vars^* & : & \isaratt \\
   7.987 -\end{matharray}
   7.988 -
   7.989 -\begin{rail}
   7.990 -  'tagged' nameref
   7.991 -  ;
   7.992 -  'untagged' name
   7.993 -  ;
   7.994 -  ('THEN' | 'COMP') ('[' nat ']')? thmref
   7.995 -  ;
   7.996 -  ('unfolded' | 'folded') thmrefs
   7.997 -  ;
   7.998 -  'rotated' ( int )?
   7.999 -\end{rail}
  7.1000 -
  7.1001 -\begin{descr}
  7.1002 -
  7.1003 -\item [$tagged~name~arg$ and $untagged~name$] add and remove $tags$ of some
  7.1004 -  theorem.  Tags may be any list of strings that serve as comment for some
  7.1005 -  tools (e.g.\ $\LEMMANAME$ causes the tag ``$lemma$'' to be added to the
  7.1006 -  result).  The first string is considered the tag name, the second its
  7.1007 -  argument.  Note that $untagged$ removes any tags of the same name.
  7.1008 -
  7.1009 -\item [$THEN~a$ and $COMP~a$] compose rules by resolution.  $THEN$ resolves
  7.1010 -  with the first premise of $a$ (an alternative position may be also
  7.1011 -  specified); the $COMP$ version skips the automatic lifting process that is
  7.1012 -  normally intended (cf.\ \texttt{RS} and \texttt{COMP} in
  7.1013 -  \cite[\S5]{isabelle-ref}).
  7.1014 -  
  7.1015 -\item [$unfolded~\vec a$ and $folded~\vec a$] expand and fold back
  7.1016 -  again the given definitions throughout a rule.
  7.1017 -
  7.1018 -\item [$rotated~n$] rotate the premises of a theorem by $n$ (default 1).
  7.1019 -
  7.1020 -\item [$elim_format$] turns a destruction rule into elimination rule format,
  7.1021 -  by resolving with the rule $\PROP A \Imp (\PROP A \Imp \PROP B) \Imp \PROP
  7.1022 -  B$.
  7.1023 -  
  7.1024 -  Note that the Classical Reasoner (\S\ref{sec:classical}) provides its own
  7.1025 -  version of this operation.
  7.1026 -
  7.1027 -\item [$standard$] puts a theorem into the standard form of object-rules at
  7.1028 -  the outermost theory level.  Note that this operation violates the local
  7.1029 -  proof context (including active locales).
  7.1030 -
  7.1031 -\item [$no_vars$] replaces schematic variables by free ones; this is mainly
  7.1032 -  for tuning output of pretty printed theorems.
  7.1033 -
  7.1034 -\end{descr}
  7.1035 -
  7.1036 -
  7.1037 -\subsection{Further tactic emulations}\label{sec:tactics}
  7.1038 -
  7.1039 -The following improper proof methods emulate traditional tactics.  These admit
  7.1040 -direct access to the goal state, which is normally considered harmful!  In
  7.1041 -particular, this may involve both numbered goal addressing (default 1), and
  7.1042 -dynamic instantiation within the scope of some subgoal.
  7.1043 -
  7.1044 -\begin{warn}
  7.1045 -  Dynamic instantiations refer to universally quantified parameters of
  7.1046 -  a subgoal (the dynamic context) rather than fixed variables and term
  7.1047 -  abbreviations of a (static) Isar context.
  7.1048 -\end{warn}
  7.1049 -
  7.1050 -Tactic emulation methods, unlike their ML counterparts, admit
  7.1051 -simultaneous instantiation from both dynamic and static contexts.  If
  7.1052 -names occur in both contexts goal parameters hide locally fixed
  7.1053 -variables.  Likewise, schematic variables refer to term abbreviations,
  7.1054 -if present in the static context.  Otherwise the schematic variable is
  7.1055 -interpreted as a schematic variable and left to be solved by unification
  7.1056 -with certain parts of the subgoal.
  7.1057 -
  7.1058 -Note that the tactic emulation proof methods in Isabelle/Isar are consistently
  7.1059 -named $foo_tac$.  Note also that variable names occurring on left hand sides
  7.1060 -of instantiations must be preceded by a question mark if they coincide with
  7.1061 -a keyword or contain dots.
  7.1062 -This is consistent with the attribute $where$ (see \S\ref{sec:pure-meth-att}).
  7.1063 -
  7.1064 -\indexisarmeth{rule-tac}\indexisarmeth{erule-tac}
  7.1065 -\indexisarmeth{drule-tac}\indexisarmeth{frule-tac}
  7.1066 -\indexisarmeth{cut-tac}\indexisarmeth{thin-tac}
  7.1067 -\indexisarmeth{subgoal-tac}\indexisarmeth{rename-tac}
  7.1068 -\indexisarmeth{rotate-tac}\indexisarmeth{tactic}
  7.1069 -\begin{matharray}{rcl}
  7.1070 -  rule_tac^* & : & \isarmeth \\
  7.1071 -  erule_tac^* & : & \isarmeth \\
  7.1072 -  drule_tac^* & : & \isarmeth \\
  7.1073 -  frule_tac^* & : & \isarmeth \\
  7.1074 -  cut_tac^* & : & \isarmeth \\
  7.1075 -  thin_tac^* & : & \isarmeth \\
  7.1076 -  subgoal_tac^* & : & \isarmeth \\
  7.1077 -  rename_tac^* & : & \isarmeth \\
  7.1078 -  rotate_tac^* & : & \isarmeth \\
  7.1079 -  tactic^* & : & \isarmeth \\
  7.1080 -\end{matharray}
  7.1081 -
  7.1082 -\railalias{ruletac}{rule\_tac}
  7.1083 -\railterm{ruletac}
  7.1084 -
  7.1085 -\railalias{eruletac}{erule\_tac}
  7.1086 -\railterm{eruletac}
  7.1087 -
  7.1088 -\railalias{druletac}{drule\_tac}
  7.1089 -\railterm{druletac}
  7.1090 -
  7.1091 -\railalias{fruletac}{frule\_tac}
  7.1092 -\railterm{fruletac}
  7.1093 -
  7.1094 -\railalias{cuttac}{cut\_tac}
  7.1095 -\railterm{cuttac}
  7.1096 -
  7.1097 -\railalias{thintac}{thin\_tac}
  7.1098 -\railterm{thintac}
  7.1099 -
  7.1100 -\railalias{subgoaltac}{subgoal\_tac}
  7.1101 -\railterm{subgoaltac}
  7.1102 -
  7.1103 -\railalias{renametac}{rename\_tac}
  7.1104 -\railterm{renametac}
  7.1105 -
  7.1106 -\railalias{rotatetac}{rotate\_tac}
  7.1107 -\railterm{rotatetac}
  7.1108 -
  7.1109 -\begin{rail}
  7.1110 -  ( ruletac | eruletac | druletac | fruletac | cuttac | thintac ) goalspec?
