tuned proofs;
authorwenzelm
Wed, 25 Sep 2013 12:42:56 +0200
changeset 5501008594daabcd9
parent 55009 6e69f9ca8f1c
child 55011 7cec5a4d5532
tuned proofs;
src/HOL/Library/Extended_Real.thy
     1.1 --- a/src/HOL/Library/Extended_Real.thy	Wed Sep 25 11:12:59 2013 +0200
     1.2 +++ b/src/HOL/Library/Extended_Real.thy	Wed Sep 25 12:42:56 2013 +0200
     1.3 @@ -24,23 +24,29 @@
     1.4  
     1.5  instantiation ereal :: uminus
     1.6  begin
     1.7 -  fun uminus_ereal where
     1.8 -    "- (ereal r) = ereal (- r)"
     1.9 -  | "- PInfty = MInfty"
    1.10 -  | "- MInfty = PInfty"
    1.11 -  instance ..
    1.12 +
    1.13 +fun uminus_ereal where
    1.14 +  "- (ereal r) = ereal (- r)"
    1.15 +| "- PInfty = MInfty"
    1.16 +| "- MInfty = PInfty"
    1.17 +
    1.18 +instance ..
    1.19 +
    1.20  end
    1.21  
    1.22  instantiation ereal :: infinity
    1.23  begin
    1.24 -  definition "(\<infinity>::ereal) = PInfty"
    1.25 -  instance ..
    1.26 +
    1.27 +definition "(\<infinity>::ereal) = PInfty"
    1.28 +instance ..
    1.29 +
    1.30  end
    1.31  
    1.32  declare [[coercion "ereal :: real \<Rightarrow> ereal"]]
    1.33  
    1.34  lemma ereal_uminus_uminus[simp]:
    1.35 -  fixes a :: ereal shows "- (- a) = a"
    1.36 +  fixes a :: ereal
    1.37 +  shows "- (- a) = a"
    1.38    by (cases a) simp_all
    1.39  
    1.40  lemma
    1.41 @@ -59,7 +65,7 @@
    1.42  
    1.43  lemma [code_unfold]:
    1.44    "\<infinity> = PInfty"
    1.45 -  "-PInfty = MInfty"
    1.46 +  "- PInfty = MInfty"
    1.47    by simp_all
    1.48  
    1.49  lemma inj_ereal[simp]: "inj_on ereal A"
    1.50 @@ -76,77 +82,97 @@
    1.51  lemmas ereal3_cases = ereal2_cases[case_product ereal_cases]
    1.52  
    1.53  lemma ereal_uminus_eq_iff[simp]:
    1.54 -  fixes a b :: ereal shows "-a = -b \<longleftrightarrow> a = b"
    1.55 +  fixes a b :: ereal
    1.56 +  shows "-a = -b \<longleftrightarrow> a = b"
    1.57    by (cases rule: ereal2_cases[of a b]) simp_all
    1.58  
    1.59  function of_ereal :: "ereal \<Rightarrow> real" where
    1.60 -"of_ereal (ereal r) = r" |
    1.61 -"of_ereal \<infinity> = 0" |
    1.62 -"of_ereal (-\<infinity>) = 0"
    1.63 +  "of_ereal (ereal r) = r"
    1.64 +| "of_ereal \<infinity> = 0"
    1.65 +| "of_ereal (-\<infinity>) = 0"
    1.66    by (auto intro: ereal_cases)
    1.67 -termination proof qed (rule wf_empty)
    1.68 +termination by default (rule wf_empty)
    1.69  
    1.70  defs (overloaded)
    1.71    real_of_ereal_def [code_unfold]: "real \<equiv> of_ereal"
    1.72  
    1.73  lemma real_of_ereal[simp]:
    1.74 -    "real (- x :: ereal) = - (real x)"
    1.75 -    "real (ereal r) = r"
    1.76 -    "real (\<infinity>::ereal) = 0"
    1.77 +  "real (- x :: ereal) = - (real x)"
    1.78 +  "real (ereal r) = r"
    1.79 +  "real (\<infinity>::ereal) = 0"
    1.80    by (cases x) (simp_all add: real_of_ereal_def)
    1.81  
    1.82  lemma range_ereal[simp]: "range ereal = UNIV - {\<infinity>, -\<infinity>}"
    1.83  proof safe
    1.84 -  fix x assume "x \<notin> range ereal" "x \<noteq> \<infinity>"
    1.85 -  then show "x = -\<infinity>" by (cases x) auto
    1.86 +  fix x
    1.87 +  assume "x \<notin> range ereal" "x \<noteq> \<infinity>"
    1.88 +  then show "x = -\<infinity>"
    1.89 +    by (cases x) auto
    1.90  qed auto
    1.91  
    1.92  lemma ereal_range_uminus[simp]: "range uminus = (UNIV::ereal set)"
    1.93  proof safe
    1.94 -  fix x :: ereal show "x \<in> range uminus" by (intro image_eqI[of _ _ "-x"]) auto
    1.95 +  fix x :: ereal
    1.96 +  show "x \<in> range uminus"
    1.97 +    by (intro image_eqI[of _ _ "-x"]) auto
    1.98  qed auto
    1.99  
   1.100  instantiation ereal :: abs
   1.101  begin
   1.102 -  function abs_ereal where
   1.103 -    "\<bar>ereal r\<bar> = ereal \<bar>r\<bar>"
   1.104 -  | "\<bar>-\<infinity>\<bar> = (\<infinity>::ereal)"
   1.105 -  | "\<bar>\<infinity>\<bar> = (\<infinity>::ereal)"
   1.106 -  by (auto intro: ereal_cases)
   1.107 -  termination proof qed (rule wf_empty)
   1.108 -  instance ..
   1.109 +
   1.110 +function abs_ereal where
   1.111 +  "\<bar>ereal r\<bar> = ereal \<bar>r\<bar>"
   1.112 +| "\<bar>-\<infinity>\<bar> = (\<infinity>::ereal)"
   1.113 +| "\<bar>\<infinity>\<bar> = (\<infinity>::ereal)"
   1.114 +by (auto intro: ereal_cases)
   1.115 +termination proof qed (rule wf_empty)
   1.116 +
   1.117 +instance ..
   1.118 +
   1.119  end
   1.120  
   1.121 -lemma abs_eq_infinity_cases[elim!]: "\<lbrakk> \<bar>x :: ereal\<bar> = \<infinity> ; x = \<infinity> \<Longrightarrow> P ; x = -\<infinity> \<Longrightarrow> P \<rbrakk> \<Longrightarrow> P"
   1.122 +lemma abs_eq_infinity_cases[elim!]:
   1.123 +  fixes x :: ereal
   1.124 +  assumes "\<bar>x\<bar> = \<infinity>"
   1.125 +  obtains "x = \<infinity>" | "x = -\<infinity>"
   1.126 +  using assms by (cases x) auto
   1.127 +
   1.128 +lemma abs_neq_infinity_cases[elim!]:
   1.129 +  fixes x :: ereal
   1.130 +  assumes "\<bar>x\<bar> \<noteq> \<infinity>"
   1.131 +  obtains r where "x = ereal r"
   1.132 +  using assms by (cases x) auto
   1.133 +
   1.134 +lemma abs_ereal_uminus[simp]:
   1.135 +  fixes x :: ereal
   1.136 +  shows "\<bar>- x\<bar> = \<bar>x\<bar>"
   1.137    by (cases x) auto
   1.138  
   1.139 -lemma abs_neq_infinity_cases[elim!]: "\<lbrakk> \<bar>x :: ereal\<bar> \<noteq> \<infinity> ; \<And>r. x = ereal r \<Longrightarrow> P \<rbrakk> \<Longrightarrow> P"
   1.140 -  by (cases x) auto
   1.141 +lemma ereal_infinity_cases:
   1.142 +  fixes a :: ereal
   1.143 +  shows "a \<noteq> \<infinity> \<Longrightarrow> a \<noteq> -\<infinity> \<Longrightarrow> \<bar>a\<bar> \<noteq> \<infinity>"
   1.144 +  by auto
   1.145  
   1.146 -lemma abs_ereal_uminus[simp]: "\<bar>- x\<bar> = \<bar>x::ereal\<bar>"
   1.147 -  by (cases x) auto
   1.148 -
   1.149 -lemma ereal_infinity_cases: "(a::ereal) \<noteq> \<infinity> \<Longrightarrow> a \<noteq> -\<infinity> \<Longrightarrow> \<bar>a\<bar> \<noteq> \<infinity>"
   1.150 -  by auto
   1.151  
   1.152  subsubsection "Addition"
   1.153  
   1.154 -instantiation ereal :: "{one, comm_monoid_add}"
   1.155 +instantiation ereal :: "{one,comm_monoid_add}"
   1.156  begin
   1.157  
   1.158  definition "0 = ereal 0"
   1.159  definition "1 = ereal 1"
   1.160  
   1.161  function plus_ereal where
   1.162 -"ereal r + ereal p = ereal (r + p)" |
   1.163 -"\<infinity> + a = (\<infinity>::ereal)" |
   1.164 -"a + \<infinity> = (\<infinity>::ereal)" |
   1.165 -"ereal r + -\<infinity> = - \<infinity>" |
   1.166 -"-\<infinity> + ereal p = -(\<infinity>::ereal)" |
   1.167 -"-\<infinity> + -\<infinity> = -(\<infinity>::ereal)"
   1.168 +  "ereal r + ereal p = ereal (r + p)"
   1.169 +| "\<infinity> + a = (\<infinity>::ereal)"
   1.170 +| "a + \<infinity> = (\<infinity>::ereal)"
   1.171 +| "ereal r + -\<infinity> = - \<infinity>"
   1.172 +| "-\<infinity> + ereal p = -(\<infinity>::ereal)"
   1.173 +| "-\<infinity> + -\<infinity> = -(\<infinity>::ereal)"
   1.174  proof -
   1.175    case (goal1 P x)
   1.176 -  then obtain a b where "x = (a, b)" by (cases x) auto
   1.177 +  then obtain a b where "x = (a, b)"
   1.178 +    by (cases x) auto
   1.179    with goal1 show P
   1.180     by (cases rule: ereal2_cases[of a b]) auto
   1.181  qed auto
   1.182 @@ -172,6 +198,7 @@
   1.183    show "a + b + c = a + (b + c)"
   1.184      by (cases rule: ereal3_cases[of a b c]) simp_all
   1.185  qed
   1.186 +
   1.187  end
   1.188  
   1.189  instance ereal :: numeral ..
   1.190 @@ -182,35 +209,37 @@
   1.191  lemma abs_ereal_zero[simp]: "\<bar>0\<bar> = (0::ereal)"
   1.192    unfolding zero_ereal_def abs_ereal.simps by simp
   1.193  
   1.194 -lemma ereal_uminus_zero[simp]:
   1.195 -  "- 0 = (0::ereal)"
   1.196 +lemma ereal_uminus_zero[simp]: "- 0 = (0::ereal)"
   1.197    by (simp add: zero_ereal_def)
   1.198  
   1.199  lemma ereal_uminus_zero_iff[simp]:
   1.200 -  fixes a :: ereal shows "-a = 0 \<longleftrightarrow> a = 0"
   1.201 +  fixes a :: ereal
   1.202 +  shows "-a = 0 \<longleftrightarrow> a = 0"
   1.203    by (cases a) simp_all
   1.204  
   1.205  lemma ereal_plus_eq_PInfty[simp]:
   1.206 -  fixes a b :: ereal shows "a + b = \<infinity> \<longleftrightarrow> a = \<infinity> \<or> b = \<infinity>"
   1.207 +  fixes a b :: ereal
   1.208 +  shows "a + b = \<infinity> \<longleftrightarrow> a = \<infinity> \<or> b = \<infinity>"
   1.209    by (cases rule: ereal2_cases[of a b]) auto
   1.210  
   1.211  lemma ereal_plus_eq_MInfty[simp]:
   1.212 -  fixes a b :: ereal shows "a + b = -\<infinity> \<longleftrightarrow>
   1.213 -    (a = -\<infinity> \<or> b = -\<infinity>) \<and> a \<noteq> \<infinity> \<and> b \<noteq> \<infinity>"
   1.214 +  fixes a b :: ereal
   1.215 +  shows "a + b = -\<infinity> \<longleftrightarrow> (a = -\<infinity> \<or> b = -\<infinity>) \<and> a \<noteq> \<infinity> \<and> b \<noteq> \<infinity>"
   1.216    by (cases rule: ereal2_cases[of a b]) auto
   1.217  
   1.218  lemma ereal_add_cancel_left:
   1.219 -  fixes a b :: ereal assumes "a \<noteq> -\<infinity>"
   1.220 -  shows "a + b = a + c \<longleftrightarrow> (a = \<infinity> \<or> b = c)"
   1.221 +  fixes a b :: ereal
   1.222 +  assumes "a \<noteq> -\<infinity>"
   1.223 +  shows "a + b = a + c \<longleftrightarrow> a = \<infinity> \<or> b = c"
   1.224    using assms by (cases rule: ereal3_cases[of a b c]) auto
   1.225  
   1.226  lemma ereal_add_cancel_right:
   1.227 -  fixes a b :: ereal assumes "a \<noteq> -\<infinity>"
   1.228 -  shows "b + a = c + a \<longleftrightarrow> (a = \<infinity> \<or> b = c)"
   1.229 +  fixes a b :: ereal
   1.230 +  assumes "a \<noteq> -\<infinity>"
   1.231 +  shows "b + a = c + a \<longleftrightarrow> a = \<infinity> \<or> b = c"
   1.232    using assms by (cases rule: ereal3_cases[of a b c]) auto
   1.233  
   1.234 -lemma ereal_real:
   1.235 -  "ereal (real x) = (if \<bar>x\<bar> = \<infinity> then 0 else x)"
   1.236 +lemma ereal_real: "ereal (real x) = (if \<bar>x\<bar> = \<infinity> then 0 else x)"
   1.237    by (cases x) simp_all
   1.238  
   1.239  lemma real_of_ereal_add:
   1.240 @@ -219,6 +248,7 @@
   1.241      (if (\<bar>a\<bar> = \<infinity>) \<and> (\<bar>b\<bar> = \<infinity>) \<or> (\<bar>a\<bar> \<noteq> \<infinity>) \<and> (\<bar>b\<bar> \<noteq> \<infinity>) then real a + real b else 0)"
   1.242    by (cases rule: ereal2_cases[of a b]) auto
   1.243  
   1.244 +
   1.245  subsubsection "Linear order on @{typ ereal}"
   1.246  
   1.247  instantiation ereal :: linorder
   1.248 @@ -250,7 +280,7 @@
   1.249  lemma ereal_infty_less_eq[simp]:
   1.250    fixes x :: ereal
   1.251    shows "\<infinity> \<le> x \<longleftrightarrow> x = \<infinity>"
   1.252 -  "x \<le> -\<infinity> \<longleftrightarrow> x = -\<infinity>"
   1.253 +    and "x \<le> -\<infinity> \<longleftrightarrow> x = -\<infinity>"
   1.254    by (auto simp add: less_eq_ereal_def)
   1.255  
   1.256  lemma ereal_less[simp]:
   1.257 @@ -282,10 +312,16 @@
   1.258      by (cases rule: ereal2_cases[of x y]) auto
   1.259    show "x \<le> y \<or> y \<le> x "
   1.260      by (cases rule: ereal2_cases[of x y]) auto
   1.261 -  { assume "x \<le> y" "y \<le> x" then show "x = y"
   1.262 -    by (cases rule: ereal2_cases[of x y]) auto }
   1.263 -  { assume "x \<le> y" "y \<le> z" then show "x \<le> z"
   1.264 -    by (cases rule: ereal3_cases[of x y z]) auto }
   1.265 +  {
   1.266 +    assume "x \<le> y" "y \<le> x"
   1.267 +    then show "x = y"
   1.268 +      by (cases rule: ereal2_cases[of x y]) auto
   1.269 +  }
   1.270 +  {
   1.271 +    assume "x \<le> y" "y \<le> z"
   1.272 +    then show "x \<le> z"
   1.273 +      by (cases rule: ereal3_cases[of x y z]) auto
   1.274 +  }
   1.275  qed
   1.276  
   1.277  end
   1.278 @@ -298,20 +334,25 @@
   1.279  
   1.280  instance ereal :: ordered_ab_semigroup_add
   1.281  proof
   1.282 -  fix a b c :: ereal assume "a \<le> b" then show "c + a \<le> c + b"
   1.283 +  fix a b c :: ereal
   1.284 +  assume "a \<le> b"
   1.285 +  then show "c + a \<le> c + b"
   1.286      by (cases rule: ereal3_cases[of a b c]) auto
   1.287  qed
   1.288  
   1.289  lemma real_of_ereal_positive_mono:
   1.290 -  fixes x y :: ereal shows "\<lbrakk>0 \<le> x; x \<le> y; y \<noteq> \<infinity>\<rbrakk> \<Longrightarrow> real x \<le> real y"
   1.291 +  fixes x y :: ereal
   1.292 +  shows "0 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> y \<noteq> \<infinity> \<Longrightarrow> real x \<le> real y"
   1.293    by (cases rule: ereal2_cases[of x y]) auto
   1.294  
   1.295  lemma ereal_MInfty_lessI[intro, simp]:
   1.296 -  fixes a :: ereal shows "a \<noteq> -\<infinity> \<Longrightarrow> -\<infinity> < a"
   1.297 +  fixes a :: ereal
   1.298 +  shows "a \<noteq> -\<infinity> \<Longrightarrow> -\<infinity> < a"
   1.299    by (cases a) auto
   1.300  
   1.301  lemma ereal_less_PInfty[intro, simp]:
   1.302 -  fixes a :: ereal shows "a \<noteq> \<infinity> \<Longrightarrow> a < \<infinity>"
   1.303 +  fixes a :: ereal
   1.304 +  shows "a \<noteq> \<infinity> \<Longrightarrow> a < \<infinity>"
   1.305    by (cases a) auto
   1.306  
   1.307  lemma ereal_less_ereal_Ex:
   1.308 @@ -321,12 +362,16 @@
   1.309  
   1.310  lemma less_PInf_Ex_of_nat: "x \<noteq> \<infinity> \<longleftrightarrow> (\<exists>n::nat. x < ereal (real n))"
   1.311  proof (cases x)
   1.312 -  case (real r) then show ?thesis
   1.313 +  case (real r)
   1.314 +  then show ?thesis
   1.315      using reals_Archimedean2[of r] by simp
   1.316  qed simp_all
   1.317  
   1.318  lemma ereal_add_mono:
   1.319 -  fixes a b c d :: ereal assumes "a \<le> b" "c \<le> d" shows "a + c \<le> b + d"
   1.320 +  fixes a b c d :: ereal
   1.321 +  assumes "a \<le> b"
   1.322 +    and "c \<le> d"
   1.323 +  shows "a + c \<le> b + d"
   1.324    using assms
   1.325    apply (cases a)
   1.326    apply (cases rule: ereal3_cases[of b c d], auto)
   1.327 @@ -334,31 +379,34 @@
   1.328    done
   1.329  
   1.330  lemma ereal_minus_le_minus[simp]:
   1.331 -  fixes a b :: ereal shows "- a \<le> - b \<longleftrightarrow> b \<le> a"
   1.332 +  fixes a b :: ereal
   1.333 +  shows "- a \<le> - b \<longleftrightarrow> b \<le> a"
   1.334    by (cases rule: ereal2_cases[of a b]) auto
   1.335  
   1.336  lemma ereal_minus_less_minus[simp]:
   1.337 -  fixes a b :: ereal shows "- a < - b \<longleftrightarrow> b < a"
   1.338 +  fixes a b :: ereal
   1.339 +  shows "- a < - b \<longleftrightarrow> b < a"
   1.340    by (cases rule: ereal2_cases[of a b]) auto
   1.341  
   1.342  lemma ereal_le_real_iff:
   1.343 -  "x \<le> real y \<longleftrightarrow> ((\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> ereal x \<le> y) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> x \<le> 0))"
   1.344 +  "x \<le> real y \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> ereal x \<le> y) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> x \<le> 0)"
   1.345    by (cases y) auto
   1.346  
   1.347  lemma real_le_ereal_iff:
   1.348 -  "real y \<le> x \<longleftrightarrow> ((\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> y \<le> ereal x) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> 0 \<le> x))"
   1.349 +  "real y \<le> x \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> y \<le> ereal x) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> 0 \<le> x)"
   1.350    by (cases y) auto
   1.351  
   1.352  lemma ereal_less_real_iff:
   1.353 -  "x < real y \<longleftrightarrow> ((\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> ereal x < y) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> x < 0))"
   1.354 +  "x < real y \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> ereal x < y) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> x < 0)"
   1.355    by (cases y) auto
   1.356  
   1.357  lemma real_less_ereal_iff:
   1.358 -  "real y < x \<longleftrightarrow> ((\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> y < ereal x) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> 0 < x))"
   1.359 +  "real y < x \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> y < ereal x) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> 0 < x)"
   1.360    by (cases y) auto
   1.361  
   1.362  lemma real_of_ereal_pos:
   1.363 -  fixes x :: ereal shows "0 \<le> x \<Longrightarrow> 0 \<le> real x" by (cases x) auto
   1.364 +  fixes x :: ereal
   1.365 +  shows "0 \<le> x \<Longrightarrow> 0 \<le> real x" by (cases x) auto
   1.366  
   1.367  lemmas real_of_ereal_ord_simps =
   1.368    ereal_le_real_iff real_le_ereal_iff ereal_less_real_iff real_less_ereal_iff
   1.369 @@ -372,35 +420,44 @@
   1.370  lemma abs_ereal_pos[simp]: "0 \<le> \<bar>x :: ereal\<bar>"
   1.371    by (cases x) auto
   1.372  
   1.373 -lemma real_of_ereal_le_0[simp]: "real (x :: ereal) \<le> 0 \<longleftrightarrow> (x \<le> 0 \<or> x = \<infinity>)"
   1.374 +lemma real_of_ereal_le_0[simp]: "real (x :: ereal) \<le> 0 \<longleftrightarrow> x \<le> 0 \<or> x = \<infinity>"
   1.375    by (cases x) auto
   1.376  
   1.377  lemma abs_real_of_ereal[simp]: "\<bar>real (x :: ereal)\<bar> = real \<bar>x\<bar>"
   1.378    by (cases x) auto
   1.379  
   1.380  lemma zero_less_real_of_ereal:
   1.381 -  fixes x :: ereal shows "0 < real x \<longleftrightarrow> (0 < x \<and> x \<noteq> \<infinity>)"
   1.382 +  fixes x :: ereal
   1.383 +  shows "0 < real x \<longleftrightarrow> 0 < x \<and> x \<noteq> \<infinity>"
   1.384    by (cases x) auto
   1.385  
   1.386  lemma ereal_0_le_uminus_iff[simp]:
   1.387 -  fixes a :: ereal shows "0 \<le> -a \<longleftrightarrow> a \<le> 0"
   1.388 +  fixes a :: ereal
   1.389 +  shows "0 \<le> - a \<longleftrightarrow> a \<le> 0"
   1.390    by (cases rule: ereal2_cases[of a]) auto
   1.391  
   1.392  lemma ereal_uminus_le_0_iff[simp]:
   1.393 -  fixes a :: ereal shows "-a \<le> 0 \<longleftrightarrow> 0 \<le> a"
   1.394 +  fixes a :: ereal
   1.395 +  shows "- a \<le> 0 \<longleftrightarrow> 0 \<le> a"
   1.396    by (cases rule: ereal2_cases[of a]) auto
   1.397  
   1.398  lemma ereal_add_strict_mono:
   1.399    fixes a b c d :: ereal
   1.400 -  assumes "a = b" "0 \<le> a" "a \<noteq> \<infinity>" "c < d"
   1.401 +  assumes "a = b"
   1.402 +    and "0 \<le> a"
   1.403 +    and "a \<noteq> \<infinity>"
   1.404 +    and "c < d"
   1.405    shows "a + c < b + d"
   1.406 -  using assms by (cases rule: ereal3_cases[case_product ereal_cases, of a b c d]) auto
   1.407 +  using assms
   1.408 +  by (cases rule: ereal3_cases[case_product ereal_cases, of a b c d]) auto
   1.409  
   1.410 -lemma ereal_less_add: 
   1.411 -  fixes a b c :: ereal shows "\<bar>a\<bar> \<noteq> \<infinity> \<Longrightarrow> c < b \<Longrightarrow> a + c < a + b"
   1.412 +lemma ereal_less_add:
   1.413 +  fixes a b c :: ereal
   1.414 +  shows "\<bar>a\<bar> \<noteq> \<infinity> \<Longrightarrow> c < b \<Longrightarrow> a + c < a + b"
   1.415    by (cases rule: ereal2_cases[of b c]) auto
   1.416  
   1.417 -lemma ereal_uminus_eq_reorder: "- a = b \<longleftrightarrow> a = (-b::ereal)" by auto
   1.418 +lemma ereal_uminus_eq_reorder: "- a = b \<longleftrightarrow> a = (-b::ereal)"
   1.419 +  by auto
   1.420  
   1.421  lemma ereal_uminus_less_reorder: "- a < b \<longleftrightarrow> -b < (a::ereal)"
   1.422    by (subst (3) ereal_uminus_uminus[symmetric]) (simp only: ereal_minus_less_minus)
   1.423 @@ -412,23 +469,39 @@
   1.424    ereal_uminus_eq_reorder ereal_uminus_less_reorder ereal_uminus_le_reorder
   1.425  
   1.426  lemma ereal_bot:
   1.427 -  fixes x :: ereal assumes "\<And>B. x \<le> ereal B" shows "x = - \<infinity>"
   1.428 +  fixes x :: ereal
   1.429 +  assumes "\<And>B. x \<le> ereal B"
   1.430 +  shows "x = - \<infinity>"
   1.431  proof (cases x)
   1.432 -  case (real r) with assms[of "r - 1"] show ?thesis by auto
   1.433 +  case (real r)
   1.434 +  with assms[of "r - 1"] show ?thesis
   1.435 +    by auto
   1.436  next
   1.437 -  case PInf with assms[of 0] show ?thesis by auto
   1.438 +  case PInf
   1.439 +  with assms[of 0] show ?thesis
   1.440 +    by auto
   1.441  next
   1.442 -  case MInf then show ?thesis by simp
   1.443 +  case MInf
   1.444 +  then show ?thesis
   1.445 +    by simp
   1.446  qed
   1.447  
   1.448  lemma ereal_top:
   1.449 -  fixes x :: ereal assumes "\<And>B. x \<ge> ereal B" shows "x = \<infinity>"
   1.450 +  fixes x :: ereal
   1.451 +  assumes "\<And>B. x \<ge> ereal B"
   1.452 +  shows "x = \<infinity>"
   1.453  proof (cases x)
   1.454 -  case (real r) with assms[of "r + 1"] show ?thesis by auto
   1.455 +  case (real r)
   1.456 +  with assms[of "r + 1"] show ?thesis
   1.457 +    by auto
   1.458  next
   1.459 -  case MInf with assms[of 0] show ?thesis by auto
   1.460 +  case MInf
   1.461 +  with assms[of 0] show ?thesis
   1.462 +    by auto
   1.463  next
   1.464 -  case PInf then show ?thesis by simp
   1.465 +  case PInf
   1.466 +  then show ?thesis
   1.467 +    by simp
   1.468  qed
   1.469  
   1.470  lemma
   1.471 @@ -449,32 +522,36 @@
   1.472    unfolding incseq_def by auto
   1.473  
   1.474  lemma ereal_add_nonneg_nonneg:
   1.475 -  fixes a b :: ereal shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a + b"
   1.476 +  fixes a b :: ereal
   1.477 +  shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a + b"
   1.478    using add_mono[of 0 a 0 b] by simp
   1.479  
   1.480 -lemma image_eqD: "f ` A = B \<Longrightarrow> (\<forall>x\<in>A. f x \<in> B)"
   1.481 +lemma image_eqD: "f ` A = B \<Longrightarrow> \<forall>x\<in>A. f x \<in> B"
   1.482    by auto
   1.483  
   1.484  lemma incseq_setsumI:
   1.485 -  fixes f :: "nat \<Rightarrow> 'a::{comm_monoid_add, ordered_ab_semigroup_add}"
   1.486 +  fixes f :: "nat \<Rightarrow> 'a::{comm_monoid_add,ordered_ab_semigroup_add}"
   1.487    assumes "\<And>i. 0 \<le> f i"
   1.488    shows "incseq (\<lambda>i. setsum f {..< i})"
   1.489  proof (intro incseq_SucI)
   1.490 -  fix n have "setsum f {..< n} + 0 \<le> setsum f {..<n} + f n"
   1.491 +  fix n
   1.492 +  have "setsum f {..< n} + 0 \<le> setsum f {..<n} + f n"
   1.493      using assms by (rule add_left_mono)
   1.494    then show "setsum f {..< n} \<le> setsum f {..< Suc n}"
   1.495      by auto
   1.496  qed
   1.497  
   1.498  lemma incseq_setsumI2:
   1.499 -  fixes f :: "'i \<Rightarrow> nat \<Rightarrow> 'a::{comm_monoid_add, ordered_ab_semigroup_add}"
   1.500 +  fixes f :: "'i \<Rightarrow> nat \<Rightarrow> 'a::{comm_monoid_add,ordered_ab_semigroup_add}"
   1.501    assumes "\<And>n. n \<in> A \<Longrightarrow> incseq (f n)"
   1.502    shows "incseq (\<lambda>i. \<Sum>n\<in>A. f n i)"
   1.503 -  using assms unfolding incseq_def by (auto intro: setsum_mono)
   1.504 +  using assms
   1.505 +  unfolding incseq_def by (auto intro: setsum_mono)
   1.506 +
   1.507  
   1.508  subsubsection "Multiplication"
   1.509  
   1.510 -instantiation ereal :: "{comm_monoid_mult, sgn}"
   1.511 +instantiation ereal :: "{comm_monoid_mult,sgn}"
   1.512  begin
   1.513  
   1.514  function sgn_ereal :: "ereal \<Rightarrow> ereal" where
   1.515 @@ -482,28 +559,31 @@
   1.516  | "sgn (\<infinity>::ereal) = 1"
   1.517  | "sgn (-\<infinity>::ereal) = -1"
   1.518  by (auto intro: ereal_cases)
   1.519 -termination proof qed (rule wf_empty)
   1.520 +termination by default (rule wf_empty)
   1.521  
   1.522  function times_ereal where
   1.523 -"ereal r * ereal p = ereal (r * p)" |
   1.524 -"ereal r * \<infinity> = (if r = 0 then 0 else if r > 0 then \<infinity> else -\<infinity>)" |
   1.525 -"\<infinity> * ereal r = (if r = 0 then 0 else if r > 0 then \<infinity> else -\<infinity>)" |
   1.526 -"ereal r * -\<infinity> = (if r = 0 then 0 else if r > 0 then -\<infinity> else \<infinity>)" |
   1.527 -"-\<infinity> * ereal r = (if r = 0 then 0 else if r > 0 then -\<infinity> else \<infinity>)" |
   1.528 -"(\<infinity>::ereal) * \<infinity> = \<infinity>" |
   1.529 -"-(\<infinity>::ereal) * \<infinity> = -\<infinity>" |
   1.530 -"(\<infinity>::ereal) * -\<infinity> = -\<infinity>" |
   1.531 -"-(\<infinity>::ereal) * -\<infinity> = \<infinity>"
   1.532 +  "ereal r * ereal p = ereal (r * p)"
   1.533 +| "ereal r * \<infinity> = (if r = 0 then 0 else if r > 0 then \<infinity> else -\<infinity>)"
   1.534 +| "\<infinity> * ereal r = (if r = 0 then 0 else if r > 0 then \<infinity> else -\<infinity>)"
   1.535 +| "ereal r * -\<infinity> = (if r = 0 then 0 else if r > 0 then -\<infinity> else \<infinity>)"
   1.536 +| "-\<infinity> * ereal r = (if r = 0 then 0 else if r > 0 then -\<infinity> else \<infinity>)"
   1.537 +| "(\<infinity>::ereal) * \<infinity> = \<infinity>"
   1.538 +| "-(\<infinity>::ereal) * \<infinity> = -\<infinity>"
   1.539 +| "(\<infinity>::ereal) * -\<infinity> = -\<infinity>"
   1.540 +| "-(\<infinity>::ereal) * -\<infinity> = \<infinity>"
   1.541  proof -
   1.542    case (goal1 P x)
   1.543 -  then obtain a b where "x = (a, b)" by (cases x) auto
   1.544 -  with goal1 show P by (cases rule: ereal2_cases[of a b]) auto
   1.545 +  then obtain a b where "x = (a, b)"
   1.546 +    by (cases x) auto
   1.547 +  with goal1 show P
   1.548 +    by (cases rule: ereal2_cases[of a b]) auto
   1.549  qed simp_all
   1.550  termination by (relation "{}") simp
   1.551  
   1.552  instance
   1.553  proof
   1.554 -  fix a b c :: ereal show "1 * a = a"
   1.555 +  fix a b c :: ereal
   1.556 +  show "1 * a = a"
   1.557      by (cases a) (simp_all add: one_ereal_def)
   1.558    show "a * b = b * a"
   1.559      by (cases rule: ereal2_cases[of a b]) simp_all
   1.560 @@ -511,36 +591,39 @@
   1.561      by (cases rule: ereal3_cases[of a b c])
   1.562         (simp_all add: zero_ereal_def zero_less_mult_iff)
   1.563  qed
   1.564 +
   1.565  end
   1.566  
   1.567  lemma real_ereal_1[simp]: "real (1::ereal) = 1"
   1.568    unfolding one_ereal_def by simp
   1.569  
   1.570  lemma real_of_ereal_le_1:
   1.571 -  fixes a :: ereal shows "a \<le> 1 \<Longrightarrow> real a \<le> 1"
   1.572 +  fixes a :: ereal
   1.573 +  shows "a \<le> 1 \<Longrightarrow> real a \<le> 1"
   1.574    by (cases a) (auto simp: one_ereal_def)
   1.575  
   1.576  lemma abs_ereal_one[simp]: "\<bar>1\<bar> = (1::ereal)"
   1.577    unfolding one_ereal_def by simp
   1.578  
   1.579  lemma ereal_mult_zero[simp]:
   1.580 -  fixes a :: ereal shows "a * 0 = 0"
   1.581 +  fixes a :: ereal
   1.582 +  shows "a * 0 = 0"
   1.583    by (cases a) (simp_all add: zero_ereal_def)
   1.584  
   1.585  lemma ereal_zero_mult[simp]:
   1.586 -  fixes a :: ereal shows "0 * a = 0"
   1.587 +  fixes a :: ereal
   1.588 +  shows "0 * a = 0"
   1.589    by (cases a) (simp_all add: zero_ereal_def)
   1.590  
   1.591 -lemma ereal_m1_less_0[simp]:
   1.592 -  "-(1::ereal) < 0"
   1.593 +lemma ereal_m1_less_0[simp]: "-(1::ereal) < 0"
   1.594    by (simp add: zero_ereal_def one_ereal_def)
   1.595  
   1.596 -lemma ereal_zero_m1[simp]:
   1.597 -  "1 \<noteq> (0::ereal)"
   1.598 +lemma ereal_zero_m1[simp]: "1 \<noteq> (0::ereal)"
   1.599    by (simp add: zero_ereal_def one_ereal_def)
   1.600  
   1.601  lemma ereal_times_0[simp]:
   1.602 -  fixes x :: ereal shows "0 * x = 0"
   1.603 +  fixes x :: ereal
   1.604 +  shows "0 * x = 0"
   1.605    by (cases x) (auto simp: zero_ereal_def)
   1.606  
   1.607  lemma ereal_times[simp]:
   1.608 @@ -549,21 +632,24 @@
   1.609    by (auto simp add: times_ereal_def one_ereal_def)
   1.610  
   1.611  lemma ereal_plus_1[simp]:
   1.612 -  "1 + ereal r = ereal (r + 1)" "ereal r + 1 = ereal (r + 1)"
   1.613 -  "1 + -(\<infinity>::ereal) = -\<infinity>" "-(\<infinity>::ereal) + 1 = -\<infinity>"
   1.614 +  "1 + ereal r = ereal (r + 1)"
   1.615 +  "ereal r + 1 = ereal (r + 1)"
   1.616 +  "1 + -(\<infinity>::ereal) = -\<infinity>"
   1.617 +  "-(\<infinity>::ereal) + 1 = -\<infinity>"
   1.618    unfolding one_ereal_def by auto
   1.619  
   1.620  lemma ereal_zero_times[simp]:
   1.621 -  fixes a b :: ereal shows "a * b = 0 \<longleftrightarrow> a = 0 \<or> b = 0"
   1.622 +  fixes a b :: ereal
   1.623 +  shows "a * b = 0 \<longleftrightarrow> a = 0 \<or> b = 0"
   1.624    by (cases rule: ereal2_cases[of a b]) auto
   1.625  
   1.626  lemma ereal_mult_eq_PInfty[simp]:
   1.627 -  shows "a * b = (\<infinity>::ereal) \<longleftrightarrow>
   1.628 +  "a * b = (\<infinity>::ereal) \<longleftrightarrow>
   1.629      (a = \<infinity> \<and> b > 0) \<or> (a > 0 \<and> b = \<infinity>) \<or> (a = -\<infinity> \<and> b < 0) \<or> (a < 0 \<and> b = -\<infinity>)"
   1.630    by (cases rule: ereal2_cases[of a b]) auto
   1.631  
   1.632  lemma ereal_mult_eq_MInfty[simp]:
   1.633 -  shows "a * b = -(\<infinity>::ereal) \<longleftrightarrow>
   1.634 +  "a * b = -(\<infinity>::ereal) \<longleftrightarrow>
   1.635      (a = \<infinity> \<and> b < 0) \<or> (a < 0 \<and> b = \<infinity>) \<or> (a = -\<infinity> \<and> b > 0) \<or> (a > 0 \<and> b = -\<infinity>)"
   1.636    by (cases rule: ereal2_cases[of a b]) auto
   1.637  
   1.638 @@ -574,11 +660,13 @@
   1.639    by (simp_all add: zero_ereal_def one_ereal_def)
   1.640  
   1.641  lemma ereal_mult_minus_left[simp]:
   1.642 -  fixes a b :: ereal shows "-a * b = - (a * b)"
   1.643 +  fixes a b :: ereal
   1.644 +  shows "-a * b = - (a * b)"
   1.645    by (cases rule: ereal2_cases[of a b]) auto
   1.646  
   1.647  lemma ereal_mult_minus_right[simp]:
   1.648 -  fixes a b :: ereal shows "a * -b = - (a * b)"
   1.649 +  fixes a b :: ereal
   1.650 +  shows "a * -b = - (a * b)"
   1.651    by (cases rule: ereal2_cases[of a b]) auto
   1.652  
   1.653  lemma ereal_mult_infty[simp]:
   1.654 @@ -590,26 +678,33 @@
   1.655    by (cases a) auto
   1.656  
   1.657  lemma ereal_mult_strict_right_mono:
   1.658 -  assumes "a < b" and "0 < c" "c < (\<infinity>::ereal)"
   1.659 +  assumes "a < b"
   1.660 +    and "0 < c"
   1.661 +    and "c < (\<infinity>::ereal)"
   1.662    shows "a * c < b * c"
   1.663    using assms
   1.664 -  by (cases rule: ereal3_cases[of a b c])
   1.665 -     (auto simp: zero_le_mult_iff)
   1.666 +  by (cases rule: ereal3_cases[of a b c]) (auto simp: zero_le_mult_iff)
   1.667  
   1.668  lemma ereal_mult_strict_left_mono:
   1.669 -  "\<lbrakk> a < b ; 0 < c ; c < (\<infinity>::ereal)\<rbrakk> \<Longrightarrow> c * a < c * b"
   1.670 -  using ereal_mult_strict_right_mono by (simp add: mult_commute[of c])
   1.671 +  "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c < (\<infinity>::ereal) \<Longrightarrow> c * a < c * b"
   1.672 +  using ereal_mult_strict_right_mono
   1.673 +  by (simp add: mult_commute[of c])
   1.674  
   1.675  lemma ereal_mult_right_mono:
   1.676 -  fixes a b c :: ereal shows "\<lbrakk>a \<le> b; 0 \<le> c\<rbrakk> \<Longrightarrow> a*c \<le> b*c"
   1.677 +  fixes a b c :: ereal
   1.678 +  shows "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * c"
   1.679    using assms
   1.680 -  apply (cases "c = 0") apply simp
   1.681 -  by (cases rule: ereal3_cases[of a b c])
   1.682 -     (auto simp: zero_le_mult_iff)
   1.683 +  apply (cases "c = 0")
