src/HOL/Import/proof_kernel.ML
author wenzelm
Mon, 20 Sep 2010 16:05:25 +0200
changeset 39814 fe5722fce758
parent 39541 f1ae2493d93f
child 40875 becf5d5187cc
permissions -rw-r--r--
renamed structure PureThy to Pure_Thy and moved most content to Global_Theory, to emphasize that this is global-only;
     1 (*  Title:      HOL/Import/proof_kernel.ML
     2     Author:     Sebastian Skalberg and Steven Obua, TU Muenchen
     3 *)
     4 
     5 signature ProofKernel =
     6 sig
     7     type hol_type
     8     type tag
     9     type term
    10     type thm
    11     type ('a,'b) subst
    12 
    13     type proof_info
    14     datatype proof = Proof of proof_info * proof_content
    15          and proof_content
    16            = PRefl of term
    17            | PInstT of proof * (hol_type,hol_type) subst
    18            | PSubst of proof list * term * proof
    19            | PAbs of proof * term
    20            | PDisch of proof * term
    21            | PMp of proof * proof
    22            | PHyp of term
    23            | PAxm of string * term
    24            | PDef of string * string * term
    25            | PTmSpec of string * string list * proof
    26            | PTyDef of string * string * proof
    27            | PTyIntro of string * string * string * string * term * term * proof
    28            | POracle of tag * term list * term
    29            | PDisk
    30            | PSpec of proof * term
    31            | PInst of proof * (term,term) subst
    32            | PGen of proof * term
    33            | PGenAbs of proof * term option * term list
    34            | PImpAS of proof * proof
    35            | PSym of proof
    36            | PTrans of proof * proof
    37            | PComb of proof * proof
    38            | PEqMp of proof * proof
    39            | PEqImp of proof
    40            | PExists of proof * term * term
    41            | PChoose of term * proof * proof
    42            | PConj of proof * proof
    43            | PConjunct1 of proof
    44            | PConjunct2 of proof
    45            | PDisj1 of proof * term
    46            | PDisj2 of proof * term
    47            | PDisjCases of proof * proof * proof
    48            | PNotI of proof
    49            | PNotE of proof
    50            | PContr of proof * term
    51 
    52     exception PK of string * string
    53 
    54     val get_proof_dir: string -> theory -> string option
    55     val disambiguate_frees : Thm.thm -> Thm.thm
    56     val debug : bool Unsynchronized.ref
    57     val disk_info_of : proof -> (string * string) option
    58     val set_disk_info_of : proof -> string -> string -> unit
    59     val mk_proof : proof_content -> proof
    60     val content_of : proof -> proof_content
    61     val import_proof : string -> string -> theory -> (theory -> term) option * (theory -> proof)
    62 
    63     val rewrite_hol4_term: Term.term -> theory -> Thm.thm
    64 
    65     val type_of : term -> hol_type
    66 
    67     val get_thm  : string -> string         -> theory -> (theory * thm option)
    68     val get_def  : string -> string -> term -> theory -> (theory * thm option)
    69     val get_axiom: string -> string         -> theory -> (theory * thm option)
    70 
    71     val store_thm : string -> string -> thm -> theory -> theory * thm
    72 
    73     val to_isa_thm : thm -> (term * term) list * Thm.thm
    74     val to_isa_term: term -> Term.term
    75     val to_hol_thm : Thm.thm -> thm
    76 
    77     val REFL : term -> theory -> theory * thm
    78     val ASSUME : term -> theory -> theory * thm
    79     val INST_TYPE : (hol_type,hol_type) subst -> thm -> theory -> theory * thm
    80     val INST : (term,term)subst -> thm -> theory -> theory * thm
    81     val EQ_MP : thm -> thm -> theory -> theory * thm
    82     val EQ_IMP_RULE : thm -> theory -> theory * thm
    83     val SUBST : thm list -> term -> thm -> theory -> theory * thm
    84     val DISJ_CASES : thm -> thm -> thm -> theory -> theory * thm
    85     val DISJ1: thm -> term -> theory -> theory * thm
    86     val DISJ2: term -> thm -> theory -> theory * thm
    87     val IMP_ANTISYM: thm -> thm -> theory -> theory * thm
    88     val SYM : thm -> theory -> theory * thm
    89     val MP : thm -> thm -> theory -> theory * thm
    90     val GEN : term -> thm -> theory -> theory * thm
    91     val CHOOSE : term -> thm -> thm -> theory -> theory * thm
    92     val EXISTS : term -> term -> thm -> theory -> theory * thm
    93     val ABS : term -> thm -> theory -> theory * thm
    94     val GEN_ABS : term option -> term list -> thm -> theory -> theory * thm
    95     val TRANS : thm -> thm -> theory -> theory * thm
    96     val CCONTR : term -> thm -> theory -> theory * thm
    97     val CONJ : thm -> thm -> theory -> theory * thm
    98     val CONJUNCT1: thm -> theory -> theory * thm
    99     val CONJUNCT2: thm -> theory -> theory * thm
   100     val NOT_INTRO: thm -> theory -> theory * thm
   101     val NOT_ELIM : thm -> theory -> theory * thm
   102     val SPEC : term -> thm -> theory -> theory * thm
   103     val COMB : thm -> thm -> theory -> theory * thm
   104     val DISCH: term -> thm -> theory -> theory * thm
   105 
   106     val type_introduction: string -> string -> string -> string -> string -> term * term -> thm -> theory -> theory * thm
   107 
   108     val new_definition : string -> string -> term -> theory -> theory * thm
   109     val new_specification : string -> string -> string list -> thm -> theory -> theory * thm
   110     val new_type_definition : string -> string -> string -> thm -> theory -> theory * thm
   111     val new_axiom : string -> term -> theory -> theory * thm
   112 
   113     val prin : term -> unit
   114     val protect_factname : string -> string
   115     val replay_protect_varname : string -> string -> unit
   116     val replay_add_dump : string -> theory -> theory
   117 end
   118 
   119 structure ProofKernel :> ProofKernel =
   120 struct
   121 type hol_type = Term.typ
   122 type term = Term.term
   123 datatype tag = Tag of string list
   124 type ('a,'b) subst = ('a * 'b) list
   125 datatype thm = HOLThm of (Term.term * Term.term) list * Thm.thm
   126 
   127 fun hthm2thm (HOLThm (_, th)) = th
   128 
   129 fun to_hol_thm th = HOLThm ([], th)
   130 
   131 val replay_add_dump = add_dump
   132 fun add_dump s thy = (ImportRecorder.add_dump s; replay_add_dump s thy)
   133 
   134 datatype proof_info
   135   = Info of {disk_info: (string * string) option Unsynchronized.ref}
   136 
   137 datatype proof = Proof of proof_info * proof_content
   138      and proof_content
   139        = PRefl of term
   140        | PInstT of proof * (hol_type,hol_type) subst
   141        | PSubst of proof list * term * proof
   142        | PAbs of proof * term
   143        | PDisch of proof * term
   144        | PMp of proof * proof
   145        | PHyp of term
   146        | PAxm of string * term
   147        | PDef of string * string * term
   148        | PTmSpec of string * string list * proof
   149        | PTyDef of string * string * proof
   150        | PTyIntro of string * string * string * string * term * term * proof
   151        | POracle of tag * term list * term
   152        | PDisk
   153        | PSpec of proof * term
   154        | PInst of proof * (term,term) subst
   155        | PGen of proof * term
   156        | PGenAbs of proof * term option * term list
   157        | PImpAS of proof * proof
   158        | PSym of proof
   159        | PTrans of proof * proof
   160        | PComb of proof * proof
   161        | PEqMp of proof * proof
   162        | PEqImp of proof
   163        | PExists of proof * term * term
   164        | PChoose of term * proof * proof
   165        | PConj of proof * proof
   166        | PConjunct1 of proof
   167        | PConjunct2 of proof
   168        | PDisj1 of proof * term
   169        | PDisj2 of proof * term
   170        | PDisjCases of proof * proof * proof
   171        | PNotI of proof
   172        | PNotE of proof
   173        | PContr of proof * term
   174 
   175 exception PK of string * string
   176 fun ERR f mesg = PK (f,mesg)
   177 
   178 
   179 (* Compatibility. *)
   180 
   181 val string_of_mixfix = Pretty.string_of o Syntax.pretty_mixfix;
   182 
   183 fun mk_syn thy c =
   184   if Syntax.is_identifier c andalso not (Syntax.is_keyword (Sign.syn_of thy) c) then NoSyn
   185   else Delimfix (Syntax.escape c)
   186 
   187 fun quotename c =
   188   if Syntax.is_identifier c andalso not (Keyword.is_keyword c) then c else quote c
   189 
   190 fun simple_smart_string_of_cterm ctxt0 ct =
   191     let
   192         val ctxt = ctxt0
   193           |> Config.put show_brackets false
   194           |> Config.put show_all_types true
   195           |> Config.put show_sorts true
   196           |> Config.put Syntax.ambiguity_enabled true;
   197         val {t,T,...} = rep_cterm ct
   198         (* Hack to avoid parse errors with Trueprop *)
   199         val ct  = cterm_of (Thm.theory_of_cterm ct) (HOLogic.dest_Trueprop t)
   200                            handle TERM _ => ct
   201     in
   202         quote (Print_Mode.setmp [] (Syntax.string_of_term ctxt o Thm.term_of) ct)
   203     end
   204 
   205 exception SMART_STRING
   206 
   207 fun smart_string_of_cterm ctxt0 ct =
   208     let
   209         val ctxt = ctxt0 |> Config.put Syntax.ambiguity_enabled false;
   210         val {t,T,...} = rep_cterm ct
   211         (* Hack to avoid parse errors with Trueprop *)
   212         val ct  = cterm_of (Thm.theory_of_cterm ct) (HOLogic.dest_Trueprop t)
   213                    handle TERM _ => ct
   214         fun match u = t aconv u
   215         fun G 0 f ctxt x = f (Config.put show_types true (Config.put show_sorts true ctxt)) x
   216           | G 1 f ctxt x = G 0 f (Config.put show_brackets true ctxt) x
   217           | G 2 f ctxt x = G 0 f (Config.put show_all_types true ctxt) x
   218           | G 3 f ctxt x = G 2 f (Config.put show_brackets true ctxt) x
   219           | G _ _ _ _ = raise SMART_STRING
   220         fun F n =
   221             let
   222                 val str =
   223                   G n Syntax.string_of_term (Config.put show_brackets false ctxt) (term_of ct)
   224                 val u = Syntax.parse_term ctxt str
   225                   |> Type.constraint T |> Syntax.check_term ctxt
   226             in
   227                 if match u
   228                 then quote str
   229                 else F (n+1)
   230             end
   231             handle ERROR mesg => F (n + 1)
   232               | SMART_STRING =>
   233                   error ("smart_string failed for: "^ G 0 Syntax.string_of_term ctxt (term_of ct))
   234     in
   235       Print_Mode.setmp [] F 0
   236     end
   237     handle ERROR mesg => simple_smart_string_of_cterm ctxt0 ct
   238 
   239 fun smart_string_of_thm ctxt = smart_string_of_cterm ctxt o cprop_of
   240 
   241 fun prth th = writeln (Print_Mode.setmp [] Display.string_of_thm_without_context th);
   242 fun prin t = writeln (Print_Mode.setmp []
   243   (fn () => Syntax.string_of_term (ML_Context.the_local_context ()) t) ());
   244 fun pth (HOLThm(ren,thm)) =
   245     let
   246         (*val _ = writeln "Renaming:"
   247         val _ = app (fn(v,w) => (prin v; writeln " -->"; prin w)) ren*)
   248         val _ = prth thm
   249     in
   250         ()
   251     end
   252 
   253 fun disk_info_of (Proof(Info{disk_info,...},_)) = !disk_info
   254 fun mk_proof p = Proof(Info{disk_info = Unsynchronized.ref NONE},p)
   255 fun content_of (Proof(_,p)) = p
   256 
   257 fun set_disk_info_of (Proof(Info{disk_info,...},_)) thyname thmname =
   258     disk_info := SOME(thyname,thmname)
   259 
   260 structure Lib =
   261 struct
   262 
   263 fun assoc x =
   264     let
   265         fun F [] = raise PK("Lib.assoc","Not found")
   266           | F ((x',y)::rest) = if x = x'
   267                                then y
   268                                else F rest
   269     in
   270         F
   271     end
   272 infix mem;
   273 fun i mem L =
   274     let fun itr [] = false
   275           | itr (a::rst) = i=a orelse itr rst
   276     in itr L end;
   277 
   278 infix union;
   279 fun [] union S = S
   280   | S union [] = S
   281   | (a::rst) union S2 = rst union (insert (op =) a S2);
   282 
   283 fun implode_subst [] = []
   284   | implode_subst (x::r::rest) = ((x,r)::(implode_subst rest))
   285   | implode_subst _ = raise ERR "implode_subst" "malformed substitution list"
   286 
   287 end
   288 open Lib
   289 
   290 structure Tag =
   291 struct
   292 val empty_tag = Tag []
   293 fun read name = Tag [name]
   294 fun merge (Tag tag1) (Tag tag2) = Tag (Lib.union(tag1,tag2))
   295 end
   296 
   297 (* Actual code. *)
   298 
   299 fun get_segment thyname l = (Lib.assoc "s" l
   300                              handle PK _ => thyname)
   301 val get_name : (string * string) list -> string = Lib.assoc "n"
   302 
   303 local
   304     open LazyScan
   305     infix 7 |-- --|
   306     infix 5 :-- -- ^^