  7.1111 -  ( insts thmref | thmrefs )
  7.1112 -  ;
  7.1113 -  subgoaltac goalspec? (prop +)
  7.1114 -  ;
  7.1115 -  renametac goalspec? (name +)
  7.1116 -  ;
  7.1117 -  rotatetac goalspec? int?
  7.1118 -  ;
  7.1119 -  'tactic' text
  7.1120 -  ;
  7.1121 -
  7.1122 -  insts: ((name '=' term) + 'and') 'in'
  7.1123 -  ;
  7.1124 -\end{rail}
  7.1125 -
  7.1126 -\begin{descr}
  7.1127 -
  7.1128 -\item [$rule_tac$ etc.] do resolution of rules with explicit instantiation.
  7.1129 -  This works the same way as the ML tactics \texttt{res_inst_tac} etc. (see
  7.1130 -  \cite[\S3]{isabelle-ref}).
  7.1131 -
  7.1132 -  Multiple rules may be only given if there is no instantiation; then
  7.1133 -  $rule_tac$ is the same as \texttt{resolve_tac} in ML (see
  7.1134 -  \cite[\S3]{isabelle-ref}).
  7.1135 -
  7.1136 -\item [$cut_tac$] inserts facts into the proof state as assumption of a
  7.1137 -  subgoal, see also \texttt{cut_facts_tac} in \cite[\S3]{isabelle-ref}.  Note
  7.1138 -  that the scope of schematic variables is spread over the main goal
  7.1139 -  statement.  Instantiations may be given as well, see also ML tactic
  7.1140 -  \texttt{cut_inst_tac} in \cite[\S3]{isabelle-ref}.
  7.1141 -
  7.1142 -\item [$thin_tac~\phi$] deletes the specified assumption from a subgoal; note
  7.1143 -  that $\phi$ may contain schematic variables.  See also \texttt{thin_tac} in
  7.1144 -  \cite[\S3]{isabelle-ref}.
  7.1145 -
  7.1146 -\item [$subgoal_tac~\phi$] adds $\phi$ as an assumption to a subgoal.  See
  7.1147 -  also \texttt{subgoal_tac} and \texttt{subgoals_tac} in
  7.1148 -  \cite[\S3]{isabelle-ref}.
  7.1149 -
  7.1150 -\item [$rename_tac~\vec x$] renames parameters of a goal according to the list
  7.1151 -  $\vec x$, which refers to the \emph{suffix} of variables.
  7.1152 -
  7.1153 -\item [$rotate_tac~n$] rotates the assumptions of a goal by $n$ positions:
  7.1154 -  from right to left if $n$ is positive, and from left to right if $n$ is
  7.1155 -  negative; the default value is $1$.  See also \texttt{rotate_tac} in
  7.1156 -  \cite[\S3]{isabelle-ref}.
  7.1157 -
  7.1158 -\item [$tactic~text$] produces a proof method from any ML text of type
  7.1159 -  \texttt{tactic}.  Apart from the usual ML environment and the current
  7.1160 -  implicit theory context, the ML code may refer to the following locally
  7.1161 -  bound values:
  7.1162 -
  7.1163 -{\footnotesize\begin{verbatim}
  7.1164 -val ctxt  : Proof.context
  7.1165 -val facts : thm list
  7.1166 -val thm   : string -> thm
  7.1167 -val thms  : string -> thm list
  7.1168 -\end{verbatim}}
  7.1169 -  Here \texttt{ctxt} refers to the current proof context, \texttt{facts}
  7.1170 -  indicates any current facts for forward-chaining, and
  7.1171 -  \texttt{thm}~/~\texttt{thms} retrieve named facts (including global
  7.1172 -  theorems) from the context.
  7.1173 -\end{descr}
  7.1174 -
  7.1175 -
  7.1176 -\subsection{The Simplifier}\label{sec:simplifier}
  7.1177 -
  7.1178 -\subsubsection{Simplification methods}
  7.1179 -
  7.1180 -\indexisarmeth{simp}\indexisarmeth{simp-all}
  7.1181 -\begin{matharray}{rcl}
  7.1182 -  simp & : & \isarmeth \\
  7.1183 -  simp_all & : & \isarmeth \\
  7.1184 -\end{matharray}
  7.1185 -
  7.1186 -\indexouternonterm{simpmod}
  7.1187 -\begin{rail}
  7.1188 -  ('simp' | 'simp\_all') ('!' ?) opt? (simpmod *)
  7.1189 -  ;
  7.1190 -
  7.1191 -  opt: '(' ('no\_asm' | 'no\_asm\_simp' | 'no\_asm\_use' | 'asm\_lr' | 'depth\_limit' ':' nat) ')'
  7.1192 -  ;
  7.1193 -  simpmod: ('add' | 'del' | 'only' | 'cong' (() | 'add' | 'del') |
  7.1194 -    'split' (() | 'add' | 'del')) ':' thmrefs
  7.1195 -  ;
  7.1196 -\end{rail}
  7.1197 -
  7.1198 -\begin{descr}
  7.1199 -
  7.1200 -\item [$simp$] invokes Isabelle's simplifier, after declaring additional rules
  7.1201 -  according to the arguments given.  Note that the \railtterm{only} modifier
  7.1202 -  first removes all other rewrite rules, congruences, and looper tactics
  7.1203 -  (including splits), and then behaves like \railtterm{add}.
  7.1204 -
  7.1205 -  \medskip The \railtterm{cong} modifiers add or delete Simplifier congruence
  7.1206 -  rules (see also \cite{isabelle-ref}), the default is to add.
  7.1207 -
  7.1208 -  \medskip The \railtterm{split} modifiers add or delete rules for the
  7.1209 -  Splitter (see also \cite{isabelle-ref}), the default is to add.  This works
  7.1210 -  only if the Simplifier method has been properly setup to include the
  7.1211 -  Splitter (all major object logics such HOL, HOLCF, FOL, ZF do this already).
  7.1212 -
  7.1213 -\item [$simp_all$] is similar to $simp$, but acts on all goals (backwards from
  7.1214 -  the last to the first one).
  7.1215 -
  7.1216 -\end{descr}
  7.1217 -
  7.1218 -By default the Simplifier methods take local assumptions fully into account,
  7.1219 -using equational assumptions in the subsequent normalization process, or
  7.1220 -simplifying assumptions themselves (cf.\ \texttt{asm_full_simp_tac} in
  7.1221 -\cite[\S10]{isabelle-ref}).  In structured proofs this is usually quite well
  7.1222 -behaved in practice: just the local premises of the actual goal are involved,
  7.1223 -additional facts may be inserted via explicit forward-chaining (using $\THEN$,
  7.1224 -$\FROMNAME$ etc.).  The full context of assumptions is only included if the
  7.1225 -``$!$'' (bang) argument is given, which should be used with some care, though.
