src/HOL/BNF/BNF_LFP.thy
author blanchet
Fri, 28 Sep 2012 09:12:50 +0200
changeset 50650 fc0777f04205
parent 50529 45e3e564e306
child 52876 3514b90d0a8b
permissions -rw-r--r--
killed temporary "data_raw" and "codata_raw" now that the examples have been ported to "data" and "codata"
     1 (*  Title:      HOL/BNF/BNF_LFP.thy
     2     Author:     Dmitriy Traytel, TU Muenchen
     3     Copyright   2012
     4 
     5 Least fixed point operation on bounded natural functors.
     6 *)
     7 
     8 header {* Least Fixed Point Operation on Bounded Natural Functors *}
     9 
    10 theory BNF_LFP
    11 imports BNF_FP
    12 keywords
    13   "data" :: thy_decl
    14 begin
    15 
    16 lemma subset_emptyI: "(\<And>x. x \<in> A \<Longrightarrow> False) \<Longrightarrow> A \<subseteq> {}"
    17 by blast
    18 
    19 lemma image_Collect_subsetI:
    20   "(\<And>x. P x \<Longrightarrow> f x \<in> B) \<Longrightarrow> f ` {x. P x} \<subseteq> B"
    21 by blast
    22 
    23 lemma Collect_restrict: "{x. x \<in> X \<and> P x} \<subseteq> X"
    24 by auto
    25 
    26 lemma prop_restrict: "\<lbrakk>x \<in> Z; Z \<subseteq> {x. x \<in> X \<and> P x}\<rbrakk> \<Longrightarrow> P x"
    27 by auto
    28 
    29 lemma underS_I: "\<lbrakk>i \<noteq> j; (i, j) \<in> R\<rbrakk> \<Longrightarrow> i \<in> rel.underS R j"
    30 unfolding rel.underS_def by simp
    31 
    32 lemma underS_E: "i \<in> rel.underS R j \<Longrightarrow> i \<noteq> j \<and> (i, j) \<in> R"
    33 unfolding rel.underS_def by simp
    34 
    35 lemma underS_Field: "i \<in> rel.underS R j \<Longrightarrow> i \<in> Field R"
    36 unfolding rel.underS_def Field_def by auto
    37 
    38 lemma FieldI2: "(i, j) \<in> R \<Longrightarrow> j \<in> Field R"
    39 unfolding Field_def by auto
    40 
    41 lemma fst_convol': "fst (<f, g> x) = f x"
    42 using fst_convol unfolding convol_def by simp
    43 
    44 lemma snd_convol': "snd (<f, g> x) = g x"
    45 using snd_convol unfolding convol_def by simp
    46 
    47 lemma convol_expand_snd: "fst o f = g \<Longrightarrow>  <g, snd o f> = f"
    48 unfolding convol_def by auto
    49 
    50 definition inver where
    51   "inver g f A = (ALL a : A. g (f a) = a)"
    52 
    53 lemma bij_betw_iff_ex:
    54   "bij_betw f A B = (EX g. g ` B = A \<and> inver g f A \<and> inver f g B)" (is "?L = ?R")
    55 proof (rule iffI)
    56   assume ?L
    57   hence f: "f ` A = B" and inj_f: "inj_on f A" unfolding bij_betw_def by auto
    58   let ?phi = "% b a. a : A \<and> f a = b"
    59   have "ALL b : B. EX a. ?phi b a" using f by blast
    60   then obtain g where g: "ALL b : B. g b : A \<and> f (g b) = b"
    61     using bchoice[of B ?phi] by blast
    62   hence gg: "ALL b : f ` A. g b : A \<and> f (g b) = b" using f by blast
    63   have gf: "inver g f A" unfolding inver_def
    64     by (metis (no_types) gg imageI[of _ A f] the_inv_into_f_f[OF inj_f])
    65   moreover have "g ` B \<le> A \<and> inver f g B" using g unfolding inver_def by blast
    66   moreover have "A \<le> g ` B"
    67   proof safe
    68     fix a assume a: "a : A"
    69     hence "f a : B" using f by auto
    70     moreover have "a = g (f a)" using a gf unfolding inver_def by auto
    71     ultimately show "a : g ` B" by blast
    72   qed
    73   ultimately show ?R by blast
    74 next
    75   assume ?R
    76   then obtain g where g: "g ` B = A \<and> inver g f A \<and> inver f g B" by blast
    77   show ?L unfolding bij_betw_def
    78   proof safe
    79     show "inj_on f A" unfolding inj_on_def