   307     infix 3 >>
   308     infix 0 ||
   309 in
   310 exception XML of string
   311 
   312 datatype xml = Elem of string * (string * string) list * xml list
   313 datatype XMLtype = XMLty of xml | FullType of hol_type
   314 datatype XMLterm = XMLtm of xml | FullTerm of term
   315 
   316 fun pair x y = (x,y)
   317 
   318 fun scan_id toks =
   319     let
   320         val (x,toks2) = one Char.isAlpha toks
   321         val (xs,toks3) = any Char.isAlphaNum toks2
   322     in
   323         (String.implode (x::xs),toks3)
   324     end
   325 
   326 fun scan_string str c =
   327     let
   328         fun F [] toks = (c,toks)
   329           | F (c::cs) toks =
   330             case LazySeq.getItem toks of
   331                 SOME(c',toks') =>
   332                 if c = c'
   333                 then F cs toks'
   334                 else raise SyntaxError
   335               | NONE => raise SyntaxError
   336     in
   337         F (String.explode str)
   338     end
   339 
   340 local
   341     val scan_entity =
   342         (scan_string "amp;" #"&")
   343             || scan_string "quot;" #"\""
   344             || scan_string "gt;" #">"
   345             || scan_string "lt;" #"<"
   346             || scan_string "apos;" #"'"
   347 in
   348 fun scan_nonquote toks =
   349     case LazySeq.getItem toks of
   350         SOME (c,toks') =>
   351         (case c of
   352              #"\"" => raise SyntaxError
   353            | #"&" => scan_entity toks'
   354            | c => (c,toks'))
   355       | NONE => raise SyntaxError
   356 end
   357 
   358 val scan_string = $$ #"\"" |-- repeat scan_nonquote --| $$ #"\"" >>
   359                      String.implode
   360 
   361 val scan_attribute = scan_id -- $$ #"=" |-- scan_string
   362 
   363 val scan_start_of_tag = $$ #"<" |-- scan_id --
   364                            repeat ($$ #" " |-- scan_attribute)
   365 
   366 fun scan_end_of_tag toks = ($$ #"/" |-- $$ #">" |-- succeed []) toks
   367 
   368 val scan_end_tag = $$ #"<" |-- $$ #"/" |-- scan_id --| $$ #">"
   369 
   370 fun scan_children id = $$ #">" |-- repeat scan_tag -- scan_end_tag >>
   371                        (fn (chldr,id') => if id = id'
   372                                           then chldr
   373                                           else raise XML "Tag mismatch")
   374 and scan_tag toks =
   375     let
   376         val ((id,atts),toks2) = scan_start_of_tag toks
   377         val (chldr,toks3) = (scan_children id || scan_end_of_tag) toks2
   378     in
   379         (Elem (id,atts,chldr),toks3)
   380     end
   381 end
   382 
   383 val type_of = Term.type_of
   384 
   385 val propT = Type("prop",[])
   386 
   387 fun mk_defeq name rhs thy =
   388     let
   389         val ty = type_of rhs
   390     in
   391         Logic.mk_equals (Const(Sign.intern_const thy name,ty),rhs)
   392     end
   393 
   394 fun mk_teq name rhs thy =
   395     let
   396         val ty = type_of rhs
   397     in
   398         HOLogic.mk_eq (Const(Sign.intern_const thy name,ty),rhs)
   399     end
   400 
   401 fun intern_const_name thyname const thy =
   402     case get_hol4_const_mapping thyname const thy of
   403         SOME (_,cname,_) => cname
   404       | NONE => (case get_hol4_const_renaming thyname const thy of
   405                      SOME cname => Sign.intern_const thy (thyname ^ "." ^ cname)
   406                    | NONE => Sign.intern_const thy (thyname ^ "." ^ const))
   407 
   408 fun intern_type_name thyname const thy =
   409     case get_hol4_type_mapping thyname const thy of
   410         SOME (_,cname) => cname
   411       | NONE => Sign.intern_const thy (thyname ^ "." ^ const)
   412 
   413 fun mk_vartype name = TFree(name,["HOL.type"])
   414 fun mk_thy_type thy Thy Tyop Args = Type(intern_type_name Thy Tyop thy,Args)
   415 
   416 val mk_var = Free
   417 
   418 fun dom_rng (Type("fun",[dom,rng])) = (dom,rng)
   419   | dom_rng _ = raise ERR "dom_rng" "Not a functional type"
   420 
   421 fun mk_thy_const thy Thy Nam Ty = Const(intern_const_name Thy Nam thy,Ty)
   422 
   423 local
   424   fun get_const sg thyname name =
   425     (case Sign.const_type sg name of
   426       SOME ty => Const (name, ty)
   427     | NONE => raise ERR "get_type" (name ^ ": No such constant"))
   428 in
   429 fun prim_mk_const thy Thy Nam =
   430     let
   431       val name = intern_const_name Thy Nam thy
   432       val cmaps = HOL4ConstMaps.get thy
   433     in
   434       case StringPair.lookup cmaps (Thy,Nam) of
   435         SOME(_,_,SOME ty) => Const(name,ty)
   436       | _ => get_const thy Thy name
   437     end
   438 end
   439 
   440 fun mk_comb(f,a) = f $ a
   441 
   442 (* Needed for HOL Light *)
   443 fun protect_tyvarname s =
   444     let
   445         fun no_quest s =
   446             if Char.contains s #"?"
   447             then String.translate (fn #"?" => "q_" | c => Char.toString c) s
   448             else s
   449         fun beg_prime s =
   450             if String.isPrefix "'" s
   451             then s
   452             else "'" ^ s
   453     in
   454         s |> no_quest |> beg_prime
   455     end
   456 
   457 val protected_varnames = Unsynchronized.ref (Symtab.empty:string Symtab.table)
   458 val invented_isavar = Unsynchronized.ref 0
   459 
   460 fun innocent_varname s = Syntax.is_identifier s andalso not (String.isPrefix "u_" s)
   461 
   462 fun valid_boundvarname s =
   463   can (fn () => Syntax.read_term_global @{theory Main} ("SOME "^s^". True")) ();
   464 
   465 fun valid_varname s =
   466   can (fn () => Syntax.read_term_global @{theory Main} s) ();
   467 
   468 fun protect_varname s =
   469     if innocent_varname s andalso valid_varname s then s else
   470     case Symtab.lookup (!protected_varnames) s of
   471       SOME t => t
   472     | NONE =>
   473       let
   474           val _ = Unsynchronized.inc invented_isavar
   475           val t = "u_" ^ string_of_int (!invented_isavar)
   476           val _ = ImportRecorder.protect_varname s t
   477           val _ = protected_varnames := Symtab.update (s, t) (!protected_varnames)
   478       in
   479           t
   480       end
   481 
   482 exception REPLAY_PROTECT_VARNAME of string*string*string
   483 
   484 fun replay_protect_varname s t =
   485         case Symtab.lookup (!protected_varnames) s of
   486           SOME t' => raise REPLAY_PROTECT_VARNAME (s, t, t')
   487         | NONE =>
   488           let
   489               val _ = Unsynchronized.inc invented_isavar
   490               val t = "u_" ^ string_of_int (!invented_isavar)
   491               val _ = protected_varnames := Symtab.update (s, t) (!protected_varnames)
   492           in
   493               ()
   494           end
   495 
   496 fun protect_boundvarname s = if innocent_varname s andalso valid_boundvarname s then s else "u"
   497 
   498 fun mk_lambda (v as Free (x, T)) t = Abs (protect_boundvarname x, T, abstract_over (v, t))
   499   | mk_lambda (v as Var ((x, _), T)) t = Abs (protect_boundvarname x, T, abstract_over (v, t))
   500   | mk_lambda v t = raise TERM ("lambda", [v, t]);
   501 
   502 fun replacestr x y s =
   503 let
   504   val xl = explode x
   505   val yl = explode y
   506   fun isprefix [] ys = true
   507     | isprefix (x::xs) (y::ys) = if x = y then isprefix xs ys else false
   508     | isprefix _ _ = false
   509   fun isp s = isprefix xl s
   510   fun chg s = yl@(List.drop (s, List.length xl))
   511   fun r [] = []
   512     | r (S as (s::ss)) = if isp S then r (chg S) else s::(r ss)
   513 in
   514   implode(r (explode s))
   515 end
   516 
   517 fun protect_factname s = replacestr "." "_dot_" s
   518 fun unprotect_factname s = replacestr "_dot_" "." s
   519 
   520 val ty_num_prefix = "N_"
   521 
   522 fun startsWithDigit s = Char.isDigit (hd (String.explode s))
   523 
   524 fun protect_tyname tyn =
   525   let
   526     val tyn' =
   527       if String.isPrefix ty_num_prefix tyn then raise (ERR "protect_ty_name" ("type name '"^tyn^"' is reserved")) else
   528       (if startsWithDigit tyn then ty_num_prefix^tyn else tyn)
   529   in
   530     tyn'
   531   end
   532 
   533 fun protect_constname tcn = tcn
   534  (* if tcn = ".." then "dotdot"
   535   else if tcn = "==" then "eqeq"
   536   else tcn*)
   537 
   538 structure TypeNet =
   539 struct
   540 
   541 fun get_type_from_index thy thyname types is =
   542     case Int.fromString is of
   543         SOME i => (case Array.sub(types,i) of
   544                        FullType ty => ty
   545                      | XMLty xty =>
   546                        let
   547                            val ty = get_type_from_xml thy thyname types xty
   548                            val _  = Array.update(types,i,FullType ty)
   549                        in
   550                            ty
   551                        end)
   552       | NONE => raise ERR "get_type_from_index" "Bad index"
   553 and get_type_from_xml thy thyname types =
   554     let
   555         fun gtfx (Elem("tyi",[("i",iS)],[])) =
   556                  get_type_from_index thy thyname types iS
   557           | gtfx (Elem("tyc",atts,[])) =
   558             mk_thy_type thy
   559                         (get_segment thyname atts)
   560                         (protect_tyname (get_name atts))
   561                         []
   562           | gtfx (Elem("tyv",[("n",s)],[])) = mk_vartype (protect_tyvarname s)
   563           | gtfx (Elem("tya",[],(Elem("tyc",atts,[]))::tys)) =
   564             mk_thy_type thy
   565                         (get_segment thyname atts)
   566                         (protect_tyname (get_name atts))
   567                         (map gtfx tys)
   568           | gtfx _ = raise ERR "get_type" "Bad type"
   569     in
   570         gtfx
   571     end
   572 
   573 fun input_types thyname (Elem("tylist",[("i",i)],xtys)) =
   574     let
   575         val types = Array.array(the (Int.fromString i),XMLty (Elem("",[],[])))
   576         fun IT _ [] = ()
   577           | IT n (xty::xtys) =
   578             (Array.update(types,n,XMLty xty);
   579              IT (n+1) xtys)
   580         val _ = IT 0 xtys
   581     in
   582         types
   583     end
   584   | input_types _ _ = raise ERR "input_types" "Bad type list"
   585 end
   586 
   587 structure TermNet =
   588 struct
   589 
   590 fun get_term_from_index thy thyname types terms is =
   591     case Int.fromString is of
   592         SOME i => (case Array.sub(terms,i) of
   593                        FullTerm tm => tm
   594                      | XMLtm xtm =>
   595                        let
   596                            val tm = get_term_from_xml thy thyname types terms xtm
   597                            val _  = Array.update(terms,i,FullTerm tm)
   598                        in
   599                            tm
   600                        end)
   601       | NONE => raise ERR "get_term_from_index" "Bad index"
   602 and get_term_from_xml thy thyname types terms =
   603     let
   604         fun get_type [] = NONE
   605           | get_type [ty] = SOME (TypeNet.get_type_from_xml thy thyname types ty)
   606           | get_type _ = raise ERR "get_term" "Bad type"
   607 
   608         fun gtfx (Elem("tmv",[("n",name),("t",tyi)],[])) =
   609             mk_var(protect_varname name,TypeNet.get_type_from_index thy thyname types tyi)
   610           | gtfx (Elem("tmc",atts,[])) =
   611             let
   612                 val segment = get_segment thyname atts
   613                 val name = protect_constname(get_name atts)
   614             in
   615                 mk_thy_const thy segment name (TypeNet.get_type_from_index thy thyname types (Lib.assoc "t" atts))
   616                 handle PK _ => prim_mk_const thy segment name
   617             end
   618           | gtfx (Elem("tma",[("f",tmf),("a",tma)],[])) =
   619             let
   620                 val f = get_term_from_index thy thyname types terms tmf
   621                 val a = get_term_from_index thy thyname types terms tma
   622             in
   623                 mk_comb(f,a)
   624             end
   625           | gtfx (Elem("tml",[("x",tmx),("a",tma)],[])) =
   626             let
   627                 val x = get_term_from_index thy thyname types terms tmx
   628                 val a = get_term_from_index thy thyname types terms tma
   629             in
   630                 mk_lambda x a
   631             end
   632           | gtfx (Elem("tmi",[("i",iS)],[])) =
   633             get_term_from_index thy thyname types terms iS
   634           | gtfx (Elem(tag,_,_)) =
   635             raise ERR "get_term" ("Not a term: "^tag)
   636     in
   637         gtfx
   638     end
   639 
   640 fun input_terms thyname types (Elem("tmlist",[("i",i)],xtms)) =
   641     let
   642         val terms = Array.array(the (Int.fromString i), XMLtm (Elem("",[],[])))
   643 
   644         fun IT _ [] = ()
   645           | IT n (xtm::xtms) =
   646             (Array.update(terms,n,XMLtm xtm);
   647              IT (n+1) xtms)
