test/Tools/isac/ADDTESTS/course/SignalProcess/Build_Inverse_Z_Transform.thy
author Walther Neuper <wneuper@ist.tugraz.at>
Tue, 13 Feb 2018 15:14:55 +0100
changeset 59367 fb6f5ef2c647
parent 59360 729c3ca4e5fc
child 59370 b829919afd7b
permissions -rwxr-xr-x
Isabelle2015->17: "normalize" as identifier causes type clash now, etc

etc fixes:
# new negation "~ " --> "<not>"n noteq cf. 17bc5920c2fb
# session identifiers enforced now cf. 172b53399454
     1 (* Title:  Build_Inverse_Z_Transform
     2    Author: Jan Rocnik
     3    (c) copyright due to license terms.
     4 12345678901234567890123456789012345678901234567890123456789012345678901234567890
     5         10        20        30        40        50        60        70        80
     6 *)
     7 
     8 theory Build_Inverse_Z_Transform imports Inverse_Z_Transform
     9   
    10 begin
    11 
    12 text{* We stepwise build \ttfamily Inverse\_Z\_Transform.thy \normalfont as an 
    13   exercise. Because Subsection~\ref{sec:stepcheck} requires 
    14   \ttfamily Inverse\_Z\_Transform.thy \normalfont as a subtheory of \ttfamily 
    15   Isac.thy\normalfont, the setup has been changed from \ttfamily theory 
    16   Inverse\_Z\_Transform imports Isac \normalfont to the above one.
    17   \par \noindent
    18   \begin{center} 
    19   \textbf{Attention with the names of identifiers when going into internals!}
    20   \end{center}
    21   Here in this theory there are the internal names twice, for instance we have
    22   \ttfamily (Thm.derivation\_name @{thm rule1} = 
    23   "Build\_Inverse\_Z\_Transform.rule1") = true; \normalfont
    24   but actually in us will be \ttfamily Inverse\_Z\_Transform.rule1 \normalfont
    25 *}
    26 
    27 section {*Trials towards the Z-Transform\label{sec:trials}*}
    28 
    29 ML {*val thy = @{theory};*}
    30 
    31 subsection {*Notations and Terms*}
    32 text{*\noindent Try which notations we are able to use.*}
    33 ML {*
    34   @{term "1 < || z ||"};
    35   @{term "z / (z - 1)"};
    36   @{term "-u -n - 1"};
    37   @{term "-u [-n - 1]"}; (*[ ] denotes lists !!!*)
    38   @{term "z /(z - 1) = -u [-n - 1]"};
    39   @{term "1 < || z || ==> z / (z - 1) = -u [-n - 1]"};
    40   term2str @{term "1 < || z || ==> z / (z - 1) = -u [-n - 1]"};
    41 *}
    42 text{*\noindent Try which symbols we are able to use and how we generate them.*}
    43 ML {*
    44   (*alpha -->  "</alpha>" *)
    45   @{term "\<alpha> "};
    46   @{term "\<delta> "};
    47   @{term "\<phi> "};
    48   @{term "\<rho> "};
    49   term2str @{term "\<rho> "};
    50 *}
    51 
    52 subsection {*Rules*}
    53 (*axiomatization "z / (z - 1) = -u [-n - 1]"
    54   Illegal variable name: "z / (z - 1) = -u [-n - 1]" *)
    55 (*definition     "z / (z - 1) = -u [-n - 1]"
    56   Bad head of lhs: existing constant "op /"*)
    57 axiomatization where 
    58   rule1: "1 = \<delta>[n]" and
    59   rule2: "|| z || > 1 ==> z / (z - 1) = u [n]" and
    60   rule3: "|| z || < 1 ==> z / (z - 1) = -u [-n - 1]" and 
    61   rule4: "|| z || > || \<alpha> || ==> z / (z - \<alpha>) = \<alpha>^^^n * u [n]" and
    62   rule5: "|| z || < || \<alpha> || ==> z / (z - \<alpha>) = -(\<alpha>^^^n) * u [-n - 1]" and
    63   rule6: "|| z || > 1 ==> z/(z - 1)^^^2 = n * u [n]"
    64 
    65 text{*\noindent Check the rules for their correct notation. 
    66       (See the machine output.)*}
    67 ML {*
    68   @{thm rule1};
    69   @{thm rule2};
    70   @{thm rule3};
    71   @{thm rule4};
    72 *}
    73 
    74 subsection {*Apply Rules*}
    75 text{*\noindent We try to apply the rules to a given expression.*}
    76 
    77 ML {*
    78   val inverse_Z = append_rls "inverse_Z" e_rls
    79     [ Thm  ("rule3",num_str @{thm rule3}),
    80       Thm  ("rule4",num_str @{thm rule4}),
    81       Thm  ("rule1",num_str @{thm rule1})   
    82     ];
    83 
    84   val t = str2term "z / (z - 1) + z / (z - \<alpha>) + 1";
    85   val SOME (t', asm) = rewrite_set_ thy true inverse_Z t;
    86   term2str t' = "z / (z - ?\<delta> [?n]) + z / (z - \<alpha>) + ?\<delta> [?n]";
    87   (*
    88    * Attention rule1 is applied before the expression is 
    89    * checked for rule4 which would be correct!!!
    90    *)
    91 *}
    92 
    93 ML {* val (thy, ro, er) = (@{theory}, tless_true, eval_rls); *}
    94 ML {*
    95   val SOME (t, asm1) = 
    96     rewrite_ thy ro er true (num_str @{thm rule3}) t;
    97   term2str t = "- ?u [- ?n - 1] + z / (z - \<alpha>) + 1";
    98   (*- real *)
    99   term2str t;
   100 
   101   val SOME (t, asm2) = 
   102     rewrite_ thy ro er true (num_str @{thm rule4}) t;
   103   term2str t = "- ?u [- ?n - 1] + \<alpha> ^^^ ?n * ?u [?n] + 1";
   104   (*- real *)
   105   term2str t;
   106 
   107   val SOME (t, asm3) = 
   108     rewrite_ thy ro er true (num_str @{thm rule1}) t;
   109   term2str t = "- ?u [- ?n - 1] + \<alpha> ^^^ ?n * ?u [?n] + ?\<delta> [?n]";
   110   (*- real *)
   111   term2str t;
   112 *}
   113 ML {* terms2str (asm1 @ asm2 @ asm3); *}
   114 
   115 section{*Prepare Steps for TP-based programming Language\label{sec:prepstep}*}
   116 text{*
   117       \par \noindent The following sections are challenging with the CTP-based 
   118       possibilities of building the program. The goal is realized in 
   119       Section~\ref{spec-meth} and Section~\ref{prog-steps}.
   120       \par The reader is advised to jump between the subsequent subsections and 
   121       the respective steps in Section~\ref{prog-steps}. By comparing 
   122       Section~\ref{sec:calc:ztrans} the calculation can be comprehended step 
   123       by step.
   124 *}
   125 
   126 subsection {*Prepare Expression\label{prep-expr}*}
   127 text{*\noindent We try two different notations and check which of them 
   128        Isabelle can handle best.*}
   129 ML {*
   130   val ctxt = Proof_Context.init_global @{theory};
   131   val ctxt = declare_constraints' [@{term "z::real"}] ctxt;
   132 
   133   val SOME fun1 = 
   134     parseNEW ctxt "X z = 3 / (z - 1/4 + -1/8 * z ^^^ -1)"; term2str fun1;
   135   val SOME fun1' = 
   136     parseNEW ctxt "X z = 3 / (z - 1/4 + -1/8 * (1/z))"; term2str fun1';
   137 *}
   138 
   139 subsubsection {*Prepare Numerator and Denominator*}
   140 text{*\noindent The partial fraction decomposition is only possible if we
   141        get the bound variable out of the numerator. Therefor we divide
   142        the expression by $z$. Follow up the Calculation at 
   143        Section~\ref{sec:calc:ztrans} line number 02.*}
   144 
   145 axiomatization where
   146   ruleZY: "(X z = a / b) = (X' z = a / (z * b))"
   147 
   148 ML {*
   149   val (thy, ro, er) = (@{theory}, tless_true, eval_rls);
   150   val SOME (fun2, asm1) = 
   151     rewrite_ thy ro er true  @{thm ruleZY} fun1; term2str fun2;
   152   val SOME (fun2', asm1) = 
   153     rewrite_ thy ro er true  @{thm ruleZY} fun1'; term2str fun2';
   154 
   155   val SOME (fun3,_) = 
   156     rewrite_set_ @{theory} false norm_Rational fun2;
   157   term2str fun3;
   158   (*
   159    * Fails on x^^^(-1)
   160    * We solve this problem by using 1/x as a workaround.
   161    *)
   162   val SOME (fun3',_) = 
   163     rewrite_set_ @{theory} false norm_Rational fun2';
   164   term2str fun3';
   165   (*
   166    * OK - workaround!
   167    *)
   168 *}
   169 
   170 subsubsection {*Get the Argument of the Expression X'*}
   171 text{*\noindent We use \texttt{grep} for finding possibilities how we can
   172        extract the bound variable in the expression. \ttfamily Atools.thy, 
   173        Tools.thy \normalfont contain general utilities: \ttfamily 
   174        eval\_argument\_in, eval\_rhs, eval\_lhs,\ldots \normalfont
   175        \ttfamily grep -r "fun eva\_" * \normalfont shows all functions 
   176        witch can be used in a script. Lookup this files how to build 
   177        and handle such functions.