  7.1226 -
  7.1227 -Additional Simplifier options may be specified to tune the behavior further
  7.1228 -(mostly for unstructured scripts with many accidental local facts):
  7.1229 -``$(no_asm)$'' means assumptions are ignored completely (cf.\ 
  7.1230 -\texttt{simp_tac}), ``$(no_asm_simp)$'' means assumptions are used in the
  7.1231 -simplification of the conclusion but are not themselves simplified (cf.\ 
  7.1232 -\texttt{asm_simp_tac}), and ``$(no_asm_use)$'' means assumptions are
  7.1233 -simplified but are not used in the simplification of each other or the
  7.1234 -conclusion (cf.\ \texttt{full_simp_tac}).  For compatibility reasons, there is
  7.1235 -also an option ``$(asm_lr)$'', which means that an assumption is only used for
  7.1236 -simplifying assumptions which are to the right of it (cf.\ 
  7.1237 -\texttt{asm_lr_simp_tac}).  Giving an option ``$(depth_limit: n)$'' limits the
  7.1238 -number of recursive invocations of the simplifier during conditional
  7.1239 -rewriting.
  7.1240 -
  7.1241 -\medskip
  7.1242 -
  7.1243 -The Splitter package is usually configured to work as part of the Simplifier.
  7.1244 -The effect of repeatedly applying \texttt{split_tac} can be simulated by
  7.1245 -``$(simp~only\colon~split\colon~\vec a)$''.  There is also a separate $split$
  7.1246 -method available for single-step case splitting.
  7.1247 -
  7.1248 -
  7.1249 -\subsubsection{Declaring rules}
  7.1250 -
  7.1251 -\indexisarcmd{print-simpset}
  7.1252 -\indexisaratt{simp}\indexisaratt{split}\indexisaratt{cong}
  7.1253 -\begin{matharray}{rcl}
  7.1254 -  \isarcmd{print_simpset}^* & : & \isarkeep{theory~|~proof} \\
  7.1255 -  simp & : & \isaratt \\
  7.1256 -  cong & : & \isaratt \\
  7.1257 -  split & : & \isaratt \\
  7.1258 -\end{matharray}
  7.1259 -
  7.1260 -\begin{rail}
  7.1261 -  ('simp' | 'cong' | 'split') (() | 'add' | 'del')
  7.1262 -  ;
  7.1263 -\end{rail}
  7.1264 -
  7.1265 -\begin{descr}
  7.1266 -
  7.1267 -\item [$\isarcmd{print_simpset}$] prints the collection of rules declared to
  7.1268 -  the Simplifier, which is also known as ``simpset'' internally
  7.1269 -  \cite{isabelle-ref}.  This is a diagnostic command; $undo$ does not apply.
  7.1270 -
  7.1271 -\item [$simp$] declares simplification rules.
  7.1272 -
  7.1273 -\item [$cong$] declares congruence rules.
  7.1274 -
  7.1275 -\item [$split$] declares case split rules.
  7.1276 -
  7.1277 -\end{descr}
  7.1278 -
  7.1279 -
  7.1280 -\subsubsection{Simplification procedures}
  7.1281 -
  7.1282 -\indexisarcmd{simproc-setup}
  7.1283 -\indexisaratt{simproc}
  7.1284 -\begin{matharray}{rcl}
  7.1285 -  \isarcmd{simproc_setup} & : & \isarkeep{local{\dsh}theory} \\
  7.1286 -  simproc & : & \isaratt \\
  7.1287 -\end{matharray}
  7.1288 -
  7.1289 -\begin{rail}
  7.1290 -  'simproc\_setup' name '(' (term + '|') ')' '=' text \\ ('identifier' (nameref+))?
  7.1291 -  ;
  7.1292 -
  7.1293 -  'simproc' (('add' ':')? | 'del' ':') (name+)
  7.1294 -  ;
  7.1295 -\end{rail}
  7.1296 -
  7.1297 -\begin{descr}
  7.1298 -
  7.1299 -\item [$\isarcmd{simproc_setup}$] defines a named simplification
  7.1300 -  procedure that is invoked by the Simplifier whenever any of the
  7.1301 -  given term patterns match the current redex.  The implementation,
  7.1302 -  which is provided as ML source text, needs to be of type
  7.1303 -  \verb,morphism -> simpset -> cterm -> thm option,, where the
  7.1304 -  \verb,cterm, represents the current redex $r$ and the result is
  7.1305 -  supposed to be some proven rewrite rule $r \equiv r'$ (or a
  7.1306 -  generalized version), or \verb,NONE, to indicate failure.  The
  7.1307 -  \verb,simpset, argument holds the full context of the current
  7.1308 -  Simplifier invocation, including the actual Isar proof context.  The
  7.1309 -  \verb,morphism, informs about the difference of the original
  7.1310 -  compilation context wrt.\ the one of the actual application later
  7.1311 -  on.  The optional $\isarkeyword{identifier}$ specifies theorems that
  7.1312 -  represent the logical content of the abstract theory of this
  7.1313 -  simproc.
  7.1314 -
  7.1315 -  Morphisms and identifiers are only relevant for simprocs that are
  7.1316 -  defined within a local target context, e.g.\ in a locale.
  7.1317 -
  7.1318 -\item [$simproc\;add\colon\;name$ and $simproc\;del\colon\;name$] add
  7.1319 -  or delete named simprocs to the current Simplifier context.  The
  7.1320 -  default is to add a simproc.  Note that $\isarcmd{simproc_setup}$
  7.1321 -  already adds the new simproc to the subsequent context.
  7.1322 -
  7.1323 -\end{descr}
  7.1324 -
  7.1325 -\subsubsection{Forward simplification}
  7.1326 -
  7.1327 -\indexisaratt{simplified}
  7.1328 -\begin{matharray}{rcl}
  7.1329 -  simplified & : & \isaratt \\
  7.1330 -\end{matharray}
  7.1331 -
  7.1332 -\begin{rail}
  7.1333 -  'simplified' opt? thmrefs?
  7.1334 -  ;
  7.1335 -
  7.1336 -  opt: '(' (noasm | noasmsimp | noasmuse) ')'
  7.1337 -  ;
  7.1338 -\end{rail}
  7.1339 -
  7.1340 -\begin{descr}
  7.1341 -  
  7.1342 -\item [$simplified~\vec a$] causes a theorem to be simplified, either by
  7.1343 -  exactly the specified rules $\vec a$, or the implicit Simplifier context if
  7.1344 -  no arguments are given.  The result is fully simplified by default,
  7.1345 -  including assumptions and conclusion; the options $no_asm$ etc.\ tune the
  7.1346 -  Simplifier in the same way as the for the $simp$ method.
  7.1347 -
  7.1348 -  Note that forward simplification restricts the simplifier to its most basic
  7.1349 -  operation of term rewriting; solver and looper tactics \cite{isabelle-ref}
  7.1350 -  are \emph{not} involved here.  The $simplified$ attribute should be only
  7.1351 -  rarely required under normal circumstances.