   648         val _ = IT 0 xtms
   649     in
   650         terms
   651     end
   652   | input_terms _ _ _ = raise ERR "input_terms" "Bad term list"
   653 end
   654 
   655 fun get_proof_dir (thyname:string) thy =
   656     let
   657         val import_segment =
   658             case get_segment2 thyname thy of
   659                 SOME seg => seg
   660               | NONE => get_import_segment thy
   661         val path = space_explode ":" (getenv "HOL4_PROOFS")
   662         fun find [] = NONE
   663           | find (p::ps) =
   664             (let
   665                  val dir = OS.Path.joinDirFile {dir = p,file=import_segment}
   666              in
   667                  if OS.FileSys.isDir dir
   668                  then SOME dir
   669                  else find ps
   670              end) handle OS.SysErr _ => find ps
   671     in
   672         Option.map (fn p => OS.Path.joinDirFile {dir = p, file = thyname}) (find path)
   673     end
   674 
   675 fun proof_file_name thyname thmname thy =
   676     let
   677         val path = case get_proof_dir thyname thy of
   678                        SOME p => p
   679                      | NONE => error "Cannot find proof files"
   680         val _ = OS.FileSys.mkDir path handle OS.SysErr _ => ()
   681     in
   682         OS.Path.joinDirFile {dir = path, file = OS.Path.joinBaseExt {base = (unprotect_factname thmname), ext = SOME "prf"}}
   683     end
   684 
   685 fun xml_to_proof thyname types terms prf thy =
   686     let
   687         val xml_to_hol_type = TypeNet.get_type_from_xml thy thyname types
   688         val xml_to_term = TermNet.get_term_from_xml thy thyname types terms
   689 
   690         fun index_to_term is =
   691             TermNet.get_term_from_index thy thyname types terms is
   692 
   693         fun x2p (Elem("prefl",[("i",is)],[])) = mk_proof (PRefl (index_to_term is))
   694           | x2p (Elem("pinstt",[],p::lambda)) =
   695             let
   696                 val p = x2p p
   697                 val lambda = implode_subst (map xml_to_hol_type lambda)
   698             in
   699                 mk_proof (PInstT(p,lambda))
   700             end
   701           | x2p (Elem("psubst",[("i",is)],prf::prfs)) =
   702             let
   703                 val tm = index_to_term is
   704                 val prf = x2p prf
   705                 val prfs = map x2p prfs
   706             in
   707                 mk_proof (PSubst(prfs,tm,prf))
   708             end
   709           | x2p (Elem("pabs",[("i",is)],[prf])) =
   710             let
   711                 val p = x2p prf
   712                 val t = index_to_term is
   713             in
   714                 mk_proof (PAbs (p,t))
   715             end
   716           | x2p (Elem("pdisch",[("i",is)],[prf])) =
   717             let
   718                 val p = x2p prf
   719                 val t = index_to_term is
   720             in
   721                 mk_proof (PDisch (p,t))
   722             end
   723           | x2p (Elem("pmp",[],[prf1,prf2])) =
   724             let
   725                 val p1 = x2p prf1
   726                 val p2 = x2p prf2
   727             in
   728                 mk_proof (PMp(p1,p2))
   729             end
   730           | x2p (Elem("phyp",[("i",is)],[])) = mk_proof (PHyp (index_to_term is))
   731           | x2p (Elem("paxiom",[("n",n),("i",is)],[])) =
   732             mk_proof (PAxm(n,index_to_term is))
   733           | x2p (Elem("pfact",atts,[])) =
   734             let
   735                 val thyname = get_segment thyname atts
   736                 val thmname = protect_factname (get_name atts)
   737                 val p = mk_proof PDisk
   738                 val _  = set_disk_info_of p thyname thmname
   739             in
   740                 p
   741             end
   742           | x2p (Elem("pdef",[("s",seg),("n",name),("i",is)],[])) =
   743             mk_proof (PDef(seg,protect_constname name,index_to_term is))
   744           | x2p (Elem("ptmspec",[("s",seg)],p::names)) =
   745             let
   746                 val names = map (fn Elem("name",[("n",name)],[]) => name
   747                                   | _ => raise ERR "x2p" "Bad proof (ptmspec)") names
   748             in
   749                 mk_proof (PTmSpec(seg,names,x2p p))
   750             end
   751           | x2p (Elem("ptyintro",[("s",seg),("n",name),("a",abs_name),("r",rep_name)],[xP,xt,p])) =
   752             let
   753                 val P = xml_to_term xP
   754                 val t = xml_to_term xt
   755             in
   756                 mk_proof (PTyIntro(seg,protect_tyname name,protect_constname abs_name,protect_constname rep_name,P,t,x2p p))
   757             end
   758           | x2p (Elem("ptydef",[("s",seg),("n",name)],[p])) =
   759             mk_proof (PTyDef(seg,protect_tyname name,x2p p))
   760           | x2p (xml as Elem("poracle",[],chldr)) =
   761             let
   762                 val (oracles,terms) = List.partition (fn (Elem("oracle",_,_)) => true | _ => false) chldr
   763                 val ors = map (fn (Elem("oracle",[("n",name)],[])) => name | xml => raise ERR "x2p" "bad oracle") oracles
   764                 val (c,asl) = case terms of
   765                                   [] => raise ERR "x2p" "Bad oracle description"
   766                                 | (hd::tl) => (hd,tl)
   767                 val tg = fold_rev (Tag.merge o Tag.read) ors Tag.empty_tag
   768             in
   769                 mk_proof (POracle(tg,map xml_to_term asl,xml_to_term c))
   770             end
   771           | x2p (Elem("pspec",[("i",is)],[prf])) =
   772             let
   773                 val p = x2p prf
   774                 val tm = index_to_term is
   775             in
   776                 mk_proof (PSpec(p,tm))
   777             end
   778           | x2p (Elem("pinst",[],p::theta)) =
   779             let
   780                 val p = x2p p
   781                 val theta = implode_subst (map xml_to_term theta)
   782             in
   783                 mk_proof (PInst(p,theta))
   784             end
   785           | x2p (Elem("pgen",[("i",is)],[prf])) =
   786             let
   787                 val p = x2p prf
   788                 val tm = index_to_term is
   789             in
   790                 mk_proof (PGen(p,tm))
   791             end
   792           | x2p (Elem("pgenabs",[],prf::tms)) =
   793             let
   794                 val p = x2p prf
   795                 val tml = map xml_to_term tms
   796             in
   797                 mk_proof (PGenAbs(p,NONE,tml))
   798             end
   799           | x2p (Elem("pgenabs",[("i",is)],prf::tms)) =
   800             let
   801                 val p = x2p prf
   802                 val tml = map xml_to_term tms
   803             in
   804                 mk_proof (PGenAbs(p,SOME (index_to_term is),tml))
   805             end
   806           | x2p (Elem("pimpas",[],[prf1,prf2])) =
   807             let
   808                 val p1 = x2p prf1
   809                 val p2 = x2p prf2
   810             in
   811                 mk_proof (PImpAS(p1,p2))
   812             end
   813           | x2p (Elem("psym",[],[prf])) =
   814             let
   815                 val p = x2p prf
   816             in
   817                 mk_proof (PSym p)
   818             end
   819           | x2p (Elem("ptrans",[],[prf1,prf2])) =
   820             let
   821                 val p1 = x2p prf1
   822                 val p2 = x2p prf2
   823             in
   824                 mk_proof (PTrans(p1,p2))
   825             end
   826           | x2p (Elem("pcomb",[],[prf1,prf2])) =
   827             let
   828                 val p1 = x2p prf1
   829                 val p2 = x2p prf2
   830             in
   831                 mk_proof (PComb(p1,p2))
   832             end
   833           | x2p (Elem("peqmp",[],[prf1,prf2])) =
   834             let
   835                 val p1 = x2p prf1
   836                 val p2 = x2p prf2
   837             in
   838                 mk_proof (PEqMp(p1,p2))
   839             end
   840           | x2p (Elem("peqimp",[],[prf])) =
   841             let
   842                 val p = x2p prf
   843             in
   844                 mk_proof (PEqImp p)
   845             end
   846           | x2p (Elem("pexists",[("e",ise),("w",isw)],[prf])) =
   847             let
   848                 val p = x2p prf
   849                 val ex = index_to_term ise
   850                 val w = index_to_term isw
   851             in
   852                 mk_proof (PExists(p,ex,w))
   853             end
   854           | x2p (Elem("pchoose",[("i",is)],[prf1,prf2])) =
   855             let
   856                 val v  = index_to_term is
   857                 val p1 = x2p prf1
   858                 val p2 = x2p prf2
   859             in
   860                 mk_proof (PChoose(v,p1,p2))
   861             end
   862           | x2p (Elem("pconj",[],[prf1,prf2])) =
   863             let
   864                 val p1 = x2p prf1
   865                 val p2 = x2p prf2
   866             in
   867                 mk_proof (PConj(p1,p2))
   868             end
   869           | x2p (Elem("pconjunct1",[],[prf])) =
   870             let
   871                 val p = x2p prf
   872             in
   873                 mk_proof (PConjunct1 p)
   874             end
   875           | x2p (Elem("pconjunct2",[],[prf])) =
   876             let
   877                 val p = x2p prf
   878             in
   879                 mk_proof (PConjunct2 p)
   880             end
   881           | x2p (Elem("pdisj1",[("i",is)],[prf])) =
   882             let
   883                 val p = x2p prf
   884                 val t = index_to_term is
   885             in
   886                 mk_proof (PDisj1 (p,t))
   887             end
   888           | x2p (Elem("pdisj2",[("i",is)],[prf])) =
   889             let
   890                 val p = x2p prf
   891                 val t = index_to_term is
   892             in
   893                 mk_proof (PDisj2 (p,t))
   894             end
   895           | x2p (Elem("pdisjcases",[],[prf1,prf2,prf3])) =
   896             let
   897                 val p1 = x2p prf1
   898                 val p2 = x2p prf2
   899                 val p3 = x2p prf3
   900             in
   901                 mk_proof (PDisjCases(p1,p2,p3))
   902             end
   903           | x2p (Elem("pnoti",[],[prf])) =
   904             let
   905                 val p = x2p prf
   906             in
   907                 mk_proof (PNotI p)
   908             end
   909           | x2p (Elem("pnote",[],[prf])) =
   910             let
   911                 val p = x2p prf
   912             in
   913                 mk_proof (PNotE p)
   914             end
   915           | x2p (Elem("pcontr",[("i",is)],[prf])) =
   916             let
   917                 val p = x2p prf
   918                 val t = index_to_term is
   919             in
   920                 mk_proof (PContr (p,t))
   921             end
   922           | x2p xml = raise ERR "x2p" "Bad proof"
   923     in
   924         x2p prf
   925     end
   926 
   927 fun import_proof_concl thyname thmname thy =
   928     let
   929         val is = TextIO.openIn(proof_file_name thyname thmname thy)
   930         val (proof_xml,_) = scan_tag (LazySeq.of_instream is)
   931         val _ = TextIO.closeIn is
   932     in
   933         case proof_xml of
   934             Elem("proof",[],xtypes::xterms::prf::rest) =>
   935             let
   936                 val types = TypeNet.input_types thyname xtypes
   937                 val terms = TermNet.input_terms thyname types xterms
   938                 fun f xtm thy = TermNet.get_term_from_xml thy thyname types terms xtm
   939             in
   940                 case rest of
   941                     [] => NONE
   942                   | [xtm] => SOME (f xtm)
   943                   | _ => raise ERR "import_proof" "Bad argument list"
   944             end
   945           | _ => raise ERR "import_proof" "Bad proof"
   946     end
   947 
   948 fun import_proof thyname thmname thy =
   949     let
   950         val is = TextIO.openIn(proof_file_name thyname thmname thy)
   951         val (proof_xml,_) = scan_tag (LazySeq.of_instream is)
   952         val _ = TextIO.closeIn is
   953     in
   954         case proof_xml of
   955             Elem("proof",[],xtypes::xterms::prf::rest) =>
   956             let
   957                 val types = TypeNet.input_types thyname xtypes
   958                 val terms = TermNet.input_terms thyname types xterms
   959             in
   960                 (case rest of
   961                      [] => NONE
   962                    | [xtm] => SOME (fn thy => TermNet.get_term_from_xml thy thyname types terms xtm)
   963                    | _ => raise ERR "import_proof" "Bad argument list",
   964                  xml_to_proof thyname types terms prf)
   965             end
   966           | _ => raise ERR "import_proof" "Bad proof"