    80     proof safe
    81       fix a1 a2 assume a: "a1 : A"  "a2 : A" and "f a1 = f a2"
    82       hence "g (f a1) = g (f a2)" by simp
    83       thus "a1 = a2" using a g unfolding inver_def by simp
    84     qed
    85   next
    86     fix a assume "a : A"
    87     then obtain b where b: "b : B" and a: "a = g b" using g by blast
    88     hence "b = f (g b)" using g unfolding inver_def by auto
    89     thus "f a : B" unfolding a using b by simp
    90   next
    91     fix b assume "b : B"
    92     hence "g b : A \<and> b = f (g b)" using g unfolding inver_def by auto
    93     thus "b : f ` A" by auto
    94   qed
    95 qed
    96 
    97 lemma bij_betw_ex_weakE:
    98   "\<lbrakk>bij_betw f A B\<rbrakk> \<Longrightarrow> \<exists>g. g ` B \<subseteq> A \<and> inver g f A \<and> inver f g B"
    99 by (auto simp only: bij_betw_iff_ex)
   100 
   101 lemma inver_surj: "\<lbrakk>g ` B \<subseteq> A; f ` A \<subseteq> B; inver g f A\<rbrakk> \<Longrightarrow> g ` B = A"
   102 unfolding inver_def by auto (rule rev_image_eqI, auto)
   103 
   104 lemma inver_mono: "\<lbrakk>A \<subseteq> B; inver f g B\<rbrakk> \<Longrightarrow> inver f g A"
   105 unfolding inver_def by auto
   106 
   107 lemma inver_pointfree: "inver f g A = (\<forall>a \<in> A. (f o g) a = a)"
   108 unfolding inver_def by simp
   109 
   110 lemma bij_betwE: "bij_betw f A B \<Longrightarrow> \<forall>a\<in>A. f a \<in> B"
   111 unfolding bij_betw_def by auto
   112 
   113 lemma bij_betw_imageE: "bij_betw f A B \<Longrightarrow> f ` A = B"
   114 unfolding bij_betw_def by auto
   115 
   116 lemma inverE: "\<lbrakk>inver f f' A; x \<in> A\<rbrakk> \<Longrightarrow> f (f' x) = x"
   117 unfolding inver_def by auto
   118 
   119 lemma bij_betw_inver1: "bij_betw f A B \<Longrightarrow> inver (inv_into A f) f A"
   120 unfolding bij_betw_def inver_def by auto
   121 
   122 lemma bij_betw_inver2: "bij_betw f A B \<Longrightarrow> inver f (inv_into A f) B"
   123 unfolding bij_betw_def inver_def by auto
   124 
   125 lemma bij_betwI: "\<lbrakk>bij_betw g B A; inver g f A; inver f g B\<rbrakk> \<Longrightarrow> bij_betw f A B"
   126 by (drule bij_betw_imageE, unfold bij_betw_iff_ex) blast
   127 
   128 lemma bij_betwI':
   129   "\<lbrakk>\<And>x y. \<lbrakk>x \<in> X; y \<in> X\<rbrakk> \<Longrightarrow> (f x = f y) = (x = y);
   130     \<And>x. x \<in> X \<Longrightarrow> f x \<in> Y;
   131     \<And>y. y \<in> Y \<Longrightarrow> \<exists>x \<in> X. y = f x\<rbrakk> \<Longrightarrow> bij_betw f X Y"
   132 unfolding bij_betw_def inj_on_def
   133 apply (rule conjI)
   134  apply blast
   135 by (erule thin_rl) blast
   136 
   137 lemma surj_fun_eq:
   138   assumes surj_on: "f ` X = UNIV" and eq_on: "\<forall>x \<in> X. (g1 o f) x = (g2 o f) x"
   139   shows "g1 = g2"
   140 proof (rule ext)
   141   fix y
   142   from surj_on obtain x where "x \<in> X" and "y = f x" by blast
   143   thus "g1 y = g2 y" using eq_on by simp
   144 qed
   145 
   146 lemma Card_order_wo_rel: "Card_order r \<Longrightarrow> wo_rel r"
   147 unfolding wo_rel_def card_order_on_def by blast
   148 
   149 lemma Cinfinite_limit: "\<lbrakk>x \<in> Field r; Cinfinite r\<rbrakk> \<Longrightarrow>
   150   \<exists>y \<in> Field r. x \<noteq> y \<and> (x, y) \<in> r"
   151 unfolding cinfinite_def by (auto simp add: infinite_Card_order_limit)
   152 
   153 lemma Card_order_trans:
   154   "\<lbrakk>Card_order r; x \<noteq> y; (x, y) \<in> r; y \<noteq> z; (y, z) \<in> r\<rbrakk> \<Longrightarrow> x \<noteq> z \<and> (x, z) \<in> r"