   178        \par The next section shows how to introduce such a function.
   179 *}
   180 
   181 subsubsection{*Decompose the Given Term Into lhs and rhs*}
   182 ML {*
   183   val (_, expr) = HOLogic.dest_eq fun3'; term2str expr;
   184   val (_, denom) = 
   185     HOLogic.dest_bin "Rings.divide_class.divide" (type_of expr) expr;
   186   term2str denom = "-1 + -2 * z + 8 * z ^^^ 2";
   187 *}
   188 
   189 text{*\noindent We have rhs\footnote{Note: lhs means \em Left Hand Side
   190       \normalfont and rhs means \em Right Hand Side \normalfont and indicates
   191       the left or the right part of an equation.} in the Script language, but
   192       we need a function which gets the denominator of a fraction.*}
   193 
   194 subsubsection{*Get the Denominator and Numerator out of a Fraction*}
   195 text{*\noindent The self written functions in e.g. \texttt{get\_denominator}
   196        should become a constant for the Isabelle parser:*}
   197 
   198 consts
   199   get_denominator :: "real => real"
   200   get_numerator :: "real => real"
   201 
   202 text {*\noindent With the above definition we run into problems when we parse
   203         the Script \texttt{InverseZTransform}. This leads to \em ambiguous
   204         parse trees. \normalfont We avoid this by moving the definition
   205         to \ttfamily Rational.thy \normalfont and re-building {\sisac}.
   206         \par \noindent ATTENTION: From now on \ttfamily 
   207         Build\_Inverse\_Z\_Transform \normalfont mimics a build from scratch;
   208         it only works due to re-building {\sisac} several times (indicated 
   209         explicitly).
   210 *}
   211 
   212 ML {*
   213 (*
   214  *("get_denominator",
   215  *  ("Rational.get_denominator", eval_get_denominator ""))
   216  *)
   217 fun eval_get_denominator (thmid:string) _ 
   218 		      (t as Const ("Rational.get_denominator", _) $
   219               (Const ("Rings.divide_class.divide", _) $num 
   220                 $denom)) thy = 
   221         SOME (mk_thmid thmid "" (term_to_string''' thy denom) "", 
   222 	        Trueprop $ (mk_equality (t, denom)))
   223   | eval_get_denominator _ _ _ _ = NONE; 
   224 *}
   225 text {*\noindent For the tests of \ttfamily eval\_get\_denominator \normalfont
   226         see \ttfamily test/Knowledge/rational.sml\normalfont*}
   227 
   228 text {*\noindent \ttfamily get\_numerator \normalfont should also become a
   229         constant for the Isabelle parser, follow up the \texttt{const}
   230         declaration above.*}
   231 
   232 ML {*
   233 (*
   234  *("get_numerator",
   235  *  ("Rational.get_numerator", eval_get_numerator ""))
   236  *)
   237 fun eval_get_numerator (thmid:string) _ 
   238 		      (t as Const ("Rational.get_numerator", _) $
   239               (Const ("Rings.divide_class.divide", _) $num
   240                 $denom )) thy = 
   241         SOME (mk_thmid thmid "" (term_to_string''' thy num) "", 
   242 	        Trueprop $ (mk_equality (t, num)))
   243   | eval_get_numerator _ _ _ _ = NONE; 
   244 *}
   245 
   246 text {*\noindent We discovered several problems by implementing the 
   247        \ttfamily get\_numerator \normalfont function. Remember when 
   248        putting new functions to {\sisac}, put them in a thy file and rebuild 
   249        {\sisac}, also put them in the ruleset for the script!*}
   250 
   251 subsection {*Solve Equation\label{sec:solveq}*}
   252 text {*\noindent We have to find the zeros of the term, therefor we use our
   253        \ttfamily get\_denominator \normalfont function from the step before
   254        and try to solve the second order equation. (Follow up the Calculation
   255        in Section~\ref{sec:calc:ztrans} Subproblem 2) Note: This type of
   256        equation is too general for the present program.
   257        \par We know that this equation can be categorized as \em univariate
   258        equation \normalfont and solved with the functions {\sisac} provides
   259        for this equation type. Later on {\sisac} should determine the type
   260        of the given equation self.*}
   261 ML {*
   262   val denominator = parseNEW ctxt "z^^^2 - 1/4*z - 1/8 = 0";
   263   val fmz = ["equality (z^^^2 - 1/4*z - 1/8 = (0::real))",
   264              "solveFor z",
   265              "solutions L"];
   266   val (dI',pI',mI') =("Isac", ["univariate","equation"], ["no_met"]);
   267 *}
   268 text {*\noindent Check if the given equation matches the specification of this
   269         equation type.*}
   270 ML {*
   271   match_pbl fmz (get_pbt ["univariate","equation"]);
   272 *}
   273 
   274 text{*\noindent We switch up to the {\sisac} Context and try to solve the 
   275        equation with a more specific type definition.*}
   276 
   277 ML {*
   278   Context.theory_name thy = "Isac";
   279   val denominator = parseNEW ctxt "-1 + -2 * z + 8 * z ^^^ 2 = 0";
   280   val fmz =                                             (*specification*)
   281     ["equality (-1 + -2 * z + 8 * z ^^^ 2 = (0::real))",(*equality*)
   282      "solveFor z",                                      (*bound variable*)
   283      "solutions L"];                                    (*identifier for
   284                                                           solution*)
   285   val (dI',pI',mI') =
   286     ("Isac", 
   287       ["abcFormula","degree_2","polynomial","univariate","equation"],
   288       ["no_met"]);
   289 *}
   290 
   291 text {*\noindent Check if the (other) given equation matches the 
   292         specification of this equation type.*}
   293         
   294 ML {*
   295   match_pbl fmz (get_pbt
   296     ["abcFormula","degree_2","polynomial","univariate","equation"]);
   297 *}
   298 
   299 text {*\noindent We stepwise solve the equation. This is done by the
   300         use of a so called calc tree seen downwards.*}
   301 
   302 ML {*
   303   val (p,_,f,nxt,_,pt) = CalcTreeTEST [(fmz, (dI',pI',mI'))];
   304   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
   305   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
   306   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
   307   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
   308   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
   309   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
   310   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
   311   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
   312   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
   313   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
   314   val (p,_,f,nxt,_,pt) = me nxt p [] pt;         
   315   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
   316   (*
   317    * nxt =..,Check_elementwise "Assumptions") 
   318    *)
   319   val (p,_,f,nxt,_,pt) = me nxt p [] pt;         
   320   val (p,_,f,nxt,_,pt) = me nxt p [] pt; f2str f;
   321   (*
   322    * [z = 1 / 2, z = -1 / 4]
   323    *)
   324   Chead.show_pt pt; 
   325   val SOME f = parseNEW ctxt "[z=1/2, z=-1/4]";
   326 *}
   327 
   328 subsection {*Partial Fraction Decomposition\label{sec:pbz}*}
   329 text{*\noindent We go on with the decomposition of our expression. Follow up the
   330        Calculation in Section~\ref{sec:calc:ztrans} Step~3 and later on
   331        Subproblem~1.*}
   332 subsubsection {*Solutions of the Equation*}
   333 text{*\noindent We get the solutions of the before solved equation in a list.*}
   334 
   335 ML {*
   336   val SOME solutions = parseNEW ctxt "[z=1/2, z=-1/4]";
   337   term2str solutions;
   338   atomty solutions;
   339 *}
   340 
   341 subsubsection {*Get Solutions out of a List*}
   342 text {*\noindent In {\sisac}'s TP-based programming language: 
   343 \begin{verbatim}
   344   let $ $ s_1 = NTH 1 $ solutions; $ s_2 = NTH 2... $
   345 \end{verbatim}
   346        can be useful.
   347        *}
   348 
   349 ML {*
   350   val Const ("List.list.Cons", _) $ s_1 $ (Const ("List.list.Cons", _)
   351         $ s_2 $ Const ("List.list.Nil", _)) = solutions;
   352   term2str s_1;
   353   term2str s_2;
   354 *}
   355 
   356 text{*\noindent The ansatz for the \em Partial Fraction Decomposition \normalfont
   357       requires to get the denominators of the partial fractions out of the 
   358       Solutions as:
   359       \begin{itemize}
   360         \item $Denominator_{1}=z-Zeropoint_{1}$
   361         \item $Denominator_{2}=z-Zeropoint_{2}$
   362         \item \ldots
   363       \end{itemize}
   364 *}
   365       
   366 ML {*
   367   val xx = HOLogic.dest_eq s_1;
   368   val s_1' = HOLogic.mk_binop "Groups.minus_class.minus" xx;
   369   val xx = HOLogic.dest_eq s_2;
   370   val s_2' = HOLogic.mk_binop "Groups.minus_class.minus" xx;
   371   term2str s_1';
   372   term2str s_2';
   373 *}
   374 
   375 text {*\noindent For the programming language a function collecting all the 
   376         above manipulations is helpful.*}
   377 
   378 ML {*
   379   fun fac_from_sol s =
   380     let val (lhs, rhs) = HOLogic.dest_eq s
   381     in HOLogic.mk_binop "Groups.minus_class.minus" (lhs, rhs) end;
   382 *}
   383 
   384 ML {*
   385   fun mk_prod prod [] =
   386         if prod = e_term
   387         then error "mk_prod called with []" 
   388         else prod
   389     | mk_prod prod (t :: []) =
   390         if prod = e_term
   391         then t
   392         else HOLogic.mk_binop "Groups.times_class.times" (prod, t)
   393     | mk_prod prod (t1 :: t2 :: ts) =
   394           if prod = e_term 
   395           then 
   396              let val p = 
   397                HOLogic.mk_binop "Groups.times_class.times" (t1, t2)
   398              in mk_prod p ts end 
   399           else 
   400              let val p =
   401                HOLogic.mk_binop "Groups.times_class.times" (prod, t1)
   402              in mk_prod p (t2 :: ts) end 
   403 *}
   404 (* ML {* 
   405 probably keep these test in test/Tools/isac/...
