jan@42246: %\documentclass[a4paper]{scrartcl} jan@42246: %\usepackage[top=2cm, bottom=2.5cm, left=3cm, right=2cm, footskip=1cm]{geometry} jan@42246: %\usepackage[german]{babel} jan@42246: %\usepackage[T1]{fontenc} jan@42246: %\usepackage[latin1]{inputenc} jan@42246: %\usepackage{endnotes} jan@42246: %\usepackage{trfsigns} jan@42246: %\usepackage{setspace} jan@42246: % jan@42246: %\setlength{\parindent}{0ex} jan@42246: %\def\isac{${\cal I}\mkern-2mu{\cal S}\mkern-5mu{\cal AC}$} jan@42246: %\def\sisac{{\footnotesize${\cal I}\mkern-2mu{\cal S}\mkern-5mu{\cal AC}$}} jan@42246: % jan@42246: %\begin{document} jan@42246: %\title{Interactive Course Material for Signal Processing based on Isabelle/\isac} jan@42246: %\subtitle{Problemsolutions (Calculations)} jan@42246: %\author{Walther Neuper, Jan Rocnik} jan@42246: %\maketitle jrocnik@42162: jan@42173: jan@42173: %------------------------------------------------------------------------------ jan@42173: %FOURIER jan@42173: jan@42368: \subsection{Fourier Transformation} jan@42368: \subsubsection*{Problem\endnote{Problem submitted by Bernhard Geiger. Originally fragment of the exam to \emph{Signaltransformationen VO} from 04.03.2011. Translated from German.}} jrocnik@42162: \textbf{(a)} Determine the fourier transform for the given rectangular impulse: jrocnik@42162: jrocnik@42162: \begin{center} jrocnik@42162: $x(t)= \left\{ jrocnik@42162: \begin{array}{lr} jrocnik@42162: 1 & -1\leq t\geq1\\ jrocnik@42162: 0 & else jrocnik@42162: \end{array} jrocnik@42162: \right.$ jrocnik@42162: \end{center} jrocnik@42162: jan@42381: \textbf{\noindent (b)} Now consider the given delayed impulse, determine its fourie transformation and calculate phase and magnitude: jrocnik@42162: jrocnik@42162: \begin{center} jrocnik@42162: $x(t)= \left\{ jrocnik@42162: \begin{array}{lr} jan@42163: 1 & -1\leq t\leq1\\ jrocnik@42162: 0 & else jrocnik@42162: \end{array} jrocnik@42162: \right.$ jrocnik@42162: \end{center} jrocnik@42162: jan@42368: \subsubsection{Solution} jan@42381: \textbf{(a)} \textsf{Subproblem 1} jan@42173: \onehalfspace{ jrocnik@42162: \begin{tabbing} jrocnik@42162: 000\=\kill jan@42173: \texttt{\footnotesize{01}} \> Definition: $X(j\omega)=\int_\infty^\infty{x(t)\cdot e^{-j\omega t}}$\\ jan@42173: \`Insert Condition: $x(t) = 1\;$ for $\;\{-1\leq t\;\land\;t\leq 1\}\;$ and $\;x(t)=0\;$ otherwise\\ jan@42173: \texttt{\footnotesize{02}} \> $X(j\omega)=\int_{-1}^{1}{1\cdot e^{-j\omega t}}$\\ jrocnik@42162: \` $\int_a^b f\;t\;dt = \int f\;t\;dt\;|_a^b$\\ jan@42173: \texttt{\footnotesize{03}} \> $\int 1\cdot e^{-j\cdot\omega\cdot t} d t\;|_{-1}^1$\\ jrocnik@42162: \` pbl: integration in $\cal C$\\ jan@42173: \texttt{\footnotesize{04}} \> $\left(\frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot t} \;|_{-1}^1\right)$\\ jrocnik@42162: \` $f\;t\;|_a^b = f\;b-f\;a$\\ jan@42173: \texttt{\footnotesize{05}} \> $\frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot 1} - \frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot -1}$\\ jan@42173: \texttt{\footnotesize{06}} \> $\frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega} - \frac{1}{-j\cdot\omega}\cdot e^{j\cdot\omega}$\\ jan@42173: \` Lift $\frac{1}{j\omega}$\\ jan@42173: \texttt{\footnotesize{07}} \> $\frac{1}{j\cdot\omega}\cdot(e^{j\cdot\omega} - e^{-j\cdot\omega})$\\ jrocnik@42162: \` trick~!