   967     end
   968 
   969 fun uniq_compose m th i st =
   970     let
   971         val res = Thm.bicompose false (false,th,m) i st
   972     in
   973         case Seq.pull res of
   974             SOME (th,rest) => (case Seq.pull rest of
   975                                    SOME _ => raise ERR "uniq_compose" "Not unique!"
   976                                  | NONE => th)
   977           | NONE => raise ERR "uniq_compose" "No result"
   978     end
   979 
   980 val reflexivity_thm = @{thm refl}
   981 val substitution_thm = @{thm subst}
   982 val mp_thm = @{thm mp}
   983 val imp_antisym_thm = @{thm light_imp_as}
   984 val disch_thm = @{thm impI}
   985 val ccontr_thm = @{thm ccontr}
   986 
   987 val meta_eq_to_obj_eq_thm = @{thm meta_eq_to_obj_eq}
   988 
   989 val gen_thm = @{thm HOLallI}
   990 val choose_thm = @{thm exE}
   991 val exists_thm = @{thm exI}
   992 val conj_thm = @{thm conjI}
   993 val conjunct1_thm = @{thm conjunct1}
   994 val conjunct2_thm = @{thm conjunct2}
   995 val spec_thm = @{thm spec}
   996 val disj_cases_thm = @{thm disjE}
   997 val disj1_thm = @{thm disjI1}
   998 val disj2_thm = @{thm disjI2}
   999 
  1000 local
  1001     val th = @{thm not_def}
  1002     val thy = theory_of_thm th
  1003     val pp = Thm.reflexive (cterm_of thy (Const(@{const_name Trueprop},HOLogic.boolT-->propT)))
  1004 in
  1005 val not_elim_thm = Thm.combination pp th
  1006 end
  1007 
  1008 val not_intro_thm = Thm.symmetric not_elim_thm
  1009 val abs_thm = @{thm ext}
  1010 val trans_thm = @{thm trans}
  1011 val symmetry_thm = @{thm sym}
  1012 val transitivity_thm = @{thm trans}
  1013 val eqmp_thm = @{thm iffD1}
  1014 val eqimp_thm = @{thm HOL4Setup.eq_imp}
  1015 val comb_thm = @{thm cong}
  1016 
  1017 (* Beta-eta normalizes a theorem (only the conclusion, not the *
  1018 hypotheses!)  *)
  1019 
  1020 fun beta_eta_thm th =
  1021     let
  1022         val th1 = Thm.equal_elim (Thm.beta_conversion true (cprop_of th))  th
  1023         val th2 = Thm.equal_elim (Thm.eta_conversion       (cprop_of th1)) th1
  1024     in
  1025         th2
  1026     end
  1027 
  1028 fun implies_elim_all th =
  1029     Library.foldl (fn (th,p) => Thm.implies_elim th (Thm.assume p)) (th,cprems_of th)
  1030 
  1031 fun norm_hyps th =
  1032     th |> beta_eta_thm
  1033        |> implies_elim_all
  1034        |> implies_intr_hyps
  1035 
  1036 fun mk_GEN v th sg =
  1037     let
  1038         val c = HOLogic.dest_Trueprop (concl_of th)
  1039         val cv = cterm_of sg v
  1040         val lc = Term.lambda v c
  1041         val clc = Thm.cterm_of sg lc
  1042         val cvty = ctyp_of_term cv
  1043         val th1 = implies_elim_all th
  1044         val th2 = beta_eta_thm (Thm.forall_intr cv th1)
  1045         val th3 = th2 COMP (beta_eta_thm (Drule.instantiate' [SOME cvty] [SOME clc] gen_thm))
  1046         val c = prop_of th3
  1047         val vname = fst(dest_Free v)
  1048         val (cold,cnew) = case c of
  1049                               tpc $ (Const(@{const_name All},allT) $ Abs(oldname,ty,body)) =>
  1050                               (Abs(oldname,dummyT,Bound 0),Abs(vname,dummyT,Bound 0))
  1051                             | tpc $ (Const(@{const_name All},allT) $ rest) => (tpc,tpc)
  1052                             | _ => raise ERR "mk_GEN" "Unknown conclusion"
  1053         val th4 = Thm.rename_boundvars cold cnew th3
  1054         val res = implies_intr_hyps th4
  1055     in
  1056         res
  1057     end
  1058 
  1059 fun rearrange sg tm th =
  1060     let
  1061         val tm' = Envir.beta_eta_contract tm
  1062         fun find []      n = Thm.permute_prems 0 1 (Thm.implies_intr (Thm.cterm_of sg tm) th)
  1063           | find (p::ps) n = if tm' aconv (Envir.beta_eta_contract p)
  1064                              then Thm.permute_prems n 1 th
  1065                              else find ps (n+1)
  1066     in
  1067         find (prems_of th) 0
  1068     end
  1069 
  1070 fun zip (x::xs) (y::ys) = (x,y)::(zip xs ys)
  1071   | zip [] [] = []
  1072   | zip _ _ = raise ERR "zip" "arguments not of same length"
  1073 
  1074 fun mk_INST dom rng th =
  1075     th |> forall_intr_list dom
  1076        |> forall_elim_list rng
  1077 
  1078 val collect_vars =
  1079     let
  1080         fun F vars (Bound _) = vars
  1081           | F vars (tm as Free _) =
  1082             if member (op =) vars tm
  1083             then vars
  1084             else (tm::vars)
  1085           | F vars (Const _) = vars
  1086           | F vars (tm1 $ tm2) = F (F vars tm1) tm2
  1087           | F vars (Abs(_,_,body)) = F vars body
  1088           | F vars (Var _) = raise ERR "collect_vars" "Schematic variable found"
  1089     in
  1090         F []
  1091     end
  1092 
  1093 (* Code for disambiguating variablenames (wrt. types) *)
  1094 
  1095 val disamb_info_empty = {vars=[],rens=[]}
  1096 
  1097 fun rens_of {vars,rens} = rens
  1098 
  1099 fun name_of_var (Free(vname,_)) = vname
  1100   | name_of_var _ = raise ERR "name_of_var" "Not a variable"
  1101 
  1102 fun disamb_term_from info tm = (info, tm)
  1103 
  1104 fun swap (x,y) = (y,x)
  1105 
  1106 fun has_ren (HOLThm _) = false
  1107 
  1108 fun prinfo {vars,rens} = (writeln "Vars:";
  1109                           app prin vars;
  1110                           writeln "Renaming:";
  1111                           app (fn(x,y)=>(prin x; writeln " -->"; prin y)) rens)
  1112 
  1113 fun disamb_thm_from info (HOLThm (_,thm)) = (info, thm)
  1114 
  1115 fun disamb_terms_from info tms = (info, tms)
  1116 
  1117 fun disamb_thms_from info hthms = (info, map hthm2thm hthms)
  1118 
  1119 fun disamb_term tm   = disamb_term_from disamb_info_empty tm
  1120 fun disamb_terms tms = disamb_terms_from disamb_info_empty tms
  1121 fun disamb_thm thm   = disamb_thm_from disamb_info_empty thm
  1122 fun disamb_thms thms = disamb_thms_from disamb_info_empty thms
  1123 
  1124 fun norm_hthm sg (hth as HOLThm _) = hth
  1125 
  1126 (* End of disambiguating code *)
  1127 
  1128 fun disambiguate_frees thm =
  1129     let
  1130       fun ERR s = error ("Drule.disambiguate_frees: "^s)
  1131       val ct = cprop_of thm
  1132       val t = term_of ct
  1133       val thy = theory_of_cterm ct
  1134       val frees = OldTerm.term_frees t
  1135       val freenames = Term.add_free_names t []
  1136       val is_old_name = member (op =) freenames
  1137       fun name_of (Free (n, _)) = n
  1138         | name_of _ = ERR "name_of"
  1139       fun new_name' bump map n =
  1140           let val n' = n^bump in
  1141             if is_old_name n' orelse Symtab.lookup map n' <> NONE then
  1142               new_name' (Symbol.bump_string bump) map n
  1143             else
  1144               n'
  1145           end
  1146       val new_name = new_name' "a"
  1147       fun replace_name n' (Free (n, t)) = Free (n', t)
  1148         | replace_name n' _ = ERR "replace_name"
  1149       (* map: old or fresh name -> old free,
  1150          invmap: old free which has fresh name assigned to it -> fresh name *)
  1151       fun dis v (mapping as (map,invmap)) =
  1152           let val n = name_of v in
  1153             case Symtab.lookup map n of
  1154               NONE => (Symtab.update (n, v) map, invmap)
  1155             | SOME v' =>
  1156               if v=v' then
  1157                 mapping
  1158               else
  1159                 let val n' = new_name map n in
  1160                   (Symtab.update (n', v) map,
  1161                    Termtab.update (v, n') invmap)
  1162                 end
  1163           end
  1164     in
  1165       if (length freenames = length frees) then
  1166         thm
  1167       else
  1168         let
  1169           val (_, invmap) =
  1170               fold dis frees (Symtab.empty, Termtab.empty)
  1171           fun make_subst (oldfree, newname) (intros, elims) =
  1172               (cterm_of thy oldfree :: intros,
  1173                cterm_of thy (replace_name newname oldfree) :: elims)
  1174           val (intros, elims) = fold make_subst (Termtab.dest invmap) ([], [])
  1175         in
  1176           forall_elim_list elims (forall_intr_list intros thm)
  1177         end
  1178     end
  1179 
  1180 val debug = Unsynchronized.ref false
  1181 
  1182 fun if_debug f x = if !debug then f x else ()
  1183 val message = if_debug writeln
  1184 
  1185 val conjE_helper = Thm.permute_prems 0 1 conjE
  1186 
  1187 fun get_hol4_thm thyname thmname thy =
  1188     case get_hol4_theorem thyname thmname thy of
  1189         SOME hth => SOME (HOLThm hth)
  1190       | NONE =>
  1191         let
  1192             val pending = HOL4Pending.get thy
  1193         in
  1194             case StringPair.lookup pending (thyname,thmname) of
  1195                 SOME hth => SOME (HOLThm hth)
  1196               | NONE => NONE
  1197         end
  1198 
  1199 fun non_trivial_term_consts t = fold_aterms
  1200   (fn Const (c, _) =>
  1201       if c = @{const_name Trueprop} orelse c = @{const_name All}
  1202         orelse c = @{const_name HOL.implies} orelse c = @{const_name HOL.conj} orelse c = @{const_name HOL.eq}
  1203       then I else insert (op =) c
  1204     | _ => I) t [];
  1205 
  1206 fun match_consts t (* th *) =
  1207     let
  1208         fun add_consts (Const (c, _), cs) =
  1209             (case c of
  1210                  @{const_name HOL.eq} => insert (op =) "==" cs
  1211                | @{const_name HOL.implies} => insert (op =) "==>" cs
  1212                | @{const_name All} => cs
  1213                | "all" => cs
  1214                | @{const_name HOL.conj} => cs
  1215                | @{const_name Trueprop} => cs
  1216                | _ => insert (op =) c cs)
  1217           | add_consts (t $ u, cs) = add_consts (t, add_consts (u, cs))
  1218           | add_consts (Abs (_, _, t), cs) = add_consts (t, cs)
  1219           | add_consts (_, cs) = cs
  1220         val t_consts = add_consts(t,[])
  1221     in
  1222         fn th => eq_set (op =) (t_consts, add_consts (prop_of th, []))
  1223     end
  1224 
  1225 fun split_name str =
  1226     let
  1227         val sub = Substring.full str
  1228         val (f,idx) = apsnd Substring.string (Substring.splitr Char.isDigit sub)
  1229         val (newstr,u) = pairself Substring.string (Substring.splitr (fn c => c = #"_") f)
  1230     in
  1231         if not (idx = "") andalso u = "_"
  1232         then SOME (newstr, the (Int.fromString idx))
  1233         else NONE
  1234     end
  1235     handle _ => NONE  (* FIXME avoid handle _ *)
  1236 
  1237 fun rewrite_hol4_term t thy =
  1238     let
  1239         val hol4rews1 = map (Thm.transfer thy) (HOL4Rewrites.get thy)
  1240         val hol4ss = Simplifier.global_context thy empty_ss
  1241           setmksimps (K single) addsimps hol4rews1
  1242     in
  1243         Thm.transfer thy (Simplifier.full_rewrite hol4ss (cterm_of thy t))
  1244     end
  1245 
  1246 fun get_isabelle_thm thyname thmname hol4conc thy =
  1247     let
  1248         val (info,hol4conc') = disamb_term hol4conc
  1249         val i2h_conc = Thm.symmetric (rewrite_hol4_term (HOLogic.mk_Trueprop hol4conc') thy)
  1250         val isaconc =
  1251             case concl_of i2h_conc of
  1252                 Const("==",_) $ lhs $ _ => lhs
  1253               | _ => error "get_isabelle_thm" "Bad rewrite rule"
  1254         val _ = (message "Original conclusion:";
  1255                  if_debug prin hol4conc';
  1256                  message "Modified conclusion:";
  1257                  if_debug prin isaconc)
  1258 
  1259         fun mk_res th = HOLThm (rens_of info, Thm.equal_elim i2h_conc th)
  1260     in