   406 (*mk_prod e_term [];*)
   407 
   408 val prod = mk_prod e_term [str2term "x + 123"]; 
   409 term2str prod = "x + 123";
   410 
   411 val sol = str2term "[z = 1 / 2, z = -1 / 4]";
   412 val sols = HOLogic.dest_list sol;
   413 val facs = map fac_from_sol sols;
   414 val prod = mk_prod e_term facs; 
   415 term2str prod = "(z + -1 * (1 / 2)) * (z + -1 * (-1 / 4))";
   416 
   417 val prod = 
   418   mk_prod e_term [str2term "x + 1", str2term "x + 2", str2term "x + 3"]; 
   419 term2str prod = "(x + 1) * (x + 2) * (x + 3)";
   420 *} *)
   421 ML {*
   422   fun factors_from_solution sol = 
   423     let val ts = HOLogic.dest_list sol
   424     in mk_prod e_term (map fac_from_sol ts) end;
   425 *}
   426 (* ML {*
   427 val sol = str2term "[z = 1 / 2, z = -1 / 4]";
   428 val fs = factors_from_solution sol;
   429 term2str fs = "(z + -1 * (1 / 2)) * (z + -1 * (-1 / 4))"
   430 *} *)
   431 text {*\noindent This function needs to be packed such that it can be evaluated
   432         by the Lucas-Interpreter. Therefor we moved the function to the
   433         corresponding \ttfamily Equation.thy \normalfont in our case
   434         \ttfamily PartialFractions.thy \normalfont. The necessary steps
   435         are quit the same as we have done with \ttfamily get\_denominator 
   436         \normalfont before.*}
   437 ML {*
   438   (*("factors_from_solution",
   439     ("Partial_Fractions.factors_from_solution",
   440       eval_factors_from_solution ""))*)
   441       
   442   fun eval_factors_from_solution (thmid:string) _
   443        (t as Const ("Partial_Fractions.factors_from_solution", _) $ sol)
   444          thy = ((let val prod = factors_from_solution sol
   445                    in SOME (mk_thmid thmid "" (term_to_string''' thy prod) "",
   446                          Trueprop $ (mk_equality (t, prod)))
   447                 end)
   448                handle _ => NONE)
   449    | eval_factors_from_solution _ _ _ _ = NONE;
   450 *}
   451 
   452 text {*\noindent The tracing output of the calc tree after applying this
   453        function was:
   454 \begin{verbatim}
   455   24 / factors_from_solution [z = 1/ 2, z = -1 / 4])]
   456 \end{verbatim}
   457        and the next step:
   458 \begin{verbatim}
   459   val nxt = ("Empty_Tac", ...): tac'_)
   460 \end{verbatim}
   461        These observations indicate, that the Lucas-Interpreter (LIP) 
   462        does not know how to evaluate \ttfamily factors\_from\_solution
   463        \normalfont, so we knew that there is something wrong or missing.
   464        *}
   465        
   466 text{*\noindent First we isolate the difficulty in the program as follows:
   467 \begin{verbatim}      
   468   " (L_L::bool list) = (SubProblem (PolyEq',      " ^
   469   "   [abcFormula, degree_2, polynomial,          " ^
   470   "    univariate,equation],                      " ^
   471   "   [no_met])                                   " ^
   472   "   [BOOL equ, REAL zzz]);                      " ^
   473   " (facs::real) = factors_from_solution L_L;     " ^
   474   " (foo::real) = Take facs                       " ^
   475 \end{verbatim}
   476 
   477       \par \noindent And see the tracing output:
   478       
   479 \begin{verbatim}
   480   [(([], Frm), Problem (Isac, [inverse, 
   481                                Z_Transform,
   482                                 SignalProcessing])),
   483    (([1], Frm), X z = 3 / (z - 1 / 4 + -1 / 8 * (1 / z))),
   484    (([1], Res), ?X' z = 3 / (z * (z - 1 / 4 + -1 / 8 * (1 / z)))),
   485    (([2], Res), ?X' z = 24 / (-1 + -2 * z + 8 * z ^^^ 2)),
   486    (([3], Pbl), solve (-1 + -2 * z + 8 * z ^^^ 2 = 0, z)),
   487    (([3,1], Frm), -1 + -2 * z + 8 * z ^^^ 2 = 0),
   488    (([3,1], Res), z = (- -2 + sqrt (-2 ^^^ 2 - 4 * 8 * -1)) / (2 * 8)|
   489                   z = (- -2 - sqrt (-2 ^^^ 2 - 4 * 8 * -1)) / (2 * 8)),
   490    (([3,2], Res), z = 1 / 2 | z = -1 / 4),
   491    (([3,3], Res), [ z = 1 / 2, z = -1 / 4]),
   492    (([3,4], Res), [ z = 1 / 2, z = -1 / 4]),
   493    (([3], Res), [ z = 1 / 2, z = -1 / 4]),
   494    (([4], Frm), factors_from_solution [z = 1 / 2, z = -1 / 4])]
   495 \end{verbatim}      
   496       
   497       \par \noindent In particular that:
   498       
   499 \begin{verbatim}
   500   (([3], Pbl), solve (-1 + -2 * z + 8 * z ^^^ 2 = 0, z)),
   501 \end{verbatim}
   502       \par \noindent Shows the equation which has been created in
   503       the program by: 
   504 \begin{verbatim}
   505   "(denom::real) = get_denominator funterm;      " ^ 
   506     (* get_denominator *)
   507   "(equ::bool) = (denom = (0::real));            " ^
   508 \end{verbatim}
   509         
   510       \noindent \ttfamily get\_denominator \normalfont has been evaluated successfully,
   511       but not\\ \ttfamily factors\_from\_solution.\normalfont
   512       So we stepwise compare with an analogous case, \ttfamily get\_denominator
   513       \normalfont successfully done above: We know that LIP evaluates
   514       expressions in the program by use of the \emph{srls}, so we try to get
   515       the original \emph{srls}.\\
   516 
   517 \begin{verbatim}
   518   val {srls,...} = get_met ["SignalProcessing",
   519                             "Z_Transform",
   520                             "Inverse"];
   521 \end{verbatim}
   522           
   523       \par \noindent Create 2 good example terms:
   524 
   525 \begin{verbatim}
   526 val SOME t1 =
   527   parseNEW ctxt "get_denominator ((111::real) / 222)";
   528 val SOME t2 =
   529   parseNEW ctxt "factors_from_solution [(z::real)=1/2, z=-1/4]";
   530 \end{verbatim}
   531 
   532       \par \noindent Rewrite the terms using srls:\\
   533       \ttfamily \par \noindent rewrite\_set\_ thy true srls t1;\\
   534         rewrite\_set\_ thy true srls t2;\\
   535       \par \noindent \normalfont Now we see a difference: \texttt{t1} gives
   536       \texttt{SOME} but \texttt{t2} gives \texttt{NONE}. We look at the 
   537       \emph{srls}:
   538 \begin{verbatim}
   539   val srls = 
   540     Rls{id = "srls_InverseZTransform",
   541         rules = [Calc("Rational.get_numerator",
   542                    eval_get_numerator "Rational.get_numerator"),
   543                  Calc("Partial_Fractions.factors_from_solution",
   544                    eval_factors_from_solution 
   545                      "Partial_Fractions.factors_from_solution")]}
   546 \end{verbatim}                
   547       \par \noindent Here everthing is perfect. So the error can
   548       only be in the SML code of \ttfamily eval\_factors\_from\_solution.
   549       \normalfont We try to check the code with an existing test; since the 
   550       \emph{code} is in 
   551       \begin{center}\ttfamily src/Tools/isac/Knowledge/Partial\_Fractions.thy
   552       \normalfont\end{center}
   553       the \emph{test} should be in
   554       \begin{center}\ttfamily test/Tools/isac/Knowledge/partial\_fractions.sml
   555       \normalfont\end{center}
   556       \par \noindent After updating the function \ttfamily
   557       factors\_from\_solution \normalfont to a new version and putting a
   558       test-case to \ttfamily Partial\_Fractions.sml \normalfont we tried again
   559       to evaluate the term with the same result.