  7.1352 -
  7.1353 -\end{descr}
  7.1354 -
  7.1355 -
  7.1356 -\subsubsection{Low-level equational reasoning}
  7.1357 -
  7.1358 -\indexisarmeth{subst}\indexisarmeth{hypsubst}\indexisarmeth{split}
  7.1359 -\begin{matharray}{rcl}
  7.1360 -  subst^* & : & \isarmeth \\
  7.1361 -  hypsubst^* & : & \isarmeth \\
  7.1362 -  split^* & : & \isarmeth \\
  7.1363 -\end{matharray}
  7.1364 -
  7.1365 -\begin{rail}
  7.1366 -  'subst' ('(' 'asm' ')')? ('(' (nat+) ')')? thmref
  7.1367 -  ;
  7.1368 -  'split' ('(' 'asm' ')')? thmrefs
  7.1369 -  ;
  7.1370 -\end{rail}
  7.1371 -
  7.1372 -These methods provide low-level facilities for equational reasoning that are
  7.1373 -intended for specialized applications only.  Normally, single step
  7.1374 -calculations would be performed in a structured text (see also
  7.1375 -\S\ref{sec:calculation}), while the Simplifier methods provide the canonical
  7.1376 -way for automated normalization (see \S\ref{sec:simplifier}).
  7.1377 -
  7.1378 -\begin{descr}
  7.1379 -
  7.1380 -\item [$subst~eq$] performs a single substitution step using rule $eq$, which
  7.1381 -  may be either a meta or object equality.
  7.1382 -
  7.1383 -\item [$subst~(asm)~eq$] substitutes in an assumption.
  7.1384 -
  7.1385 -\item [$subst~(i \dots j)~eq$] performs several substitutions in the
  7.1386 -conclusion. The numbers $i$ to $j$ indicate the positions to substitute at.
  7.1387 -Positions are ordered from the top of the term tree moving down from left to
  7.1388 -right. For example, in $(a+b)+(c+d)$ there are three positions where
  7.1389 -commutativity of $+$ is applicable: 1 refers to the whole term, 2 to $a+b$
  7.1390 -and 3 to $c+d$. If the positions in the list $(i \dots j)$ are
  7.1391 -non-overlapping (e.g. $(2~3)$ in $(a+b)+(c+d)$) you may assume all
  7.1392 -substitutions are performed simultaneously. Otherwise the behaviour of
  7.1393 -$subst$ is not specified.
  7.1394 -
  7.1395 -\item [$subst~(asm)~(i \dots j)~eq$] performs the substitutions in the
  7.1396 -assumptions. Positions $1 \dots i@1$ refer
  7.1397 -to assumption 1, positions $i@1+1 \dots i@2$ to assumption 2, and so on.
  7.1398 -
  7.1399 -\item [$hypsubst$] performs substitution using some assumption; this only
  7.1400 -  works for equations of the form $x = t$ where $x$ is a free or bound
  7.1401 -  variable.
  7.1402 -
  7.1403 -\item [$split~\vec a$] performs single-step case splitting using rules $thms$.
  7.1404 -  By default, splitting is performed in the conclusion of a goal; the $asm$
  7.1405 -  option indicates to operate on assumptions instead.
  7.1406 -  
  7.1407 -  Note that the $simp$ method already involves repeated application of split
  7.1408 -  rules as declared in the current context.
  7.1409 -\end{descr}
  7.1410 -
  7.1411 -
  7.1412 -\subsection{The Classical Reasoner}\label{sec:classical}
  7.1413 -
  7.1414 -\subsubsection{Basic methods}
  7.1415 -
  7.1416 -\indexisarmeth{rule}\indexisarmeth{default}\indexisarmeth{contradiction}
  7.1417 -\indexisarmeth{intro}\indexisarmeth{elim}
  7.1418 -\begin{matharray}{rcl}
  7.1419 -  rule & : & \isarmeth \\
  7.1420 -  contradiction & : & \isarmeth \\
  7.1421 -  intro & : & \isarmeth \\
  7.1422 -  elim & : & \isarmeth \\
  7.1423 -\end{matharray}
  7.1424 -
  7.1425 -\begin{rail}
  7.1426 -  ('rule' | 'intro' | 'elim') thmrefs?
  7.1427 -  ;
  7.1428 -\end{rail}
  7.1429 -
  7.1430 -\begin{descr}
  7.1431 -
  7.1432 -\item [$rule$] as offered by the classical reasoner is a refinement over the
  7.1433 -  primitive one (see \S\ref{sec:pure-meth-att}).  Both versions essentially
  7.1434 -  work the same, but the classical version observes the classical rule context
  7.1435 -  in addition to that of Isabelle/Pure.
  7.1436 -
  7.1437 -  Common object logics (HOL, ZF, etc.) declare a rich collection of classical
  7.1438 -  rules (even if these would qualify as intuitionistic ones), but only few
  7.1439 -  declarations to the rule context of Isabelle/Pure
  7.1440 -  (\S\ref{sec:pure-meth-att}).
  7.1441 -
  7.1442 -\item [$contradiction$] solves some goal by contradiction, deriving any result
  7.1443 -  from both $\lnot A$ and $A$.  Chained facts, which are guaranteed to
  7.1444 -  participate, may appear in either order.
  7.1445 -
  7.1446 -\item [$intro$ and $elim$] repeatedly refine some goal by intro- or
  7.1447 -  elim-resolution, after having inserted any chained facts.  Exactly the rules
  7.1448 -  given as arguments are taken into account; this allows fine-tuned
  7.1449 -  decomposition of a proof problem, in contrast to common automated tools.
  7.1450 -
  7.1451 -\end{descr}
  7.1452 -
  7.1453 -
  7.1454 -\subsubsection{Automated methods}
  7.1455 -
  7.1456 -\indexisarmeth{blast}\indexisarmeth{fast}\indexisarmeth{slow}
  7.1457 -\indexisarmeth{best}\indexisarmeth{safe}\indexisarmeth{clarify}
  7.1458 -\begin{matharray}{rcl}
  7.1459 -  blast & : & \isarmeth \\
  7.1460 -  fast & : & \isarmeth \\
  7.1461 -  slow & : & \isarmeth \\
  7.1462 -  best & : & \isarmeth \\
  7.1463 -  safe & : & \isarmeth \\
  7.1464 -  clarify & : & \isarmeth \\
  7.1465 -\end{matharray}
  7.1466 -
  7.1467 -\indexouternonterm{clamod}
  7.1468 -\begin{rail}
  7.1469 -  'blast' ('!' ?) nat? (clamod *)
  7.1470 -  ;
  7.1471 -  ('fast' | 'slow' | 'best' | 'safe' | 'clarify') ('!' ?) (clamod *)
  7.1472 -  ;
  7.1473 -
  7.1474 -  clamod: (('intro' | 'elim' | 'dest') ('!' | () | '?') | 'del') ':' thmrefs
  7.1475 -  ;
  7.1476 -\end{rail}
  7.1477 -
  7.1478 -\begin{descr}
  7.1479 -\item [$blast$] refers to the classical tableau prover (see \texttt{blast_tac}
  7.1480 -  in \cite[\S11]{isabelle-ref}).  The optional argument specifies a
  7.1481 -  user-supplied search bound (default 20).