   1.684 +  apply simp
   1.685 +  apply (cases rule: ereal3_cases[of a b c])
   1.686 +  apply (auto simp: zero_le_mult_iff)
   1.687 +  done
   1.688  
   1.689  lemma ereal_mult_left_mono:
   1.690 -  fixes a b c :: ereal shows "\<lbrakk>a \<le> b; 0 \<le> c\<rbrakk> \<Longrightarrow> c * a \<le> c * b"
   1.691 -  using ereal_mult_right_mono by (simp add: mult_commute[of c])
   1.692 +  fixes a b c :: ereal
   1.693 +  shows "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b"
   1.694 +  using ereal_mult_right_mono
   1.695 +  by (simp add: mult_commute[of c])
   1.696  
   1.697  lemma zero_less_one_ereal[simp]: "0 \<le> (1::ereal)"
   1.698    by (simp add: one_ereal_def zero_ereal_def)
   1.699 @@ -618,11 +713,13 @@
   1.700    by (cases rule: ereal2_cases[of a b]) (auto simp: mult_nonneg_nonneg)
   1.701  
   1.702  lemma ereal_right_distrib:
   1.703 -  fixes r a b :: ereal shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> r * (a + b) = r * a + r * b"
   1.704 +  fixes r a b :: ereal
   1.705 +  shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> r * (a + b) = r * a + r * b"
   1.706    by (cases rule: ereal3_cases[of r a b]) (simp_all add: field_simps)
   1.707  
   1.708  lemma ereal_left_distrib:
   1.709 -  fixes r a b :: ereal shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> (a + b) * r = a * r + b * r"
   1.710 +  fixes r a b :: ereal
   1.711 +  shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> (a + b) * r = a * r + b * r"
   1.712    by (cases rule: ereal3_cases[of r a b]) (simp_all add: field_simps)
   1.713  
   1.714  lemma ereal_mult_le_0_iff:
   1.715 @@ -657,7 +754,9 @@
   1.716  
   1.717  lemma ereal_distrib:
   1.718    fixes a b c :: ereal
   1.719 -  assumes "a \<noteq> \<infinity> \<or> b \<noteq> -\<infinity>" "a \<noteq> -\<infinity> \<or> b \<noteq> \<infinity>" "\<bar>c\<bar> \<noteq> \<infinity>"
   1.720 +  assumes "a \<noteq> \<infinity> \<or> b \<noteq> -\<infinity>"
   1.721 +    and "a \<noteq> -\<infinity> \<or> b \<noteq> \<infinity>"
   1.722 +    and "\<bar>c\<bar> \<noteq> \<infinity>"
   1.723    shows "(a + b) * c = a * c + b * c"
   1.724    using assms
   1.725    by (cases rule: ereal3_cases[of a b c]) (simp_all add: field_simps)
   1.726 @@ -670,74 +769,119 @@
   1.727  
   1.728  lemma ereal_le_epsilon:
   1.729    fixes x y :: ereal
   1.730 -  assumes "ALL e. 0 < e --> x <= y + e"
   1.731 -  shows "x <= y"
   1.732 -proof-
   1.733 -{ assume a: "EX r. y = ereal r"
   1.734 -  then obtain r where r_def: "y = ereal r" by auto
   1.735 -  { assume "x=(-\<infinity>)" hence ?thesis by auto }
   1.736 +  assumes "\<forall>e. 0 < e \<longrightarrow> x \<le> y + e"
   1.737 +  shows "x \<le> y"
   1.738 +proof -
   1.739 +  {
   1.740 +    assume a: "\<exists>r. y = ereal r"
   1.741 +    then obtain r where r_def: "y = ereal r"
   1.742 +      by auto
   1.743 +    {
   1.744 +      assume "x = -\<infinity>"
   1.745 +      then have ?thesis by auto
   1.746 +    }
   1.747 +    moreover
   1.748 +    {
   1.749 +      assume "x \<noteq> -\<infinity>"
   1.750 +      then obtain p where p_def: "x = ereal p"
   1.751 +      using a assms[rule_format, of 1]
   1.752 +        by (cases x) auto
   1.753 +      {
   1.754 +        fix e
   1.755 +        have "0 < e \<longrightarrow> p \<le> r + e"
   1.756 +          using assms[rule_format, of "ereal e"] p_def r_def by auto
   1.757 +      }
   1.758 +      then have "p \<le> r"
   1.759 +        apply (subst field_le_epsilon)
   1.760 +        apply auto
   1.761 +        done
   1.762 +      then have ?thesis
   1.763 +        using r_def p_def by auto
   1.764 +    }
   1.765 +    ultimately have ?thesis
   1.766 +      by blast
   1.767 +  }
   1.768    moreover
   1.769 -  { assume "~(x=(-\<infinity>))"
   1.770 -    then obtain p where p_def: "x = ereal p"
   1.771 -    using a assms[rule_format, of 1] by (cases x) auto
   1.772 -    { fix e have "0 < e --> p <= r + e"
   1.773 -      using assms[rule_format, of "ereal e"] p_def r_def by auto }
   1.774 -    hence "p <= r" apply (subst field_le_epsilon) by auto
   1.775 -    hence ?thesis using r_def p_def by auto
   1.776 -  } ultimately have ?thesis by blast
   1.777 -}
   1.778 -moreover
   1.779 -{ assume "y=(-\<infinity>) | y=\<infinity>" hence ?thesis
   1.780 -    using assms[rule_format, of 1] by (cases x) auto
   1.781 -} ultimately show ?thesis by (cases y) auto
   1.782 +  {
   1.783 +    assume "y = -\<infinity> | y = \<infinity>"
   1.784 +    then have ?thesis
   1.785 +      using assms[rule_format, of 1] by (cases x) auto
   1.786 +  }
   1.787 +  ultimately show ?thesis
   1.788 +    by (cases y) auto
   1.789  qed
   1.790  
   1.791 -
   1.792  lemma ereal_le_epsilon2:
   1.793    fixes x y :: ereal
   1.794 -  assumes "ALL e. 0 < e --> x <= y + ereal e"
   1.795 -  shows "x <= y"
   1.796 -proof-
   1.797 -{ fix e :: ereal assume "e>0"
   1.798 -  { assume "e=\<infinity>" hence "x<=y+e" by auto }
   1.799 -  moreover
   1.800 -  { assume "e~=\<infinity>"
   1.801 -    then obtain r where "e = ereal r" using `e>0` apply (cases e) by auto
   1.802 -    hence "x<=y+e" using assms[rule_format, of r] `e>0` by auto
   1.803 -  } ultimately have "x<=y+e" by blast
   1.804 -} then show ?thesis using ereal_le_epsilon by auto
   1.805 +  assumes "\<forall>e. 0 < e \<longrightarrow> x \<le> y + ereal e"
   1.806 +  shows "x \<le> y"
   1.807 +proof -
   1.808 +  {
   1.809 +    fix e :: ereal
   1.810 +    assume "e > 0"
   1.811 +    {
   1.812 +      assume "e = \<infinity>"
   1.813 +      then have "x \<le> y + e"
   1.814 +        by auto
   1.815 +    }
   1.816 +    moreover
   1.817 +    {
   1.818 +      assume "e \<noteq> \<infinity>"
   1.819 +      then obtain r where "e = ereal r"
   1.820 +        using `e > 0` by (cases e) auto
   1.821 +      then have "x \<le> y + e"
   1.822 +        using assms[rule_format, of r] `e>0` by auto
   1.823 +    }
   1.824 +    ultimately have "x \<le> y + e"
   1.825 +      by blast
   1.826 +  }
   1.827 +  then show ?thesis
   1.828 +    using ereal_le_epsilon by auto
   1.829  qed
   1.830  
   1.831  lemma ereal_le_real:
   1.832    fixes x y :: ereal
   1.833 -  assumes "ALL z. x <= ereal z --> y <= ereal z"
   1.834 -  shows "y <= x"
   1.835 -by (metis assms ereal_bot ereal_cases ereal_infty_less_eq(2) ereal_less_eq(1) linorder_le_cases)
   1.836 +  assumes "\<forall>z. x \<le> ereal z \<longrightarrow> y \<le> ereal z"
   1.837 +  shows "y \<le> x"
   1.838 +  by (metis assms ereal_bot ereal_cases ereal_infty_less_eq(2) ereal_less_eq(1) linorder_le_cases)
   1.839  
   1.840  lemma setprod_ereal_0:
   1.841    fixes f :: "'a \<Rightarrow> ereal"
   1.842 -  shows "(\<Prod>i\<in>A. f i) = 0 \<longleftrightarrow> (finite A \<and> (\<exists>i\<in>A. f i = 0))"
   1.843 -proof cases
   1.844 -  assume "finite A"
   1.845 +  shows "(\<Prod>i\<in>A. f i) = 0 \<longleftrightarrow> finite A \<and> (\<exists>i\<in>A. f i = 0)"
   1.846 +proof (cases "finite A")
   1.847 +  case True
   1.848    then show ?thesis by (induct A) auto
   1.849 -qed auto
   1.850 +next
   1.851 +  case False
   1.852 +  then show ?thesis by auto
   1.853 +qed
   1.854  
   1.855  lemma setprod_ereal_pos:
   1.856 -  fixes f :: "'a \<Rightarrow> ereal" assumes pos: "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i" shows "0 \<le> (\<Prod>i\<in>I. f i)"
   1.857 -proof cases
   1.858 -  assume "finite I" from this pos show ?thesis by induct auto
   1.859 -qed simp
   1.860 +  fixes f :: "'a \<Rightarrow> ereal"
   1.861 +  assumes pos: "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i"
   1.862 +  shows "0 \<le> (\<Prod>i\<in>I. f i)"
   1.863 +proof (cases "finite I")
   1.864 +  case True
   1.865 +  from this pos show ?thesis
   1.866 +    by induct auto
   1.867 +next
   1.868 +  case False
   1.869 +  then show ?thesis by simp
   1.870 +qed
   1.871  
   1.872  lemma setprod_PInf:
   1.873    fixes f :: "'a \<Rightarrow> ereal"
   1.874    assumes "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i"
   1.875    shows "(\<Prod>i\<in>I. f i) = \<infinity> \<longleftrightarrow> finite I \<and> (\<exists>i\<in>I. f i = \<infinity>) \<and> (\<forall>i\<in>I. f i \<noteq> 0)"
   1.876 -proof cases
   1.877 -  assume "finite I" from this assms show ?thesis
   1.878 +proof (cases "finite I")
   1.879 +  case True
   1.880 +  from this assms show ?thesis
   1.881    proof (induct I)
   1.882      case (insert i I)
   1.883 -    then have pos: "0 \<le> f i" "0 \<le> setprod f I" by (auto intro!: setprod_ereal_pos)
   1.884 -    from insert have "(\<Prod>j\<in>insert i I. f j) = \<infinity> \<longleftrightarrow> setprod f I * f i = \<infinity>" by auto
   1.885 +    then have pos: "0 \<le> f i" "0 \<le> setprod f I"
   1.886 +      by (auto intro!: setprod_ereal_pos)
   1.887 +    from insert have "(\<Prod>j\<in>insert i I. f j) = \<infinity> \<longleftrightarrow> setprod f I * f i = \<infinity>"
   1.888 +      by auto
   1.889      also have "\<dots> \<longleftrightarrow> (setprod f I = \<infinity> \<or> f i = \<infinity>) \<and> f i \<noteq> 0 \<and> setprod f I \<noteq> 0"
   1.890        using setprod_ereal_pos[of I f] pos
   1.891        by (cases rule: ereal2_cases[of "f i" "setprod f I"]) auto
   1.892 @@ -745,13 +889,22 @@
   1.893        using insert by (auto simp: setprod_ereal_0)
   1.894      finally show ?case .
   1.895    qed simp
   1.896 -qed simp
   1.897 +next
   1.898 +  case False
   1.899 +  then show ?thesis by simp
   1.900 +qed
   1.901  
   1.902  lemma setprod_ereal: "(\<Prod>i\<in>A. ereal (f i)) = ereal (setprod f A)"
   1.903 -proof cases
   1.904 -  assume "finite A" then show ?thesis
   1.905 +proof (cases "finite A")
   1.906 +  case True
   1.907 +  then show ?thesis
   1.908      by induct (auto simp: one_ereal_def)
   1.909 -qed (simp add: one_ereal_def)
   1.910 +next
   1.911 +  case False
   1.912 +  then show ?thesis
   1.913 +    by (simp add: one_ereal_def)
   1.914 +qed
   1.915 +
   1.916  
   1.917  subsubsection {* Power *}
   1.918  
   1.919 @@ -771,10 +924,12 @@
   1.920    by (induct n) (auto simp: one_ereal_def)
   1.921  
   1.922  lemma zero_le_power_ereal[simp]:
   1.923 -  fixes a :: ereal assumes "0 \<le> a"
   1.924 +  fixes a :: ereal
   1.925 +  assumes "0 \<le> a"
   1.926    shows "0 \<le> a ^ n"
   1.927    using assms by (induct n) (auto simp: ereal_zero_le_0_iff)
   1.928  
   1.929 +
   1.930  subsubsection {* Subtraction *}
   1.931  
   1.932  lemma ereal_minus_minus_image[simp]:
   1.933 @@ -783,25 +938,30 @@
   1.934    by (auto simp: image_iff)
   1.935  
   1.936  lemma ereal_uminus_lessThan[simp]:
   1.937 -  fixes a :: ereal shows "uminus ` {..<a} = {-a<..}"
   1.938 +  fixes a :: ereal
   1.939 +  shows "uminus ` {..<a} = {-a<..}"
   1.940  proof -
   1.941    {
   1.942 -    fix x assume "-a < x"
   1.943 -    then have "- x < - (- a)" by (simp del: ereal_uminus_uminus)
   1.944 -    then have "- x < a" by simp
   1.945 +    fix x
   1.946 +    assume "-a < x"
   1.947 +    then have "- x < - (- a)"
   1.948 +      by (simp del: ereal_uminus_uminus)
   1.949 +    then have "- x < a"
   1.950 +      by simp
   1.951    }
   1.952 -  then show ?thesis by (auto intro!: image_eqI)
   1.953 +  then show ?thesis
   1.954 +    by (auto intro!: image_eqI)
   1.955  qed
   1.956  
   1.957 -lemma ereal_uminus_greaterThan[simp]:
   1.958 -  "uminus ` {(a::ereal)<..} = {..<-a}"
   1.959 -  by (metis ereal_uminus_lessThan ereal_uminus_uminus
   1.960 -            ereal_minus_minus_image)
   1.961 +lemma ereal_uminus_greaterThan[simp]: "uminus ` {(a::ereal)<..} = {..<-a}"
   1.962 +  by (metis ereal_uminus_lessThan ereal_uminus_uminus ereal_minus_minus_image)
   1.963  
   1.964  instantiation ereal :: minus
   1.965  begin
   1.966 +
   1.967  definition "x - y = x + -(y::ereal)"
   1.968  instance ..
   1.969 +
   1.970  end
   1.971  
   1.972  lemma ereal_minus[simp]:
   1.973 @@ -815,8 +975,7 @@
   1.974    "0 - x = -x"
   1.975    by (simp_all add: minus_ereal_def)
   1.976  
   1.977 -lemma ereal_x_minus_x[simp]:
   1.978 -  "x - x = (if \<bar>x\<bar> = \<infinity> then \<infinity> else 0::ereal)"
   1.979 +lemma ereal_x_minus_x[simp]: "x - x = (if \<bar>x\<bar> = \<infinity> then \<infinity> else 0::ereal)"
   1.980    by (cases x) simp_all
   1.981  
   1.982  lemma ereal_eq_minus_iff:
   1.983 @@ -848,9 +1007,7 @@
   1.984  
   1.985  lemma ereal_le_minus_iff:
   1.986    fixes x y z :: ereal
   1.987 -  shows "x \<le> z - y \<longleftrightarrow>
   1.988 -    (y = \<infinity> \<longrightarrow> z \<noteq> \<infinity> \<longrightarrow> x = -\<infinity>) \<and>
   1.989 -    (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x + y \<le> z)"
   1.990 +  shows "x \<le> z - y \<longleftrightarrow> (y = \<infinity> \<longrightarrow> z \<noteq> \<infinity> \<longrightarrow> x = -\<infinity>) \<and> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x + y \<le> z)"
   1.991    by (cases rule: ereal3_cases[of x y z]) auto
   1.992  
   1.993  lemma ereal_le_minus:
   1.994 @@ -860,9 +1017,7 @@
   1.995  
   1.996  lemma ereal_minus_less_iff:
   1.997    fixes x y z :: ereal
   1.998 -  shows "x - y < z \<longleftrightarrow>
   1.999 -    y \<noteq> -\<infinity> \<and> (y = \<infinity> \<longrightarrow> x \<noteq> \<infinity> \<and> z \<noteq> -\<infinity>) \<and>
  1.1000 -    (y \<noteq> \<infinity> \<longrightarrow> x < z + y)"
  1.1001 +  shows "x - y < z \<longleftrightarrow> y \<noteq> -\<infinity> \<and> (y = \<infinity> \<longrightarrow> x \<noteq> \<infinity> \<and> z \<noteq> -\<infinity>) \<and> (y \<noteq> \<infinity> \<longrightarrow> x < z + y)"
  1.1002    by (cases rule: ereal3_cases[of x y z]) auto
  1.1003  
  1.1004  lemma ereal_minus_less:
  1.1005 @@ -917,31 +1072,40 @@
  1.1006  
  1.1007  lemma ereal_between:
  1.1008    fixes x e :: ereal
  1.1009 -  assumes "\<bar>x\<bar> \<noteq> \<infinity>" "0 < e"
  1.1010 -  shows "x - e < x" "x < x + e"
  1.1011 -using assms apply (cases x, cases e) apply auto
  1.1012 -using assms apply (cases x, cases e) apply auto
  1.1013 -done
  1.1014 +  assumes "\<bar>x\<bar> \<noteq> \<infinity>"
  1.1015 +    and "0 < e"
  1.1016 +  shows "x - e < x"
  1.1017 +    and "x < x + e"
  1.1018 +  using assms
  1.1019 +  apply (cases x, cases e)
  1.1020 +  apply auto
  1.1021 +  using assms
  1.1022 +  apply (cases x, cases e)
  1.1023 +  apply auto
  1.1024 +  done
  1.1025  
  1.1026  lemma ereal_minus_eq_PInfty_iff:
  1.1027 -  fixes x y :: ereal shows "x - y = \<infinity> \<longleftrightarrow> y = -\<infinity> \<or> x = \<infinity>"
  1.1028 +  fixes x y :: ereal
  1.1029 +  shows "x - y = \<infinity> \<longleftrightarrow> y = -\<infinity> \<or> x = \<infinity>"
  1.1030    by (cases x y rule: ereal2_cases) simp_all
  1.1031  
  1.1032 +
  1.1033  subsubsection {* Division *}
  1.1034  
  1.1035  instantiation ereal :: inverse
  1.1036  begin
  1.1037  
  1.1038  function inverse_ereal where
  1.1039 -"inverse (ereal r) = (if r = 0 then \<infinity> else ereal (inverse r))" |
  1.1040 -"inverse (\<infinity>::ereal) = 0" |
  1.1041 -"inverse (-\<infinity>::ereal) = 0"
  1.1042 +  "inverse (ereal r) = (if r = 0 then \<infinity> else ereal (inverse r))"
  1.1043 +| "inverse (\<infinity>::ereal) = 0"
  1.1044 +| "inverse (-\<infinity>::ereal) = 0"
  1.1045    by (auto intro: ereal_cases)
  1.1046  termination by (relation "{}") simp
  1.1047  
  1.1048  definition "x / y = x * inverse (y :: ereal)"
  1.1049  
  1.1050  instance ..