   560       \par We opened the test \ttfamily Test\_Isac.thy \normalfont and saw that
   561       everything is working fine. Also we checked that the test \ttfamily 
   562       partial\_fractions.sml \normalfont is used in \ttfamily Test\_Isac.thy 
   563       \normalfont
   564       \begin{center}use \ttfamily "Knowledge/partial\_fractions.sml"
   565       \normalfont \end{center}
   566       and \ttfamily Partial\_Fractions.thy \normalfont is part is part of
   567       {\sisac} by evaluating
   568 
   569 \begin{verbatim}
   570   val thy = @{theory "Inverse_Z_Transform"};
   571 \end{verbatim}
   572 
   573       After rebuilding {\sisac} again it worked.
   574 *}
   575 
   576 subsubsection {*Build Expression*}
   577 text {*\noindent In {\sisac}'s TP-based programming language we can build
   578        expressions by:\\
   579        \ttfamily let s\_1 = Take numerator / (s\_1 * s\_2) \normalfont*}
   580        
   581 ML {*
   582   (*
   583    * The main denominator is the multiplication of the denominators of
   584    * all partial fractions.
   585    *)
   586    
   587   val denominator' = HOLogic.mk_binop 
   588     "Groups.times_class.times" (s_1', s_2') ;
   589   val SOME numerator = parseNEW ctxt "3::real";
   590 
   591   val expr' = HOLogic.mk_binop
   592     "Rings.divide_class.divide" (numerator, denominator');
   593   term2str expr';
   594 *}
   595 
   596 subsubsection {*Apply the Partial Fraction Decomposion Ansatz*}
   597 
   598 text{*\noindent We use the Ansatz of the Partial Fraction Decomposition for our
   599       expression 2nd order. Follow up the calculation in 
   600       Section~\ref{sec:calc:ztrans} Step~03.*}
   601 
   602 ML {*Context.theory_name thy = "Isac"*}
   603 
   604 text{*\noindent We define two axiomatization, the first one is the main ansatz,
   605       the next one is just an equivalent transformation of the resulting
   606       equation. Both axiomatizations were moved to \ttfamily
   607       Partial\_Fractions.thy \normalfont and got their own rulesets. In later
   608       programs it is possible to use the rulesets and the machine will find
   609       the correct ansatz and equivalent transformation itself.*}
   610 
   611 axiomatization where
   612   ansatz_2nd_order: "n / (a*b) = A/a + B/b" and
   613   equival_trans_2nd_order: "(n/(a*b) = A/a + B/b) = (n = A*b + B*a)"
   614 
   615 text{*\noindent We use our \ttfamily ansatz\_2nd\_order \normalfont to rewrite
   616        our expression and get an equation with our expression on the left
   617        and the partial fractions of it on the right hand side.*}
   618   
   619 ML {*
   620   val SOME (t1,_) = 
   621     rewrite_ @{theory} e_rew_ord e_rls false 
   622              @{thm ansatz_2nd_order} expr';
   623   term2str t1; atomty t1;
   624   val eq1 = HOLogic.mk_eq (expr', t1);
   625   term2str eq1;
   626 *}
   627 
   628 text{*\noindent Eliminate the denominators by multiplying the left and the
   629       right hand side of the equation with the main denominator. This is an
   630       simple equivalent transformation. Later on we use an own ruleset
   631       defined in \ttfamily Partial\_Fractions.thy \normalfont for doing this.
   632       Follow up the calculation in Section~\ref{sec:calc:ztrans} Step~04.*}
   633 
   634 ML {*
   635   val SOME (eq2,_) = 
   636     rewrite_ @{theory} e_rew_ord e_rls false 
   637              @{thm equival_trans_2nd_order} eq1;
   638   term2str eq2;
   639 *}
   640 
   641 text{*\noindent We use the existing ruleset \ttfamily norm\_Rational \normalfont 
   642      for simplifications on expressions.*}
   643 
   644 ML {*
   645   val SOME (eq3,_) = rewrite_set_ @{theory} false norm_Rational eq2;
   646   term2str eq3;
   647   (*
   648    * ?A ?B not simplified
   649    *)
   650 *}
   651 
   652 text{*\noindent In Example~\ref{eg:gap} of my thesis I'm describing a problem about
   653       simplifications. The problem that we would like to have only a specific degree
   654       of simplification occurs right here, in the next step.*}
   655 
   656 ML {*
   657   trace_rewrite := false;
   658   val SOME fract1 =
   659     parseNEW ctxt "(z - 1/2)*(z - -1/4) * (A/(z - 1/2) + B/(z - -1/4))";
   660   (*
   661    * A B !
   662    *)
   663   val SOME (fract2,_) = 
   664     rewrite_set_ @{theory} false norm_Rational fract1;
   665   term2str fract2 = "(A + -2 * B + 4 * A * z + 4 * B * z) / 4";
   666   (*
   667    * term2str fract2 = "A * (1 / 4 + z) + B * (-1 / 2 + z)" 
   668    * would be more traditional...
   669    *)
   670 *}
   671 
   672 text{*\noindent We walk around this problem by generating our new equation first.*}
   673 
   674 ML {*
   675   val (numerator, denominator) = HOLogic.dest_eq eq3;
   676   val eq3' = HOLogic.mk_eq (numerator, fract1);
   677   (*
   678    * A B !
   679    *)
   680   term2str eq3';
   681   (*
   682    * MANDATORY: simplify (and remove denominator) otherwise 3 = 0
   683    *)
   684   val SOME (eq3'' ,_) = 
   685     rewrite_set_ @{theory} false norm_Rational eq3';
   686   term2str eq3'';
   687 *}
   688 
   689 text{*\noindent Still working at {\sisac}\ldots*}
   690 
   691 ML {* Context.theory_name thy = "Isac" *}
   692 
   693 subsubsection {*Build a Rule-Set for the Ansatz*}
   694 text {*\noindent The \emph{ansatz} rules violate the principle that each
   695        variable on the right-hand-side must also occur on the
   696        left-hand-side of the rule: A, B, etc. don't do that. Thus the
   697        rewriter marks these variables with question marks: ?A, ?B, etc.
   698        These question marks can be dropped by \ttfamily fun
   699        drop\_questionmarks\normalfont.*}
   700        
   701 ML {*
   702   val ansatz_rls = prep_rls @{theory} (
   703     Rls {id = "ansatz_rls", preconds = [], rew_ord = ("dummy_ord",dummy_ord),
   704       erls = e_rls, srls = Erls, calc = [], errpatts = [],
   705       rules = [
   706         Thm ("ansatz_2nd_order",num_str @{thm ansatz_2nd_order}),
   707         Thm ("equival_trans_2nd_order",num_str @{thm equival_trans_2nd_order})
   708               ], 
   709       scr = EmptyScr});
   710 *}
   711 
   712 text{*\noindent We apply the ruleset\ldots*}
   713 
   714 ML {*
   715   val SOME (ttttt,_) = 
   716     rewrite_set_ @{theory} false ansatz_rls expr';
   717 *}
   718 
   719 text{*\noindent And check the output\ldots*}
   720 
   721 ML {*
   722   term2str expr' = "3 / ((z - 1 / 2) * (z - -1 / 4))";
   723   term2str ttttt = "?A / (z - 1 / 2) + ?B / (z - -1 / 4)";
   724 *}
   725 
   726 subsubsection {*Get the First Coefficient*}
   727 
   728 text{*\noindent Now it's up to get the two coefficients A and B, which will be
   729       the numerators of our partial fractions. Continue following up the 
   730       Calculation in Section~\ref{sec:calc:ztrans} Subproblem~1.*}
   731       
   732 text{*\noindent To get the first coefficient we substitute $z$ with the first
   733       zero-point we determined in Section~\ref{sec:solveq}.*}
   734 
   735 ML {*
   736   val SOME (eq4_1,_) =
   737     rewrite_terms_ @{theory} e_rew_ord e_rls [s_1] eq3'';
   738   term2str eq4_1;
   739   val SOME (eq4_2,_) =
   740     rewrite_set_ @{theory} false norm_Rational eq4_1;
   741   term2str eq4_2;
   742 
   743   val fmz = ["equality (3=3*A/(4::real))", "solveFor A","solutions L"];
   744   val (dI',pI',mI') =("Isac", ["univariate","equation"], ["no_met"]);
   745   (*
   746    * Solve the simple linear equation for A:
   747    * Return eq, not list of eq's
   748    *)
   749   val (p,_,fa,nxt,_,pt) = CalcTreeTEST [(fmz, (dI',pI',mI'))];
   750   val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
   751     (*Add_Given "equality (3=3*A/4)"*)
   752   val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
   753     (*Add_Given "solveFor A"*)
   754   val (p,_,fa,nxt,_,pt) = me nxt p [] pt; 
   755     (*Add_Find "solutions L"*)
   756   val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
   757     (*Specify_Theory "Isac"*)
   758   val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
   759     (*Specify_Problem ["normalise","polynomial",
   760                        "univariate","equation"])*)
   761   val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
   762     (* Specify_Method["PolyEq","normalize_poly"]*)
   763   val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
   764     (*Apply_Method["PolyEq","normalize_poly"]*)
   765   val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
   766     (*Rewrite ("all_left","PolyEq.all_left")*)
   767   val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
   768     (*Rewrite_Set_Inst(["(bdv,A)"],"make_ratpoly_in")*)
   769   val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
   770     (*Rewrite_Set "polyeq_simplify"*)
   771   val (p,_,fa,nxt,_,pt) = me nxt p [] pt; 
   772   val (p,_,fa,nxt,_,pt) = me nxt p [] pt; 
   773   val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
   774     (*Add_Given "equality (3 + -3 / 4 * A =0)"*)
   775   val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
   776     (*Add_Given "solveFor A"*)
   777   val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
   778     (*Add_Find "solutions A_i"*)
   779   val (p,_,fa,nxt,_,pt) = me nxt p [] pt; 
   780   val (p,_,fa,nxt,_,pt) = me nxt p [] pt; 
   781   val (p,_,fa,nxt,_,pt) = me nxt p [] pt; 
   782   val (p,_,fa,nxt,_,pt) = me nxt p [] pt; 