  7.1482 -\item [$fast$, $slow$, $best$, $safe$, and $clarify$] refer to the generic
  7.1483 -  classical reasoner.  See \texttt{fast_tac}, \texttt{slow_tac},
  7.1484 -  \texttt{best_tac}, \texttt{safe_tac}, and \texttt{clarify_tac} in
  7.1485 -  \cite[\S11]{isabelle-ref} for more information.
  7.1486 -\end{descr}
  7.1487 -
  7.1488 -Any of the above methods support additional modifiers of the context of
  7.1489 -classical rules.  Their semantics is analogous to the attributes given before.
  7.1490 -Facts provided by forward chaining are inserted into the goal before
  7.1491 -commencing proof search.  The ``!''~argument causes the full context of
  7.1492 -assumptions to be included as well.
  7.1493 -
  7.1494 -
  7.1495 -\subsubsection{Combined automated methods}\label{sec:clasimp}
  7.1496 -
  7.1497 -\indexisarmeth{auto}\indexisarmeth{force}\indexisarmeth{clarsimp}
  7.1498 -\indexisarmeth{fastsimp}\indexisarmeth{slowsimp}\indexisarmeth{bestsimp}
  7.1499 -\begin{matharray}{rcl}
  7.1500 -  auto & : & \isarmeth \\
  7.1501 -  force & : & \isarmeth \\
  7.1502 -  clarsimp & : & \isarmeth \\
  7.1503 -  fastsimp & : & \isarmeth \\
  7.1504 -  slowsimp & : & \isarmeth \\
  7.1505 -  bestsimp & : & \isarmeth \\
  7.1506 -\end{matharray}
  7.1507 -
  7.1508 -\indexouternonterm{clasimpmod}
  7.1509 -\begin{rail}
  7.1510 -  'auto' '!'? (nat nat)? (clasimpmod *)
  7.1511 -  ;
  7.1512 -  ('force' | 'clarsimp' | 'fastsimp' | 'slowsimp' | 'bestsimp') '!'? (clasimpmod *)
  7.1513 -  ;
  7.1514 -
  7.1515 -  clasimpmod: ('simp' (() | 'add' | 'del' | 'only') |
  7.1516 -    ('cong' | 'split') (() | 'add' | 'del') |
  7.1517 -    'iff' (((() | 'add') '?'?) | 'del') |
  7.1518 -    (('intro' | 'elim' | 'dest') ('!' | () | '?') | 'del')) ':' thmrefs
  7.1519 -\end{rail}
  7.1520 -
  7.1521 -\begin{descr}
  7.1522 -\item [$auto$, $force$, $clarsimp$, $fastsimp$, $slowsimp$, and $bestsimp$]
  7.1523 -  provide access to Isabelle's combined simplification and classical reasoning
  7.1524 -  tactics.  These correspond to \texttt{auto_tac}, \texttt{force_tac},
  7.1525 -  \texttt{clarsimp_tac}, and Classical Reasoner tactics with the Simplifier
  7.1526 -  added as wrapper, see \cite[\S11]{isabelle-ref} for more information.  The
  7.1527 -  modifier arguments correspond to those given in \S\ref{sec:simplifier} and
  7.1528 -  \S\ref{sec:classical}.  Just note that the ones related to the Simplifier
  7.1529 -  are prefixed by \railtterm{simp} here.
  7.1530 -
  7.1531 -  Facts provided by forward chaining are inserted into the goal before doing
  7.1532 -  the search.  The ``!''~argument causes the full context of assumptions to be
  7.1533 -  included as well.
  7.1534 -\end{descr}
  7.1535 -
  7.1536 -
  7.1537 -\subsubsection{Declaring rules}
  7.1538 -
  7.1539 -\indexisarcmd{print-claset}
  7.1540 -\indexisaratt{intro}\indexisaratt{elim}\indexisaratt{dest}
  7.1541 -\indexisaratt{iff}\indexisaratt{rule}
  7.1542 -\begin{matharray}{rcl}
  7.1543 -  \isarcmd{print_claset}^* & : & \isarkeep{theory~|~proof} \\
  7.1544 -  intro & : & \isaratt \\
  7.1545 -  elim & : & \isaratt \\
  7.1546 -  dest & : & \isaratt \\
  7.1547 -  rule & : & \isaratt \\
  7.1548 -  iff & : & \isaratt \\
  7.1549 -\end{matharray}
  7.1550 -
  7.1551 -\begin{rail}
  7.1552 -  ('intro' | 'elim' | 'dest') ('!' | () | '?') nat?
  7.1553 -  ;
  7.1554 -  'rule' 'del'
  7.1555 -  ;
  7.1556 -  'iff' (((() | 'add') '?'?) | 'del')
  7.1557 -  ;
  7.1558 -\end{rail}
  7.1559 -
  7.1560 -\begin{descr}
  7.1561 -
  7.1562 -\item [$\isarcmd{print_claset}$] prints the collection of rules declared to
  7.1563 -  the Classical Reasoner, which is also known as ``claset'' internally
  7.1564 -  \cite{isabelle-ref}.  This is a diagnostic command; $undo$ does not apply.
  7.1565 -  
  7.1566 -\item [$intro$, $elim$, and $dest$] declare introduction, elimination, and
  7.1567 -  destruction rules, respectively.  By default, rules are considered as
  7.1568 -  \emph{unsafe} (i.e.\ not applied blindly without backtracking), while a
  7.1569 -  single ``!'' classifies as \emph{safe}.  Rule declarations marked by ``?''
  7.1570 -  coincide with those of Isabelle/Pure, cf.\ \S\ref{sec:pure-meth-att} (i.e.\ 
  7.1571 -  are only applied in single steps of the $rule$ method).  The optional
  7.1572 -  natural number specifies an explicit weight argument, which is ignored by
  7.1573 -  automated tools, but determines the search order of single rule steps.
  7.1574 -
  7.1575 -\item [$rule~del$] deletes introduction, elimination, or destruction rules from
  7.1576 -  the context.
  7.1577 -
  7.1578 -\item [$iff$] declares logical equivalences to the Simplifier and the
  7.1579 -  Classical reasoner at the same time.  Non-conditional rules result in a
  7.1580 -  ``safe'' introduction and elimination pair; conditional ones are considered
  7.1581 -  ``unsafe''.  Rules with negative conclusion are automatically inverted
  7.1582 -  (using $\lnot$ elimination internally).
  7.1583 -
  7.1584 -  The ``?'' version of $iff$ declares rules to the Isabelle/Pure context only,
  7.1585 -  and omits the Simplifier declaration.