  1.1051 +
  1.1052  end
  1.1053  
  1.1054  lemma real_of_ereal_inverse[simp]:
  1.1055 @@ -959,53 +1123,61 @@
  1.1056    unfolding divide_ereal_def by (auto simp: divide_real_def)
  1.1057  
  1.1058  lemma ereal_divide_same[simp]:
  1.1059 -  fixes x :: ereal shows "x / x = (if \<bar>x\<bar> = \<infinity> \<or> x = 0 then 0 else 1)"
  1.1060 -  by (cases x)
  1.1061 -     (simp_all add: divide_real_def divide_ereal_def one_ereal_def)
  1.1062 +  fixes x :: ereal
  1.1063 +  shows "x / x = (if \<bar>x\<bar> = \<infinity> \<or> x = 0 then 0 else 1)"
  1.1064 +  by (cases x) (simp_all add: divide_real_def divide_ereal_def one_ereal_def)
  1.1065  
  1.1066  lemma ereal_inv_inv[simp]:
  1.1067 -  fixes x :: ereal shows "inverse (inverse x) = (if x \<noteq> -\<infinity> then x else \<infinity>)"
  1.1068 +  fixes x :: ereal
  1.1069 +  shows "inverse (inverse x) = (if x \<noteq> -\<infinity> then x else \<infinity>)"
  1.1070    by (cases x) auto
  1.1071  
  1.1072  lemma ereal_inverse_minus[simp]:
  1.1073 -  fixes x :: ereal shows "inverse (- x) = (if x = 0 then \<infinity> else -inverse x)"
  1.1074 +  fixes x :: ereal
  1.1075 +  shows "inverse (- x) = (if x = 0 then \<infinity> else -inverse x)"
  1.1076    by (cases x) simp_all
  1.1077  
  1.1078  lemma ereal_uminus_divide[simp]:
  1.1079 -  fixes x y :: ereal shows "- x / y = - (x / y)"
  1.1080 +  fixes x y :: ereal
  1.1081 +  shows "- x / y = - (x / y)"
  1.1082    unfolding divide_ereal_def by simp
  1.1083  
  1.1084  lemma ereal_divide_Infty[simp]:
  1.1085 -  fixes x :: ereal shows "x / \<infinity> = 0" "x / -\<infinity> = 0"
  1.1086 +  fixes x :: ereal
  1.1087 +  shows "x / \<infinity> = 0" "x / -\<infinity> = 0"
  1.1088    unfolding divide_ereal_def by simp_all
  1.1089  
  1.1090 -lemma ereal_divide_one[simp]:
  1.1091 -  "x / 1 = (x::ereal)"
  1.1092 +lemma ereal_divide_one[simp]: "x / 1 = (x::ereal)"
  1.1093    unfolding divide_ereal_def by simp
  1.1094  
  1.1095 -lemma ereal_divide_ereal[simp]:
  1.1096 -  "\<infinity> / ereal r = (if 0 \<le> r then \<infinity> else -\<infinity>)"
  1.1097 +lemma ereal_divide_ereal[simp]: "\<infinity> / ereal r = (if 0 \<le> r then \<infinity> else -\<infinity>)"
  1.1098    unfolding divide_ereal_def by simp
  1.1099  
  1.1100  lemma zero_le_divide_ereal[simp]:
  1.1101 -  fixes a :: ereal assumes "0 \<le> a" "0 \<le> b"
  1.1102 +  fixes a :: ereal
  1.1103 +  assumes "0 \<le> a"
  1.1104 +    and "0 \<le> b"
  1.1105    shows "0 \<le> a / b"
  1.1106    using assms by (cases rule: ereal2_cases[of a b]) (auto simp: zero_le_divide_iff)
  1.1107  
  1.1108  lemma ereal_le_divide_pos:
  1.1109 -  fixes x y z :: ereal shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y \<le> z / x \<longleftrightarrow> x * y \<le> z"
  1.1110 +  fixes x y z :: ereal
  1.1111 +  shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y \<le> z / x \<longleftrightarrow> x * y \<le> z"
  1.1112    by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps)
  1.1113  
  1.1114  lemma ereal_divide_le_pos:
  1.1115 -  fixes x y z :: ereal shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> z / x \<le> y \<longleftrightarrow> z \<le> x * y"
  1.1116 +  fixes x y z :: ereal
  1.1117 +  shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> z / x \<le> y \<longleftrightarrow> z \<le> x * y"
  1.1118    by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps)
  1.1119  
  1.1120  lemma ereal_le_divide_neg:
  1.1121 -  fixes x y z :: ereal shows "x < 0 \<Longrightarrow> x \<noteq> -\<infinity> \<Longrightarrow> y \<le> z / x \<longleftrightarrow> z \<le> x * y"
  1.1122 +  fixes x y z :: ereal
  1.1123 +  shows "x < 0 \<Longrightarrow> x \<noteq> -\<infinity> \<Longrightarrow> y \<le> z / x \<longleftrightarrow> z \<le> x * y"
  1.1124    by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps)
  1.1125  
  1.1126  lemma ereal_divide_le_neg:
  1.1127 -  fixes x y z :: ereal shows "x < 0 \<Longrightarrow> x \<noteq> -\<infinity> \<Longrightarrow> z / x \<le> y \<longleftrightarrow> x * y \<le> z"
  1.1128 +  fixes x y z :: ereal
  1.1129 +  shows "x < 0 \<Longrightarrow> x \<noteq> -\<infinity> \<Longrightarrow> z / x \<le> y \<longleftrightarrow> x * y \<le> z"
  1.1130    by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps)
  1.1131  
  1.1132  lemma ereal_inverse_antimono_strict:
  1.1133 @@ -1015,31 +1187,37 @@
  1.1134  
  1.1135  lemma ereal_inverse_antimono:
  1.1136    fixes x y :: ereal
  1.1137 -  shows "0 \<le> x \<Longrightarrow> x <= y \<Longrightarrow> inverse y <= inverse x"
  1.1138 +  shows "0 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> inverse y \<le> inverse x"
  1.1139    by (cases rule: ereal2_cases[of x y]) auto
  1.1140  
  1.1141  lemma inverse_inverse_Pinfty_iff[simp]:
  1.1142 -  fixes x :: ereal shows "inverse x = \<infinity> \<longleftrightarrow> x = 0"
  1.1143 +  fixes x :: ereal
  1.1144 +  shows "inverse x = \<infinity> \<longleftrightarrow> x = 0"
  1.1145    by (cases x) auto
  1.1146  
  1.1147  lemma ereal_inverse_eq_0:
  1.1148 -  fixes x :: ereal shows "inverse x = 0 \<longleftrightarrow> x = \<infinity> \<or> x = -\<infinity>"
  1.1149 +  fixes x :: ereal
  1.1150 +  shows "inverse x = 0 \<longleftrightarrow> x = \<infinity> \<or> x = -\<infinity>"
  1.1151    by (cases x) auto
  1.1152  
  1.1153  lemma ereal_0_gt_inverse:
  1.1154 -  fixes x :: ereal shows "0 < inverse x \<longleftrightarrow> x \<noteq> \<infinity> \<and> 0 \<le> x"
  1.1155 +  fixes x :: ereal
  1.1156 +  shows "0 < inverse x \<longleftrightarrow> x \<noteq> \<infinity> \<and> 0 \<le> x"
  1.1157    by (cases x) auto
  1.1158  
  1.1159  lemma ereal_mult_less_right:
  1.1160    fixes a b c :: ereal
  1.1161 -  assumes "b * a < c * a" "0 < a" "a < \<infinity>"
  1.1162 +  assumes "b * a < c * a"
  1.1163 +    and "0 < a"
  1.1164 +    and "a < \<infinity>"
  1.1165    shows "b < c"
  1.1166    using assms
  1.1167    by (cases rule: ereal3_cases[of a b c])
  1.1168       (auto split: split_if_asm simp: zero_less_mult_iff zero_le_mult_iff)
  1.1169  
  1.1170  lemma ereal_power_divide:
  1.1171 -  fixes x y :: ereal shows "y \<noteq> 0 \<Longrightarrow> (x / y) ^ n = x^n / y^n"
  1.1172 +  fixes x y :: ereal
  1.1173 +  shows "y \<noteq> 0 \<Longrightarrow> (x / y) ^ n = x^n / y^n"
  1.1174    by (cases rule: ereal2_cases[of x y])
  1.1175       (auto simp: one_ereal_def zero_ereal_def power_divide not_le
  1.1176                   power_less_zero_eq zero_le_power_iff)
  1.1177 @@ -1047,36 +1225,47 @@
  1.1178  lemma ereal_le_mult_one_interval:
  1.1179    fixes x y :: ereal
  1.1180    assumes y: "y \<noteq> -\<infinity>"
  1.1181 -  assumes z: "\<And>z. \<lbrakk> 0 < z ; z < 1 \<rbrakk> \<Longrightarrow> z * x \<le> y"
  1.1182 +  assumes z: "\<And>z. 0 < z \<Longrightarrow> z < 1 \<Longrightarrow> z * x \<le> y"
  1.1183    shows "x \<le> y"
  1.1184  proof (cases x)
  1.1185 -  case PInf with z[of "1 / 2"] show "x \<le> y" by (simp add: one_ereal_def)
  1.1186 +  case PInf
  1.1187 +  with z[of "1 / 2"] show "x \<le> y"
  1.1188 +    by (simp add: one_ereal_def)
  1.1189  next
  1.1190 -  case (real r) note r = this
  1.1191 +  case (real r)
  1.1192 +  note r = this
  1.1193    show "x \<le> y"
  1.1194    proof (cases y)
  1.1195 -    case (real p) note p = this
  1.1196 +    case (real p)
  1.1197 +    note p = this
  1.1198      have "r \<le> p"
  1.1199      proof (rule field_le_mult_one_interval)
  1.1200 -      fix z :: real assume "0 < z" and "z < 1"
  1.1201 -      with z[of "ereal z"]
  1.1202 -      show "z * r \<le> p" using p r by (auto simp: zero_le_mult_iff one_ereal_def)
  1.1203 +      fix z :: real
  1.1204 +      assume "0 < z" and "z < 1"
  1.1205 +      with z[of "ereal z"] show "z * r \<le> p"
  1.1206 +        using p r by (auto simp: zero_le_mult_iff one_ereal_def)
  1.1207      qed
  1.1208 -    then show "x \<le> y" using p r by simp
  1.1209 +    then show "x \<le> y"
  1.1210 +      using p r by simp
  1.1211    qed (insert y, simp_all)
  1.1212  qed simp
  1.1213  
  1.1214  lemma ereal_divide_right_mono[simp]:
  1.1215    fixes x y z :: ereal
  1.1216 -  assumes "x \<le> y" "0 < z" shows "x / z \<le> y / z"
  1.1217 -using assms by (cases x y z rule: ereal3_cases) (auto intro: divide_right_mono)
  1.1218 +  assumes "x \<le> y"
  1.1219 +    and "0 < z"
  1.1220 +  shows "x / z \<le> y / z"
  1.1221 +  using assms by (cases x y z rule: ereal3_cases) (auto intro: divide_right_mono)
  1.1222  
  1.1223  lemma ereal_divide_left_mono[simp]:
  1.1224    fixes x y z :: ereal
  1.1225 -  assumes "y \<le> x" "0 < z" "0 < x * y"
  1.1226 +  assumes "y \<le> x"
  1.1227 +    and "0 < z"
  1.1228 +    and "0 < x * y"
  1.1229    shows "z / x \<le> z / y"
  1.1230 -using assms by (cases x y z rule: ereal3_cases)
  1.1231 -  (auto intro: divide_left_mono simp: field_simps sign_simps split: split_if_asm)
  1.1232 +  using assms
  1.1233 +  by (cases x y z rule: ereal3_cases)
  1.1234 +    (auto intro: divide_left_mono simp: field_simps sign_simps split: split_if_asm)
  1.1235  
  1.1236  lemma ereal_divide_zero_left[simp]:
  1.1237    fixes a :: ereal
  1.1238 @@ -1088,13 +1277,16 @@
  1.1239    shows "b / c * a = b * a / c"
  1.1240    by (cases a b c rule: ereal3_cases) (auto simp: field_simps sign_simps)
  1.1241  
  1.1242 +
  1.1243  subsection "Complete lattice"
  1.1244  
  1.1245  instantiation ereal :: lattice
  1.1246  begin
  1.1247 +
  1.1248  definition [simp]: "sup x y = (max x y :: ereal)"
  1.1249  definition [simp]: "inf x y = (min x y :: ereal)"
  1.1250  instance by default simp_all
  1.1251 +
  1.1252  end
  1.1253  
  1.1254  instantiation ereal :: complete_lattice
  1.1255 @@ -1109,29 +1301,46 @@
  1.1256  lemma ereal_complete_Sup:
  1.1257    fixes S :: "ereal set"
  1.1258    shows "\<exists>x. (\<forall>y\<in>S. y \<le> x) \<and> (\<forall>z. (\<forall>y\<in>S. y \<le> z) \<longrightarrow> x \<le> z)"
  1.1259 -proof cases
  1.1260 -  assume "\<exists>x. \<forall>a\<in>S. a \<le> ereal x"
  1.1261 -  then obtain y where y: "\<And>a. a\<in>S \<Longrightarrow> a \<le> ereal y" by auto
  1.1262 -  then have "\<infinity> \<notin> S" by force
  1.1263 +proof (cases "\<exists>x. \<forall>a\<in>S. a \<le> ereal x")
  1.1264 +  case True
  1.1265 +  then obtain y where y: "\<And>a. a\<in>S \<Longrightarrow> a \<le> ereal y"
  1.1266 +    by auto
  1.1267 +  then have "\<infinity> \<notin> S"
  1.1268 +    by force
  1.1269    show ?thesis
  1.1270 -  proof cases
  1.1271 -    assume "S \<noteq> {-\<infinity>} \<and> S \<noteq> {}"
  1.1272 -    with `\<infinity> \<notin> S` obtain x where x: "x \<in> S" "\<bar>x\<bar> \<noteq> \<infinity>" by auto
  1.1273 +  proof (cases "S \<noteq> {-\<infinity>} \<and> S \<noteq> {}")
  1.1274 +    case True
  1.1275 +    with `\<infinity> \<notin> S` obtain x where x: "x \<in> S" "\<bar>x\<bar> \<noteq> \<infinity>"
  1.1276 +      by auto
  1.1277      obtain s where s: "\<forall>x\<in>ereal -` S. x \<le> s" "\<And>z. (\<forall>x\<in>ereal -` S. x \<le> z) \<Longrightarrow> s \<le> z"
  1.1278      proof (atomize_elim, rule complete_real)
  1.1279 -      show "\<exists>x. x \<in> ereal -` S" using x by auto
  1.1280 -      show "\<exists>z. \<forall>x\<in>ereal -` S. x \<le> z" by (auto dest: y intro!: exI[of _ y])
  1.1281 +      show "\<exists>x. x \<in> ereal -` S"
  1.1282 +        using x by auto
  1.1283 +      show "\<exists>z. \<forall>x\<in>ereal -` S. x \<le> z"
  1.1284 +        by (auto dest: y intro!: exI[of _ y])
  1.1285      qed
  1.1286      show ?thesis
  1.1287      proof (safe intro!: exI[of _ "ereal s"])
  1.1288 -      fix y assume "y \<in> S" with s `\<infinity> \<notin> S` show "y \<le> ereal s"
  1.1289 +      fix y
  1.1290 +      assume "y \<in> S"
  1.1291 +      with s `\<infinity> \<notin> S` show "y \<le> ereal s"
  1.1292          by (cases y) auto
  1.1293      next
  1.1294 -      fix z assume "\<forall>y\<in>S. y \<le> z" with `S \<noteq> {-\<infinity>} \<and> S \<noteq> {}` show "ereal s \<le> z"
  1.1295 +      fix z
  1.1296 +      assume "\<forall>y\<in>S. y \<le> z"
  1.1297 +      with `S \<noteq> {-\<infinity>} \<and> S \<noteq> {}` show "ereal s \<le> z"
  1.1298          by (cases z) (auto intro!: s)
  1.1299      qed
  1.1300 -  qed (auto intro!: exI[of _ "-\<infinity>"])
  1.1301 -qed (fastforce intro!: exI[of _ \<infinity>] ereal_top intro: order_trans dest: less_imp_le simp: not_le)
  1.1302 +  next
  1.1303 +    case False
  1.1304 +    then show ?thesis
  1.1305 +      by (auto intro!: exI[of _ "-\<infinity>"])
  1.1306 +  qed
  1.1307 +next
  1.1308 +  case False
  1.1309 +  then show ?thesis
  1.1310 +    by (fastforce intro!: exI[of _ \<infinity>] ereal_top intro: order_trans dest: less_imp_le simp: not_le)
  1.1311 +qed
  1.1312  
  1.1313  lemma ereal_complete_uminus_eq:
  1.1314    fixes S :: "ereal set"
  1.1315 @@ -1141,23 +1350,24 @@
  1.1316  
  1.1317  lemma ereal_complete_Inf:
  1.1318    "\<exists>x. (\<forall>y\<in>S::ereal set. x \<le> y) \<and> (\<forall>z. (\<forall>y\<in>S. z \<le> y) \<longrightarrow> z \<le> x)"
  1.1319 -  using ereal_complete_Sup[of "uminus ` S"] unfolding ereal_complete_uminus_eq by auto
  1.1320 +  using ereal_complete_Sup[of "uminus ` S"]
  1.1321 +  unfolding ereal_complete_uminus_eq
  1.1322 +  by auto
  1.1323  
  1.1324  instance
  1.1325  proof
  1.1326    show "Sup {} = (bot::ereal)"
  1.1327 -  apply (auto simp: bot_ereal_def Sup_ereal_def)
  1.1328 -  apply (rule some1_equality)
  1.1329 -  apply (metis ereal_bot ereal_less_eq(2))
  1.1330 -  apply (metis ereal_less_eq(2))
  1.1331 -  done
  1.1332 -next
  1.1333 +    apply (auto simp: bot_ereal_def Sup_ereal_def)
  1.1334 +    apply (rule some1_equality)
  1.1335 +    apply (metis ereal_bot ereal_less_eq(2))
  1.1336 +    apply (metis ereal_less_eq(2))
  1.1337 +    done
  1.1338    show "Inf {} = (top::ereal)"
  1.1339 -  apply (auto simp: top_ereal_def Inf_ereal_def)
  1.1340 -  apply (rule some1_equality)
  1.1341 -  apply (metis ereal_top ereal_less_eq(1))
  1.1342 -  apply (metis ereal_less_eq(1))
  1.1343 -  done
  1.1344 +    apply (auto simp: top_ereal_def Inf_ereal_def)
  1.1345 +    apply (rule some1_equality)
  1.1346 +    apply (metis ereal_top ereal_less_eq(1))
  1.1347 +    apply (metis ereal_less_eq(1))
  1.1348 +    done
  1.1349  qed (auto intro: someI2_ex ereal_complete_Sup ereal_complete_Inf
  1.1350    simp: Sup_ereal_def Inf_ereal_def bot_ereal_def top_ereal_def)
  1.1351  
  1.1352 @@ -1183,74 +1393,89 @@
  1.1353    using ereal_Sup_uminus_image_eq[of "uminus ` S"] by simp
  1.1354  
  1.1355  lemma ereal_SUPR_uminus:
  1.1356 -  fixes f :: "'a => ereal"
  1.1357 +  fixes f :: "'a \<Rightarrow> ereal"
  1.1358    shows "(SUP i : R. -(f i)) = -(INF i : R. f i)"
  1.1359    using ereal_Sup_uminus_image_eq[of "f`R"]
  1.1360    by (simp add: SUP_def INF_def image_image)
  1.1361  
  1.1362  lemma ereal_INFI_uminus:
  1.1363 -  fixes f :: "'a => ereal"
  1.1364 -  shows "(INF i : R. -(f i)) = -(SUP i : R. f i)"
  1.1365 +  fixes f :: "'a \<Rightarrow> ereal"
  1.1366 +  shows "(INF i : R. - f i) = - (SUP i : R. f i)"
  1.1367    using ereal_SUPR_uminus[of _ "\<lambda>x. - f x"] by simp
  1.1368  
  1.1369  lemma ereal_image_uminus_shift:
  1.1370 -  fixes X Y :: "ereal set" shows "uminus ` X = Y \<longleftrightarrow> X = uminus ` Y"
  1.1371 +  fixes X Y :: "ereal set"
  1.1372 +  shows "uminus ` X = Y \<longleftrightarrow> X = uminus ` Y"
  1.1373  proof
  1.1374    assume "uminus ` X = Y"
  1.1375    then have "uminus ` uminus ` X = uminus ` Y"
  1.1376      by (simp add: inj_image_eq_iff)
  1.1377 -  then show "X = uminus ` Y" by (simp add: image_image)
  1.1378 +  then show "X = uminus ` Y"
  1.1379 +    by (simp add: image_image)
  1.1380  qed (simp add: image_image)
  1.1381  
  1.1382  lemma Inf_ereal_iff:
  1.1383    fixes z :: ereal
  1.1384 -  shows "(!!x. x:X ==> z <= x) ==> (EX x:X. x<y) <-> Inf X < y"
  1.1385 -  by (metis complete_lattice_class.Inf_greatest complete_lattice_class.Inf_lower less_le_not_le linear
  1.1386 -            order_less_le_trans)
  1.1387 +  shows "(\<And>x. x \<in> X \<Longrightarrow> z \<le> x) \<Longrightarrow> (\<exists>x\<in>X. x < y) \<longleftrightarrow> Inf X < y"
  1.1388 +  by (metis complete_lattice_class.Inf_greatest complete_lattice_class.Inf_lower
  1.1389 +      less_le_not_le linear order_less_le_trans)
  1.1390  
  1.1391  lemma Sup_eq_MInfty:
  1.1392 -  fixes S :: "ereal set" shows "Sup S = -\<infinity> \<longleftrightarrow> S = {} \<or> S = {-\<infinity>}"
  1.1393 +  fixes S :: "ereal set"
  1.1394 +  shows "Sup S = -\<infinity> \<longleftrightarrow> S = {} \<or> S = {-\<infinity>}"
  1.1395    unfolding bot_ereal_def[symmetric] by auto
  1.1396  
  1.1397  lemma Inf_eq_PInfty:
  1.1398 -  fixes S :: "ereal set" shows "Inf S = \<infinity> \<longleftrightarrow> S = {} \<or> S = {\<infinity>}"
  1.1399 +  fixes S :: "ereal set"
  1.1400 +  shows "Inf S = \<infinity> \<longleftrightarrow> S = {} \<or> S = {\<infinity>}"
  1.1401    using Sup_eq_MInfty[of "uminus`S"]
  1.1402    unfolding ereal_Sup_uminus_image_eq ereal_image_uminus_shift by simp
  1.1403  
  1.1404 -lemma Inf_eq_MInfty: 
  1.1405 -  fixes S :: "ereal set" shows "-\<infinity> \<in> S \<Longrightarrow> Inf S = -\<infinity>"
  1.1406 +lemma Inf_eq_MInfty:
  1.1407 +  fixes S :: "ereal set"
  1.1408 +  shows "-\<infinity> \<in> S \<Longrightarrow> Inf S = -\<infinity>"
  1.1409    unfolding bot_ereal_def[symmetric] by auto
  1.1410  
  1.1411  lemma Sup_eq_PInfty:
  1.1412 -  fixes S :: "ereal set" shows "\<infinity> \<in> S \<Longrightarrow> Sup S = \<infinity>"
  1.1413 +  fixes S :: "ereal set"
  1.1414 +  shows "\<infinity> \<in> S \<Longrightarrow> Sup S = \<infinity>"
  1.1415    unfolding top_ereal_def[symmetric] by auto
  1.1416  
  1.1417  lemma Sup_ereal_close:
  1.1418    fixes e :: ereal
  1.1419 -  assumes "0 < e" and S: "\<bar>Sup S\<bar> \<noteq> \<infinity>" "S \<noteq> {}"
  1.1420 +  assumes "0 < e"
  1.1421 +    and S: "\<bar>Sup S\<bar> \<noteq> \<infinity>" "S \<noteq> {}"
  1.1422    shows "\<exists>x\<in>S. Sup S - e < x"
  1.1423    using assms by (cases e) (auto intro!: less_Sup_iff[THEN iffD1])
  1.1424  
  1.1425  lemma Inf_ereal_close:
  1.1426 -  fixes e :: ereal assumes "\<bar>Inf X\<bar> \<noteq> \<infinity>" "0 < e"
  1.1427 +  fixes e :: ereal
  1.1428 +  assumes "\<bar>Inf X\<bar> \<noteq> \<infinity>"
  1.1429 +    and "0 < e"
  1.1430    shows "\<exists>x\<in>X. x < Inf X + e"
  1.1431  proof (rule Inf_less_iff[THEN iffD1])
  1.1432 -  show "Inf X < Inf X + e" using assms
  1.1433 -    by (cases e) auto
  1.1434 +  show "Inf X < Inf X + e"
  1.1435 +    using assms by (cases e) auto
  1.1436  qed
  1.1437  
  1.1438  lemma SUP_nat_Infty: "(SUP i::nat. ereal (real i)) = \<infinity>"
  1.1439  proof -
  1.1440 -  { fix x ::ereal assume "x \<noteq> \<infinity>"
  1.1441 +  {
  1.1442 +    fix x :: ereal
  1.1443 +    assume "x \<noteq> \<infinity>"
  1.1444      then have "\<exists>k::nat. x < ereal (real k)"
  1.1445      proof (cases x)
  1.1446 -      case MInf then show ?thesis by (intro exI[of _ 0]) auto
  1.1447 +      case MInf
  1.1448 +      then show ?thesis
  1.1449 +        by (intro exI[of _ 0]) auto
  1.1450      next
  1.1451        case (real r)
  1.1452        moreover obtain k :: nat where "r < real k"
  1.1453          using ex_less_of_nat by (auto simp: real_eq_of_nat)
  1.1454 -      ultimately show ?thesis by auto
  1.1455 -    qed simp }
  1.1456 +      ultimately show ?thesis
  1.1457 +        by auto
  1.1458 +    qed simp
  1.1459 +  }
  1.1460    then show ?thesis
  1.1461      using SUP_eq_top_iff[of UNIV "\<lambda>n::nat. ereal (real n)"]
  1.1462      by (auto simp: top_ereal_def)
  1.1463 @@ -1259,96 +1484,136 @@
  1.1464  lemma Inf_less:
  1.1465    fixes x :: ereal
  1.1466    assumes "(INF i:A. f i) < x"
  1.1467 -  shows "EX i. i : A & f i <= x"
  1.1468 -proof(rule ccontr)
  1.1469 -  assume "~ (EX i. i : A & f i <= x)"
  1.1470 -  hence "ALL i:A. f i > x" by auto
  1.1471 -  hence "(INF i:A. f i) >= x" apply (subst INF_greatest) by auto
  1.1472 -  thus False using assms by auto
  1.1473 +  shows "\<exists>i. i \<in> A \<and> f i \<le> x"
  1.1474 +proof (rule ccontr)
  1.1475 +  assume "\<not> ?thesis"
  1.1476 +  then have "\<forall>i\<in>A. f i > x"
  1.1477 +    by auto
  1.1478 +  then have "(INF i:A. f i) \<ge> x"
  1.1479 +    by (subst INF_greatest) auto
  1.1480 +  then show False
  1.1481 +    using assms by auto
  1.1482  qed
  1.1483  
  1.1484  lemma SUP_ereal_le_addI:
  1.1485    fixes f :: "'i \<Rightarrow> ereal"
  1.1486 -  assumes "\<And>i. f i + y \<le> z" and "y \<noteq> -\<infinity>"
  1.1487 +  assumes "\<And>i. f i + y \<le> z"
  1.1488 +    and "y \<noteq> -\<infinity>"
  1.1489    shows "SUPR UNIV f + y \<le> z"
  1.1490  proof (cases y)
  1.1491    case (real r)
  1.1492 -  then have "\<And>i. f i \<le> z - y" using assms by (simp add: ereal_le_minus_iff)
  1.1493 -  then have "SUPR UNIV f \<le> z - y" by (rule SUP_least)
  1.1494 -  then show ?thesis using real by (simp add: ereal_le_minus_iff)
  1.1495 +  then have "\<And>i. f i \<le> z - y"
  1.1496 +    using assms by (simp add: ereal_le_minus_iff)
  1.1497 +  then have "SUPR UNIV f \<le> z - y"
  1.1498 +    by (rule SUP_least)
  1.1499 +  then show ?thesis
  1.1500 +    using real by (simp add: ereal_le_minus_iff)
  1.1501  qed (insert assms, auto)
  1.1502  
  1.1503  lemma SUPR_ereal_add:
  1.1504    fixes f g :: "nat \<Rightarrow> ereal"
  1.1505 -  assumes "incseq f" "incseq g" and pos: "\<And>i. f i \<noteq> -\<infinity>" "\<And>i. g i \<noteq> -\<infinity>"
  1.1506 +  assumes "incseq f"
  1.1507 +    and "incseq g"
  1.1508 +    and pos: "\<And>i. f i \<noteq> -\<infinity>" "\<And>i. g i \<noteq> -\<infinity>"
  1.1509    shows "(SUP i. f i + g i) = SUPR UNIV f + SUPR UNIV g"
  1.1510  proof (rule SUP_eqI)
  1.1511 -  fix y assume *: "\<And>i. i \<in> UNIV \<Longrightarrow> f i + g i \<le> y"
  1.1512 -  have f: "SUPR UNIV f \<noteq> -\<infinity>" using pos
  1.1513 -    unfolding SUP_def Sup_eq_MInfty by (auto dest: image_eqD)
  1.1514 -  { fix j
  1.1515 -    { fix i
  1.1516 +  fix y
  1.1517 +  assume *: "\<And>i. i \<in> UNIV \<Longrightarrow> f i + g i \<le> y"
  1.1518 +  have f: "SUPR UNIV f \<noteq> -\<infinity>"
  1.1519 +    using pos
  1.1520 +    unfolding SUP_def Sup_eq_MInfty
  1.1521 +    by (auto dest: image_eqD)
  1.1522 +  {
  1.1523 +    fix j
  1.1524 +    {
  1.1525 +      fix i
  1.1526        have "f i + g j \<le> f i + g (max i j)"
  1.1527 -        using `incseq g`[THEN incseqD] by (rule add_left_mono) auto
  1.1528 +        using `incseq g`[THEN incseqD]
  1.1529 +        by (rule add_left_mono) auto
  1.1530        also have "\<dots> \<le> f (max i j) + g (max i j)"
  1.1531 -        using `incseq f`[THEN incseqD] by (rule add_right_mono) auto
  1.1532 +        using `incseq f`[THEN incseqD]
  1.1533 +        by (rule add_right_mono) auto
  1.1534        also have "\<dots> \<le> y" using * by auto
  1.1535 -      finally have "f i + g j \<le> y" . }
  1.1536 +      finally have "f i + g j \<le> y" .
  1.1537 +    }
  1.1538      then have "SUPR UNIV f + g j \<le> y"
  1.1539        using assms(4)[of j] by (intro SUP_ereal_le_addI) auto
  1.1540 -    then have "g j + SUPR UNIV f \<le> y" by (simp add: ac_simps) }
  1.1541 +    then have "g j + SUPR UNIV f \<le> y" by (simp add: ac_simps)
  1.1542 +  }
  1.1543    then have "SUPR UNIV g + SUPR UNIV f \<le> y"
  1.1544      using f by (rule SUP_ereal_le_addI)
  1.1545 -  then show "SUPR UNIV f + SUPR UNIV g \<le> y" by (simp add: ac_simps)
  1.1546 +  then show "SUPR UNIV f + SUPR UNIV g \<le> y"
  1.1547 +    by (simp add: ac_simps)
  1.1548  qed (auto intro!: add_mono SUP_upper)
  1.1549  
  1.1550  lemma SUPR_ereal_add_pos:
  1.1551    fixes f g :: "nat \<Rightarrow> ereal"
  1.1552 -  assumes inc: "incseq f" "incseq g" and pos: "\<And>i. 0 \<le> f i" "\<And>i. 0 \<le> g i"
  1.1553 +  assumes inc: "incseq f" "incseq g"
  1.1554 +    and pos: "\<And>i. 0 \<le> f i" "\<And>i. 0 \<le> g i"
  1.1555    shows "(SUP i. f i + g i) = SUPR UNIV f + SUPR UNIV g"
  1.1556  proof (intro SUPR_ereal_add inc)
  1.1557 -  fix i show "f i \<noteq> -\<infinity>" "g i \<noteq> -\<infinity>" using pos[of i] by auto
  1.1558 +  fix i
  1.1559 +  show "f i \<noteq> -\<infinity>" "g i \<noteq> -\<infinity>"
  1.1560 +    using pos[of i] by auto
  1.1561  qed
  1.1562  
  1.1563  lemma SUPR_ereal_setsum:
  1.1564    fixes f g :: "'a \<Rightarrow> nat \<Rightarrow> ereal"
  1.1565 -  assumes "\<And>n. n \<in> A \<Longrightarrow> incseq (f n)" and pos: "\<And>n i. n \<in> A \<Longrightarrow> 0 \<le> f n i"
  1.1566 +  assumes "\<And>n. n \<in> A \<Longrightarrow> incseq (f n)"
  1.1567 +    and pos: "\<And>n i. n \<in> A \<Longrightarrow> 0 \<le> f n i"
  1.1568    shows "(SUP i. \<Sum>n\<in>A. f n i) = (\<Sum>n\<in>A. SUPR UNIV (f n))"
  1.1569 -proof cases
  1.1570 -  assume "finite A" then show ?thesis using assms
  1.1571 +proof (cases "finite A")
  1.1572 +  case True
  1.1573 +  then show ?thesis using assms
  1.1574      by induct (auto simp: incseq_setsumI2 setsum_nonneg SUPR_ereal_add_pos)
  1.1575 -qed simp
  1.1576 +next
  1.1577 +  case False
  1.1578 +  then show ?thesis by simp
  1.1579 +qed
  1.1580  
  1.1581  lemma SUPR_ereal_cmult:
  1.1582 -  fixes f :: "nat \<Rightarrow> ereal" assumes "\<And>i. 0 \<le> f i" "0 \<le> c"
  1.1583 +  fixes f :: "nat \<Rightarrow> ereal"
  1.1584 +  assumes "\<And>i. 0 \<le> f i"
  1.1585 +    and "0 \<le> c"
  1.1586    shows "(SUP i. c * f i) = c * SUPR UNIV f"
  1.1587  proof (rule SUP_eqI)
  1.1588 -  fix i have "f i \<le> SUPR UNIV f" by (rule SUP_upper) auto
  1.1589 +  fix i
  1.1590 +  have "f i \<le> SUPR UNIV f"
  1.1591 +    by (rule SUP_upper) auto
  1.1592    then show "c * f i \<le> c * SUPR UNIV f"
  1.1593      using `0 \<le> c` by (rule ereal_mult_left_mono)
  1.1594  next
  1.1595 -  fix y assume *: "\<And>i. i \<in> UNIV \<Longrightarrow> c * f i \<le> y"
  1.1596 +  fix y
  1.1597 +  assume *: "\<And>i. i \<in> UNIV \<Longrightarrow> c * f i \<le> y"
  1.1598    show "c * SUPR UNIV f \<le> y"
  1.1599 -  proof cases
  1.1600 -    assume c: "0 < c \<and> c \<noteq> \<infinity>"
  1.1601 +  proof (cases "0 < c \<and> c \<noteq> \<infinity>")
  1.1602 +    case True
  1.1603      with * have "SUPR UNIV f \<le> y / c"
  1.1604        by (intro SUP_least) (auto simp: ereal_le_divide_pos)
  1.1605 -    with c show ?thesis
  1.1606 +    with True show ?thesis
  1.1607        by (auto simp: ereal_le_divide_pos)
  1.1608    next
  1.1609 -    { assume "c = \<infinity>" have ?thesis
  1.1610 -      proof cases
  1.1611 -        assume **: "\<forall>i. f i = 0"
  1.1612 -        then have "range f = {0}" by auto
  1.1613 -        with ** show "c * SUPR UNIV f \<le> y" using *
  1.1614 -          by (auto simp: SUP_def min_max.sup_absorb1)
  1.1615 +    case False
  1.1616 +    {
  1.1617 +      assume "c = \<infinity>"
  1.1618 +      have ?thesis
  1.1619 +      proof (cases "\<forall>i. f i = 0")
  1.1620 +        case True
  1.1621 +        then have "range f = {0}"
  1.1622 +          by auto
  1.1623 +        with True show "c * SUPR UNIV f \<le> y"
  1.1624 +          using * by (auto simp: SUP_def min_max.sup_absorb1)
  1.1625        next
  1.1626 -        assume "\<not> (\<forall>i. f i = 0)"
  1.1627 -        then obtain i where "f i \<noteq> 0" by auto
  1.1628 -        with *[of i] `c = \<infinity>` `0 \<le> f i` show ?thesis by (auto split: split_if_asm)
  1.1629 -      qed }
  1.1630 -    moreover assume "\<not> (0 < c \<and> c \<noteq> \<infinity>)"
  1.1631 -    ultimately show ?thesis using * `0 \<le> c` by auto
  1.1632 +        case False
  1.1633 +        then obtain i where "f i \<noteq> 0"
  1.1634 +          by auto
  1.1635 +        with *[of i] `c = \<infinity>` `0 \<le> f i` show ?thesis
  1.1636 +          by (auto split: split_if_asm)
  1.1637 +      qed
  1.1638 +    }
  1.1639 +    moreover note False
  1.1640 +    ultimately show ?thesis
  1.1641 +      using * `0 \<le> c` by auto
  1.1642    qed
  1.1643  qed
  1.1644  
  1.1645 @@ -1359,15 +1624,21 @@
  1.1646    unfolding SUP_def Sup_eq_top_iff[where 'a=ereal, unfolded top_ereal_def]
  1.1647    apply simp
  1.1648  proof safe
  1.1649 -  fix x :: ereal assume "x \<noteq> \<infinity>"
  1.1650 +  fix x :: ereal
  1.1651 +  assume "x \<noteq> \<infinity>"
  1.1652    show "\<exists>i\<in>A. x < f i"
  1.1653    proof (cases x)
  1.1654 -    case PInf with `x \<noteq> \<infinity>` show ?thesis by simp
  1.1655 +    case PInf
  1.1656 +    with `x \<noteq> \<infinity>` show ?thesis
  1.1657 +      by simp
  1.1658    next
  1.1659 -    case MInf with assms[of "0"] show ?thesis by force
  1.1660 +    case MInf
  1.1661 +    with assms[of "0"] show ?thesis
  1.1662 +      by force
  1.1663    next
  1.1664      case (real r)
  1.1665 -    with less_PInf_Ex_of_nat[of x] obtain n :: nat where "x < ereal (real n)" by auto
  1.1666 +    with less_PInf_Ex_of_nat[of x] obtain n :: nat where "x < ereal (real n)"
  1.1667 +      by auto
  1.1668      moreover obtain i where "i \<in> A" "ereal (real n) \<le> f i"
  1.1669        using assms ..