   783     (*Apply_Method ["PolyEq","solve_d1_polyeq_equation"]*)
   784   val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
   785     (*Rewrite_Set_Inst(["(bdv,A)"],"d1_polyeq_simplify")*)
   786   val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
   787     (*Rewrite_Set "polyeq_simplify"*)
   788   val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
   789     (*Rewrite_Set "norm_Rational_parenthesized"*)
   790   val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
   791     (*Or_to_List*)
   792   val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
   793     (*Check_elementwise "Assumptions"*)
   794   val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
   795     (*Check_Postcond ["degree_1","polynomial",
   796                       "univariate","equation"]*)
   797   val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
   798     (*Check_Postcond ["normalise","polynomial",
   799                       "univariate","equation"]*)
   800   val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
   801     (*End_Proof'*)
   802   f2str fa;
   803 *}
   804 
   805 subsubsection {*Get Second Coefficient*}
   806 
   807 text{*\noindent With the use of \texttt{thy} we check which theories the 
   808       interpreter knows.*}
   809 
   810 ML {*thy*}
   811 
   812 text{*\noindent To get the second coefficient we substitute $z$ with the second
   813       zero-point we determined in Section~\ref{sec:solveq}.*}
   814 
   815 ML {*
   816   val SOME (eq4b_1,_) =
   817     rewrite_terms_ @{theory} e_rew_ord e_rls [s_2] eq3'';
   818   term2str eq4b_1;
   819   val SOME (eq4b_2,_) =
   820     rewrite_set_ @{theory} false norm_Rational eq4b_1;
   821   term2str eq4b_2;
   822 
   823   val fmz = ["equality (3= -3*B/(4::real))", "solveFor B","solutions L"];
   824   val (dI',pI',mI') =("Isac", ["univariate","equation"], ["no_met"]);
   825   val (p,_,fb,nxt,_,pt) = CalcTreeTEST [(fmz, (dI',pI',mI'))];
   826   val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
   827   val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
   828   val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
   829   val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
   830   val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
   831   val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
   832   val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
   833   val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
   834   val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
   835   val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
   836   val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
   837   val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
   838   val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
   839   val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
   840   val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
   841   val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
   842   val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
   843   val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
   844   val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
   845   val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
   846   val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
   847   val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
   848   val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
   849   val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
   850   val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
   851   val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
   852   val (p,_,fb,nxt,_,pt) = me nxt p [] pt; 
   853   f2str fb;
   854 *}
   855 
   856 text{*\noindent We compare our results with the pre calculated upshot.*}
   857 
   858 ML {*
   859   if f2str fa = "[A = 4]" then () else error "part.fract. eq4_1";
   860   if f2str fb = "[B = -4]" then () else error "part.fract. eq4_1";
   861 *}
   862 
   863 section {*Implement the Specification and the Method \label{spec-meth}*}
   864 
   865 text{*\noindent Now everything we need for solving the problem has been
   866       tested out. We now start by creating new nodes for our methods and
   867       further on our new program in the interpreter.*}
   868 
   869 subsection{*Define the Field Descriptions for the 
   870             Specification\label{sec:deffdes}*}
   871 
   872 text{*\noindent We define the fields \em filterExpression \normalfont and
   873       \em stepResponse \normalfont both as equations, they represent the in- and
   874       output of the program.*}
   875 
   876 consts
   877   filterExpression  :: "bool => una"
   878   stepResponse      :: "bool => una"
   879 
   880 subsection{*Define the Specification*}
   881 
   882 text{*\noindent The next step is defining the specifications as nodes in the
   883       designated part. We have to create the hierarchy node by node and start
   884       with \em SignalProcessing \normalfont and go on by creating the node
   885       \em Z\_Transform\normalfont.*}
   886 
   887 setup {* KEStore_Elems.add_pbts
   888   [prep_pbt thy "pbl_SP" [] e_pblID (["SignalProcessing"], [], e_rls, NONE, []),
   889     prep_pbt thy "pbl_SP_Ztrans" [] e_pblID
   890       (["Z_Transform","SignalProcessing"], [], e_rls, NONE, [])] *}
   891 
   892 text{*\noindent For the suddenly created node we have to define the input
   893        and output parameters. We already prepared their definition in
   894        Section~\ref{sec:deffdes}.*}
   895 
   896 setup {* KEStore_Elems.add_pbts
   897   [prep_pbt thy "pbl_SP_Ztrans_inv" [] e_pblID
   898       (["Inverse", "Z_Transform", "SignalProcessing"],
   899         [("#Given", ["filterExpression X_eq"]),
   900           ("#Find", ["stepResponse n_eq"])],
   901         append_rls "e_rls" e_rls [(*for preds in where_*)],
   902         NONE,
   903         [["SignalProcessing","Z_Transform","Inverse"]])] *}
   904 ML {*
   905   show_ptyps ();
   906   get_pbt ["Inverse","Z_Transform","SignalProcessing"];
   907 *}
   908 
   909 subsection {*Define Name and Signature for the Method*}
   910 
   911 text{*\noindent As a next step we store the definition of our new method as a
   912       constant for the interpreter.*}
   913 
   914 consts
   915   InverseZTransform :: "[bool, bool] => bool"
   916     ("((Script InverseZTransform (_ =))// (_))" 9)
   917 
   918 subsection {*Setup Parent Nodes in Hierarchy of Method\label{sec:cparentnode}*}
   919 
   920 text{*\noindent Again we have to generate the nodes step by step, first the
   921       parent node and then the originally \em Z\_Transformation 
   922       \normalfont node. We have to define both nodes first with an empty script
   923       as content.*}
   924 
   925 setup {* KEStore_Elems.add_mets
   926   [prep_met thy "met_SP" [] e_metID
   927       (["SignalProcessing"], [],
   928         {rew_ord'="tless_true", rls'= e_rls, calc = [], srls = e_rls, prls = e_rls, crls = e_rls,
   929           errpats = [], nrls = e_rls},
   930         "empty_script"),
   931     prep_met thy "met_SP_Ztrans" [] e_metID
   932       (["SignalProcessing", "Z_Transform"], [],
   933         {rew_ord'="tless_true", rls'= e_rls, calc = [], srls = e_rls, prls = e_rls, crls = e_rls,
   934           errpats = [], nrls = e_rls},
   935         "empty_script")]
   936 *}
   937 
   938 text{*\noindent After we generated both nodes, we can fill the containing
   939       script we want to implement later. First we define the specifications
   940       of the script in e.g. the in- and output.*}
   941 
   942 setup {* KEStore_Elems.add_mets
   943   [prep_met thy "met_SP_Ztrans_inv" [] e_metID
   944       (["SignalProcessing", "Z_Transform", "Inverse"], 
   945         [("#Given" ,["filterExpression X_eq"]), ("#Find"  ,["stepResponse n_eq"])],
   946         {rew_ord'="tless_true", rls'= e_rls, calc = [], srls = e_rls, prls = e_rls, crls = e_rls,
   947           errpats = [], nrls = e_rls},
   948         "empty_script")]
   949 *}
   950 
   951 text{*\noindent After we stored the definition we can start implementing the
   952       script itself. As a first try we define only three rows containing one
   953       simple operation.*}
   954 
   955 setup {* KEStore_Elems.add_mets
   956   [prep_met thy "met_SP_Ztrans_inv" [] e_metID
   957       (["SignalProcessing", "Z_Transform", "Inverse"], 
   958         [("#Given" ,["filterExpression X_eq"]), ("#Find"  ,["stepResponse n_eq"])],
   959         {rew_ord'="tless_true", rls'= e_rls, calc = [], srls = e_rls, prls = e_rls, crls = e_rls,
   960           errpats = [], nrls = e_rls},
   961         "Script InverseZTransform (Xeq::bool) =" ^
   962           " (let X = Take Xeq;" ^
   963           "      X = Rewrite ruleZY False X" ^
   964           "  in X)")]
   965 *}
   966 
   967 text{*\noindent Check if the method has been stored correctly\ldots*}
   968 
   969 ML {*
   970   show_mets(); 
   971 *}
   972 
   973 text{*\noindent If yes we can get the method by stepping backwards through
   974       the hierarchy.*}
   975 
   976 ML {*
   977   get_met ["SignalProcessing","Z_Transform","Inverse"];
   978 *}
   979 
   980 section {*Program in TP-based language \label{prog-steps}*}
   981 
   982 text{*\noindent We start stepwise expanding our program. The script is a
   983       simple string containing several manipulation instructions.