\\ jan@42173: \texttt{\footnotesize{08}} \> $\frac{1}{\omega}\cdot(\frac{-e^{j\cdot\omega} + e^{-j\cdot\omega}}{j})$\\ jrocnik@42162: \` table\\ jan@42173: \texttt{\footnotesize{09}} \> $2\cdot\frac{\sin\;\omega}{\omega}$ jrocnik@42162: \end{tabbing} jan@42173: } jan@42173: jan@42381: \noindent\textbf{(b)} \textsf{Subproblem 1} jan@42173: \onehalfspace{ jan@42173: \begin{tabbing} jan@42173: 000\=\kill jan@42173: \texttt{\footnotesize{01}} \> Definition: $X(j\omega)=\int_\infty^\infty{x(t)\cdot e^{-j\omega t}}$\\ jan@42173: \`Insert Condition: $x(t) = 1\;$ for $\;\{1\leq t\;\land\;t\leq 3\}\;$ and $\;x(t)=0\;$ otherwise\\ jan@42173: \texttt{\footnotesize{02}} \> $X(j\omega)=\int_{-1}^{1}{1\cdot e^{-j\omega t}}$\\ jan@42173: \` $\int_a^b f\;t\;dt = \int f\;t\;dt\;|_a^b$\\ jan@42173: \texttt{\footnotesize{03}} \> $\int 1\cdot e^{-j\cdot\omega\cdot t} d t\;|_{1}^3$\\ jan@42173: \` pbl: integration in $\cal C$\\ jan@42173: \texttt{\footnotesize{04}} \> $\left(\frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot t} \;|_{1}^3\right)$\\ jan@42173: \` $f\;t\;|_a^b = f\;b-f\;a$\\ jan@42173: \texttt{\footnotesize{05}} \> $\frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot 3} - \frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot 1}$\\ jan@42173: \`Lift $\frac{1}{-j\omega}$\\ jan@42173: \texttt{\footnotesize{06}} \> $\frac{1}{j\cdot\omega}\cdot(e^{-j\cdot\omega} - e^{-j\cdot\omega3})$\\ jan@42173: \`Lift $e^{j\omega2}$ (trick)\\ jan@42173: \texttt{\footnotesize{07}} \> $\frac{1}{j\omega}\cdot e^{j\omega2}\cdot(e^{j\omega} - e^{-j\omega})$\\ jan@42173: \`Simplification (trick)\\ jan@42173: \texttt{\footnotesize{08}} \> $\frac{1}{\omega}\cdot e^{j\omega2}\cdot(\frac{e^{j\omega} - e^{-j\omega}}{j})$\\ jan@42173: \` table\\ jan@42246: \texttt{\footnotesize{09}} \> $2\cdot e^{j\omega2}\cdot\frac{\sin\;\omega}{\omega}$\\ jan@42381: \noindent\textbf{(b)} \textsf{Subproblem 2}\\ jan@42173: \`Definition: $X(j\omega)=|X(j\omega)|\cdot e^{arg(X(j\omega))}$\\ jan@42173: \`$|X(j\omega)|$ is called \emph{Magnitude}\\ jan@42173: \`$arg(X(j\omega))$ is called \emph{Phase}\\ jan@42173: \texttt{\footnotesize{10}} \> $|X(j\omega)|=\frac{2}{\omega}\cdot sin(\omega)$\\ jan@42173: \texttt{\footnotesize{11}} \> $arg(X(j\omega)=-2\omega$\\ jan@42173: \end{tabbing} jan@42173: } jan@42173: %------------------------------------------------------------------------------ jan@42173: %CONVOLUTION jrocnik@42162: jan@42368: \subsection{Convolution} jan@42368: \subsubsection*{Problem\endnote{Problem submitted by Bernhard Geiger. Originally part of the SPSC Problem Class 2, Summer term 2008}} jrocnik@42162: Consider the two discrete-time, linear and time-invariant (LTI) systems with the following impulse response: jrocnik@42162: jrocnik@42162: \begin{center} jrocnik@42162: $h_1[n]=\left(\frac{3}{5}\right)^n\cdot u[n]$\\ jrocnik@42162: $h_1[n]=\left(-\frac{2}{3}\right)^n\cdot u[n]$ jrocnik@42162: \end{center} jrocnik@42162: jrocnik@42162: The two systems are cascaded seriell. Derive the impulse respinse of the overall system $h_c[n]$. jan@42368: \subsubsection*{Solution} jrocnik@42162: jan@42173: \doublespace{ jrocnik@42162: \begin{tabbing} jrocnik@42162: 000\=\kill jan@42173: \texttt{\footnotesize{01}} \> $h_c[n]=h_1[n]*h_2[n]$\\ jan@42173: \texttt{\footnotesize{02}} \> $h_c[n]=\left(\left(\frac{3}{5}\right)^n\cdot u[n]\right)*\left(\left(-\frac{2}{3}\right)^n\cdot u[n]\right)$\\ jrocnik@42162: \`Definition: $a^n\cdot u[n]\,*\,b^n\cdot u[n]=\sum\limits_{k=-\infty}^{\infty}{a^k\cdot u[k]\cdot b^{n-k}\cdot u[n-k]}$\\ jan@42173: \texttt{\footnotesize{03}} \> $h_c[n]=\sum\limits_{k=-\infty}^{\infty}{\left(\frac{3}{5}\right)^k\cdot u[n]\,\cdot \,\left(-\frac{2}{3}\right)^{n-k}\cdot u[n-k]}$\\ jrocnik@42162: \`$u[n]= \left\{ jrocnik@42162: \begin{array}{lr} jrocnik@42162: 1 & for\ n>=0\\ jrocnik@42162: 0 & else jrocnik@42162: \end{array} jrocnik@42162: \right.$\\ jan@42173: \`We can leave the unitstep through simplification.\\ jan@42173: \`So the lower limit is 0, the upper limit is n.\\ jan@42173: \texttt{\footnotesize{04}} \> $h_c[n]=\sum\limits_{k=0}^{n}{\left(\frac{3}{5}\right)^k\cdot \left(-\frac{2}{3}\right)^{n-k}}$\\ jan@42173: \`Expand\\ jan@42173: \texttt{\footnotesize{05}} \> $h_c[n]=\sum\limits_{k=0}^{n}{\left(\frac{3}{5}\right)^k\cdot \left(-\frac{2}{3}\right)^{n}\cdot \left(-\frac{2}{3}\right)^{-k}}$\\ jan@42173: \`Lift\\ jan@42173: \texttt{\footnotesize{06}} \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot\sum\limits_{k=0}^{\infty}{\left(\frac{3}{5}\right)^k\cdot \left(-\frac{2}{3}\right)^{-k}}$\\ jan@42173: \texttt{\footnotesize{07}} \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot\sum\limits_{k=0}^{n}{\left(\frac{3}{5}\right)^k\cdot \left(-\frac{3}{2}\right)^{k}}$\\ jan@42173: \texttt{\footnotesize{08}} \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot\sum\limits_{k=0}^{n}{\left(-\frac{9}{10}\right)^{k}}$\\ jan@42173: \`Geometric Series: $\sum\limits_{k=0}^{n}{q^k}=\frac{1-q^{n+1}}{1-q}$\\ jan@42173: \`Now we have to consider the limits again.\\ jan@42173: \`It is neccesarry to put the unitstep in again.\\ jan@42173: \texttt{\footnotesize{09}} \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot\frac{1-\left(-\frac{9}{10}\right)^{n+1}}{1-\left(-\frac{9}{10}\right)}\cdot u[n]$\\ jan@42173: \texttt{\footnotesize{10}} \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot\frac{1-\left(-\frac{9}{10}\right)^{n}\cdot\left(-\frac{9}{10}\right)}{1-\left(-\frac{9}{10}\right)}\cdot u[n]$\\ jan@42173: \texttt{\footnotesize{11}} \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot\frac{1-\left(-\frac{9}{10}\right)^{n}\cdot\left(-\frac{9}{10}\right)}{\left(\frac{19}{10}\right)}\cdot u[n]$\\ jan@42173: \texttt{\footnotesize{12}} \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot \left(1-\left(-\frac{9}{10}\right)^{n}\cdot\left(-\frac{9}{10}\right)\right)\cdot\left(\frac{10}{19}\right)\cdot u[n]$\\ jan@42173: \`Lift $u[n]$\\ jan@42173: \texttt{\footnotesize{13}} \> $\left(\frac{10}{19}\cdot\left(-\frac{2}{3}\right)^n+\frac{9}{19}\cdot\left(\frac{3}{5}\right)^n\right)\cdot u[n]$\\ jrocnik@42162: \end{tabbing} jan@42173: } jan@42173: jan@42173: %------------------------------------------------------------------------------ jan@42173: %Z-Transformation jrocnik@42162: jan@42381: \subsection{Z-Transformation\label{sec:calc:ztrans}} jan@42368: \subsubsection*{Problem\endnote{Problem submitted by Bernhard Geiger. Originally part of the signal processing problem class 5, summer term 2008.