  1.1670      ultimately show ?thesis
  1.1671 @@ -1382,7 +1653,8 @@
  1.1672    case (real r)
  1.1673    have "\<forall>n::nat. \<exists>x. x \<in> A \<and> Sup A < x + 1 / ereal (real n)"
  1.1674    proof
  1.1675 -    fix n ::nat have "\<exists>x\<in>A. Sup A - 1 / ereal (real n) < x"
  1.1676 +    fix n :: nat
  1.1677 +    have "\<exists>x\<in>A. Sup A - 1 / ereal (real n) < x"
  1.1678        using assms real by (intro Sup_ereal_close) (auto simp: one_ereal_def)
  1.1679      then obtain x where "x \<in> A" "Sup A - 1 / ereal (real n) < x" ..
  1.1680      then show "\<exists>x. x \<in> A \<and> Sup A < x + 1 / ereal (real n)"
  1.1681 @@ -1392,48 +1664,63 @@
  1.1682      where f: "\<forall>x. f x \<in> A \<and> Sup A < f x + 1 / ereal (real x)" ..
  1.1683    have "SUPR UNIV f = Sup A"
  1.1684    proof (rule SUP_eqI)
  1.1685 -    fix i show "f i \<le> Sup A" using f
  1.1686 -      by (auto intro!: complete_lattice_class.Sup_upper)
  1.1687 +    fix i
  1.1688 +    show "f i \<le> Sup A"
  1.1689 +      using f by (auto intro!: complete_lattice_class.Sup_upper)
  1.1690    next
  1.1691 -    fix y assume bound: "\<And>i. i \<in> UNIV \<Longrightarrow> f i \<le> y"
  1.1692 +    fix y
  1.1693 +    assume bound: "\<And>i. i \<in> UNIV \<Longrightarrow> f i \<le> y"
  1.1694      show "Sup A \<le> y"
  1.1695      proof (rule ereal_le_epsilon, intro allI impI)
  1.1696 -      fix e :: ereal assume "0 < e"
  1.1697 +      fix e :: ereal
  1.1698 +      assume "0 < e"
  1.1699        show "Sup A \<le> y + e"
  1.1700        proof (cases e)
  1.1701          case (real r)
  1.1702 -        hence "0 < r" using `0 < e` by auto
  1.1703 -        then obtain n ::nat where *: "1 / real n < r" "0 < n"
  1.1704 -          using ex_inverse_of_nat_less by (auto simp: real_eq_of_nat inverse_eq_divide)
  1.1705 -        have "Sup A \<le> f n + 1 / ereal (real n)" using f[THEN spec, of n]
  1.1706 +        then have "0 < r"
  1.1707 +          using `0 < e` by auto
  1.1708 +        then obtain n :: nat where *: "1 / real n < r" "0 < n"
  1.1709 +          using ex_inverse_of_nat_less
  1.1710 +          by (auto simp: real_eq_of_nat inverse_eq_divide)
  1.1711 +        have "Sup A \<le> f n + 1 / ereal (real n)"
  1.1712 +          using f[THEN spec, of n]
  1.1713            by auto
  1.1714 -        also have "1 / ereal (real n) \<le> e" using real * by (auto simp: one_ereal_def )
  1.1715 -        with bound have "f n + 1 / ereal (real n) \<le> y + e" by (rule add_mono) simp
  1.1716 +        also have "1 / ereal (real n) \<le> e"
  1.1717 +          using real *
  1.1718 +          by (auto simp: one_ereal_def )
  1.1719 +        with bound have "f n + 1 / ereal (real n) \<le> y + e"
  1.1720 +          by (rule add_mono) simp
  1.1721          finally show "Sup A \<le> y + e" .
  1.1722        qed (insert `0 < e`, auto)
  1.1723      qed
  1.1724    qed
  1.1725 -  with f show ?thesis by (auto intro!: exI[of _ f])
  1.1726 +  with f show ?thesis
  1.1727 +    by (auto intro!: exI[of _ f])
  1.1728  next
  1.1729    case PInf
  1.1730 -  from `A \<noteq> {}` obtain x where "x \<in> A" by auto
  1.1731 +  from `A \<noteq> {}` obtain x where "x \<in> A"
  1.1732 +    by auto
  1.1733    show ?thesis
  1.1734 -  proof cases
  1.1735 -    assume *: "\<infinity> \<in> A"
  1.1736 -    then have "\<infinity> \<le> Sup A" by (intro complete_lattice_class.Sup_upper)
  1.1737 -    with * show ?thesis by (auto intro!: exI[of _ "\<lambda>x. \<infinity>"])
  1.1738 +  proof (cases "\<infinity> \<in> A")
  1.1739 +    case True
  1.1740 +    then have "\<infinity> \<le> Sup A"
  1.1741 +      by (intro complete_lattice_class.Sup_upper)
  1.1742 +    with True show ?thesis
  1.1743 +      by (auto intro!: exI[of _ "\<lambda>x. \<infinity>"])
  1.1744    next
  1.1745 -    assume "\<infinity> \<notin> A"
  1.1746 +    case False
  1.1747      have "\<exists>x\<in>A. 0 \<le> x"
  1.1748 -      by (metis Infty_neq_0 PInf complete_lattice_class.Sup_least ereal_infty_less_eq2 linorder_linear)
  1.1749 -    then obtain x where "x \<in> A" "0 \<le> x" by auto
  1.1750 +      by (metis Infty_neq_0 PInf complete_lattice_class.Sup_least
  1.1751 +          ereal_infty_less_eq2 linorder_linear)
  1.1752 +    then obtain x where "x \<in> A" and "0 \<le> x"
  1.1753 +      by auto
  1.1754      have "\<forall>n::nat. \<exists>f. f \<in> A \<and> x + ereal (real n) \<le> f"
  1.1755      proof (rule ccontr)
  1.1756        assume "\<not> ?thesis"
  1.1757        then have "\<exists>n::nat. Sup A \<le> x + ereal (real n)"
  1.1758          by (simp add: Sup_le_iff not_le less_imp_le Ball_def) (metis less_imp_le)
  1.1759        then show False using `x \<in> A` `\<infinity> \<notin> A` PInf
  1.1760 -        by(cases x) auto
  1.1761 +        by (cases x) auto
  1.1762      qed
  1.1763      from choice[OF this] obtain f :: "nat \<Rightarrow> ereal"
  1.1764        where f: "\<forall>z. f z \<in> A \<and> x + ereal (real z) \<le> f z" ..
  1.1765 @@ -1444,20 +1731,26 @@
  1.1766          using f[THEN spec, of n] `0 \<le> x`
  1.1767          by (cases rule: ereal2_cases[of "f n" x]) (auto intro!: exI[of _ n])
  1.1768      qed
  1.1769 -    then show ?thesis using f PInf by (auto intro!: exI[of _ f])
  1.1770 +    then show ?thesis
  1.1771 +      using f PInf by (auto intro!: exI[of _ f])
  1.1772    qed
  1.1773  next
  1.1774    case MInf
  1.1775 -  with `A \<noteq> {}` have "A = {-\<infinity>}" by (auto simp: Sup_eq_MInfty)
  1.1776 -  then show ?thesis using MInf by (auto intro!: exI[of _ "\<lambda>x. -\<infinity>"])
  1.1777 +  with `A \<noteq> {}` have "A = {-\<infinity>}"
  1.1778 +    by (auto simp: Sup_eq_MInfty)
  1.1779 +  then show ?thesis
  1.1780 +    using MInf by (auto intro!: exI[of _ "\<lambda>x. -\<infinity>"])
  1.1781  qed
  1.1782  
  1.1783  lemma SUPR_countable_SUPR:
  1.1784    "A \<noteq> {} \<Longrightarrow> \<exists>f::nat \<Rightarrow> ereal. range f \<subseteq> g`A \<and> SUPR A g = SUPR UNIV f"
  1.1785 -  using Sup_countable_SUPR[of "g`A"] by (auto simp: SUP_def)
  1.1786 +  using Sup_countable_SUPR[of "g`A"]
  1.1787 +  by (auto simp: SUP_def)
  1.1788  
  1.1789  lemma Sup_ereal_cadd:
  1.1790 -  fixes A :: "ereal set" assumes "A \<noteq> {}" and "a \<noteq> -\<infinity>"
  1.1791 +  fixes A :: "ereal set"
  1.1792 +  assumes "A \<noteq> {}"
  1.1793 +    and "a \<noteq> -\<infinity>"
  1.1794    shows "Sup ((\<lambda>x. a + x) ` A) = a + Sup A"
  1.1795  proof (rule antisym)
  1.1796    have *: "\<And>a::ereal. \<And>A. Sup ((\<lambda>x. a + x) ` A) \<le> a + Sup A"
  1.1797 @@ -1465,37 +1758,46 @@
  1.1798    then show "Sup ((\<lambda>x. a + x) ` A) \<le> a + Sup A" .
  1.1799    show "a + Sup A \<le> Sup ((\<lambda>x. a + x) ` A)"
  1.1800    proof (cases a)
  1.1801 -    case PInf with `A \<noteq> {}` show ?thesis by (auto simp: image_constant min_max.sup_absorb1)
  1.1802 +    case PInf with `A \<noteq> {}`
  1.1803 +    show ?thesis
  1.1804 +      by (auto simp: image_constant min_max.sup_absorb1)
  1.1805    next
  1.1806      case (real r)
  1.1807      then have **: "op + (- a) ` op + a ` A = A"
  1.1808        by (auto simp: image_iff ac_simps zero_ereal_def[symmetric])
  1.1809 -    from *[of "-a" "(\<lambda>x. a + x) ` A"] real show ?thesis unfolding **
  1.1810 +    from *[of "-a" "(\<lambda>x. a + x) ` A"] real show ?thesis
  1.1811 +      unfolding **
  1.1812        by (cases rule: ereal2_cases[of "Sup A" "Sup (op + a ` A)"]) auto
  1.1813    qed (insert `a \<noteq> -\<infinity>`, auto)
  1.1814  qed
  1.1815  
  1.1816  lemma Sup_ereal_cminus:
  1.1817 -  fixes A :: "ereal set" assumes "A \<noteq> {}" and "a \<noteq> -\<infinity>"
  1.1818 +  fixes A :: "ereal set"
  1.1819 +  assumes "A \<noteq> {}"
  1.1820 +    and "a \<noteq> -\<infinity>"
  1.1821    shows "Sup ((\<lambda>x. a - x) ` A) = a - Inf A"
  1.1822    using Sup_ereal_cadd[of "uminus ` A" a] assms
  1.1823 -  by (simp add: comp_def image_image minus_ereal_def
  1.1824 -                 ereal_Sup_uminus_image_eq)
  1.1825 +  by (simp add: comp_def image_image minus_ereal_def ereal_Sup_uminus_image_eq)
  1.1826  
  1.1827  lemma SUPR_ereal_cminus:
  1.1828    fixes f :: "'i \<Rightarrow> ereal"
  1.1829 -  fixes A assumes "A \<noteq> {}" and "a \<noteq> -\<infinity>"
  1.1830 +  fixes A
  1.1831 +  assumes "A \<noteq> {}"
  1.1832 +    and "a \<noteq> -\<infinity>"
  1.1833    shows "(SUP x:A. a - f x) = a - (INF x:A. f x)"
  1.1834    using Sup_ereal_cminus[of "f`A" a] assms
  1.1835    unfolding SUP_def INF_def image_image by auto
  1.1836  
  1.1837  lemma Inf_ereal_cminus:
  1.1838 -  fixes A :: "ereal set" assumes "A \<noteq> {}" and "\<bar>a\<bar> \<noteq> \<infinity>"
  1.1839 +  fixes A :: "ereal set"
  1.1840 +  assumes "A \<noteq> {}"
  1.1841 +    and "\<bar>a\<bar> \<noteq> \<infinity>"
  1.1842    shows "Inf ((\<lambda>x. a - x) ` A) = a - Sup A"
  1.1843  proof -
  1.1844    {
  1.1845      fix x
  1.1846 -    have "-a - -x = -(a - x)" using assms by (cases x) auto
  1.1847 +    have "-a - -x = -(a - x)"
  1.1848 +      using assms by (cases x) auto
  1.1849    } note * = this
  1.1850    then have "(\<lambda>x. -a - x)`uminus`A = uminus ` (\<lambda>x. a - x) ` A"
  1.1851      by (auto simp: image_image)
  1.1852 @@ -1505,25 +1807,32 @@
  1.1853  qed
  1.1854  
  1.1855  lemma INFI_ereal_cminus:
  1.1856 -  fixes a :: ereal assumes "A \<noteq> {}" and "\<bar>a\<bar> \<noteq> \<infinity>"
  1.1857 +  fixes a :: ereal
  1.1858 +  assumes "A \<noteq> {}"
  1.1859 +    and "\<bar>a\<bar> \<noteq> \<infinity>"
  1.1860    shows "(INF x:A. a - f x) = a - (SUP x:A. f x)"
  1.1861    using Inf_ereal_cminus[of "f`A" a] assms
  1.1862    unfolding SUP_def INF_def image_image
  1.1863    by auto
  1.1864  
  1.1865  lemma uminus_ereal_add_uminus_uminus:
  1.1866 -  fixes a b :: ereal shows "a \<noteq> \<infinity> \<Longrightarrow> b \<noteq> \<infinity> \<Longrightarrow> - (- a + - b) = a + b"
  1.1867 +  fixes a b :: ereal
  1.1868 +  shows "a \<noteq> \<infinity> \<Longrightarrow> b \<noteq> \<infinity> \<Longrightarrow> - (- a + - b) = a + b"
  1.1869    by (cases rule: ereal2_cases[of a b]) auto
  1.1870  
  1.1871  lemma INFI_ereal_add:
  1.1872    fixes f :: "nat \<Rightarrow> ereal"
  1.1873 -  assumes "decseq f" "decseq g" and fin: "\<And>i. f i \<noteq> \<infinity>" "\<And>i. g i \<noteq> \<infinity>"
  1.1874 +  assumes "decseq f" "decseq g"
  1.1875 +    and fin: "\<And>i. f i \<noteq> \<infinity>" "\<And>i. g i \<noteq> \<infinity>"
  1.1876    shows "(INF i. f i + g i) = INFI UNIV f + INFI UNIV g"
  1.1877  proof -
  1.1878    have INF_less: "(INF i. f i) < \<infinity>" "(INF i. g i) < \<infinity>"
  1.1879      using assms unfolding INF_less_iff by auto
  1.1880 -  { fix i from fin[of i] have "- ((- f i) + (- g i)) = f i + g i"
  1.1881 -      by (rule uminus_ereal_add_uminus_uminus) }
  1.1882 +  {
  1.1883 +    fix i
  1.1884 +    from fin[of i] have "- ((- f i) + (- g i)) = f i + g i"
  1.1885 +      by (rule uminus_ereal_add_uminus_uminus)
  1.1886 +  }
  1.1887    then have "(INF i. f i + g i) = (INF i. - ((- f i) + (- g i)))"
  1.1888      by simp
  1.1889    also have "\<dots> = INFI UNIV f + INFI UNIV g"
  1.1890 @@ -1534,6 +1843,7 @@
  1.1891    finally show ?thesis .