   984       \par The first script we try contains no instruction, we only test if
   985       building scripts that way work.*}
   986 
   987 subsection {*Stepwise Extend the Program*}
   988 ML {*
   989   val str = 
   990     "Script InverseZTransform (Xeq::bool) =                          "^
   991     " Xeq";
   992 *}
   993 
   994 text{*\noindent Next we put some instructions in the script and try if we are
   995       able to solve our first equation.*}
   996 
   997 ML {*
   998   val str = 
   999     "Script InverseZTransform (Xeq::bool) =                          "^
  1000     (*
  1001      * 1/z) instead of z ^^^ -1
  1002      *)
  1003     " (let X = Take Xeq;                                             "^
  1004     "      X' = Rewrite ruleZY False X;                              "^
  1005     (*
  1006      * z * denominator
  1007      *)
  1008     "      X' = (Rewrite_Set norm_Rational False) X'                 "^
  1009     (*
  1010      * simplify
  1011      *)
  1012     "  in X)";
  1013     (*
  1014      * NONE
  1015      *)
  1016     "Script InverseZTransform (Xeq::bool) =                          "^
  1017     (*
  1018      * (1/z) instead of z ^^^ -1
  1019      *)
  1020     " (let X = Take Xeq;                                             "^
  1021     "      X' = Rewrite ruleZY False X;                              "^
  1022     (*
  1023      * z * denominator
  1024      *)
  1025     "      X' = (Rewrite_Set norm_Rational False) X';                "^
  1026     (*
  1027      * simplify
  1028      *)
  1029     "      X' = (SubProblem (Isac',[pqFormula,degree_2,              "^
  1030     "                               polynomial,univariate,equation], "^
  1031     "                              [no_met])                         "^
  1032     "                              [BOOL e_e, REAL v_v])             "^
  1033     "            in X)";
  1034 *}
  1035 
  1036 text{*\noindent To solve the equation it is necessary to drop the left hand
  1037       side, now we only need the denominator of the right hand side. The first
  1038       equation solves the zeros of our expression.*}
  1039 
  1040 ML {*
  1041   val str = 
  1042     "Script InverseZTransform (Xeq::bool) =                          "^
  1043     " (let X = Take Xeq;                                             "^
  1044     "      X' = Rewrite ruleZY False X;                              "^
  1045     "      X' = (Rewrite_Set norm_Rational False) X';                "^
  1046     "      funterm = rhs X'                                          "^
  1047     (*
  1048      * drop X'= for equation solving
  1049      *)
  1050     "  in X)";
  1051 *}
  1052 
  1053 text{*\noindent As mentioned above, we need the denominator of the right hand
  1054       side. The equation itself consists of this denominator and tries to find
  1055       a $z$ for this the denominator is equal to zero.*}
  1056 
  1057 ML {*
  1058   val str = 
  1059     "Script InverseZTransform (X_eq::bool) =                         "^
  1060     " (let X = Take X_eq;                                            "^
  1061     "      X' = Rewrite ruleZY False X;                              "^
  1062     "      X' = (Rewrite_Set norm_Rational False) X';                "^
  1063     "      (X'_z::real) = lhs X';                                    "^
  1064     "      (z::real) = argument_in X'_z;                             "^
  1065     "      (funterm::real) = rhs X';                                 "^
  1066     "      (denom::real) = get_denominator funterm;                  "^
  1067     (*
  1068      * get_denominator
  1069      *)
  1070     "      (equ::bool) = (denom = (0::real));                        "^
  1071     "      (L_L::bool list) =                                        "^
  1072     "            (SubProblem (Test',                                 "^
  1073     "                         [LINEAR,univariate,equation,test],     "^
  1074     "                         [Test,solve_linear])                   "^
  1075     "                         [BOOL equ, REAL z])                    "^
  1076     "  in X)";
  1077 
  1078   parse thy str;
  1079   val sc = ((inst_abs thy) o Thm.term_of o the o (parse thy)) str;
  1080   atomty sc;
  1081 *}
  1082 
  1083 text {*\noindent This ruleset contains all functions that are in the script; 
  1084        The evaluation of the functions is done by rewriting using this ruleset.*}
  1085 
  1086 ML {*
  1087   val srls = 
  1088     Rls {id="srls_InverseZTransform", 
  1089          preconds = [],
  1090          rew_ord = ("termlessI",termlessI),
  1091          erls = append_rls "erls_in_srls_InverseZTransform" e_rls
  1092            [(*for asm in NTH_CONS ...*)
  1093             Calc ("Orderings.ord_class.less",eval_equ "#less_"),
  1094             (*2nd NTH_CONS pushes n+-1 into asms*)
  1095             Calc("Groups.plus_class.plus", eval_binop "#add_")
  1096            ], 
  1097          srls = Erls, calc = [], errpatts = [],
  1098          rules = [
  1099                   Thm ("NTH_CONS",num_str @{thm NTH_CONS}),
  1100                   Calc("Groups.plus_class.plus", 
  1101                        eval_binop "#add_"),
  1102                   Thm ("NTH_NIL",num_str @{thm NTH_NIL}),
  1103                   Calc("Tools.lhs", eval_lhs"eval_lhs_"),
  1104                   Calc("Tools.rhs", eval_rhs"eval_rhs_"),
  1105                   Calc("Atools.argument'_in",
  1106                        eval_argument_in "Atools.argument'_in"),
  1107                   Calc("Rational.get_denominator",
  1108                        eval_get_denominator "#get_denominator"),
  1109                   Calc("Rational.get_numerator",
  1110                        eval_get_numerator "#get_numerator"),
  1111                   Calc("Partial_Fractions.factors_from_solution",
  1112                        eval_factors_from_solution 
  1113                          "#factors_from_solution"),
  1114                   Calc("Partial_Fractions.drop_questionmarks",
  1115                        eval_drop_questionmarks "#drop_?")
  1116                  ],
  1117          scr = EmptyScr};
  1118 *}
  1119 
  1120 
  1121 subsection {*Store Final Version of Program for Execution*}
  1122 
  1123 text{*\noindent After we also tested how to write scripts and run them,
  1124       we start creating the final version of our script and store it into
  1125       the method for which we created a node in Section~\ref{sec:cparentnode}
  1126       Note that we also did this stepwise, but we didn't kept every
  1127       subversion.*}
  1128 
  1129 setup {* KEStore_Elems.add_mets
  1130   [prep_met thy "met_SP_Ztrans_inv" [] e_metID
  1131       (["SignalProcessing", "Z_Transform", "Inverse"], 
  1132         [("#Given" ,["filterExpression X_eq"]), ("#Find"  ,["stepResponse n_eq"])],
  1133         {rew_ord'="tless_true", rls'= e_rls, calc = [], srls = srls, prls = e_rls, crls = e_rls,
  1134           errpats = [], nrls = e_rls},
  1135         "Script InverseZTransform (X_eq::bool) =                        "^
  1136           (*(1/z) instead of z ^^^ -1*)
  1137           "(let X = Take X_eq;                                            "^
  1138           "      X' = Rewrite ruleZY False X;                             "^
  1139           (*z * denominator*)
  1140           "      (num_orig::real) = get_numerator (rhs X');               "^
  1141           "      X' = (Rewrite_Set norm_Rational False) X';               "^
  1142           (*simplify*)
  1143           "      (X'_z::real) = lhs X';                                   "^
  1144           "      (zzz::real) = argument_in X'_z;                          "^
  1145           "      (funterm::real) = rhs X';                                "^
  1146           (*drop X' z = for equation solving*)
  1147           "      (denom::real) = get_denominator funterm;                 "^
  1148           (*get_denominator*)
  1149           "      (num::real) = get_numerator funterm;                     "^
  1150           (*get_numerator*)
  1151           "      (equ::bool) = (denom = (0::real));                       "^
  1152           "      (L_L::bool list) = (SubProblem (PolyEq',                 "^
  1153           "         [abcFormula,degree_2,polynomial,univariate,equation], "^
  1154           "         [no_met])                                             "^
  1155           "         [BOOL equ, REAL zzz]);                                "^
  1156           "      (facs::real) = factors_from_solution L_L;                "^
  1157           "      (eql::real) = Take (num_orig / facs);                    "^ 
  1158 
  1159           "      (eqr::real) = (Try (Rewrite_Set ansatz_rls False)) eql;  "^
  1160 
  1161           "      (eq::bool) = Take (eql = eqr);                           "^
  1162           (*Maybe possible to use HOLogic.mk_eq ??*)
  1163           "      eq = (Try (Rewrite_Set equival_trans False)) eq;         "^ 
  1164 
  1165           "      eq = drop_questionmarks eq;                              "^
  1166           "      (z1::real) = (rhs (NTH 1 L_L));                          "^
  1167           (* 
  1168           * prepare equation for a - eq_a
  1169           * therefor substitute z with solution 1 - z1
  1170           *)
  1171           "      (z2::real) = (rhs (NTH 2 L_L));                          "^
  1172 
  1173           "      (eq_a::bool) = Take eq;                                  "^
  1174           "      eq_a = (Substitute [zzz=z1]) eq;                         "^
  1175           "      eq_a = (Rewrite_Set norm_Rational False) eq_a;           "^
  1176           "      (sol_a::bool list) =                                     "^
  1177           "                 (SubProblem (Isac',                           "^
  1178           "                              [univariate,equation],[no_met])  "^
  1179           "                              [BOOL eq_a, REAL (A::real)]);    "^
  1180           "      (a::real) = (rhs(NTH 1 sol_a));                          "^
  1181 
  1182           "      (eq_b::bool) = Take eq;                                  "^
  1183           "      eq_b =  (Substitute [zzz=z2]) eq_b;                      "^
  1184           "      eq_b = (Rewrite_Set norm_Rational False) eq_b;           "^
  1185           "      (sol_b::bool list) =                                     "^