  1261         case get_hol4_mapping thyname thmname thy of
  1262             SOME (SOME thmname) =>
  1263             let
  1264                 val th1 = (SOME (Global_Theory.get_thm thy thmname)
  1265                            handle ERROR _ =>
  1266                                   (case split_name thmname of
  1267                                        SOME (listname,idx) => (SOME (List.nth(Global_Theory.get_thms thy listname,idx-1))
  1268                                                                handle _ => NONE)  (* FIXME avoid handle _ *)
  1269                                      | NONE => NONE))
  1270             in
  1271                 case th1 of
  1272                     SOME th2 =>
  1273                     (case Shuffler.set_prop thy isaconc [(thmname,th2)] of
  1274                          SOME (_,th) => (message "YES";(thy, SOME (mk_res th)))
  1275                        | NONE => (message "NO2";error "get_isabelle_thm" "Bad mapping"))
  1276                   | NONE => (message "NO1";error "get_isabelle_thm" "Bad mapping")
  1277             end
  1278           | SOME NONE => error ("Trying to access ignored theorem " ^ thmname)
  1279           | NONE =>
  1280             let
  1281                 val _ = (message "Looking for conclusion:";
  1282                          if_debug prin isaconc)
  1283                 val cs = non_trivial_term_consts isaconc;
  1284                 val _ = (message "Looking for consts:";
  1285                          message (commas cs))
  1286                 val pot_thms = Shuffler.find_potential thy isaconc
  1287                 val _ = message ((Int.toString (length pot_thms)) ^ " potential theorems")
  1288             in
  1289                 case Shuffler.set_prop thy isaconc pot_thms of
  1290                     SOME (isaname,th) =>
  1291                     let
  1292                         val hth as HOLThm args = mk_res th
  1293                         val thy' =  thy |> add_hol4_theorem thyname thmname args
  1294                                         |> add_hol4_mapping thyname thmname isaname
  1295                         val _ = ImportRecorder.add_hol_theorem thyname thmname (snd args)
  1296                         val _ = ImportRecorder.add_hol_mapping thyname thmname isaname
  1297                     in
  1298                         (thy',SOME hth)
  1299                     end
  1300                   | NONE => (thy,NONE)
  1301             end
  1302     end
  1303     handle e =>
  1304       if Exn.is_interrupt e then reraise e
  1305       else
  1306         (if_debug (fn () =>
  1307             writeln ("Exception in get_isabelle_thm:\n" ^ ML_Compiler.exn_message e)) ();
  1308           (thy,NONE))
  1309 
  1310 fun get_isabelle_thm_and_warn thyname thmname hol4conc thy =
  1311   let
  1312     val (a, b) = get_isabelle_thm thyname thmname hol4conc thy
  1313     fun warn () =
  1314         let
  1315             val (info,hol4conc') = disamb_term hol4conc
  1316             val i2h_conc = Thm.symmetric (rewrite_hol4_term (HOLogic.mk_Trueprop hol4conc') thy)
  1317         in
  1318             case concl_of i2h_conc of
  1319                 Const("==",_) $ lhs $ _ =>
  1320                 (warning ("Failed lookup of theorem '"^thmname^"':");
  1321                  writeln "Original conclusion:";
  1322                  prin hol4conc';
  1323                  writeln "Modified conclusion:";
  1324                  prin lhs)
  1325               | _ => ()
  1326         end
  1327   in
  1328       case b of
  1329           NONE => (warn () handle _ => (); (a,b)) (* FIXME avoid handle _ *)
  1330         | _ => (a, b)
  1331   end
  1332 
  1333 fun get_thm thyname thmname thy =
  1334     case get_hol4_thm thyname thmname thy of
  1335         SOME hth => (thy,SOME hth)
  1336       | NONE => ((case import_proof_concl thyname thmname thy of
  1337                       SOME f => get_isabelle_thm_and_warn thyname thmname (f thy) thy
  1338                     | NONE => (message "No conclusion"; (thy,NONE)))
  1339                  handle e as IO.Io _ => (message "IO exception"; (thy,NONE))
  1340                       | e as PK _ => (message "PK exception"; (thy,NONE)))
  1341 
  1342 fun rename_const thyname thy name =
  1343     case get_hol4_const_renaming thyname name thy of
  1344         SOME cname => cname
  1345       | NONE => name
  1346 
  1347 fun get_def thyname constname rhs thy =
  1348     let
  1349         val constname = rename_const thyname thy constname
  1350         val (thmname,thy') = get_defname thyname constname thy
  1351         val _ = message ("Looking for definition " ^ thyname ^ "." ^ thmname)
  1352     in
  1353         get_isabelle_thm_and_warn thyname thmname (mk_teq (thyname ^ "." ^ constname) rhs thy') thy'
  1354     end
  1355 
  1356 fun get_axiom thyname axname thy =
  1357     case get_thm thyname axname thy of
  1358         arg as (_,SOME _) => arg
  1359       | _ => raise ERR "get_axiom" ("Trying to retrieve axiom (" ^ axname ^ ")")
  1360 
  1361 fun intern_store_thm gen_output thyname thmname hth thy =
  1362     let
  1363         val (hth' as HOLThm (args as (_,th))) = norm_hthm thy hth
  1364         val rew = rewrite_hol4_term (concl_of th) thy
  1365         val th  = Thm.equal_elim rew th
  1366         val thy' = add_hol4_pending thyname thmname args thy
  1367         val _ = ImportRecorder.add_hol_pending thyname thmname (hthm2thm hth')
  1368         val th = disambiguate_frees th
  1369         val thy2 =
  1370           if gen_output
  1371           then
  1372             add_dump ("lemma " ^ (quotename thmname) ^ ": " ^
  1373                 (smart_string_of_thm (Syntax.init_pretty_global thy') th) ^ "\n  by (import " ^
  1374                 thyname ^ " " ^ (quotename thmname) ^ ")") thy'
  1375           else thy'
  1376     in
  1377         (thy2,hth')
  1378     end
  1379 
  1380 val store_thm = intern_store_thm true
  1381 
  1382 fun mk_REFL ctm =
  1383     let
  1384         val cty = Thm.ctyp_of_term ctm
  1385     in
  1386         Drule.instantiate' [SOME cty] [SOME ctm] reflexivity_thm
  1387     end
  1388 
  1389 fun REFL tm thy =
  1390     let
  1391         val _ = message "REFL:"
  1392         val (info,tm') = disamb_term tm
  1393         val ctm = Thm.cterm_of thy tm'
  1394         val res = HOLThm(rens_of info,mk_REFL ctm)
  1395         val _ = if_debug pth res
  1396     in
  1397         (thy,res)
  1398     end
  1399 
  1400 fun ASSUME tm thy =
  1401     let
  1402         val _ = message "ASSUME:"
  1403         val (info,tm') = disamb_term tm
  1404         val ctm = Thm.cterm_of thy (HOLogic.mk_Trueprop tm')
  1405         val th = Thm.trivial ctm
  1406         val res = HOLThm(rens_of info,th)
  1407         val _ = if_debug pth res
  1408     in
  1409         (thy,res)
  1410     end
  1411 
  1412 fun INST_TYPE lambda (hth as HOLThm(rens,th)) thy =
  1413     let
  1414         val _ = message "INST_TYPE:"
  1415         val _ = if_debug pth hth
  1416         val tys_before = OldTerm.add_term_tfrees (prop_of th,[])
  1417         val th1 = Thm.varifyT_global th
  1418         val tys_after = OldTerm.add_term_tvars (prop_of th1,[])
  1419         val tyinst = map (fn (bef, iS) =>
  1420                              (case try (Lib.assoc (TFree bef)) lambda of
  1421                                   SOME ty => (ctyp_of thy (TVar iS), ctyp_of thy ty)
  1422                                 | NONE => (ctyp_of thy (TVar iS), ctyp_of thy (TFree bef))
  1423                              ))
  1424                          (zip tys_before tys_after)
  1425         val res = Drule.instantiate (tyinst,[]) th1
  1426         val hth = HOLThm([],res)
  1427         val res = norm_hthm thy hth
  1428         val _ = message "RESULT:"
  1429         val _ = if_debug pth res
  1430     in
  1431         (thy,res)
  1432     end
  1433 
  1434 fun INST sigma hth thy =
  1435     let
  1436         val _ = message "INST:"
  1437         val _ = if_debug (app (fn (x,y) => (prin x; prin y))) sigma
  1438         val _ = if_debug pth hth
  1439         val (sdom,srng) = ListPair.unzip (rev sigma)
  1440         val th = hthm2thm hth
  1441         val th1 = mk_INST (map (cterm_of thy) sdom) (map (cterm_of thy) srng) th
  1442         val res = HOLThm([],th1)
  1443         val _ = message "RESULT:"
  1444         val _ = if_debug pth res
  1445     in
  1446         (thy,res)
  1447     end
  1448 
  1449 fun EQ_IMP_RULE (hth as HOLThm(rens,th)) thy =
  1450     let
  1451         val _ = message "EQ_IMP_RULE:"
  1452         val _ = if_debug pth hth
  1453         val res = HOLThm(rens,th RS eqimp_thm)
  1454         val _ = message "RESULT:"
  1455         val _ = if_debug pth res
  1456     in
  1457         (thy,res)
  1458     end
  1459 
  1460 fun mk_EQ_MP th1 th2 = [beta_eta_thm th1, beta_eta_thm th2] MRS eqmp_thm
  1461 
  1462 fun EQ_MP hth1 hth2 thy =
  1463     let
  1464         val _ = message "EQ_MP:"
  1465         val _ = if_debug pth hth1
  1466         val _ = if_debug pth hth2
  1467         val (info,[th1,th2]) = disamb_thms [hth1,hth2]
  1468         val res = HOLThm(rens_of info,mk_EQ_MP th1 th2)
  1469         val _ = message "RESULT:"
  1470         val _ = if_debug pth res
  1471     in
  1472         (thy,res)
  1473     end
  1474 
  1475 fun mk_COMB th1 th2 thy =
  1476     let
  1477         val (f,g) = case concl_of th1 of
  1478                         _ $ (Const(@{const_name HOL.eq},_) $ f $ g) => (f,g)
  1479                       | _ => raise ERR "mk_COMB" "First theorem not an equality"
  1480         val (x,y) = case concl_of th2 of
  1481                         _ $ (Const(@{const_name HOL.eq},_) $ x $ y) => (x,y)
  1482                       | _ => raise ERR "mk_COMB" "Second theorem not an equality"
  1483         val fty = type_of f
  1484         val (fd,fr) = dom_rng fty
  1485         val comb_thm' = Drule.instantiate'
  1486                             [SOME (ctyp_of thy fd),SOME (ctyp_of thy fr)]
  1487                             [SOME (cterm_of thy f),SOME (cterm_of thy g),
  1488                              SOME (cterm_of thy x),SOME (cterm_of thy y)] comb_thm
  1489     in
  1490         [th1,th2] MRS comb_thm'
  1491     end
  1492 
  1493 fun SUBST rews ctxt hth thy =
  1494     let
  1495         val _ = message "SUBST:"
  1496         val _ = if_debug (app pth) rews
  1497         val _ = if_debug prin ctxt
  1498         val _ = if_debug pth hth
  1499         val (info,th) = disamb_thm hth
  1500         val (info1,ctxt') = disamb_term_from info ctxt
  1501         val (info2,rews') = disamb_thms_from info1 rews
  1502 
  1503         val cctxt = cterm_of thy ctxt'
  1504         fun subst th [] = th
  1505           | subst th (rew::rews) = subst (mk_COMB th rew thy) rews
  1506         val res = HOLThm(rens_of info2,mk_EQ_MP (subst (mk_REFL cctxt) rews') th)
  1507         val _ = message "RESULT:"
  1508         val _ = if_debug pth res
  1509     in
  1510         (thy,res)
  1511     end
  1512 
  1513 fun DISJ_CASES hth hth1 hth2 thy =
  1514     let
  1515         val _ = message "DISJ_CASES:"
  1516         val _ = if_debug (app pth) [hth,hth1,hth2]
  1517         val (info,th) = disamb_thm hth
  1518         val (info1,th1) = disamb_thm_from info hth1
  1519         val (info2,th2) = disamb_thm_from info1 hth2
  1520         val th1 = norm_hyps th1
  1521         val th2 = norm_hyps th2
  1522         val (l,r) = case concl_of th of
  1523                         _ $ (Const(@{const_name HOL.disj},_) $ l $ r) => (l,r)
  1524                       | _ => raise ERR "DISJ_CASES" "Conclusion not a disjunction"
  1525         val th1' = rearrange thy (HOLogic.mk_Trueprop l) th1
