# HG changeset patch # User haftmann # Date 1312869975 -7200 # Node ID cedaca00789f62fc74cced4eebd66f75df77bc44 # Parent c0847967a25a77f914148f7905aa6ab3cd111235 more uniform naming scheme for Inf/INF and Sup/SUP lemmas diff -r c0847967a25a -r cedaca00789f NEWS --- a/NEWS Tue Aug 09 07:44:17 2011 +0200 +++ b/NEWS Tue Aug 09 08:06:15 2011 +0200 @@ -67,19 +67,27 @@ generalized theorems INF_cong and SUP_cong. New type classes for complete boolean algebras and complete linear orders. Lemmas Inf_less_iff, less_Sup_iff, INF_less_iff, less_SUP_iff now reside in class complete_linorder. -Changes proposition of lemmas Inf_fun_def, Sup_fun_def, Inf_apply, Sup_apply. -Redundant lemmas Inf_singleton, Sup_singleton, Inf_binary and Sup_binary have -been discarded. +Changed proposition of lemmas Inf_fun_def, Sup_fun_def, Inf_apply, Sup_apply. +Redundant lemmas Inf_singleton, Sup_singleton, Inf_binary, Sup_binary, +INF_eq, SUP_eq, INF_UNIV_range, SUP_UNIV_range, Int_eq_Inter, +INTER_eq_Inter_image, Inter_def, INT_eq, Un_eq_Union, UNION_eq_Union_image, +Union_def, UN_singleton, UN_eq have been discarded. More consistent and less misunderstandable names: INFI_def ~> INF_def SUPR_def ~> SUP_def - le_SUPI ~> le_SUP_I - le_SUPI2 ~> le_SUP_I2 - le_INFI ~> le_INF_I + INF_leI ~> INF_lower + INF_leI2 ~> INF_lower2 + le_INFI ~> INF_greatest + le_SUPI ~> SUP_upper + le_SUPI2 ~> SUP_upper2 + SUP_leI ~> SUP_least INFI_bool_eq ~> INF_bool_eq SUPR_bool_eq ~> SUP_bool_eq INFI_apply ~> INF_apply SUPR_apply ~> SUP_apply + INTER_def ~> INTER_eq + UNION_def ~> UNION_eq + INCOMPATIBILITY. * Theorem collections ball_simps and bex_simps do not contain theorems referring diff -r c0847967a25a -r cedaca00789f src/HOL/Complete_Lattice.thy --- a/src/HOL/Complete_Lattice.thy Tue Aug 09 07:44:17 2011 +0200 +++ b/src/HOL/Complete_Lattice.thy Tue Aug 09 08:06:15 2011 +0200 @@ -1,4 +1,4 @@ -(* Author: Tobias Nipkow, Lawrence C Paulson and Markus Wenzel; Florian Haftmann, TU Muenchen *) + (* Author: Tobias Nipkow, Lawrence C Paulson and Markus Wenzel; Florian Haftmann, TU Muenchen *) header {* Complete lattices, with special focus on sets *} @@ -102,29 +102,29 @@ by (simp only: dual.INF_def SUP_def) qed -lemma INF_leI: "i \ A \ (\i\A. f i) \ f i" +lemma INF_lower: "i \ A \ (\i\A. f i) \ f i" by (auto simp add: INF_def intro: Inf_lower) -lemma le_SUP_I: "i \ A \ f i \ (\i\A. f i)" +lemma INF_greatest: "(\i. i \ A \ u \ f i) \ u \ (\i\A. f i)" + by (auto simp add: INF_def intro: Inf_greatest) + +lemma SUP_upper: "i \ A \ f i \ (\i\A. f i)" by (auto simp add: SUP_def intro: Sup_upper) -lemma le_INF_I: "(\i. i \ A \ u \ f i) \ u \ (\i\A. f i)" - by (auto simp add: INF_def intro: Inf_greatest) - -lemma SUP_leI: "(\i. i \ A \ f i \ u) \ (\i\A. f i) \ u" +lemma SUP_least: "(\i. i \ A \ f i \ u) \ (\i\A. f i) \ u" by (auto simp add: SUP_def intro: Sup_least) lemma Inf_lower2: "u \ A \ u \ v \ \A \ v" using Inf_lower [of u A] by auto -lemma INF_leI2: "i \ A \ f i \ u \ (\i\A. f i) \ u" - using INF_leI [of i A f] by auto +lemma INF_lower2: "i \ A \ f i \ u \ (\i\A. f i) \ u" + using INF_lower [of i A f] by auto lemma Sup_upper2: "u \ A \ v \ u \ v \ \A" using Sup_upper [of u A] by auto -lemma le_SUP_I2: "i \ A \ u \ f i \ u \ (\i\A. f i)" - using le_SUP_I [of i A f] by auto +lemma SUP_upper2: "i \ A \ u \ f i \ u \ (\i\A. f i)" + using SUP_upper [of i A f] by auto lemma le_Inf_iff (*[simp]*): "b \ \A \ (\a\A. b \ a)" by (auto intro: Inf_greatest dest: Inf_lower) @@ -266,21 +266,21 @@ lemma INF_union: "(\i \ A \ B. M i) = (\i \ A. M i) \ (\i\B. M i)" - by (auto intro!: antisym INF_mono intro: le_infI1 le_infI2 le_INF_I INF_leI) + by (auto intro!: antisym INF_mono intro: le_infI1 le_infI2 INF_greatest INF_lower) lemma Sup_union_distrib: "\(A \ B) = \A \ \B" by (rule antisym) (auto intro: Sup_least Sup_upper le_supI1 le_supI2) lemma SUP_union: "(\i \ A \ B. M i) = (\i \ A. M i) \ (\i\B. M i)" - by (auto intro!: antisym SUP_mono intro: le_supI1 le_supI2 SUP_leI le_SUP_I) + by (auto intro!: antisym SUP_mono intro: le_supI1 le_supI2 SUP_least SUP_upper) lemma INF_inf_distrib: "(\a\A. f a) \ (\a\A. g a) = (\a\A. f a \ g a)" - by (rule antisym) (rule le_INF_I, auto intro: le_infI1 le_infI2 INF_leI INF_mono) + by (rule antisym) (rule INF_greatest, auto intro: le_infI1 le_infI2 INF_lower INF_mono) lemma SUP_sup_distrib: "(\a\A. f a) \ (\a\A. g a) = (\a\A. f a \ g a)" - by (rule antisym) (auto intro: le_supI1 le_supI2 le_SUP_I SUP_mono, - rule SUP_leI, auto intro: le_supI1 le_supI2 le_SUP_I SUP_mono) + by (rule antisym) (auto intro: le_supI1 le_supI2 SUP_upper SUP_mono, + rule SUP_least, auto intro: le_supI1 le_supI2 SUP_upper SUP_mono) lemma Inf_top_conv (*[simp]*) [no_atp]: "\A = \ \ (\x\A. x = \)" @@ -324,10 +324,10 @@ by (auto simp add: SUP_def Sup_bot_conv) lemma INF_const [simp]: "A \ {} \ (\i\A. f) = f" - by (auto intro: antisym INF_leI le_INF_I) + by (auto intro: antisym INF_lower INF_greatest) lemma SUP_const [simp]: "A \ {} \ (\i\A. f) = f" - by (auto intro: antisym SUP_leI le_SUP_I) + by (auto intro: antisym SUP_upper SUP_least) lemma INF_top (*[simp]*): "(\x\A. \) = \" by (cases "A = {}") (simp_all add: INF_empty) @@ -336,10 +336,10 @@ by (cases "A = {}") (simp_all add: SUP_empty) lemma INF_commute: "(\i\A. \j\B. f i j) = (\j\B. \i\A. f i j)" - by (iprover intro: INF_leI le_INF_I order_trans antisym) + by (iprover intro: INF_lower INF_greatest order_trans antisym) lemma SUP_commute: "(\i\A. \j\B. f i j) = (\j\B. \i\A. f i j)" - by (iprover intro: SUP_leI le_SUP_I order_trans antisym) + by (iprover intro: SUP_upper SUP_least order_trans antisym) lemma INF_absorb: assumes "k \ I" @@ -370,7 +370,7 @@ proof - note `y < (\i\A. f i)` also have "(\i\A. f i) \ f i" using `i \ A` - by (rule INF_leI) + by (rule INF_lower) finally show "y < f i" . qed @@ -378,7 +378,7 @@ assumes "(\i\A. f i) < y" "i \ A" shows "f i < y" proof - have "f i \ (\i\A. f i)" using `i \ A` - by (rule le_SUP_I) + by (rule SUP_upper) also note `(\i\A. f i) < y` finally show "f i < y" . qed @@ -605,7 +605,7 @@ by (simp add: Sup_fun_def) instance proof -qed (auto simp add: le_fun_def Inf_apply Sup_apply intro: INF_leI le_SUP_I le_INF_I SUP_leI) +qed (auto simp add: le_fun_def Inf_apply Sup_apply intro: INF_lower INF_greatest SUP_upper SUP_least) end @@ -759,10 +759,10 @@ by blast lemma INT_lower: "a \ A \ (\x\A. B x) \ B a" - by (fact INF_leI) + by (fact INF_lower) lemma INT_greatest: "(\x. x \ A \ C \ B x) \ C \ (\x\A. B x)" - by (fact le_INF_I) + by (fact INF_greatest) lemma INT_empty: "(\x\{}. B x) = UNIV" by (fact INF_empty) @@ -947,10 +947,10 @@ by blast lemma UN_upper: "a \ A \ B a \ (\x\A. B x)" - by (fact le_SUP_I) + by (fact SUP_upper) lemma UN_least: "(\x. x \ A \ B x \ C) \ (\x\A. B x) \ C" - by (fact SUP_leI) + by (fact SUP_least) lemma Collect_bex_eq [no_atp]: "{x. \y\A. P x y} = (\y\A. {x. P x y})" by blast @@ -1166,9 +1166,12 @@ lemmas (in complete_lattice) INFI_def = INF_def lemmas (in complete_lattice) SUPR_def = SUP_def -lemmas (in complete_lattice) le_SUPI = le_SUP_I -lemmas (in complete_lattice) le_SUPI2 = le_SUP_I2 -lemmas (in complete_lattice) le_INFI = le_INF_I +lemmas (in complete_lattice) INF_leI = INF_lower +lemmas (in complete_lattice) INF_leI2 = INF_lower2 +lemmas (in complete_lattice) le_INFI = INF_greatest +lemmas (in complete_lattice) le_SUPI = SUP_upper +lemmas (in complete_lattice) le_SUPI2 = SUP_upper2 +lemmas (in complete_lattice) SUP_leI = SUP_least lemmas (in complete_lattice) less_INFD = less_INF_D lemmas INFI_apply = INF_apply