  1186           "                 (SubProblem (Isac',                           "^
  1187           "                              [univariate,equation],[no_met])  "^
  1188           "                              [BOOL eq_b, REAL (B::real)]);    "^
  1189           "      (b::real) = (rhs(NTH 1 sol_b));                          "^
  1190 
  1191           "      eqr = drop_questionmarks eqr;                            "^
  1192           "      (pbz::real) = Take eqr;                                  "^
  1193           "      pbz = ((Substitute [A=a, B=b]) pbz);                     "^
  1194 
  1195           "      pbz = Rewrite ruleYZ False pbz;                          "^
  1196           "      pbz = drop_questionmarks pbz;                            "^
  1197 
  1198           "      (X_z::bool) = Take (X_z = pbz);                          "^
  1199           "      (n_eq::bool) = (Rewrite_Set inverse_z False) X_z;        "^
  1200           "      n_eq = drop_questionmarks n_eq                           "^
  1201           "in n_eq)")]
  1202 *}
  1203 
  1204 
  1205 subsection {*Check the Program*}
  1206 text{*\noindent When the script is ready we can start checking our work.*}
  1207 subsubsection {*Check the Formalization*}
  1208 text{*\noindent First we want to check the formalization of the in and
  1209        output of our program.*}
  1210 
  1211 ML {*
  1212   val fmz = 
  1213     ["filterExpression (X  = 3 / (z - 1/4 + -1/8 * (1/(z::real))))",
  1214      "stepResponse (x[n::real]::bool)"];
  1215   val (dI,pI,mI) = 
  1216     ("Isac", ["Inverse", "Z_Transform", "SignalProcessing"], 
  1217              ["SignalProcessing","Z_Transform","Inverse"]);
  1218 
  1219   val ([
  1220           (
  1221             1,
  1222             [1],
  1223             "#Given",
  1224             Const ("Inverse_Z_Transform.filterExpression", _),
  1225             [Const ("HOL.eq", _) $ _ $ _]
  1226           ),
  1227           (
  1228             2,
  1229             [1],
  1230             "#Find",
  1231             Const ("Inverse_Z_Transform.stepResponse", _),
  1232             [Free ("x", _) $ _]
  1233           )
  1234        ],_
  1235       ) = prep_ori fmz thy ((#ppc o get_pbt) pI);
  1236 
  1237   val Prog sc 
  1238     = (#scr o get_met) ["SignalProcessing",
  1239                         "Z_Transform",
  1240                         "Inverse"];
  1241   atomty sc;
  1242 *}
  1243 
  1244 subsubsection {*Stepwise Check the Program\label{sec:stepcheck}*}
  1245 text{*\noindent We start to stepwise execute our new program in a calculation
  1246       tree and check if every node implements that what we have wanted.*}
  1247       
  1248 ML {*
  1249   trace_rewrite := false; (*true*)
  1250   trace_script := false; (*true*)
  1251   print_depth 9;
  1252   
  1253   val fmz =
  1254     ["filterExpression (X z = 3 / ((z::real) + 1/10 - 1/50*(1/z)))",
  1255      "stepResponse (x[n::real]::bool)"];
  1256      
  1257   val (dI,pI,mI) =
  1258     ("Isac", ["Inverse", "Z_Transform", "SignalProcessing"], 
  1259              ["SignalProcessing","Z_Transform","Inverse"]);
  1260              
  1261   val (p,_,f,nxt,_,pt)  = CalcTreeTEST [(fmz, (dI,pI,mI))];
  1262   val (p,_,f,nxt,_,pt) = me nxt p [] pt; 
  1263     "Add_Given";
  1264   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1265     "Add_Find";
  1266   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1267     "Specify_Theory";
  1268   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1269     "Specify_Problem";
  1270   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1271     "Specify_Method";
  1272   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1273     "Apply_Method";
  1274   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1275     "Rewrite (ruleZY, Inverse_Z_Transform.ruleZY)";
  1276     "--> X z = 3 / (z - 1 / 4 + -1 / 8 * (1 / z))";
  1277   (*
  1278    * TODO naming!
  1279    *)
  1280   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1281     "Rewrite_Set norm_Rational";
  1282     " --> X' z = 3 / (z * (z - 1 / 4 + -1 / 8 * (1 / z)))";
  1283   val (p,_,f,nxt,_,pt) = me nxt p [] pt; 
  1284     "SubProblem";
  1285   print_depth 3;
  1286 *}
  1287 
  1288 text {*\noindent Instead of \ttfamily nxt = Subproblem \normalfont above we had
  1289        \ttfamily Empty\_Tac; \normalfont the search for the reason considered
  1290        the following points:\begin{itemize}
  1291        \item What shows \ttfamily show\_pt pt;\normalfont\ldots?
  1292 \begin{verbatim}(([2], Res), ?X' z = 24 / (-1 + -2 * z + 8 * z ^^^ 2))]\end{verbatim}
  1293          The calculation is ok but no \ttfamily next \normalfont step found:
  1294          Should be\\ \ttfamily nxt = Subproblem\normalfont!
  1295        \item What shows \ttfamily trace\_script := true; \normalfont we read
  1296          bottom up\ldots
  1297      \begin{verbatim}
  1298      @@@next leaf 'SubProblem
  1299      (PolyEq',[abcFormula, degree_2, polynomial, 
  1300                univariate, equation], no_meth)
  1301      [BOOL equ, REAL z]' 
  1302        ---> STac 'SubProblem (PolyEq',
  1303               [abcFormula, degree_2, polynomial,
  1304                univariate, equation], no_meth)
  1305      [BOOL (-1 + -2 * z + 8 * z \^\^\^ ~2 = 0), REAL z]'
  1306      \end{verbatim}
  1307          We see the SubProblem with correct arguments from searching next
  1308          step (program text !!!--->!!! STac (script tactic) with arguments
  1309          evaluated.)
  1310      \item Do we have the right Script \ldots difference in the
  1311          arguments in the arguments\ldots
  1312          \begin{verbatim}
  1313      val Prog s =
  1314      (#scr o get_met) ["SignalProcessing",
  1315                        "Z_Transform",
  1316                        "Inverse"];
  1317      writeln (term2str s);
  1318          \end{verbatim}
  1319          \ldots shows the right script. Difference in the arguments.
  1320      \item Test --- Why helpless here ? --- shows: \ttfamily replace
  1321          no\_meth by [no\_meth] \normalfont in Script
  1322      \end{itemize}
  1323 *}
  1324 
  1325 ML {*
  1326   val (p,_,f,nxt,_,pt) = me nxt p [] pt; 
  1327     (*Model_Problem";*)
  1328 *}
  1329 
  1330 text {*\noindent Instead of \ttfamily nxt = Model\_Problem \normalfont above
  1331        we had \ttfamily Empty\_Tac; \normalfont the search for the reason 
  1332        considered the following points:\begin{itemize}
  1333        \item Difference in the arguments
  1334        \item Comparison with Subsection~\ref{sec:solveq}: There solving this
  1335          equation works, so there must be some difference in the arguments
  1336          of the Subproblem: RIGHT: we had \ttfamily [no\_meth] \normalfont
  1337          instead of \ttfamily [no\_met] \normalfont ;-)
  1338        \end{itemize}*}
  1339 
  1340 ML {*
  1341   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1342     (*Add_Given equality (-1 + -2 * z + 8 * z ^^^ 2 = 0)";*)
  1343   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1344     (*Add_Given solveFor z";*)
  1345   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1346     (*Add_Find solutions z_i";*)
  1347   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1348     (*Specify_Theory Isac";*)
  1349 *}
  1350 
  1351 text {*\noindent We had \ttfamily nxt = Empty\_Tac instead Specify\_Theory;
  1352        \normalfont The search for the reason considered the following points:
  1353        \begin{itemize}
  1354        \item Was there an error message? NO -- ok
  1355        \item Has \ttfamily nxt = Add\_Find \normalfont been inserted in pt:\\
  1356          \ttfamily get\_obj g\_pbl pt (fst p);\normalfont? YES -- ok
  1357        \item What is the returned formula:
  1358 \begin{verbatim}
  1359 print_depth 999; f; print_depth 3;
  1360 { Find = [ Correct "solutions z_i"],
  1361   With = [],
  1362   Given = [Correct "equality (-1 + -2*z + 8*z ^^^ 2 = 0)",
  1363            Correct "solveFor z"],
  1364   Where = [...],
  1365   Relate = [] }
  1366 \end{verbatim}
  1367      \normalfont The only False is the reason: the Where (the precondition) is
  1368      False for good reasons: The precondition seems to check for linear
  1369      equations, not for the one we want to solve! Removed this error by
  1370      correcting the Script from \ttfamily SubProblem (PolyEq',
  1371      \lbrack linear,univariate,equation,
  1372        test\rbrack, \lbrack Test,solve\_linear\rbrack \normalfont to
  1373      \ttfamily SubProblem (PolyEq',\\ \lbrack abcFormula,degree\_2,
  1374        polynomial,univariate,equation\rbrack,\\
  1375                    \lbrack PolyEq,solve\_d2\_polyeq\_abc\_equation
  1376                    \rbrack\normalfont
  1377      You find the appropriate type of equation at the
  1378      {\sisac}-WEB-Page\footnote{
  1379      \href{http://www.ist.tugraz.at/projects/isac/www/kbase/pbl/index\_pbl.html}
  1380           {http://www.ist.tugraz.at/projects/isac/www/kbase/pbl/index\_pbl.html}
  1381                                }
  1382      And the respective method in \ttfamily Knowledge/PolyEq.thy \normalfont
  1383      at the respective \ttfamily store\_pbt. \normalfont Or you leave the
  1384      selection of the appropriate type to isac as done in the final Script ;-))
  1385   \end{itemize}*}
  1386   
  1387 ML {*
  1388   val (p,_,f,nxt,_,pt) = me nxt p [] pt; 
  1389     (*Specify_Problem [abcFormula,...";*)
  1390   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1391     (*Specify_Method [PolyEq,solve_d2_polyeq_abc_equation";*)
  1392   val (p,_,f,nxt,_,pt) = me nxt p [] pt; 
  1393     (*Apply_Method [PolyEq,solve_d2_polyeq_abc_equation";*)
  1394   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1395     (*Rewrite_Set_Inst ([(bdv, z)], d2_polyeq_abcFormula_simplify";*)