  1526         val th2' = rearrange thy (HOLogic.mk_Trueprop r) th2
  1527         val res1 = th RS disj_cases_thm
  1528         val res2 = uniq_compose ((nprems_of th1')-1) th1' ((nprems_of th)+1) res1
  1529         val res3 = uniq_compose ((nprems_of th2')-1) th2' (nprems_of res2) res2
  1530         val res  = HOLThm(rens_of info2,res3)
  1531         val _ = message "RESULT:"
  1532         val _ = if_debug pth res
  1533     in
  1534         (thy,res)
  1535     end
  1536 
  1537 fun DISJ1 hth tm thy =
  1538     let
  1539         val _ = message "DISJ1:"
  1540         val _ = if_debug pth hth
  1541         val _ = if_debug prin tm
  1542         val (info,th) = disamb_thm hth
  1543         val (info',tm') = disamb_term_from info tm
  1544         val ct = Thm.cterm_of thy tm'
  1545         val disj1_thm' = Drule.instantiate' [] [NONE,SOME ct] disj1_thm
  1546         val res = HOLThm(rens_of info',th RS disj1_thm')
  1547         val _ = message "RESULT:"
  1548         val _ = if_debug pth res
  1549     in
  1550         (thy,res)
  1551     end
  1552 
  1553 fun DISJ2 tm hth thy =
  1554     let
  1555         val _ = message "DISJ1:"
  1556         val _ = if_debug prin tm
  1557         val _ = if_debug pth hth
  1558         val (info,th) = disamb_thm hth
  1559         val (info',tm') = disamb_term_from info tm
  1560         val ct = Thm.cterm_of thy tm'
  1561         val disj2_thm' = Drule.instantiate' [] [NONE,SOME ct] disj2_thm
  1562         val res = HOLThm(rens_of info',th RS disj2_thm')
  1563         val _ = message "RESULT:"
  1564         val _ = if_debug pth res
  1565     in
  1566         (thy,res)
  1567     end
  1568 
  1569 fun IMP_ANTISYM hth1 hth2 thy =
  1570     let
  1571         val _ = message "IMP_ANTISYM:"
  1572         val _ = if_debug pth hth1
  1573         val _ = if_debug pth hth2
  1574         val (info,[th1,th2]) = disamb_thms [hth1,hth2]
  1575         val th = [beta_eta_thm th1,beta_eta_thm th2] MRS imp_antisym_thm
  1576         val res = HOLThm(rens_of info,th)
  1577         val _ = message "RESULT:"
  1578         val _ = if_debug pth res
  1579     in
  1580         (thy,res)
  1581     end
  1582 
  1583 fun SYM (hth as HOLThm(rens,th)) thy =
  1584     let
  1585         val _ = message "SYM:"
  1586         val _ = if_debug pth hth
  1587         val th = th RS symmetry_thm
  1588         val res = HOLThm(rens,th)
  1589         val _ = message "RESULT:"
  1590         val _ = if_debug pth res
  1591     in
  1592         (thy,res)
  1593     end
  1594 
  1595 fun MP hth1 hth2 thy =
  1596     let
  1597         val _ = message "MP:"
  1598         val _ = if_debug pth hth1
  1599         val _ = if_debug pth hth2
  1600         val (info,[th1,th2]) = disamb_thms [hth1,hth2]
  1601         val th = [beta_eta_thm th1,beta_eta_thm th2] MRS mp_thm
  1602         val res = HOLThm(rens_of info,th)
  1603         val _ = message "RESULT:"
  1604         val _ = if_debug pth res
  1605     in
  1606         (thy,res)
  1607     end
  1608 
  1609 fun CONJ hth1 hth2 thy =
  1610     let
  1611         val _ = message "CONJ:"
  1612         val _ = if_debug pth hth1
  1613         val _ = if_debug pth hth2
  1614         val (info,[th1,th2]) = disamb_thms [hth1,hth2]
  1615         val th = [th1,th2] MRS conj_thm
  1616         val res = HOLThm(rens_of info,th)
  1617         val _ = message "RESULT:"
  1618         val _ = if_debug pth res
  1619     in
  1620         (thy,res)
  1621     end
  1622 
  1623 fun CONJUNCT1 (hth as HOLThm(rens,th)) thy =
  1624     let
  1625         val _ = message "CONJUNCT1:"
  1626         val _ = if_debug pth hth
  1627         val res = HOLThm(rens,th RS conjunct1_thm)
  1628         val _ = message "RESULT:"
  1629         val _ = if_debug pth res
  1630     in
  1631         (thy,res)
  1632     end
  1633 
  1634 fun CONJUNCT2 (hth as HOLThm(rens,th)) thy =
  1635     let
  1636         val _ = message "CONJUNCT1:"
  1637         val _ = if_debug pth hth
  1638         val res = HOLThm(rens,th RS conjunct2_thm)
  1639         val _ = message "RESULT:"
  1640         val _ = if_debug pth res
  1641     in
  1642         (thy,res)
  1643     end
  1644 
  1645 fun EXISTS ex wit hth thy =
  1646     let
  1647         val _ = message "EXISTS:"
  1648         val _ = if_debug prin ex
  1649         val _ = if_debug prin wit
  1650         val _ = if_debug pth hth
  1651         val (info,th) = disamb_thm hth
  1652         val (info',[ex',wit']) = disamb_terms_from info [ex,wit]
  1653         val cwit = cterm_of thy wit'
  1654         val cty = ctyp_of_term cwit
  1655         val a = case ex' of
  1656                     (Const(@{const_name Ex},_) $ a) => a
  1657                   | _ => raise ERR "EXISTS" "Argument not existential"
  1658         val ca = cterm_of thy a
  1659         val exists_thm' = beta_eta_thm (Drule.instantiate' [SOME cty] [SOME ca,SOME cwit] exists_thm)
  1660         val th1 = beta_eta_thm th
  1661         val th2 = implies_elim_all th1
  1662         val th3 = th2 COMP exists_thm'
  1663         val th  = implies_intr_hyps th3
  1664         val res = HOLThm(rens_of info',th)
  1665         val _   = message "RESULT:"
  1666         val _   = if_debug pth res
  1667     in
  1668         (thy,res)
  1669     end
  1670 
  1671 fun CHOOSE v hth1 hth2 thy =
  1672     let
  1673         val _ = message "CHOOSE:"
  1674         val _ = if_debug prin v
  1675         val _ = if_debug pth hth1
  1676         val _ = if_debug pth hth2
  1677         val (info,[th1,th2]) = disamb_thms [hth1,hth2]
  1678         val (info',v') = disamb_term_from info v
  1679         fun strip 0 _ th = th
  1680           | strip n (p::ps) th =
  1681             strip (n-1) ps (Thm.implies_elim th (Thm.assume p))
  1682           | strip _ _ _ = raise ERR "CHOOSE" "strip error"
  1683         val cv = cterm_of thy v'
  1684         val th2 = norm_hyps th2
  1685         val cvty = ctyp_of_term cv
  1686         val c = HOLogic.dest_Trueprop (concl_of th2)
  1687         val cc = cterm_of thy c
  1688         val a = case concl_of th1 of
  1689                     _ $ (Const(@{const_name Ex},_) $ a) => a
  1690                   | _ => raise ERR "CHOOSE" "Conclusion not existential"
  1691         val ca = cterm_of (theory_of_thm th1) a
  1692         val choose_thm' = beta_eta_thm (Drule.instantiate' [SOME cvty] [SOME ca,SOME cc] choose_thm)
  1693         val th21 = rearrange thy (HOLogic.mk_Trueprop (a $ v')) th2
  1694         val th22 = strip ((nprems_of th21)-1) (cprems_of th21) th21
  1695         val th23 = beta_eta_thm (Thm.forall_intr cv th22)
  1696         val th11 = implies_elim_all (beta_eta_thm th1)
  1697         val th' = th23 COMP (th11 COMP choose_thm')
  1698         val th = implies_intr_hyps th'
  1699         val res = HOLThm(rens_of info',th)
  1700         val _   = message "RESULT:"
  1701         val _   = if_debug pth res
  1702     in
  1703         (thy,res)
  1704     end
  1705 
  1706 fun GEN v hth thy =
  1707     let
  1708       val _ = message "GEN:"
  1709         val _ = if_debug prin v
  1710         val _ = if_debug pth hth
  1711         val (info,th) = disamb_thm hth
  1712         val (info',v') = disamb_term_from info v
  1713         val res = HOLThm(rens_of info',mk_GEN v' th thy)
  1714         val _ = message "RESULT:"
  1715         val _ = if_debug pth res
  1716     in
  1717         (thy,res)
  1718     end
  1719 
  1720 fun SPEC tm hth thy =
  1721     let
  1722         val _ = message "SPEC:"
  1723         val _ = if_debug prin tm
  1724         val _ = if_debug pth hth
  1725         val (info,th) = disamb_thm hth
  1726         val (info',tm') = disamb_term_from info tm
  1727         val ctm = Thm.cterm_of thy tm'
  1728         val cty = Thm.ctyp_of_term ctm
  1729         val spec' = Drule.instantiate' [SOME cty] [NONE,SOME ctm] spec_thm
  1730         val th = th RS spec'
  1731         val res = HOLThm(rens_of info',th)
  1732         val _ = message "RESULT:"
  1733         val _ = if_debug pth res
  1734     in
  1735         (thy,res)
  1736     end
  1737 
  1738 fun COMB hth1 hth2 thy =
  1739     let
  1740         val _ = message "COMB:"
  1741         val _ = if_debug pth hth1
  1742         val _ = if_debug pth hth2
  1743         val (info,[th1,th2]) = disamb_thms [hth1,hth2]
  1744         val res = HOLThm(rens_of info,mk_COMB th1 th2 thy)
  1745         val _ = message "RESULT:"
  1746         val _ = if_debug pth res
  1747     in
  1748         (thy,res)
  1749     end
  1750 
  1751 fun TRANS hth1 hth2 thy =
  1752     let
  1753         val _ = message "TRANS:"
  1754         val _ = if_debug pth hth1
  1755         val _ = if_debug pth hth2
  1756         val (info,[th1,th2]) = disamb_thms [hth1,hth2]
  1757         val th = [th1,th2] MRS trans_thm
  1758         val res = HOLThm(rens_of info,th)
  1759         val _ = message "RESULT:"
  1760         val _ = if_debug pth res
  1761     in
  1762         (thy,res)
  1763     end
  1764 
  1765 
  1766 fun CCONTR tm hth thy =
  1767     let
  1768         val _ = message "SPEC:"
  1769         val _ = if_debug prin tm
  1770         val _ = if_debug pth hth
  1771         val (info,th) = disamb_thm hth
  1772         val (info',tm') = disamb_term_from info tm
  1773         val th = norm_hyps th
  1774         val ct = cterm_of thy tm'
  1775         val th1 = rearrange thy (HOLogic.mk_Trueprop (Const(@{const_name Not},HOLogic.boolT-->HOLogic.boolT) $ tm')) th
  1776         val ccontr_thm' = Drule.instantiate' [] [SOME ct] ccontr_thm
  1777         val res1 = uniq_compose ((nprems_of th1) - 1) th1 1 ccontr_thm'
  1778         val res = HOLThm(rens_of info',res1)
  1779         val _ = message "RESULT:"
  1780         val _ = if_debug pth res
  1781     in
  1782         (thy,res)
  1783     end
  1784 
  1785 fun mk_ABS v th thy =
  1786     let
  1787         val cv = cterm_of thy v
  1788         val th1 = implies_elim_all (beta_eta_thm th)
  1789         val (f,g) = case concl_of th1 of
  1790                         _ $ (Const(@{const_name HOL.eq},_) $ f $ g) => (Term.lambda v f,Term.lambda v g)
  1791                       | _ => raise ERR "mk_ABS" "Bad conclusion"
  1792         val (fd,fr) = dom_rng (type_of f)
  1793         val abs_thm' = Drule.instantiate' [SOME (ctyp_of thy fd), SOME (ctyp_of thy fr)] [SOME (cterm_of thy f), SOME (cterm_of thy g)] abs_thm
  1794         val th2 = Thm.forall_intr cv th1
  1795         val th3 = th2 COMP abs_thm'
  1796         val res = implies_intr_hyps th3
  1797     in
  1798         res
  1799     end
  1800 
  1801 fun ABS v hth thy =
  1802     let
  1803         val _ = message "ABS:"
  1804         val _ = if_debug prin v
  1805         val _ = if_debug pth hth
  1806         val (info,th) = disamb_thm hth
  1807         val (info',v') = disamb_term_from info v
  1808         val res = HOLThm(rens_of info',mk_ABS v' th thy)
  1809         val _ = message "RESULT:"
  1810         val _ = if_debug pth res
  1811     in
  1812         (thy,res)
  1813     end
  1814 
  1815 fun GEN_ABS copt vlist hth thy =
  1816     let
  1817         val _ = message "GEN_ABS:"
  1818         val _ = case copt of
  1819                     SOME c => if_debug prin c
  1820                   | NONE => ()
  1821         val _ = if_debug (app prin) vlist
  1822         val _ = if_debug pth hth
  1823         val (info,th) = disamb_thm hth
  1824         val (info',vlist') = disamb_terms_from info vlist
  1825         val th1 =
  1826             case copt of
  1827                 SOME (c as Const(cname,cty)) =>
  1828                 let
  1829                     fun inst_type ty1 ty2 (TVar _) = raise ERR "GEN_ABS" "Type variable found!"