  7.1586 -
  7.1587 -\end{descr}
  7.1588 -
  7.1589 -
  7.1590 -\subsubsection{Classical operations}
  7.1591 -
  7.1592 -\indexisaratt{swapped}
  7.1593 -
  7.1594 -\begin{matharray}{rcl}
  7.1595 -  swapped & : & \isaratt \\
  7.1596 -\end{matharray}
  7.1597 -
  7.1598 -\begin{descr}
  7.1599 -
  7.1600 -\item [$swapped$] turns an introduction rule into an elimination, by resolving
  7.1601 -  with the classical swap principle $(\lnot B \Imp A) \Imp (\lnot A \Imp B)$.
  7.1602 -
  7.1603 -\end{descr}
  7.1604 -
  7.1605 -
  7.1606 -\subsection{Proof by cases and induction}\label{sec:cases-induct}
  7.1607 -
  7.1608 -\subsubsection{Rule contexts}
  7.1609 -
  7.1610 -\indexisarcmd{case}\indexisarcmd{print-cases}
  7.1611 -\indexisaratt{case-names}\indexisaratt{case-conclusion}
  7.1612 -\indexisaratt{params}\indexisaratt{consumes}
  7.1613 -\begin{matharray}{rcl}
  7.1614 -  \isarcmd{case} & : & \isartrans{proof(state)}{proof(state)} \\
  7.1615 -  \isarcmd{print_cases}^* & : & \isarkeep{proof} \\
  7.1616 -  case_names & : & \isaratt \\
  7.1617 -  case_conclusion & : & \isaratt \\
  7.1618 -  params & : & \isaratt \\
  7.1619 -  consumes & : & \isaratt \\
  7.1620 -\end{matharray}
  7.1621 -
  7.1622 -The puristic way to build up Isar proof contexts is by explicit language
  7.1623 -elements like $\FIXNAME$, $\ASSUMENAME$, $\LET$ (see
  7.1624 -\S\ref{sec:proof-context}).  This is adequate for plain natural deduction, but
  7.1625 -easily becomes unwieldy in concrete verification tasks, which typically
  7.1626 -involve big induction rules with several cases.
  7.1627 -
  7.1628 -The $\CASENAME$ command provides a shorthand to refer to a local context
  7.1629 -symbolically: certain proof methods provide an environment of named ``cases''
  7.1630 -of the form $c\colon \vec x, \vec \phi$; the effect of ``$\CASE{c}$'' is then
  7.1631 -equivalent to ``$\FIX{\vec x}~\ASSUME{c}{\vec\phi}$''.  Term bindings may be
  7.1632 -covered as well, notably $\Var{case}$ for the main conclusion.
  7.1633 -
  7.1634 -By default, the ``terminology'' $\vec x$ of a case value is marked as hidden,
  7.1635 -i.e.\ there is no way to refer to such parameters in the subsequent proof
  7.1636 -text.  After all, original rule parameters stem from somewhere outside of the
  7.1637 -current proof text.  By using the explicit form ``$\CASE{(c~\vec y)}$''
  7.1638 -instead, the proof author is able to chose local names that fit nicely into
  7.1639 -the current context.
  7.1640 -
  7.1641 -\medskip
  7.1642 -
  7.1643 -It is important to note that proper use of $\CASENAME$ does not provide means
  7.1644 -to peek at the current goal state, which is not directly observable in Isar!
  7.1645 -Nonetheless, goal refinement commands do provide named cases $goal@i$ for each
  7.1646 -subgoal $i = 1, \dots, n$ of the resulting goal state.  Using this feature
  7.1647 -requires great care, because some bits of the internal tactical machinery
  7.1648 -intrude the proof text.  In particular, parameter names stemming from the
  7.1649 -left-over of automated reasoning tools are usually quite unpredictable.
  7.1650 -
  7.1651 -Under normal circumstances, the text of cases emerge from standard elimination
  7.1652 -or induction rules, which in turn are derived from previous theory
  7.1653 -specifications in a canonical way (say from $\isarkeyword{inductive}$
  7.1654 -definitions).
  7.1655 -
  7.1656 -\medskip Proper cases are only available if both the proof method and the
  7.1657 -rules involved support this.  By using appropriate attributes, case names,
  7.1658 -conclusions, and parameters may be also declared by hand.  Thus variant
  7.1659 -versions of rules that have been derived manually become ready to use in
  7.1660 -advanced case analysis later.
  7.1661 -
  7.1662 -\begin{rail}
  7.1663 -  'case' (caseref | '(' caseref ((name | underscore) +) ')')
  7.1664 -  ;
  7.1665 -  caseref: nameref attributes?
  7.1666 -  ;
  7.1667 -
  7.1668 -  'case\_names' (name +)
  7.1669 -  ;
  7.1670 -  'case\_conclusion' name (name *)
  7.1671 -  ;
  7.1672 -  'params' ((name *) + 'and')
  7.1673 -  ;
  7.1674 -  'consumes' nat?
  7.1675 -  ;
  7.1676 -\end{rail}
  7.1677 -
  7.1678 -\begin{descr}
  7.1679 -  
  7.1680 -\item [$\CASE{(c~\vec x)}$] invokes a named local context $c\colon \vec x,
  7.1681 -  \vec \phi$, as provided by an appropriate proof method (such as $cases$ and
  7.1682 -  $induct$).  The command ``$\CASE{(c~\vec x)}$'' abbreviates ``$\FIX{\vec
  7.1683 -    x}~\ASSUME{c}{\vec\phi}$''.
  7.1684 -
  7.1685 -\item [$\isarkeyword{print_cases}$] prints all local contexts of the current
  7.1686 -  state, using Isar proof language notation.  This is a diagnostic command;
  7.1687 -  $undo$ does not apply.
  7.1688 -  
  7.1689 -\item [$case_names~\vec c$] declares names for the local contexts of premises
  7.1690 -  of a theorem; $\vec c$ refers to the \emph{suffix} of the list of premises.
  7.1691 -  
  7.1692 -\item [$case_conclusion~c~\vec d$] declares names for the conclusions of a
  7.1693 -  named premise $c$; here $\vec d$ refers to the prefix of arguments of a
  7.1694 -  logical formula built by nesting a binary connective (e.g.\ $\lor$).
  7.1695 -  
  7.1696 -  Note that proof methods such as $induct$ and $coinduct$ already provide a
  7.1697 -  default name for the conclusion as a whole.  The need to name subformulas
  7.1698 -  only arises with cases that split into several sub-cases, as in common
  7.1699 -  co-induction rules.
  7.1700 -
  7.1701 -\item [$params~\vec p@1 \dots \vec p@n$] renames the innermost parameters of
  7.1702 -  premises $1, \dots, n$ of some theorem.  An empty list of names may be given
  7.1703 -  to skip positions, leaving the present parameters unchanged.
  7.1704 -  
  7.1705 -  Note that the default usage of case rules does \emph{not} directly expose
  7.1706 -  parameters to the proof context.