  1.1892  qed
  1.1893  
  1.1894 +
  1.1895  subsection "Relation to @{typ enat}"
  1.1896  
  1.1897  definition "ereal_of_enat n = (case n of enat n \<Rightarrow> ereal (real n) | \<infinity> \<Rightarrow> \<infinity>)"
  1.1898 @@ -1546,50 +1856,41 @@
  1.1899    "ereal_of_enat \<infinity> = \<infinity>"
  1.1900    by (simp_all add: ereal_of_enat_def)
  1.1901  
  1.1902 -lemma ereal_of_enat_le_iff[simp]:
  1.1903 -  "ereal_of_enat m \<le> ereal_of_enat n \<longleftrightarrow> m \<le> n"
  1.1904 -by (cases m n rule: enat2_cases) auto
  1.1905 +lemma ereal_of_enat_le_iff[simp]: "ereal_of_enat m \<le> ereal_of_enat n \<longleftrightarrow> m \<le> n"
  1.1906 +  by (cases m n rule: enat2_cases) auto
  1.1907  
  1.1908 -lemma ereal_of_enat_less_iff[simp]:
  1.1909 -  "ereal_of_enat m < ereal_of_enat n \<longleftrightarrow> m < n"
  1.1910 -by (cases m n rule: enat2_cases) auto
  1.1911 +lemma ereal_of_enat_less_iff[simp]: "ereal_of_enat m < ereal_of_enat n \<longleftrightarrow> m < n"
  1.1912 +  by (cases m n rule: enat2_cases) auto
  1.1913  
  1.1914 -lemma numeral_le_ereal_of_enat_iff[simp]:
  1.1915 -  shows "numeral m \<le> ereal_of_enat n \<longleftrightarrow> numeral m \<le> n"
  1.1916 -by (cases n) (auto dest: natceiling_le intro: natceiling_le_eq[THEN iffD1])
  1.1917 +lemma numeral_le_ereal_of_enat_iff[simp]: "numeral m \<le> ereal_of_enat n \<longleftrightarrow> numeral m \<le> n"
  1.1918 +  by (cases n) (auto dest: natceiling_le intro: natceiling_le_eq[THEN iffD1])
  1.1919  
  1.1920 -lemma numeral_less_ereal_of_enat_iff[simp]:
  1.1921 -  shows "numeral m < ereal_of_enat n \<longleftrightarrow> numeral m < n"
  1.1922 -by (cases n) (auto simp: real_of_nat_less_iff[symmetric])
  1.1923 +lemma numeral_less_ereal_of_enat_iff[simp]: "numeral m < ereal_of_enat n \<longleftrightarrow> numeral m < n"
  1.1924 +  by (cases n) (auto simp: real_of_nat_less_iff[symmetric])
  1.1925  
  1.1926 -lemma ereal_of_enat_ge_zero_cancel_iff[simp]:
  1.1927 -  "0 \<le> ereal_of_enat n \<longleftrightarrow> 0 \<le> n"
  1.1928 -by (cases n) (auto simp: enat_0[symmetric])
  1.1929 +lemma ereal_of_enat_ge_zero_cancel_iff[simp]: "0 \<le> ereal_of_enat n \<longleftrightarrow> 0 \<le> n"
  1.1930 +  by (cases n) (auto simp: enat_0[symmetric])
  1.1931  
  1.1932 -lemma ereal_of_enat_gt_zero_cancel_iff[simp]:
  1.1933 -  "0 < ereal_of_enat n \<longleftrightarrow> 0 < n"
  1.1934 -by (cases n) (auto simp: enat_0[symmetric])
  1.1935 +lemma ereal_of_enat_gt_zero_cancel_iff[simp]: "0 < ereal_of_enat n \<longleftrightarrow> 0 < n"
  1.1936 +  by (cases n) (auto simp: enat_0[symmetric])
  1.1937  
  1.1938 -lemma ereal_of_enat_zero[simp]:
  1.1939 -  "ereal_of_enat 0 = 0"
  1.1940 -by (auto simp: enat_0[symmetric])
  1.1941 +lemma ereal_of_enat_zero[simp]: "ereal_of_enat 0 = 0"
  1.1942 +  by (auto simp: enat_0[symmetric])
  1.1943  
  1.1944 -lemma ereal_of_enat_inf[simp]:
  1.1945 -  "ereal_of_enat n = \<infinity> \<longleftrightarrow> n = \<infinity>"
  1.1946 +lemma ereal_of_enat_inf[simp]: "ereal_of_enat n = \<infinity> \<longleftrightarrow> n = \<infinity>"
  1.1947    by (cases n) auto
  1.1948  
  1.1949 -
  1.1950 -lemma ereal_of_enat_add:
  1.1951 -  "ereal_of_enat (m + n) = ereal_of_enat m + ereal_of_enat n"
  1.1952 -by (cases m n rule: enat2_cases) auto
  1.1953 +lemma ereal_of_enat_add: "ereal_of_enat (m + n) = ereal_of_enat m + ereal_of_enat n"
  1.1954 +  by (cases m n rule: enat2_cases) auto
  1.1955  
  1.1956  lemma ereal_of_enat_sub:
  1.1957 -  assumes "n \<le> m" shows "ereal_of_enat (m - n) = ereal_of_enat m - ereal_of_enat n "
  1.1958 -using assms by (cases m n rule: enat2_cases) auto
  1.1959 +  assumes "n \<le> m"
  1.1960 +  shows "ereal_of_enat (m - n) = ereal_of_enat m - ereal_of_enat n "
  1.1961 +  using assms by (cases m n rule: enat2_cases) auto
  1.1962  
  1.1963  lemma ereal_of_enat_mult:
  1.1964    "ereal_of_enat (m * n) = ereal_of_enat m * ereal_of_enat n"
  1.1965 -by (cases m n rule: enat2_cases) auto
  1.1966 +  by (cases m n rule: enat2_cases) auto
  1.1967  
  1.1968  lemmas ereal_of_enat_pushin = ereal_of_enat_add ereal_of_enat_sub ereal_of_enat_mult
  1.1969  lemmas ereal_of_enat_pushout = ereal_of_enat_pushin[symmetric]
  1.1970 @@ -1607,6 +1908,7 @@
  1.1971  
  1.1972  instance
  1.1973    by default (simp add: open_ereal_generated)
  1.1974 +
  1.1975  end
  1.1976  
  1.1977  lemma open_PInfty: "open A \<Longrightarrow> \<infinity> \<in> A \<Longrightarrow> (\<exists>x. {ereal x<..} \<subseteq> A)"
  1.1978 @@ -1618,8 +1920,13 @@
  1.1979    with Int show ?case
  1.1980      by (intro exI[of _ "max x z"]) fastforce
  1.1981  next
  1.1982 -  { fix x have "x \<noteq> \<infinity> \<Longrightarrow> \<exists>t. x \<le> ereal t" by (cases x) auto }
  1.1983 -  moreover case (Basis S)
  1.1984 +  case (Basis S)
  1.1985 +  {
  1.1986 +    fix x
  1.1987 +    have "x \<noteq> \<infinity> \<Longrightarrow> \<exists>t. x \<le> ereal t"
  1.1988 +      by (cases x) auto
  1.1989 +  }
  1.1990 +  moreover note Basis
  1.1991    ultimately show ?case
  1.1992      by (auto split: ereal.split)
  1.1993  qed (fastforce simp add: vimage_Union)+
  1.1994 @@ -1633,8 +1940,13 @@
  1.1995    with Int show ?case
  1.1996      by (intro exI[of _ "min x z"]) fastforce
  1.1997  next
  1.1998 -  { fix x have "x \<noteq> - \<infinity> \<Longrightarrow> \<exists>t. ereal t \<le> x" by (cases x) auto }
  1.1999 -  moreover case (Basis S)
  1.2000 +  case (Basis S)
  1.2001 +  {
  1.2002 +    fix x
  1.2003 +    have "x \<noteq> - \<infinity> \<Longrightarrow> \<exists>t. ereal t \<le> x"
  1.2004 +      by (cases x) auto
  1.2005 +  }
  1.2006 +  moreover note Basis
  1.2007    ultimately show ?case
  1.2008      by (auto split: ereal.split)
  1.2009  qed (fastforce simp add: vimage_Union)+
  1.2010 @@ -1642,13 +1954,18 @@
  1.2011  lemma open_ereal_vimage: "open S \<Longrightarrow> open (ereal -` S)"
  1.2012    unfolding open_ereal_generated
  1.2013  proof (induct rule: generate_topology.induct)
  1.2014 -  case (Int A B) then show ?case by auto
  1.2015 +  case (Int A B)
  1.2016 +  then show ?case
  1.2017 +    by auto
  1.2018  next
  1.2019 -  { fix x have
  1.2020 +  case (Basis S)
  1.2021 +  {
  1.2022 +    fix x have
  1.2023        "ereal -` {..<x} = (case x of PInfty \<Rightarrow> UNIV | MInfty \<Rightarrow> {} | ereal r \<Rightarrow> {..<r})"
  1.2024        "ereal -` {x<..} = (case x of PInfty \<Rightarrow> {} | MInfty \<Rightarrow> UNIV | ereal r \<Rightarrow> {r<..})"
  1.2025 -      by (induct x) auto }
  1.2026 -  moreover case (Basis S)
  1.2027 +      by (induct x) auto
  1.2028 +  }
  1.2029 +  moreover note Basis
  1.2030    ultimately show ?case
  1.2031      by (auto split: ereal.split)
  1.2032  qed (fastforce simp add: vimage_Union)+
  1.2033 @@ -1657,16 +1974,32 @@
  1.2034    unfolding open_generated_order[where 'a=real]
  1.2035  proof (induct rule: generate_topology.induct)
  1.2036    case (Basis S)
  1.2037 -  moreover { fix x have "ereal ` {..< x} = { -\<infinity> <..< ereal x }" by auto (case_tac xa, auto) }
  1.2038 -  moreover { fix x have "ereal ` {x <..} = { ereal x <..< \<infinity> }" by auto (case_tac xa, auto) }
  1.2039 +  moreover {
  1.2040 +    fix x
  1.2041 +    have "ereal ` {..< x} = { -\<infinity> <..< ereal x }"
  1.2042 +      apply auto
  1.2043 +      apply (case_tac xa)
  1.2044 +      apply auto
  1.2045 +      done
  1.2046 +  }
  1.2047 +  moreover {
  1.2048 +    fix x
  1.2049 +    have "ereal ` {x <..} = { ereal x <..< \<infinity> }"
  1.2050 +      apply auto
  1.2051 +      apply (case_tac xa)
  1.2052 +      apply auto
  1.2053 +      done
  1.2054 +  }
  1.2055    ultimately show ?case
  1.2056       by auto
  1.2057  qed (auto simp add: image_Union image_Int)
  1.2058  
  1.2059 -lemma open_ereal_def: "open A \<longleftrightarrow> open (ereal -` A) \<and> (\<infinity> \<in> A \<longrightarrow> (\<exists>x. {ereal x <..} \<subseteq> A)) \<and> (-\<infinity> \<in> A \<longrightarrow> (\<exists>x. {..<ereal x} \<subseteq> A))"
  1.2060 +lemma open_ereal_def:
  1.2061 +  "open A \<longleftrightarrow> open (ereal -` A) \<and> (\<infinity> \<in> A \<longrightarrow> (\<exists>x. {ereal x <..} \<subseteq> A)) \<and> (-\<infinity> \<in> A \<longrightarrow> (\<exists>x. {..<ereal x} \<subseteq> A))"
  1.2062    (is "open A \<longleftrightarrow> ?rhs")
  1.2063  proof
  1.2064 -  assume "open A" then show ?rhs
  1.2065 +  assume "open A"
  1.2066 +  then show ?rhs
  1.2067      using open_PInfty open_MInfty open_ereal_vimage by auto
  1.2068  next
  1.2069    assume "?rhs"
  1.2070 @@ -1678,14 +2011,23 @@
  1.2071      by (subst *) (auto simp: open_Un)
  1.2072  qed
  1.2073  
  1.2074 -lemma open_PInfty2: assumes "open A" "\<infinity> \<in> A" obtains x where "{ereal x<..} \<subseteq> A"
  1.2075 +lemma open_PInfty2:
  1.2076 +  assumes "open A"
  1.2077 +    and "\<infinity> \<in> A"
  1.2078 +  obtains x where "{ereal x<..} \<subseteq> A"
  1.2079    using open_PInfty[OF assms] by auto
  1.2080  
  1.2081 -lemma open_MInfty2: assumes "open A" "-\<infinity> \<in> A" obtains x where "{..<ereal x} \<subseteq> A"
  1.2082 +lemma open_MInfty2:
  1.2083 +  assumes "open A"
  1.2084 +    and "-\<infinity> \<in> A"
  1.2085 +  obtains x where "{..<ereal x} \<subseteq> A"
  1.2086    using open_MInfty[OF assms] by auto
  1.2087  
  1.2088 -lemma ereal_openE: assumes "open A" obtains x y where
  1.2089 -  "open (ereal -` A)" "\<infinity> \<in> A \<Longrightarrow> {ereal x<..} \<subseteq> A" "-\<infinity> \<in> A \<Longrightarrow> {..<ereal y} \<subseteq> A"
  1.2090 +lemma ereal_openE:
  1.2091 +  assumes "open A"
  1.2092 +  obtains x y where "open (ereal -` A)"
  1.2093 +    and "\<infinity> \<in> A \<Longrightarrow> {ereal x<..} \<subseteq> A"
  1.2094 +    and "-\<infinity> \<in> A \<Longrightarrow> {..<ereal y} \<subseteq> A"
  1.2095    using assms open_ereal_def by auto
  1.2096  
  1.2097  lemmas open_ereal_lessThan = open_lessThan[where 'a=ereal]
  1.2098 @@ -1695,60 +2037,76 @@
  1.2099  lemmas closed_ereal_atMost = closed_atMost[where 'a=ereal]
  1.2100  lemmas closed_ereal_atLeastAtMost = closed_atLeastAtMost[where 'a=ereal]
  1.2101  lemmas closed_ereal_singleton = closed_singleton[where 'a=ereal]
  1.2102 -  
  1.2103 +
  1.2104  lemma ereal_open_cont_interval:
  1.2105    fixes S :: "ereal set"
  1.2106 -  assumes "open S" "x \<in> S" "\<bar>x\<bar> \<noteq> \<infinity>"
  1.2107 -  obtains e where "e>0" "{x-e <..< x+e} \<subseteq> S"
  1.2108 -proof-
  1.2109 -  from `open S` have "open (ereal -` S)" by (rule ereal_openE)
  1.2110 -  then obtain e where "0 < e" and e: "\<And>y. dist y (real x) < e \<Longrightarrow> ereal y \<in> S"
  1.2111 +  assumes "open S"
  1.2112 +    and "x \<in> S"
  1.2113 +    and "\<bar>x\<bar> \<noteq> \<infinity>"
  1.2114 +  obtains e where "e > 0" and "{x-e <..< x+e} \<subseteq> S"
  1.2115 +proof -
  1.2116 +  from `open S`
  1.2117 +  have "open (ereal -` S)"
  1.2118 +    by (rule ereal_openE)
  1.2119 +  then obtain e where "e > 0" and e: "\<And>y. dist y (real x) < e \<Longrightarrow> ereal y \<in> S"
  1.2120      using assms unfolding open_dist by force
  1.2121    show thesis
  1.2122    proof (intro that subsetI)
  1.2123 -    show "0 < ereal e" using `0 < e` by auto
  1.2124 -    fix y assume "y \<in> {x - ereal e<..<x + ereal e}"
  1.2125 +    show "0 < ereal e"
  1.2126 +      using `0 < e` by auto
  1.2127 +    fix y
  1.2128 +    assume "y \<in> {x - ereal e<..<x + ereal e}"
  1.2129      with assms obtain t where "y = ereal t" "dist t (real x) < e"
  1.2130 -      apply (cases y) by (auto simp: dist_real_def)
  1.2131 -    then show "y \<in> S" using e[of t] by auto
  1.2132 +      by (cases y) (auto simp: dist_real_def)
  1.2133 +    then show "y \<in> S"
  1.2134 +      using e[of t] by auto
  1.2135    qed
  1.2136  qed
  1.2137  
  1.2138  lemma ereal_open_cont_interval2:
  1.2139    fixes S :: "ereal set"
  1.2140 -  assumes "open S" "x \<in> S" and x: "\<bar>x\<bar> \<noteq> \<infinity>"
  1.2141 -  obtains a b where "a < x" "x < b" "{a <..< b} \<subseteq> S"
  1.2142 +  assumes "open S"
  1.2143 +    and "x \<in> S"
  1.2144 +    and x: "\<bar>x\<bar> \<noteq> \<infinity>"
  1.2145 +  obtains a b where "a < x" and "x < b" and "{a <..< b} \<subseteq> S"
  1.2146  proof -
  1.2147    obtain e where "0 < e" "{x - e<..<x + e} \<subseteq> S"
  1.2148      using assms by (rule ereal_open_cont_interval)
  1.2149 -  with that[of "x-e" "x+e"] ereal_between[OF x, of e]
  1.2150 -  show thesis by auto
  1.2151 +  with that[of "x - e" "x + e"] ereal_between[OF x, of e]
  1.2152 +  show thesis
  1.2153 +    by auto
  1.2154  qed
  1.2155  
  1.2156 +
  1.2157  subsubsection {* Convergent sequences *}
  1.2158  
  1.2159 -lemma lim_ereal[simp]:
  1.2160 -  "((\<lambda>n. ereal (f n)) ---> ereal x) net \<longleftrightarrow> (f ---> x) net" (is "?l = ?r")
  1.2161 +lemma lim_ereal[simp]: "((\<lambda>n. ereal (f n)) ---> ereal x) net \<longleftrightarrow> (f ---> x) net"
  1.2162 +  (is "?l = ?r")
  1.2163  proof (intro iffI topological_tendstoI)
  1.2164 -  fix S assume "?l" "open S" "x \<in> S"
  1.2165 +  fix S
  1.2166 +  assume "?l" and "open S" and "x \<in> S"
  1.2167    then show "eventually (\<lambda>x. f x \<in> S) net"
  1.2168      using `?l`[THEN topological_tendstoD, OF open_ereal, OF `open S`]
  1.2169      by (simp add: inj_image_mem_iff)
  1.2170  next
  1.2171 -  fix S assume "?r" "open S" "ereal x \<in> S"
  1.2172 +  fix S
  1.2173 +  assume "?r" and "open S" and "ereal x \<in> S"
  1.2174    show "eventually (\<lambda>x. ereal (f x) \<in> S) net"
  1.2175      using `?r`[THEN topological_tendstoD, OF open_ereal_vimage, OF `open S`]
  1.2176 -    using `ereal x \<in> S` by auto
  1.2177 +    using `ereal x \<in> S`
  1.2178 +    by auto
  1.2179  qed
  1.2180  
  1.2181  lemma lim_real_of_ereal[simp]:
  1.2182    assumes lim: "(f ---> ereal x) net"
  1.2183    shows "((\<lambda>x. real (f x)) ---> x) net"
  1.2184  proof (intro topological_tendstoI)
  1.2185 -  fix S assume "open S" "x \<in> S"
  1.2186 +  fix S
  1.2187 +  assume "open S" and "x \<in> S"
  1.2188    then have S: "open S" "ereal x \<in> ereal ` S"
  1.2189      by (simp_all add: inj_image_mem_iff)
  1.2190 -  have "\<forall>x. f x \<in> ereal ` S \<longrightarrow> real (f x) \<in> S" by auto
  1.2191 +  have "\<forall>x. f x \<in> ereal ` S \<longrightarrow> real (f x) \<in> S"
  1.2192 +    by auto
  1.2193    from this lim[THEN topological_tendstoD, OF open_ereal, OF S]
  1.2194    show "eventually (\<lambda>x. real (f x) \<in> S) net"
  1.2195      by (rule eventually_mono)
  1.2196 @@ -1756,10 +2114,12 @@
  1.2197  
  1.2198  lemma tendsto_PInfty: "(f ---> \<infinity>) F \<longleftrightarrow> (\<forall>r. eventually (\<lambda>x. ereal r < f x) F)"
  1.2199  proof -
  1.2200 -  { fix l :: ereal assume "\<forall>r. eventually (\<lambda>x. ereal r < f x) F"
  1.2201 -    from this[THEN spec, of "real l"]
  1.2202 -    have "l \<noteq> \<infinity> \<Longrightarrow> eventually (\<lambda>x. l < f x) F"
  1.2203 -      by (cases l) (auto elim: eventually_elim1) }
  1.2204 +  {
  1.2205 +    fix l :: ereal
  1.2206 +    assume "\<forall>r. eventually (\<lambda>x. ereal r < f x) F"
  1.2207 +    from this[THEN spec, of "real l"] have "l \<noteq> \<infinity> \<Longrightarrow> eventually (\<lambda>x. l < f x) F"
  1.2208 +      by (cases l) (auto elim: eventually_elim1)
  1.2209 +  }
  1.2210    then show ?thesis
  1.2211      by (auto simp: order_tendsto_iff)
  1.2212  qed
  1.2213 @@ -1772,20 +2132,26 @@
  1.2214    from open_MInfty[OF this] obtain B where "{..<ereal B} \<subseteq> S" ..