  1830                       | inst_type ty1 ty2 (ty as TFree _) = if ty1 = ty
  1831                                                             then ty2
  1832                                                             else ty
  1833                       | inst_type ty1 ty2 (ty as Type(name,tys)) =
  1834                         Type(name,map (inst_type ty1 ty2) tys)
  1835                 in
  1836                     fold_rev (fn v => fn th =>
  1837                               let
  1838                                   val cdom = fst (dom_rng (fst (dom_rng cty)))
  1839                                   val vty  = type_of v
  1840                                   val newcty = inst_type cdom vty cty
  1841                                   val cc = cterm_of thy (Const(cname,newcty))
  1842                               in
  1843                                   mk_COMB (mk_REFL cc) (mk_ABS v th thy) thy
  1844                               end) vlist' th
  1845                 end
  1846               | SOME _ => raise ERR "GEN_ABS" "Bad constant"
  1847               | NONE =>
  1848                 fold_rev (fn v => fn th => mk_ABS v th thy) vlist' th
  1849         val res = HOLThm(rens_of info',th1)
  1850         val _ = message "RESULT:"
  1851         val _ = if_debug pth res
  1852     in
  1853         (thy,res)
  1854     end
  1855 
  1856 fun NOT_INTRO (hth as HOLThm(rens,th)) thy =
  1857     let
  1858         val _ = message "NOT_INTRO:"
  1859         val _ = if_debug pth hth
  1860         val th1 = implies_elim_all (beta_eta_thm th)
  1861         val a = case concl_of th1 of
  1862                     _ $ (Const(@{const_name HOL.implies},_) $ a $ Const(@{const_name False},_)) => a
  1863                   | _ => raise ERR "NOT_INTRO" "Conclusion of bad form"
  1864         val ca = cterm_of thy a
  1865         val th2 = Thm.equal_elim (Drule.instantiate' [] [SOME ca] not_intro_thm) th1
  1866         val res = HOLThm(rens,implies_intr_hyps th2)
  1867         val _ = message "RESULT:"
  1868         val _ = if_debug pth res
  1869     in
  1870         (thy,res)
  1871     end
  1872 
  1873 fun NOT_ELIM (hth as HOLThm(rens,th)) thy =
  1874     let
  1875         val _ = message "NOT_INTRO:"
  1876         val _ = if_debug pth hth
  1877         val th1 = implies_elim_all (beta_eta_thm th)
  1878         val a = case concl_of th1 of
  1879                     _ $ (Const(@{const_name Not},_) $ a) => a
  1880                   | _ => raise ERR "NOT_ELIM" "Conclusion of bad form"
  1881         val ca = cterm_of thy a
  1882         val th2 = Thm.equal_elim (Drule.instantiate' [] [SOME ca] not_elim_thm) th1
  1883         val res = HOLThm(rens,implies_intr_hyps th2)
  1884         val _ = message "RESULT:"
  1885         val _ = if_debug pth res
  1886     in
  1887         (thy,res)
  1888     end
  1889 
  1890 fun DISCH tm hth thy =
  1891     let
  1892         val _ = message "DISCH:"
  1893         val _ = if_debug prin tm
  1894         val _ = if_debug pth hth
  1895         val (info,th) = disamb_thm hth
  1896         val (info',tm') = disamb_term_from info tm
  1897         val prems = prems_of th
  1898         val th1 = beta_eta_thm th
  1899         val th2 = implies_elim_all th1
  1900         val th3 = Thm.implies_intr (cterm_of thy (HOLogic.mk_Trueprop tm')) th2
  1901         val th4 = th3 COMP disch_thm
  1902         val res = HOLThm (rens_of info', implies_intr_hyps th4)
  1903         val _ = message "RESULT:"
  1904         val _ = if_debug pth res
  1905     in
  1906         (thy,res)
  1907     end
  1908 
  1909 val spaces = space_implode " "
  1910 
  1911 fun new_definition thyname constname rhs thy =
  1912     let
  1913         val constname = rename_const thyname thy constname
  1914         val redeclared = is_some (Sign.const_type thy (Sign.intern_const thy constname));
  1915         val _ = warning ("Introducing constant " ^ constname)
  1916         val (thmname,thy) = get_defname thyname constname thy
  1917         val (info,rhs') = disamb_term rhs
  1918         val ctype = type_of rhs'
  1919         val csyn = mk_syn thy constname
  1920         val thy1 = case HOL4DefThy.get thy of
  1921                        Replaying _ => thy
  1922                      | _ => (ImportRecorder.add_consts [(constname, ctype, csyn)];
  1923                               Sign.add_consts_i [(Binding.name constname,ctype,csyn)] thy)
  1924         val eq = mk_defeq constname rhs' thy1
  1925         val (thms, thy2) = Global_Theory.add_defs false [((Binding.name thmname,eq),[])] thy1
  1926         val _ = ImportRecorder.add_defs thmname eq
  1927         val def_thm = hd thms
  1928         val thm' = def_thm RS meta_eq_to_obj_eq_thm
  1929         val (thy',th) = (thy2, thm')
  1930         val fullcname = Sign.intern_const thy' constname
  1931         val thy'' = add_hol4_const_mapping thyname constname true fullcname thy'
  1932         val _ = ImportRecorder.add_hol_const_mapping thyname constname fullcname
  1933         val (linfo,tm24) = disamb_term (mk_teq constname rhs' thy'')
  1934         val rew = rewrite_hol4_term eq thy''
  1935         val crhs = cterm_of thy'' (#2 (Logic.dest_equals (prop_of rew)))
  1936         val thy22 =
  1937           if Thm.def_name constname = thmname andalso not redeclared andalso csyn = NoSyn
  1938           then
  1939               let
  1940                   val ctxt = Syntax.init_pretty_global thy''
  1941                   val p1 = quotename constname
  1942                   val p2 = Syntax.string_of_typ ctxt ctype
  1943                   val p3 = string_of_mixfix csyn
  1944                   val p4 = smart_string_of_cterm ctxt crhs
  1945               in
  1946                 add_dump ("definition\n  " ^ p1 ^ " :: \"" ^ p2 ^ "\" "^ p3 ^ " where\n  " ^ p4) thy''
  1947               end
  1948           else
  1949               let val ctxt = Syntax.init_pretty_global thy'' in
  1950                 add_dump ("consts\n  " ^ quotename constname ^ " :: \"" ^
  1951                   Syntax.string_of_typ ctxt ctype ^
  1952                   "\" " ^ string_of_mixfix csyn ^ "\n\ndefs\n  " ^
  1953                   quotename thmname ^ ": " ^ smart_string_of_cterm ctxt crhs) thy''
  1954               end
  1955         val hth = case Shuffler.set_prop thy22 (HOLogic.mk_Trueprop tm24) [("",th)] of
  1956                       SOME (_,res) => HOLThm(rens_of linfo,res)
  1957                     | NONE => raise ERR "new_definition" "Bad conclusion"
  1958         val fullname = Sign.full_bname thy22 thmname
  1959         val thy22' = case opt_get_output_thy thy22 of
  1960                          "" => (ImportRecorder.add_hol_mapping thyname thmname fullname;
  1961                                 add_hol4_mapping thyname thmname fullname thy22)
  1962                        | output_thy =>
  1963                          let
  1964                              val moved_thmname = output_thy ^ "." ^ thyname ^ "." ^ thmname
  1965                              val _ = ImportRecorder.add_hol_move fullname moved_thmname
  1966                              val _ = ImportRecorder.add_hol_mapping thyname thmname moved_thmname
  1967                          in
  1968                              thy22 |> add_hol4_move fullname moved_thmname
  1969                                    |> add_hol4_mapping thyname thmname moved_thmname
  1970                          end
  1971         val _ = message "new_definition:"
  1972         val _ = if_debug pth hth
  1973     in
  1974         (thy22',hth)
  1975     end
  1976 
  1977 fun new_specification thyname thmname names hth thy =
  1978     case HOL4DefThy.get thy of
  1979         Replaying _ => (thy,hth)
  1980       | _ =>
  1981         let
  1982             val _ = message "NEW_SPEC:"
  1983             val _ = if_debug pth hth
  1984             val names = map (rename_const thyname thy) names
  1985             val _ = warning ("Introducing constants " ^ commas names)
  1986             val (HOLThm(rens,th)) = norm_hthm thy hth
  1987             val thy1 = case HOL4DefThy.get thy of
  1988                            Replaying _ => thy
  1989                          | _ =>
  1990                            let
  1991                                fun dest_eta_abs (Abs(x,xT,body)) = (x,xT,body)
  1992                                  | dest_eta_abs body =
  1993                                    let
  1994                                        val (dT,rT) = dom_rng (type_of body)
  1995                                    in
  1996                                        ("x",dT,body $ Bound 0)
  1997                                    end
  1998                                    handle TYPE _ => raise ERR "new_specification" "not an abstraction type"
  1999                                fun dest_exists (Const(@{const_name Ex},_) $ abody) =
  2000                                    dest_eta_abs abody
  2001                                  | dest_exists tm =
  2002                                    raise ERR "new_specification" "Bad existential formula"
  2003 
  2004                                val (consts,_) = Library.foldl (fn ((cs,ex),cname) =>
  2005                                                           let
  2006                                                               val (_,cT,p) = dest_exists ex
  2007                                                           in
  2008                                                               ((cname,cT,mk_syn thy cname)::cs,p)
  2009                                                           end) (([],HOLogic.dest_Trueprop (concl_of th)),names)
  2010                                val str = Library.foldl (fn (acc, (c, T, csyn)) =>
  2011                                    acc ^ "\n  " ^ quotename c ^ " :: \"" ^
  2012                                    Syntax.string_of_typ_global thy T ^ "\" " ^ string_of_mixfix csyn) ("consts", consts)
  2013                                val thy' = add_dump str thy
  2014                                val _ = ImportRecorder.add_consts consts
  2015                            in
  2016                                Sign.add_consts_i (map (fn (c, T, mx) => (Binding.name c, T, mx)) consts) thy'
  2017                            end
  2018 
  2019             val thy1 = fold_rev (fn name => fn thy =>
  2020                                 snd (get_defname thyname name thy)) names thy1
  2021             fun new_name name = fst (get_defname thyname name thy1)
  2022             val names' = map (fn name => (new_name name,name,false)) names
  2023             val (thy',res) = Choice_Specification.add_specification NONE
  2024                                  names'
  2025                                  (thy1,th)
  2026             val _ = ImportRecorder.add_specification names' th
  2027             val res' = Thm.unvarify_global res
  2028             val hth = HOLThm(rens,res')
  2029             val rew = rewrite_hol4_term (concl_of res') thy'
  2030             val th  = Thm.equal_elim rew res'
  2031             fun handle_const (name,thy) =