   155 unfolding card_order_on_def well_order_on_def linear_order_on_def
   156   partial_order_on_def preorder_on_def trans_def antisym_def by blast
   157 
   158 lemma Cinfinite_limit2:
   159  assumes x1: "x1 \<in> Field r" and x2: "x2 \<in> Field r" and r: "Cinfinite r"
   160  shows "\<exists>y \<in> Field r. (x1 \<noteq> y \<and> (x1, y) \<in> r) \<and> (x2 \<noteq> y \<and> (x2, y) \<in> r)"
   161 proof -
   162   from r have trans: "trans r" and total: "Total r" and antisym: "antisym r"
   163     unfolding card_order_on_def well_order_on_def linear_order_on_def
   164       partial_order_on_def preorder_on_def by auto
   165   obtain y1 where y1: "y1 \<in> Field r" "x1 \<noteq> y1" "(x1, y1) \<in> r"
   166     using Cinfinite_limit[OF x1 r] by blast
   167   obtain y2 where y2: "y2 \<in> Field r" "x2 \<noteq> y2" "(x2, y2) \<in> r"
   168     using Cinfinite_limit[OF x2 r] by blast
   169   show ?thesis
   170   proof (cases "y1 = y2")
   171     case True with y1 y2 show ?thesis by blast
   172   next
   173     case False
   174     with y1(1) y2(1) total have "(y1, y2) \<in> r \<or> (y2, y1) \<in> r"
   175       unfolding total_on_def by auto
   176     thus ?thesis
   177     proof
   178       assume *: "(y1, y2) \<in> r"
   179       with trans y1(3) have "(x1, y2) \<in> r" unfolding trans_def by blast
   180       with False y1 y2 * antisym show ?thesis by (cases "x1 = y2") (auto simp: antisym_def)
   181     next
   182       assume *: "(y2, y1) \<in> r"
   183       with trans y2(3) have "(x2, y1) \<in> r" unfolding trans_def by blast
   184       with False y1 y2 * antisym show ?thesis by (cases "x2 = y1") (auto simp: antisym_def)
   185     qed
   186   qed
   187 qed
   188 
   189 lemma Cinfinite_limit_finite: "\<lbrakk>finite X; X \<subseteq> Field r; Cinfinite r\<rbrakk>
   190  \<Longrightarrow> \<exists>y \<in> Field r. \<forall>x \<in> X. (x \<noteq> y \<and> (x, y) \<in> r)"
   191 proof (induct X rule: finite_induct)
   192   case empty thus ?case unfolding cinfinite_def using ex_in_conv[of "Field r"] finite.emptyI by auto
   193 next
   194   case (insert x X)
   195   then obtain y where y: "y \<in> Field r" "\<forall>x \<in> X. (x \<noteq> y \<and> (x, y) \<in> r)" by blast
   196   then obtain z where z: "z \<in> Field r" "x \<noteq> z \<and> (x, z) \<in> r" "y \<noteq> z \<and> (y, z) \<in> r"
   197     using Cinfinite_limit2[OF _ y(1) insert(5), of x] insert(4) by blast
   198   show ?case
   199     apply (intro bexI ballI)
   200     apply (erule insertE)
   201     apply hypsubst
   202     apply (rule z(2))
   203     using Card_order_trans[OF insert(5)[THEN conjunct2]] y(2) z(3)
   204     apply blast
   205     apply (rule z(1))
   206     done
   207 qed
   208 
   209 lemma insert_subsetI: "\<lbrakk>x \<in> A; X \<subseteq> A\<rbrakk> \<Longrightarrow> insert x X \<subseteq> A"
   210 by auto
   211 
   212 (*helps resolution*)
   213 lemma well_order_induct_imp:
   214   "wo_rel r \<Longrightarrow> (\<And>x. \<forall>y. y \<noteq> x \<and> (y, x) \<in> r \<longrightarrow> y \<in> Field r \<longrightarrow> P y \<Longrightarrow> x \<in> Field r \<longrightarrow> P x) \<Longrightarrow>
   215      x \<in> Field r \<longrightarrow> P x"
   216 by (erule wo_rel.well_order_induct)
   217 
   218 lemma meta_spec2:
   219   assumes "(\<And>x y. PROP P x y)"
   220   shows "PROP P x y"
   221 by (rule `(\<And>x y. PROP P x y)`)
   222 
   223 ML_file "Tools/bnf_lfp_util.ML"
   224 ML_file "Tools/bnf_lfp_tactics.ML"
   225 ML_file "Tools/bnf_lfp.ML"
   226 
   227 end