  1.2215    moreover
  1.2216    assume "\<forall>r::real. eventually (\<lambda>z. f z < r) F"
  1.2217 -  then have "eventually (\<lambda>z. f z \<in> {..< B}) F" by auto
  1.2218 -  ultimately show "eventually (\<lambda>z. f z \<in> S) F" by (auto elim!: eventually_elim1)
  1.2219 +  then have "eventually (\<lambda>z. f z \<in> {..< B}) F"
  1.2220 +    by auto
  1.2221 +  ultimately show "eventually (\<lambda>z. f z \<in> S) F"
  1.2222 +    by (auto elim!: eventually_elim1)
  1.2223  next
  1.2224 -  fix x assume "\<forall>S. open S \<longrightarrow> -\<infinity> \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) F"
  1.2225 -  from this[rule_format, of "{..< ereal x}"]
  1.2226 -  show "eventually (\<lambda>y. f y < ereal x) F" by auto
  1.2227 +  fix x
  1.2228 +  assume "\<forall>S. open S \<longrightarrow> -\<infinity> \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) F"
  1.2229 +  from this[rule_format, of "{..< ereal x}"] show "eventually (\<lambda>y. f y < ereal x) F"
  1.2230 +    by auto
  1.2231  qed
  1.2232  
  1.2233  lemma Lim_PInfty: "f ----> \<infinity> \<longleftrightarrow> (\<forall>B. \<exists>N. \<forall>n\<ge>N. f n \<ge> ereal B)"
  1.2234    unfolding tendsto_PInfty eventually_sequentially
  1.2235  proof safe
  1.2236 -  fix r assume "\<forall>r. \<exists>N. \<forall>n\<ge>N. ereal r \<le> f n"
  1.2237 -  then obtain N where "\<forall>n\<ge>N. ereal (r + 1) \<le> f n" by blast
  1.2238 -  moreover have "ereal r < ereal (r + 1)" by auto
  1.2239 +  fix r
  1.2240 +  assume "\<forall>r. \<exists>N. \<forall>n\<ge>N. ereal r \<le> f n"
  1.2241 +  then obtain N where "\<forall>n\<ge>N. ereal (r + 1) \<le> f n"
  1.2242 +    by blast
  1.2243 +  moreover have "ereal r < ereal (r + 1)"
  1.2244 +    by auto
  1.2245    ultimately show "\<exists>N. \<forall>n\<ge>N. ereal r < f n"
  1.2246      by (blast intro: less_le_trans)
  1.2247  qed (blast intro: less_imp_le)
  1.2248 @@ -1793,9 +2159,12 @@
  1.2249  lemma Lim_MInfty: "f ----> -\<infinity> \<longleftrightarrow> (\<forall>B. \<exists>N. \<forall>n\<ge>N. ereal B \<ge> f n)"
  1.2250    unfolding tendsto_MInfty eventually_sequentially
  1.2251  proof safe
  1.2252 -  fix r assume "\<forall>r. \<exists>N. \<forall>n\<ge>N. f n \<le> ereal r"
  1.2253 -  then obtain N where "\<forall>n\<ge>N. f n \<le> ereal (r - 1)" by blast
  1.2254 -  moreover have "ereal (r - 1) < ereal r" by auto
  1.2255 +  fix r
  1.2256 +  assume "\<forall>r. \<exists>N. \<forall>n\<ge>N. f n \<le> ereal r"
  1.2257 +  then obtain N where "\<forall>n\<ge>N. f n \<le> ereal (r - 1)"
  1.2258 +    by blast
  1.2259 +  moreover have "ereal (r - 1) < ereal r"
  1.2260 +    by auto
  1.2261    ultimately show "\<exists>N. \<forall>n\<ge>N. f n < ereal r"
  1.2262      by (blast intro: le_less_trans)
  1.2263  qed (blast intro: less_imp_le)
  1.2264 @@ -1807,38 +2176,43 @@
  1.2265    using LIMSEQ_le_const[of f l "ereal B"] by auto
  1.2266  
  1.2267  lemma tendsto_explicit:
  1.2268 -  "f ----> f0 <-> (ALL S. open S --> f0 : S --> (EX N. ALL n>=N. f n : S))"
  1.2269 +  "f ----> f0 \<longleftrightarrow> (\<forall>S. open S \<longrightarrow> f0 \<in> S \<longrightarrow> (\<exists>N. \<forall>n\<ge>N. f n \<in> S))"
  1.2270    unfolding tendsto_def eventually_sequentially by auto
  1.2271  
  1.2272 -lemma Lim_bounded_PInfty2:
  1.2273 -  "f ----> l \<Longrightarrow> ALL n>=N. f n <= ereal B \<Longrightarrow> l ~= \<infinity>"
  1.2274 +lemma Lim_bounded_PInfty2: "f ----> l \<Longrightarrow> \<forall>n\<ge>N. f n \<le> ereal B \<Longrightarrow> l \<noteq> \<infinity>"
  1.2275    using LIMSEQ_le_const2[of f l "ereal B"] by fastforce
  1.2276  
  1.2277 -lemma Lim_bounded_ereal: "f ----> (l :: 'a::linorder_topology) \<Longrightarrow> ALL n>=M. f n <= C \<Longrightarrow> l<=C"
  1.2278 +lemma Lim_bounded_ereal: "f ----> (l :: 'a::linorder_topology) \<Longrightarrow> \<forall>n\<ge>M. f n \<le> C \<Longrightarrow> l \<le> C"
  1.2279    by (intro LIMSEQ_le_const2) auto
  1.2280  
  1.2281  lemma Lim_bounded2_ereal:
  1.2282 -  assumes lim:"f ----> (l :: 'a::linorder_topology)" and ge: "ALL n>=N. f n >= C"
  1.2283 -  shows "l>=C"
  1.2284 +  assumes lim:"f ----> (l :: 'a::linorder_topology)"
  1.2285 +    and ge: "\<forall>n\<ge>N. f n \<ge> C"
  1.2286 +  shows "l \<ge> C"
  1.2287    using ge
  1.2288    by (intro tendsto_le[OF trivial_limit_sequentially lim tendsto_const])
  1.2289       (auto simp: eventually_sequentially)
  1.2290  
  1.2291  lemma real_of_ereal_mult[simp]:
  1.2292 -  fixes a b :: ereal shows "real (a * b) = real a * real b"
  1.2293 +  fixes a b :: ereal
  1.2294 +  shows "real (a * b) = real a * real b"
  1.2295    by (cases rule: ereal2_cases[of a b]) auto
  1.2296  
  1.2297  lemma real_of_ereal_eq_0:
  1.2298 -  fixes x :: ereal shows "real x = 0 \<longleftrightarrow> x = \<infinity> \<or> x = -\<infinity> \<or> x = 0"
  1.2299 +  fixes x :: ereal
  1.2300 +  shows "real x = 0 \<longleftrightarrow> x = \<infinity> \<or> x = -\<infinity> \<or> x = 0"
  1.2301    by (cases x) auto
  1.2302  
  1.2303  lemma tendsto_ereal_realD:
  1.2304    fixes f :: "'a \<Rightarrow> ereal"
  1.2305 -  assumes "x \<noteq> 0" and tendsto: "((\<lambda>x. ereal (real (f x))) ---> x) net"
  1.2306 +  assumes "x \<noteq> 0"
  1.2307 +    and tendsto: "((\<lambda>x. ereal (real (f x))) ---> x) net"
  1.2308    shows "(f ---> x) net"
  1.2309  proof (intro topological_tendstoI)
  1.2310 -  fix S assume S: "open S" "x \<in> S"
  1.2311 -  with `x \<noteq> 0` have "open (S - {0})" "x \<in> S - {0}" by auto
  1.2312 +  fix S
  1.2313 +  assume S: "open S" "x \<in> S"
  1.2314 +  with `x \<noteq> 0` have "open (S - {0})" "x \<in> S - {0}"
  1.2315 +    by auto
  1.2316    from tendsto[THEN topological_tendstoD, OF this]
  1.2317    show "eventually (\<lambda>x. f x \<in> S) net"
  1.2318      by (rule eventually_rev_mp) (auto simp: ereal_real)
  1.2319 @@ -1849,22 +2223,25 @@
  1.2320    assumes x: "\<bar>x\<bar> \<noteq> \<infinity>" and tendsto: "(f ---> x) net"
  1.2321    shows "((\<lambda>x. ereal (real (f x))) ---> x) net"
  1.2322  proof (intro topological_tendstoI)
  1.2323 -  fix S assume "open S" "x \<in> S"
  1.2324 -  with x have "open (S - {\<infinity>, -\<infinity>})" "x \<in> S - {\<infinity>, -\<infinity>}" by auto
  1.2325 +  fix S
  1.2326 +  assume "open S" and "x \<in> S"
  1.2327 +  with x have "open (S - {\<infinity>, -\<infinity>})" "x \<in> S - {\<infinity>, -\<infinity>}"
  1.2328 +    by auto
  1.2329    from tendsto[THEN topological_tendstoD, OF this]
  1.2330    show "eventually (\<lambda>x. ereal (real (f x)) \<in> S) net"
  1.2331      by (elim eventually_elim1) (auto simp: ereal_real)
  1.2332  qed
  1.2333  
  1.2334  lemma ereal_mult_cancel_left:
  1.2335 -  fixes a b c :: ereal shows "a * b = a * c \<longleftrightarrow>
  1.2336 -    ((\<bar>a\<bar> = \<infinity> \<and> 0 < b * c) \<or> a = 0 \<or> b = c)"
  1.2337 -  by (cases rule: ereal3_cases[of a b c])
  1.2338 -     (simp_all add: zero_less_mult_iff)
  1.2339 +  fixes a b c :: ereal
  1.2340 +  shows "a * b = a * c \<longleftrightarrow> (\<bar>a\<bar> = \<infinity> \<and> 0 < b * c) \<or> a = 0 \<or> b = c"
  1.2341 +  by (cases rule: ereal3_cases[of a b c]) (simp_all add: zero_less_mult_iff)
  1.2342  
  1.2343  lemma ereal_inj_affinity:
  1.2344    fixes m t :: ereal
  1.2345 -  assumes "\<bar>m\<bar> \<noteq> \<infinity>" "m \<noteq> 0" "\<bar>t\<bar> \<noteq> \<infinity>"
  1.2346 +  assumes "\<bar>m\<bar> \<noteq> \<infinity>"
  1.2347 +    and "m \<noteq> 0"
  1.2348 +    and "\<bar>t\<bar> \<noteq> \<infinity>"
  1.2349    shows "inj_on (\<lambda>x. m * x + t) A"
  1.2350    using assms
  1.2351    by (cases rule: ereal2_cases[of m t])
  1.2352 @@ -1902,108 +2279,136 @@
  1.2353  lemma ereal_mult_m1[simp]: "x * ereal (-1) = -x"
  1.2354    by (cases x) auto
  1.2355  
  1.2356 -lemma ereal_real': assumes "\<bar>x\<bar> \<noteq> \<infinity>" shows "ereal (real x) = x"
  1.2357 +lemma ereal_real':
  1.2358 +  assumes "\<bar>x\<bar> \<noteq> \<infinity>"
  1.2359 +  shows "ereal (real x) = x"
  1.2360    using assms by auto
  1.2361  
  1.2362 -lemma real_ereal_id: "real o ereal = id"
  1.2363 -proof-
  1.2364 -  { fix x have "(real o ereal) x = id x" by auto }
  1.2365 -  then show ?thesis using ext by blast
  1.2366 +lemma real_ereal_id: "real \<circ> ereal = id"
  1.2367 +proof -
  1.2368 +  {
  1.2369 +    fix x
  1.2370 +    have "(real o ereal) x = id x"
  1.2371 +      by auto
  1.2372 +  }
  1.2373 +  then show ?thesis
  1.2374 +    using ext by blast
  1.2375  qed
  1.2376  
  1.2377  lemma open_image_ereal: "open(UNIV-{ \<infinity> , (-\<infinity> :: ereal)})"
  1.2378 -by (metis range_ereal open_ereal open_UNIV)
  1.2379 +  by (metis range_ereal open_ereal open_UNIV)
  1.2380  
  1.2381  lemma ereal_le_distrib:
  1.2382 -  fixes a b c :: ereal shows "c * (a + b) \<le> c * a + c * b"
  1.2383 +  fixes a b c :: ereal
  1.2384 +  shows "c * (a + b) \<le> c * a + c * b"
  1.2385    by (cases rule: ereal3_cases[of a b c])
  1.2386       (auto simp add: field_simps not_le mult_le_0_iff mult_less_0_iff)
  1.2387  
  1.2388  lemma ereal_pos_distrib:
  1.2389 -  fixes a b c :: ereal assumes "0 \<le> c" "c \<noteq> \<infinity>" shows "c * (a + b) = c * a + c * b"
  1.2390 -  using assms by (cases rule: ereal3_cases[of a b c])
  1.2391 -                 (auto simp add: field_simps not_le mult_le_0_iff mult_less_0_iff)
  1.2392 +  fixes a b c :: ereal
  1.2393 +  assumes "0 \<le> c"
  1.2394 +    and "c \<noteq> \<infinity>"
  1.2395 +  shows "c * (a + b) = c * a + c * b"
  1.2396 +  using assms
  1.2397 +  by (cases rule: ereal3_cases[of a b c])
  1.2398 +    (auto simp add: field_simps not_le mult_le_0_iff mult_less_0_iff)
  1.2399  
  1.2400  lemma ereal_pos_le_distrib:
  1.2401 -fixes a b c :: ereal
  1.2402 -assumes "c>=0"
  1.2403 -shows "c * (a + b) <= c * a + c * b"
  1.2404 -  using assms by (cases rule: ereal3_cases[of a b c])
  1.2405 -                 (auto simp add: field_simps)
  1.2406 +  fixes a b c :: ereal
  1.2407 +  assumes "c \<ge> 0"
  1.2408 +  shows "c * (a + b) \<le> c * a + c * b"
  1.2409 +  using assms
  1.2410 +  by (cases rule: ereal3_cases[of a b c]) (auto simp add: field_simps)
  1.2411  
  1.2412 -lemma ereal_max_mono:
  1.2413 -  "[| (a::ereal) <= b; c <= d |] ==> max a c <= max b d"
  1.2414 +lemma ereal_max_mono: "(a::ereal) \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> max a c \<le> max b d"
  1.2415    by (metis sup_ereal_def sup_mono)
  1.2416  
  1.2417 -
  1.2418 -lemma ereal_max_least:
  1.2419 -  "[| (a::ereal) <= x; c <= x |] ==> max a c <= x"
  1.2420 +lemma ereal_max_least: "(a::ereal) \<le> x \<Longrightarrow> c \<le> x \<Longrightarrow> max a c \<le> x"
  1.2421    by (metis sup_ereal_def sup_least)
  1.2422  
  1.2423  lemma ereal_LimI_finite:
  1.2424    fixes x :: ereal
  1.2425    assumes "\<bar>x\<bar> \<noteq> \<infinity>"
  1.2426 -  assumes "!!r. 0 < r ==> EX N. ALL n>=N. u n < x + r & x < u n + r"
  1.2427 +    and "\<And>r. 0 < r \<Longrightarrow> \<exists>N. \<forall>n\<ge>N. u n < x + r \<and> x < u n + r"
  1.2428    shows "u ----> x"
  1.2429  proof (rule topological_tendstoI, unfold eventually_sequentially)
  1.2430 -  obtain rx where rx_def: "x=ereal rx" using assms by (cases x) auto
  1.2431 -  fix S assume "open S" "x : S"
  1.2432 -  then have "open (ereal -` S)" unfolding open_ereal_def by auto
  1.2433 -  with `x \<in> S` obtain r where "0 < r" and dist: "!!y. dist y rx < r ==> ereal y \<in> S"
  1.2434 -    unfolding open_real_def rx_def by auto
  1.2435 +  obtain rx where rx: "x = ereal rx"
  1.2436 +    using assms by (cases x) auto
  1.2437 +  fix S
  1.2438 +  assume "open S" and "x \<in> S"
  1.2439 +  then have "open (ereal -` S)"
  1.2440 +    unfolding open_ereal_def by auto
  1.2441 +  with `x \<in> S` obtain r where "0 < r" and dist: "\<And>y. dist y rx < r \<Longrightarrow> ereal y \<in> S"
  1.2442 +    unfolding open_real_def rx by auto
  1.2443    then obtain n where
  1.2444 -    upper: "!!N. n <= N ==> u N < x + ereal r" and
  1.2445 -    lower: "!!N. n <= N ==> x < u N + ereal r" using assms(2)[of "ereal r"] by auto
  1.2446 -  show "EX N. ALL n>=N. u n : S"
  1.2447 +    upper: "\<And>N. n \<le> N \<Longrightarrow> u N < x + ereal r" and
  1.2448 +    lower: "\<And>N. n \<le> N \<Longrightarrow> x < u N + ereal r"
  1.2449 +    using assms(2)[of "ereal r"] by auto
  1.2450 +  show "\<exists>N. \<forall>n\<ge>N. u n \<in> S"
  1.2451    proof (safe intro!: exI[of _ n])
  1.2452 -    fix N assume "n <= N"
  1.2453 +    fix N
  1.2454 +    assume "n \<le> N"
  1.2455      from upper[OF this] lower[OF this] assms `0 < r`
  1.2456 -    have "u N ~: {\<infinity>,(-\<infinity>)}" by auto
  1.2457 -    then obtain ra where ra_def: "(u N) = ereal ra" by (cases "u N") auto
  1.2458 -    hence "rx < ra + r" and "ra < rx + r"
  1.2459 -       using rx_def assms `0 < r` lower[OF `n <= N`] upper[OF `n <= N`] by auto
  1.2460 -    hence "dist (real (u N)) rx < r"
  1.2461 -      using rx_def ra_def
  1.2462 +    have "u N \<notin> {\<infinity>,(-\<infinity>)}"
  1.2463 +      by auto
  1.2464 +    then obtain ra where ra_def: "(u N) = ereal ra"
  1.2465 +      by (cases "u N") auto
  1.2466 +    then have "rx < ra + r" and "ra < rx + r"
  1.2467 +      using rx assms `0 < r` lower[OF `n \<le> N`] upper[OF `n \<le> N`]
  1.2468 +      by auto
  1.2469 +    then have "dist (real (u N)) rx < r"
  1.2470 +      using rx ra_def
  1.2471        by (auto simp: dist_real_def abs_diff_less_iff field_simps)
  1.2472 -    from dist[OF this] show "u N : S" using `u N  ~: {\<infinity>, -\<infinity>}`
  1.2473 +    from dist[OF this] show "u N \<in> S"
  1.2474 +      using `u N  \<notin> {\<infinity>, -\<infinity>}`
  1.2475        by (auto simp: ereal_real split: split_if_asm)
  1.2476    qed
  1.2477  qed
  1.2478  
  1.2479  lemma tendsto_obtains_N:
  1.2480    assumes "f ----> f0"
  1.2481 -  assumes "open S" "f0 : S"
  1.2482 -  obtains N where "ALL n>=N. f n : S"
  1.2483 +  assumes "open S"
  1.2484 +    and "f0 \<in> S"
  1.2485 +  obtains N where "\<forall>n\<ge>N. f n \<in> S"
  1.2486    using assms using tendsto_def
  1.2487    using tendsto_explicit[of f f0] assms by auto
  1.2488  
  1.2489  lemma ereal_LimI_finite_iff:
  1.2490    fixes x :: ereal
  1.2491    assumes "\<bar>x\<bar> \<noteq> \<infinity>"
  1.2492 -  shows "u ----> x <-> (ALL r. 0 < r --> (EX N. ALL n>=N. u n < x + r & x < u n + r))"
  1.2493 -  (is "?lhs <-> ?rhs")
  1.2494 +  shows "u ----> x \<longleftrightarrow> (\<forall>r. 0 < r \<longrightarrow> (\<exists>N. \<forall>n\<ge>N. u n < x + r \<and> x < u n + r))"
  1.2495 +  (is "?lhs \<longleftrightarrow> ?rhs")
  1.2496  proof
  1.2497    assume lim: "u ----> x"
  1.2498 -  { fix r assume "(r::ereal)>0"
  1.2499 -    then obtain N where N_def: "ALL n>=N. u n : {x - r <..< x + r}"
  1.2500 +  {
  1.2501 +    fix r :: ereal
  1.2502 +    assume "r > 0"
  1.2503 +    then obtain N where "\<forall>n\<ge>N. u n \<in> {x - r <..< x + r}"
  1.2504         apply (subst tendsto_obtains_N[of u x "{x - r <..< x + r}"])
  1.2505 -       using lim ereal_between[of x r] assms `r>0` by auto
  1.2506 -    hence "EX N. ALL n>=N. u n < x + r & x < u n + r"
  1.2507 -      using ereal_minus_less[of r x] by (cases r) auto
  1.2508 -  } then show "?rhs" by auto
  1.2509 +       using lim ereal_between[of x r] assms `r > 0`
  1.2510 +       apply auto
  1.2511 +       done
  1.2512 +    then have "\<exists>N. \<forall>n\<ge>N. u n < x + r \<and> x < u n + r"
  1.2513 +      using ereal_minus_less[of r x]
  1.2514 +      by (cases r) auto
  1.2515 +  }
  1.2516 +  then show ?rhs
  1.2517 +    by auto
  1.2518  next
  1.2519 -  assume ?rhs then show "u ----> x"
  1.2520 +  assume ?rhs
  1.2521 +  then show "u ----> x"
  1.2522      using ereal_LimI_finite[of x] assms by auto
  1.2523  qed
  1.2524  
  1.2525  lemma ereal_Limsup_uminus:
  1.2526 -  fixes f :: "'a => ereal"
  1.2527 -  shows "Limsup net (\<lambda>x. - (f x)) = -(Liminf net f)"
  1.2528 +  fixes f :: "'a \<Rightarrow> ereal"
  1.2529 +  shows "Limsup net (\<lambda>x. - (f x)) = - Liminf net f"
  1.2530    unfolding Limsup_def Liminf_def ereal_SUPR_uminus ereal_INFI_uminus ..
  1.2531  
  1.2532  lemma liminf_bounded_iff:
  1.2533    fixes x :: "nat \<Rightarrow> ereal"
  1.2534 -  shows "C \<le> liminf x \<longleftrightarrow> (\<forall>B<C. \<exists>N. \<forall>n\<ge>N. B < x n)" (is "?lhs <-> ?rhs")
  1.2535 +  shows "C \<le> liminf x \<longleftrightarrow> (\<forall>B<C. \<exists>N. \<forall>n\<ge>N. B < x n)"
  1.2536 +  (is "?lhs \<longleftrightarrow> ?rhs")
  1.2537    unfolding le_Liminf_iff eventually_sequentially ..
  1.2538  
  1.2539  lemma
  1.2540 @@ -2012,6 +2417,7 @@
  1.2541      and ereal_decseq_uminus[simp]: "decseq (\<lambda>i. - X i) = incseq X"
  1.2542    unfolding incseq_def decseq_def by auto
  1.2543  
  1.2544 +
  1.2545  subsubsection {* Tests for code generator *}
  1.2546  
  1.2547  (* A small list of simple arithmetic expressions *)