}} jrocnik@42162: Determine the inverse $\cal{z}$ transform of the following expression. Hint: applay the partial fraction expansion. jrocnik@42162: jrocnik@42162: \begin{center} jrocnik@42162: $X(z)=\frac{3}{z-\frac{1}{4}-\frac{1}{8}z^{-1}},\ \ x[n]$ is absolute summable jrocnik@42162: \end{center} jrocnik@42162: jan@42368: \subsubsection*{Solution} jan@42173: \onehalfspace{ jan@42173: \begin{tabbing} jan@42173: 000\=\kill jan@42173: \textsf{Main Problem}\\ jan@42173: \texttt{\footnotesize{01}} \> $\frac{3}{z-\frac{1}{4}-\frac{1}{8}z^{-1}}$ \\ jan@42173: \`Divide through z, neccesary for z-transformation\\ jan@42173: \texttt{\footnotesize{02}} \> $\frac{3}{z^2-\frac{1}{4}z-\frac{1}{8}}$ \\ jan@42173: \`Start with partial fraction expansion\\ jan@42173: \texttt{\footnotesize{03}} \> $\frac{3}{z^2-\frac{1}{4}z-\frac{1}{8}}=\frac{A}{z-z_1}+\frac{B}{z-z_2}$ \\ jan@42173: \`Eliminate Fractions\\ jan@42173: \texttt{\footnotesize{04}} \> $3=A(z-z_2)+B(z-z_1)$ \\ jan@42173: \textsf{Subproblem 1}\\ jan@42173: \`Setup a linear equation system by inserting the zeros $z_1$ and $z_2$ for $z$\\ jan@42173: \texttt{\footnotesize{05}} \> $3=A(z_1-z_2)$ \& $3=B(z_2-z_1)$\\ jan@42173: \texttt{\footnotesize{06}} \> $\frac{3}{z_1-z_2}=A$ \& $\frac{3}{z_2-z_1}=B$\\ jan@42173: \textsf{Subproblem 2}\\ jan@42173: \`Determine $z_1$ and $z_2$\\ jan@42173: \texttt{\footnotesize{07}} \> $z_1=\frac{1}{8}+\sqrt{\frac{1}{64}+\frac{1}{8}}$ \& $z_2=\frac{1}{8}-\sqrt{\frac{1}{64}+\frac{1}{8}}$\\ jan@42173: \texttt{\footnotesize{08}} \> $z_1=\frac{1}{8}+\sqrt{\frac{9}{64}}$ \& $z_2=\frac{1}{8}-\sqrt{\frac{9}{64}}$\\ jan@42173: \texttt{\footnotesize{09}} \> $z_1=\frac{1}{8}+\frac{3}{8}$ \& $z_2=\frac{1}{8}-\frac{3}{8}$\\ jan@42173: \texttt{\footnotesize{10}} \> $z_1=\frac{1}{2}$ \& $z_2=-\frac{1}{4}$\\ jan@42173: \textsf{Continiue with Subproblem 1}\\ jan@42173: \`Get the coeffizients $A$ and $B$\\ jan@42173: \texttt{\footnotesize{11}} \> $\frac{3}{\frac{1}{2}-(-\frac{1}{4})}=A$ \& $\frac{3}{-\frac{1}{4}-\frac{1}{2}}=B$\\ jan@42173: \texttt{\footnotesize{12}} \> $\frac{3}{\frac{1}{2}+\frac{1}{4}}=A$ \& $\frac{3}{-\frac{1}{4}-\frac{1}{2}}=B$\\ jan@42173: \texttt{\footnotesize{13}} \> $\frac{3}{\frac{3}{4}}=A$ \& $\frac{3}{-\frac{3}{4}}=B$\\ jan@42173: \texttt{\footnotesize{14}} \> $\frac{12}{3}=A$ \& $-\frac{12}{3}=B$\\ jan@42173: \texttt{\footnotesize{15}} \> $4=A$ \& $-4=B$\\ jan@42173: \textsf{Continiue with Main Problem}\\ jan@42173: \texttt{\footnotesize{16}} \> $\frac{A}{z-z_1}+\frac{B}{z-z_2}$\\ jan@42173: \texttt{\footnotesize{17}} \> $\frac{4}{z-\frac{1}{2}}+\frac{4}{z-\left(-\frac{1}{4}\right)}$ \\ jan@42173: \texttt{\footnotesize{18}} \> $\frac{4}{z-\frac{1}{2}}-\frac{4}{z+\frac{1}{4}}$ \\ jan@42173: \`Multiply with z, neccesary for z-transformation\\ jan@42173: \texttt{\footnotesize{19}} \> $\frac{4z}{z-\frac{1}{2}}-\frac{4z}{z+\frac{1}{4}}$ \\ jan@42173: \texttt{\footnotesize{20}} \> $4\cdot\frac{z}{z-\frac{1}{2}}+(-4)\cdot\frac{z}{z+\frac{1}{4}}$ \\ jan@42173: \`Transformation\\ jan@42173: \texttt{\footnotesize{21}} \> $4\cdot\frac{z}{z-\frac{1}{2}}+(-4)\cdot\frac{z}{z+\frac{1}{4}}\ \Ztransf\ 4\cdot\left(-\frac{1}{2}\right)^n\cdot u[n]+(-4)\cdot\left(\frac{1}{4}\right)^n\cdot u[n]$\\ jan@42173: \end{tabbing} jan@42173: } jrocnik@42162: \theendnotes jan@42246: %\end{document}