  7.1707 -  
  7.1708 -\item [$consumes~n$] declares the number of ``major premises'' of a rule,
  7.1709 -  i.e.\ the number of facts to be consumed when it is applied by an
  7.1710 -  appropriate proof method.  The default value of $consumes$ is $n = 1$, which
  7.1711 -  is appropriate for the usual kind of cases and induction rules for inductive
  7.1712 -  sets (cf.\ \S\ref{sec:hol-inductive}).  Rules without any $consumes$
  7.1713 -  declaration given are treated as if $consumes~0$ had been specified.
  7.1714 -  
  7.1715 -  Note that explicit $consumes$ declarations are only rarely needed; this is
  7.1716 -  already taken care of automatically by the higher-level $cases$, $induct$,
  7.1717 -  and $coinduct$ declarations.
  7.1718 -
  7.1719 -\end{descr}
  7.1720 -
  7.1721 -
  7.1722 -\subsubsection{Proof methods}
  7.1723 -
  7.1724 -\indexisarmeth{cases}\indexisarmeth{induct}\indexisarmeth{coinduct}
  7.1725 -\begin{matharray}{rcl}
  7.1726 -  cases & : & \isarmeth \\
  7.1727 -  induct & : & \isarmeth \\
  7.1728 -  coinduct & : & \isarmeth \\
  7.1729 -\end{matharray}
  7.1730 -
  7.1731 -The $cases$, $induct$, and $coinduct$ methods provide a uniform
  7.1732 -interface to common proof techniques over datatypes, inductive
  7.1733 -predicates (or sets), recursive functions etc.  The corresponding
  7.1734 -rules may be specified and instantiated in a casual manner.
  7.1735 -Furthermore, these methods provide named local contexts that may be
  7.1736 -invoked via the $\CASENAME$ proof command within the subsequent proof
  7.1737 -text.  This accommodates compact proof texts even when reasoning about
  7.1738 -large specifications.
  7.1739 -
  7.1740 -The $induct$ method also provides some additional infrastructure in order to
  7.1741 -be applicable to structure statements (either using explicit meta-level
  7.1742 -connectives, or including facts and parameters separately).  This avoids
  7.1743 -cumbersome encoding of ``strengthened'' inductive statements within the
  7.1744 -object-logic.
  7.1745 -
  7.1746 -\begin{rail}
  7.1747 -  'cases' (insts * 'and') rule?
  7.1748 -  ;
  7.1749 -  'induct' (definsts * 'and') \\ arbitrary? taking? rule?
  7.1750 -  ;
  7.1751 -  'coinduct' insts taking rule?
  7.1752 -  ;
  7.1753 -
  7.1754 -  rule: ('type' | 'pred' | 'set') ':' (nameref +) | 'rule' ':' (thmref +)
  7.1755 -  ;
  7.1756 -  definst: name ('==' | equiv) term | inst
  7.1757 -  ;
  7.1758 -  definsts: ( definst *)
  7.1759 -  ;
  7.1760 -  arbitrary: 'arbitrary' ':' ((term *) 'and' +)
  7.1761 -  ;
  7.1762 -  taking: 'taking' ':' insts
  7.1763 -  ;
  7.1764 -\end{rail}
  7.1765 -
  7.1766 -\begin{descr}
  7.1767 -
  7.1768 -\item [$cases~insts~R$] applies method $rule$ with an appropriate case
  7.1769 -  distinction theorem, instantiated to the subjects $insts$.  Symbolic case
  7.1770 -  names are bound according to the rule's local contexts.
  7.1771 -
  7.1772 -  The rule is determined as follows, according to the facts and arguments
  7.1773 -  passed to the $cases$ method:
  7.1774 -  \begin{matharray}{llll}
  7.1775 -    \Text{facts}    &       & \Text{arguments} & \Text{rule} \\\hline
  7.1776 -                    & cases &           & \Text{classical case split} \\
  7.1777 -                    & cases & t         & \Text{datatype exhaustion (type of $t$)} \\
  7.1778 -    \edrv A\; t     & cases & \dots     & \Text{inductive predicate/set elimination (of $A$)} \\
  7.1779 -    \dots           & cases & \dots ~ R & \Text{explicit rule $R$} \\
  7.1780 -  \end{matharray}
  7.1781 -
  7.1782 -  Several instantiations may be given, referring to the \emph{suffix} of
  7.1783 -  premises of the case rule; within each premise, the \emph{prefix} of
  7.1784 -  variables is instantiated.  In most situations, only a single term needs to
  7.1785 -  be specified; this refers to the first variable of the last premise (it is
  7.1786 -  usually the same for all cases).
  7.1787 -
  7.1788 -\item [$induct~insts~R$] is analogous to the $cases$ method, but refers to
  7.1789 -  induction rules, which are determined as follows:
  7.1790 -  \begin{matharray}{llll}
  7.1791 -    \Text{facts}    &        & \Text{arguments} & \Text{rule} \\\hline
  7.1792 -                    & induct & P ~ x ~ \dots & \Text{datatype induction (type of $x$)} \\
  7.1793 -    \edrv A\; x     & induct & \dots         & \Text{predicate/set induction (of $A$)} \\
  7.1794 -    \dots           & induct & \dots ~ R     & \Text{explicit rule $R$} \\
  7.1795 -  \end{matharray}
  7.1796 -  
  7.1797 -  Several instantiations may be given, each referring to some part of
  7.1798 -  a mutual inductive definition or datatype --- only related partial
  7.1799 -  induction rules may be used together, though.  Any of the lists of
  7.1800 -  terms $P, x, \dots$ refers to the \emph{suffix} of variables present
  7.1801 -  in the induction rule.  This enables the writer to specify only
  7.1802 -  induction variables, or both predicates and variables, for example.
  7.1803 -  
  7.1804 -  Instantiations may be definitional: equations $x \equiv t$ introduce local
  7.1805 -  definitions, which are inserted into the claim and discharged after applying
  7.1806 -  the induction rule.  Equalities reappear in the inductive cases, but have
  7.1807 -  been transformed according to the induction principle being involved here.
  7.1808 -  In order to achieve practically useful induction hypotheses, some variables
  7.1809 -  occurring in $t$ need to be fixed (see below).
  7.1810 -  
  7.1811 -  The optional ``$arbitrary\colon \vec x$'' specification generalizes
  7.1812 -  variables $\vec x$ of the original goal before applying induction.  Thus
  7.1813 -  induction hypotheses may become sufficiently general to get the proof
  7.1814 -  through.  Together with definitional instantiations, one may effectively
  7.1815 -  perform induction over expressions of a certain structure.
  7.1816 -  
  7.1817 -  The optional ``$taking\colon \vec t$'' specification provides additional
  7.1818 -  instantiations of a prefix of pending variables in the rule.  Such schematic
  7.1819 -  induction rules rarely occur in practice, though.