  1396   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1397   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1398   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1399   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1400   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1401   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1402   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1403   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1404   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1405   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1406   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1407   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1408   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1409   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1410   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1411   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1412   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1413     (*Specify_Problem ["normalise","polynomial","univariate","equation"]*)
  1414   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1415     (*Specify_Method ["PolyEq", "normalize_poly"]*)
  1416   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1417     (*Apply_Method ["PolyEq", "normalize_poly"]*)
  1418   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1419     (*Rewrite ("all_left", "PolyEq.all_left")*)
  1420   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1421     (*Rewrite_Set_Inst (["(bdv, A)"], "make_ratpoly_in")*)
  1422   val (p,_,f,nxt,_,pt) = me nxt p [] pt; 
  1423     (*Rewrite_Set "polyeq_simplify"*)
  1424   val (p,_,f,nxt,_,pt) = me nxt p [] pt; 
  1425     (*Subproblem("Isac",["degree_1","polynomial","univariate","equation"])*)
  1426   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1427   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1428   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1429   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1430   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1431   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1432   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1433   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1434   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1435   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1436   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1437   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1438   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1439   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1440   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1441   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1442   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1443   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1444   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1445   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1446   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1447   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1448   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1449   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1450   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1451   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1452   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1453   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1454   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1455   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1456   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1457   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1458   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1459   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1460   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1461   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1462   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1463   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1464   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1465   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1466   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1467   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1468   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1469   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1470   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1471   val (p,_,f,nxt,_,pt) = me nxt p [] pt; (*([11, 4, 5], Res) Check_Postcond*)
  1472   val (p,_,f,nxt,_,pt) = me nxt p [] pt; (*([11, 4], Res) Check_Postcond*)
  1473   val (p,_,f,nxt,_,pt) = me nxt p [] pt; (*([11], Res) Take*)
  1474   val (p,_,f,nxt,_,pt) = me nxt p [] pt; (*([12], Frm) Substitute*)
  1475   val (p,_,f,nxt,_,pt) = me nxt p [] pt; (*([12], Res) Rewrite*)
  1476   val (p,_,f,nxt,_,pt) = me nxt p [] pt; (*([13], Res) Take*)
  1477   val (p,_,f,nxt,_,pt) = me nxt p [] pt; (*([14], Frm) Empty_Tac*)
  1478 *}
  1479 ML {*
  1480   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1481 *}
  1482 ML {*
  1483   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1484 *}
  1485 ML {*
  1486   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1487 *}
  1488 ML {*
  1489   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1490 *}
  1491 ML {*
  1492   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1493 *}
  1494 ML {*
  1495   val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1496 *}
  1497 
  1498 ML {*
  1499 trace_script := true;
  1500 *}
  1501 ML {*
  1502 val (p,_,f,nxt,_,pt) = me nxt p [] pt;
  1503 *}
  1504 ML {*
  1505 Chead.show_pt pt;
  1506 *}
  1507 ML {*
  1508 *} 
  1509 ML {*
  1510 *} 
  1511 ML {*
  1512 *} 
  1513 ML {*
  1514 *} 
  1515 ML {*
  1516 *} 
  1517 ML {*
  1518 *} 
  1519 
  1520 text{*\noindent As a last step we check the tracing output of the last calc
  1521       tree instruction and compare it with the pre-calculated result.*}
  1522 
  1523 section {* Improve and Transfer into Knowledge *}
  1524 text {*
  1525   We want to improve the very long program \ttfamily InverseZTransform
  1526   \normalfont by modularisation: partial fraction decomposition shall
  1527   become a sub-problem.
  1528 
  1529   We could transfer all knowledge in \ttfamily Build\_Inverse\_Z\_Transform.thy 
  1530   \normalfont first to the \ttfamily Knowledge/Inverse\_Z\_Transform.thy 
  1531   \normalfont and then modularise. In this case TODO problems?!?
  1532 
  1533   We chose another way and go bottom up: first we build the sub-problem in
  1534   \ttfamily Partial\_Fractions.thy \normalfont with the term:
  1535 
  1536       $$\frac{3}{x\cdot(z - \frac{1}{4} + \frac{-1}{8}\cdot\frac{1}{z})}$$
  1537 
  1538   \noindent (how this still can be improved see \ttfamily Partial\_Fractions.thy\normalfont),
  1539   and re-use all stuff prepared in \ttfamily Build\_Inverse\_Z\_Transform.thy:
  1540   \normalfont The knowledge will be transferred to \ttfamily src/../Partial\_Fractions.thy 
  1541   \normalfont and the respective tests to:
  1542   \begin{center}\ttfamily test/../sartial\_fractions.sml\normalfont\end{center}
  1543 *}
  1544 
  1545 subsection {* Transfer to Partial\_Fractions.thy *}
  1546 text {*
  1547   First we transfer both, knowledge and tests into:
  1548   \begin{center}\ttfamily src/../Partial\_Fractions.thy\normalfont\end{center}
  1549   in order to immediately have the test results.
  1550 
  1551   We copy \ttfamily factors\_from\_solution, drop\_questionmarks,\\
  1552   ansatz\_2nd\_order \normalfont and rule-sets --- no problem.
  1553   
  1554   Also \ttfamily store\_pbt ..\\ "pbl\_simp\_rat\_partfrac"
  1555   \normalfont is easy.
  1556 
  1557   But then we copy from:\\
  1558   (1) \ttfamily Build\_Inverse\_Z\_Transform.thy store\_met\ldots "met\_SP\_Ztrans\_inv"
  1559   \normalfont\\ to\\ 
  1560   (2) \ttfamily Partial\_Fractions.thy store\_met\ldots "met\_SP\_Ztrans\_inv" 
  1561   \normalfont\\ and cut out the respective part from the program. First we ensure that
  1562   the string is correct. When we insert the string into (2)
  1563   \ttfamily store\_met .. "met\_partial\_fraction" \normalfont --- and get an error.
  1564 *}
  1565 
  1566 subsubsection {* 'Programming' in ISAC's TP-based Language *}
  1567 text {* 
  1568   At the present state writing programs in {\sisac} is particularly cumbersome.
  1569   So we give hints how to cope with the many obstacles. Below we describe the
  1570   steps we did in making (2) run.
  1571   
  1572   \begin{enumerate}
  1573     \item We check if the \textbf{string} containing the program is correct.
  1574     \item We check if the \textbf{types in the program} are correct.
  1575       For this purpose we start start with the first and last lines
  1576      \begin{verbatim}
  1577      "PartFracScript (f_f::real) (v_v::real) =       " ^
  1578      " (let X = Take f_f;                            " ^
  1579      "      pbz = ((Substitute []) X)                " ^
  1580      "  in pbz)"
  1581      \end{verbatim}
  1582        The last but one line helps not to bother with ';'.
  1583      \item Then we add line by line. Already the first line causes the error. 
  1584         So we investigate it by
  1585       \begin{verbatim}
  1586       val ctxt = Proof_Context.init_global @{theory "Inverse_Z_Transform"} ;
  1587       val SOME t = 
  1588         parseNEW ctxt "(num_orig::real) = 
  1589                           get_numerator(rhs f_f)";
  1590       \end{verbatim}
  1591         and see a type clash: \ttfamily rhs \normalfont from (1) requires type 
  1592         \ttfamily bool \normalfont while (2) wants to have \ttfamily (f\_f::real).
  1593         \normalfont Of course, we don't need \ttfamily rhs \normalfont anymore.
  1594       \item Type-checking can be very tedious. One might even inspect the
  1595         parse-tree of the program with {\sisac}'s specific debug tools:
  1596       \begin{verbatim}
  1597       val {scr = Prog t,...} = 
  1598         get_met ["simplification",
  1599                  "of_rationals",
  1600                  "to_partial_fraction"];
  1601       atomty_thy @{theory "Inverse_Z_Transform"} t ;
  1602       \end{verbatim}
  1603       \item We check if the \textbf{semantics of the program} by stepwise evaluation
  1604         of the program. Evaluation is done by the Lucas-Interpreter, which works
  1605         using the knowledge in theory Isac; so we have to re-build Isac. And the
  1606         test are performed simplest in a file which is loaded with Isac.
  1607         See \ttfamily tests/../partial\_fractions.sml \normalfont.
  1608   \end{enumerate}
  1609 *}
  1610 
  1611 subsection {* Transfer to Inverse\_Z\_Transform.thy *}
  1612 text {*
  1613   It was not possible to complete this task, because we ran out of time.
  1614 *}
  1615 
  1616 
  1617 end
  1618