  2032                 let
  2033                     val defname = Thm.def_name name
  2034                     val (newname,thy') = get_defname thyname name thy
  2035                 in
  2036                     (if defname = newname
  2037                      then quotename name
  2038                      else (quotename newname) ^ ": " ^ (quotename name),thy')
  2039                 end
  2040             val (new_names,thy') = fold_rev (fn name => fn (names, thy) =>
  2041                                             let
  2042                                                 val (name',thy') = handle_const (name,thy)
  2043                                             in
  2044                                                 (name'::names,thy')
  2045                                             end) names ([], thy')
  2046             val thy'' =
  2047               add_dump ("specification (" ^ (spaces new_names) ^ ") " ^ thmname ^ ": " ^
  2048                 (smart_string_of_thm (Syntax.init_pretty_global thy') th) ^
  2049                 "\n  by (import " ^ thyname ^ " " ^ thmname ^ ")")
  2050                 thy'
  2051             val _ = message "RESULT:"
  2052             val _ = if_debug pth hth
  2053         in
  2054             intern_store_thm false thyname thmname hth thy''
  2055         end
  2056 
  2057 fun new_axiom name tm thy = raise ERR "new_axiom" ("Oh, no you don't! (" ^ name ^ ")")
  2058 
  2059 fun to_isa_thm (hth as HOLThm(_,th)) =
  2060     let
  2061         val (HOLThm args) = norm_hthm (theory_of_thm th) hth
  2062     in
  2063         apsnd Thm.strip_shyps args
  2064     end
  2065 
  2066 fun to_isa_term tm = tm
  2067 
  2068 local
  2069     val light_nonempty = @{thm light_ex_imp_nonempty}
  2070     val ex_imp_nonempty = @{thm ex_imp_nonempty}
  2071     val typedef_hol2hol4 = @{thm typedef_hol2hol4}
  2072     val typedef_hol2hollight = @{thm typedef_hol2hollight}
  2073 in
  2074 fun new_type_definition thyname thmname tycname hth thy =
  2075     case HOL4DefThy.get thy of
  2076         Replaying _ => (thy,hth)
  2077       | _ =>
  2078         let
  2079             val _ = message "TYPE_DEF:"
  2080             val _ = if_debug pth hth
  2081             val _ = warning ("Introducing type " ^ tycname)
  2082             val (HOLThm(rens,td_th)) = norm_hthm thy hth
  2083             val th2 = beta_eta_thm (td_th RS ex_imp_nonempty)
  2084             val c = case concl_of th2 of
  2085                         _ $ (Const(@{const_name Ex},_) $ Abs(_,_,Const(@{const_name Set.member},_) $ _ $ c)) => c
  2086                       | _ => raise ERR "new_type_definition" "Bad type definition theorem"
  2087             val tfrees = OldTerm.term_tfrees c
  2088             val tnames = map fst tfrees
  2089             val tsyn = mk_syn thy tycname
  2090             val typ = (tycname,tnames,tsyn)
  2091             val ((_, typedef_info), thy') =
  2092               Typedef.add_typedef_global false (SOME (Binding.name thmname))
  2093                 (Binding.name tycname, map (rpair dummyS) tnames, tsyn) c NONE (rtac th2 1) thy
  2094             val _ = ImportRecorder.add_typedef (SOME thmname) typ c NONE th2
  2095 
  2096             val th3 = (#type_definition (#2 typedef_info)) RS typedef_hol2hol4
  2097 
  2098             val fulltyname = Sign.intern_type thy' tycname
  2099             val thy'' = add_hol4_type_mapping thyname tycname true fulltyname thy'
  2100             val _ = ImportRecorder.add_hol_type_mapping thyname tycname fulltyname
  2101 
  2102             val (hth' as HOLThm args) = norm_hthm thy'' (HOLThm(rens,th3))
  2103             val _ = if has_ren hth' then warning ("Theorem " ^ thmname ^ " needs variable-disambiguating")
  2104                     else ()
  2105             val thy4 = add_hol4_pending thyname thmname args thy''
  2106             val _ = ImportRecorder.add_hol_pending thyname thmname (hthm2thm hth')
  2107 
  2108             val rew = rewrite_hol4_term (concl_of td_th) thy4
  2109             val th  = Thm.equal_elim rew (Thm.transfer thy4 td_th)
  2110             val c   = case HOLogic.dest_Trueprop (prop_of th) of
  2111                           Const(@{const_name Ex},exT) $ P =>
  2112                           let
  2113                               val PT = domain_type exT
  2114                           in
  2115                               Const (@{const_name Collect},PT-->HOLogic.mk_setT (domain_type PT)) $ P
  2116                           end
  2117                         | _ => error "Internal error in ProofKernel.new_typedefinition"
  2118             val tnames_string = if null tnames
  2119                                 then ""
  2120                                 else "(" ^ commas tnames ^ ") "
  2121             val proc_prop =
  2122               smart_string_of_cterm
  2123                 (Syntax.init_pretty_global thy4
  2124                   |> not (null tnames) ? Config.put show_all_types true)
  2125             val thy5 = add_dump ("typedef (open) " ^ tnames_string ^ (quotename tycname) ^ " = " ^ (proc_prop (cterm_of thy4 c)) ^ " "
  2126                                  ^ (string_of_mixfix tsyn) ^ "\n  by (rule typedef_helper,import " ^ thyname ^ " " ^ thmname ^ ")") thy4
  2127 
  2128             val thy6 = add_dump ("lemmas " ^ thmname ^ " = typedef_hol2hol4 [OF type_definition_" ^ tycname ^ "]") thy5
  2129 
  2130             val _ = message "RESULT:"
  2131             val _ = if_debug pth hth'
  2132         in
  2133             (thy6,hth')
  2134         end
  2135 
  2136 fun add_dump_syntax thy name =
  2137     let
  2138       val n = quotename name
  2139       val syn = string_of_mixfix (mk_syn thy name)
  2140     in
  2141       add_dump ("syntax\n  "^n^" :: _ "^syn) thy
  2142     end
  2143 
  2144 fun type_introduction thyname thmname tycname abs_name rep_name (P,t) hth thy =
  2145     case HOL4DefThy.get thy of
  2146         Replaying _ => (thy,
  2147           HOLThm([], Global_Theory.get_thm thy (thmname^"_@intern")) handle ERROR _ => hth)
  2148       | _ =>
  2149         let
  2150             val _ = message "TYPE_INTRO:"
  2151             val _ = if_debug pth hth
  2152             val _ = warning ("Introducing type " ^ tycname ^ " (with morphisms " ^ abs_name ^ " and " ^ rep_name ^ ")")
  2153             val (HOLThm(rens,td_th)) = norm_hthm thy hth
  2154             val tT = type_of t
  2155             val light_nonempty' =
  2156                 Drule.instantiate' [SOME (ctyp_of thy tT)]
  2157                                    [SOME (cterm_of thy P),
  2158                                     SOME (cterm_of thy t)] light_nonempty
  2159             val th2 = beta_eta_thm (td_th RS (beta_eta_thm light_nonempty'))
  2160             val c = case concl_of th2 of
  2161                         _ $ (Const(@{const_name Ex},_) $ Abs(_,_,Const(@{const_name Set.member},_) $ _ $ c)) => c
  2162                       | _ => raise ERR "type_introduction" "Bad type definition theorem"
  2163             val tfrees = OldTerm.term_tfrees c
  2164             val tnames = sort_strings (map fst tfrees)
  2165             val tsyn = mk_syn thy tycname
  2166             val typ = (tycname,tnames,tsyn)
  2167             val ((_, typedef_info), thy') =
  2168               Typedef.add_typedef_global false NONE
  2169                 (Binding.name tycname, map (rpair dummyS) tnames, tsyn) c
  2170                 (SOME(Binding.name rep_name,Binding.name abs_name)) (rtac th2 1) thy
  2171             val _ = ImportRecorder.add_typedef NONE typ c (SOME(rep_name,abs_name)) th2
  2172             val fulltyname = Sign.intern_type thy' tycname
  2173             val aty = Type (fulltyname, map mk_vartype tnames)
  2174             val abs_ty = tT --> aty
  2175             val rep_ty = aty --> tT
  2176             val typedef_hol2hollight' =
  2177                 Drule.instantiate'
  2178                     [SOME (ctyp_of thy' aty), SOME (ctyp_of thy' tT)]
  2179                     [NONE, NONE, NONE, SOME (cterm_of thy' (Free ("a", aty))), SOME (cterm_of thy' (Free ("r", tT)))]
  2180                     typedef_hol2hollight
  2181             val th4 = (#type_definition (#2 typedef_info)) RS typedef_hol2hollight'
  2182             val _ = null (Thm.fold_terms Term.add_tvars th4 []) orelse
  2183               raise ERR "type_introduction" "no type variables expected any more"
  2184             val _ = null (Thm.fold_terms Term.add_vars th4 []) orelse
  2185               raise ERR "type_introduction" "no term variables expected any more"
  2186             val _ = message ("step 3: thyname="^thyname^", tycname="^tycname^", fulltyname="^fulltyname)
  2187             val thy'' = add_hol4_type_mapping thyname tycname true fulltyname thy'
  2188             val _ = ImportRecorder.add_hol_type_mapping thyname tycname fulltyname
  2189             val _ = message "step 4"
  2190             val (hth' as HOLThm args) = norm_hthm thy'' (HOLThm(rens,th4))
  2191             val thy4 = add_hol4_pending thyname thmname args thy''
  2192             val _ = ImportRecorder.add_hol_pending thyname thmname (hthm2thm hth')
  2193 
  2194             val P' = P (* why !? #2 (Logic.dest_equals (concl_of (rewrite_hol4_term P thy4))) *)
  2195             val c   =
  2196                 let
  2197                     val PT = type_of P'
  2198                 in
  2199                     Const (@{const_name Collect},PT-->HOLogic.mk_setT (domain_type PT)) $ P'
  2200                 end
  2201 
  2202             val tnames_string = if null tnames
  2203                                 then ""
  2204                                 else "(" ^ commas tnames ^ ") "
  2205             val proc_prop =
  2206               smart_string_of_cterm
  2207                 (Syntax.init_pretty_global thy4
  2208                   |> not (null tnames) ? Config.put show_all_types true)
  2209             val thy = add_dump ("typedef (open) " ^ tnames_string ^ (quotename tycname) ^
  2210               " = " ^ (proc_prop (cterm_of thy4 c)) ^ " " ^
  2211               (string_of_mixfix tsyn) ^ " morphisms "^
  2212               (quote rep_name)^" "^(quote abs_name)^"\n"^
  2213               ("  apply (rule light_ex_imp_nonempty[where t="^
  2214               (proc_prop (cterm_of thy4 t))^"])\n"^
  2215               ("  by (import " ^ thyname ^ " " ^ (quotename thmname) ^ ")"))) thy4
  2216             val str_aty = Syntax.string_of_typ_global thy aty
  2217             val thy = add_dump_syntax thy rep_name
  2218             val thy = add_dump_syntax thy abs_name
  2219             val thy = add_dump ("lemmas " ^ (quote (thmname^"_@intern")) ^
  2220               " = typedef_hol2hollight \n"^
  2221               "  [where a=\"a :: "^str_aty^"\" and r=r" ^
  2222               " ,\n   OF "^(quotename ("type_definition_" ^ tycname)) ^ "]") thy
  2223             val _ = message "RESULT:"
  2224             val _ = if_debug pth hth'
  2225         in
  2226             (thy,hth')
  2227         end
  2228 end
  2229 
  2230 val prin = prin
  2231 
  2232 end