  7.1820 -
  7.1821 -\item [$coinduct~inst~R$] is analogous to the $induct$ method, but refers to
  7.1822 -  coinduction rules, which are determined as follows:
  7.1823 -  \begin{matharray}{llll}
  7.1824 -    \Text{goal}     &          & \Text{arguments} & \Text{rule} \\\hline
  7.1825 -                    & coinduct & x ~ \dots        & \Text{type coinduction (type of $x$)} \\
  7.1826 -    A\; x           & coinduct & \dots            & \Text{predicate/set coinduction (of $A$)} \\
  7.1827 -    \dots           & coinduct & \dots ~ R        & \Text{explicit rule $R$} \\
  7.1828 -  \end{matharray}
  7.1829 -  
  7.1830 -  Coinduction is the dual of induction.  Induction essentially
  7.1831 -  eliminates $A\; x$ towards a generic result $P\; x$, while
  7.1832 -  coinduction introduces $A\; x$ starting with $B\; x$, for a suitable
  7.1833 -  ``bisimulation'' $B$.  The cases of a coinduct rule are typically
  7.1834 -  named after the predicates or sets being covered, while the
  7.1835 -  conclusions consist of several alternatives being named after the
  7.1836 -  individual destructor patterns.
  7.1837 -  
  7.1838 -  The given instantiation refers to the \emph{suffix} of variables
  7.1839 -  occurring in the rule's major premise, or conclusion if unavailable.
  7.1840 -  An additional ``$taking: \vec t$'' specification may be required in
  7.1841 -  order to specify the bisimulation to be used in the coinduction
  7.1842 -  step.
  7.1843 -
  7.1844 -\end{descr}
  7.1845 -
  7.1846 -Above methods produce named local contexts, as determined by the instantiated
  7.1847 -rule as given in the text.  Beyond that, the $induct$ and $coinduct$ methods
  7.1848 -guess further instantiations from the goal specification itself.  Any
  7.1849 -persisting unresolved schematic variables of the resulting rule will render
  7.1850 -the the corresponding case invalid.  The term binding
  7.1851 -$\Var{case}$\indexisarvar{case} for the conclusion will be provided with each
  7.1852 -case, provided that term is fully specified.
  7.1853 -
  7.1854 -The $\isarkeyword{print_cases}$ command prints all named cases present in the
  7.1855 -current proof state.
  7.1856 -
  7.1857 -\medskip
  7.1858 -
  7.1859 -Despite the additional infrastructure, both $cases$ and $coinduct$ merely
  7.1860 -apply a certain rule, after instantiation, while conforming due to the usual
  7.1861 -way of monotonic natural deduction: the context of a structured statement
  7.1862 -$\All{\vec x} \vec\phi \Imp \dots$ reappears unchanged after the case split.
  7.1863 -
  7.1864 -The $induct$ method is significantly different in this respect: the meta-level
  7.1865 -structure is passed through the ``recursive'' course involved in the
  7.1866 -induction.  Thus the original statement is basically replaced by separate
  7.1867 -copies, corresponding to the induction hypotheses and conclusion; the original
  7.1868 -goal context is no longer available.  Thus local assumptions, fixed parameters
  7.1869 -and definitions effectively participate in the inductive rephrasing of the
  7.1870 -original statement.
  7.1871 -
  7.1872 -In induction proofs, local assumptions introduced by cases are split into two
  7.1873 -different kinds: $hyps$ stemming from the rule and $prems$ from the goal
  7.1874 -statement.  This is reflected in the extracted cases accordingly, so invoking
  7.1875 -``$\isarcmd{case}~c$'' will provide separate facts $c\mathord.hyps$ and
  7.1876 -$c\mathord.prems$, as well as fact $c$ to hold the all-inclusive list.
  7.1877 -
  7.1878 -\medskip
  7.1879 -
  7.1880 -Facts presented to either method are consumed according to the number
  7.1881 -of ``major premises'' of the rule involved, which is usually $0$ for
  7.1882 -plain cases and induction rules of datatypes etc.\ and $1$ for rules
  7.1883 -of inductive predicates or sets and the like.  The remaining facts are
  7.1884 -inserted into the goal verbatim before the actual $cases$, $induct$,
  7.1885 -or $coinduct$ rule is applied.
  7.1886 -
  7.1887 -
  7.1888 -\subsubsection{Declaring rules}
  7.1889 -
  7.1890 -\indexisarcmd{print-induct-rules}\indexisaratt{cases}\indexisaratt{induct}\indexisaratt{coinduct}
  7.1891 -\begin{matharray}{rcl}
  7.1892 -  \isarcmd{print_induct_rules}^* & : & \isarkeep{theory~|~proof} \\
  7.1893 -  cases & : & \isaratt \\
  7.1894 -  induct & : & \isaratt \\
  7.1895 -  coinduct & : & \isaratt \\
  7.1896 -\end{matharray}
  7.1897 -
  7.1898 -\begin{rail}
  7.1899 -  'cases' spec
  7.1900 -  ;
  7.1901 -  'induct' spec
  7.1902 -  ;
  7.1903 -  'coinduct' spec
  7.1904 -  ;
  7.1905 -
  7.1906 -  spec: ('type' | 'pred' | 'set') ':' nameref
  7.1907 -  ;
  7.1908 -\end{rail}
  7.1909 -
  7.1910 -\begin{descr}
  7.1911 -
  7.1912 -\item [$\isarkeyword{print_induct_rules}$] prints cases and induct
  7.1913 -  rules for predicates (or sets) and types of the current context.
  7.1914 -  
  7.1915 -\item [$cases$, $induct$, and $coinduct$] (as attributes) augment the
  7.1916 -  corresponding context of rules for reasoning about (co)inductive
  7.1917 -  predicates (or sets) and types, using the corresponding methods of
  7.1918 -  the same name.  Certain definitional packages of object-logics
  7.1919 -  usually declare emerging cases and induction rules as expected, so
  7.1920 -  users rarely need to intervene.
  7.1921 -  
  7.1922 -  Manual rule declarations usually refer to the $case_names$ and
  7.1923 -  $params$ attributes to adjust names of cases and parameters of a
  7.1924 -  rule; the $consumes$ declaration is taken care of automatically:
  7.1925 -  $consumes~0$ is specified for ``type'' rules and $consumes~1$ for
  7.1926 -  ``predicate'' / ``set'' rules.
  7.1927 -
  7.1928 -\end{descr}
  7.1929 -
  7.1930 -%%% Local Variables:
  7.1931 -%%% mode: latex
  7.1932 -%%% TeX-master: "isar-ref"
  7.1933 -%%% End:
     8.1 --- a/doc-src/IsarRef/isar-ref.tex	Sun May 04 21:34:44 2008 +0200
     8.2 +++ b/doc-src/IsarRef/isar-ref.tex	Mon May 05 15:23:21 2008 +0200
     8.3 @@ -72,7 +72,7 @@
     8.4  \input{basics.tex}
     8.5  \input{Thy/document/syntax.tex}
     8.6  \input{Thy/document/pure.tex}
     8.7 -\input{generic.tex}
     8.8 +\input{Thy/document/Generic.tex}
     8.9  \input{logics.tex}
    8.10  
    8.11  \appendix