src/HOL/Finite_Set.thy
author Christian Urban <urbanc@in.tum.de>
Wed, 07 Apr 2010 11:05:11 +0200
changeset 36079 fa0e354e6a39
parent 36045 b846881928ea
child 36176 3fe7e97ccca8
permissions -rw-r--r--
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
     1 (*  Title:      HOL/Finite_Set.thy
     2     Author:     Tobias Nipkow, Lawrence C Paulson and Markus Wenzel
     3                 with contributions by Jeremy Avigad
     4 *)
     5 
     6 header {* Finite sets *}
     7 
     8 theory Finite_Set
     9 imports Power Option
    10 begin
    11 
    12 subsection {* Predicate for finite sets *}
    13 
    14 inductive finite :: "'a set => bool"
    15   where
    16     emptyI [simp, intro!]: "finite {}"
    17   | insertI [simp, intro!]: "finite A ==> finite (insert a A)"
    18 
    19 lemma ex_new_if_finite: -- "does not depend on def of finite at all"
    20   assumes "\<not> finite (UNIV :: 'a set)" and "finite A"
    21   shows "\<exists>a::'a. a \<notin> A"
    22 proof -
    23   from assms have "A \<noteq> UNIV" by blast
    24   thus ?thesis by blast
    25 qed
    26 
    27 lemma finite_induct [case_names empty insert, induct set: finite]:
    28   "finite F ==>
    29     P {} ==> (!!x F. finite F ==> x \<notin> F ==> P F ==> P (insert x F)) ==> P F"
    30   -- {* Discharging @{text "x \<notin> F"} entails extra work. *}
    31 proof -
    32   assume "P {}" and
    33     insert: "!!x F. finite F ==> x \<notin> F ==> P F ==> P (insert x F)"
    34   assume "finite F"
    35   thus "P F"
    36   proof induct
    37     show "P {}" by fact
    38     fix x F assume F: "finite F" and P: "P F"
    39     show "P (insert x F)"
    40     proof cases
    41       assume "x \<in> F"
    42       hence "insert x F = F" by (rule insert_absorb)
    43       with P show ?thesis by (simp only:)
    44     next
    45       assume "x \<notin> F"
    46       from F this P show ?thesis by (rule insert)
    47     qed
    48   qed
    49 qed
    50 
    51 lemma finite_ne_induct[case_names singleton insert, consumes 2]:
    52 assumes fin: "finite F" shows "F \<noteq> {} \<Longrightarrow>
    53  \<lbrakk> \<And>x. P{x};
    54    \<And>x F. \<lbrakk> finite F; F \<noteq> {}; x \<notin> F; P F \<rbrakk> \<Longrightarrow> P (insert x F) \<rbrakk>
    55  \<Longrightarrow> P F"
    56 using fin
    57 proof induct
    58   case empty thus ?case by simp
    59 next
    60   case (insert x F)
    61   show ?case
    62   proof cases
    63     assume "F = {}"
    64     thus ?thesis using `P {x}` by simp
    65   next
    66     assume "F \<noteq> {}"
    67     thus ?thesis using insert by blast
    68   qed
    69 qed
    70 
    71 lemma finite_subset_induct [consumes 2, case_names empty insert]:
    72   assumes "finite F" and "F \<subseteq> A"
    73     and empty: "P {}"
    74     and insert: "!!a F. finite F ==> a \<in> A ==> a \<notin> F ==> P F ==> P (insert a F)"
    75   shows "P F"
    76 proof -
    77   from `finite F` and `F \<subseteq> A`
    78   show ?thesis
    79   proof induct
    80     show "P {}" by fact
    81   next
    82     fix x F
    83     assume "finite F" and "x \<notin> F" and
    84       P: "F \<subseteq> A ==> P F" and i: "insert x F \<subseteq> A"
    85     show "P (insert x F)"
    86     proof (rule insert)
    87       from i show "x \<in> A" by blast
    88       from i have "F \<subseteq> A" by blast
    89       with P show "P F" .
    90       show "finite F" by fact
    91       show "x \<notin> F" by fact
    92     qed
    93   qed
    94 qed
    95 
    96 
    97 text{* A finite choice principle. Does not need the SOME choice operator. *}
    98 lemma finite_set_choice:
    99   "finite A \<Longrightarrow> ALL x:A. (EX y. P x y) \<Longrightarrow> EX f. ALL x:A. P x (f x)"
   100 proof (induct set: finite)
   101   case empty thus ?case by simp
   102 next
   103   case (insert a A)
   104   then obtain f b where f: "ALL x:A. P x (f x)" and ab: "P a b" by auto
   105   show ?case (is "EX f. ?P f")
   106   proof
   107     show "?P(%x. if x = a then b else f x)" using f ab by auto
   108   qed
   109 qed
   110 
   111 
   112 text{* Finite sets are the images of initial segments of natural numbers: *}
   113 
   114 lemma finite_imp_nat_seg_image_inj_on:
   115   assumes fin: "finite A" 
   116   shows "\<exists> (n::nat) f. A = f ` {i. i<n} & inj_on f {i. i<n}"
   117 using fin
   118 proof induct
   119   case empty
   120   show ?case  
   121   proof show "\<exists>f. {} = f ` {i::nat. i < 0} & inj_on f {i. i<0}" by simp 
   122   qed
   123 next
   124   case (insert a A)
   125   have notinA: "a \<notin> A" by fact
   126   from insert.hyps obtain n f
   127     where "A = f ` {i::nat. i < n}" "inj_on f {i. i < n}" by blast
   128   hence "insert a A = f(n:=a) ` {i. i < Suc n}"
   129         "inj_on (f(n:=a)) {i. i < Suc n}" using notinA
   130     by (auto simp add: image_def Ball_def inj_on_def less_Suc_eq)
   131   thus ?case by blast
   132 qed
   133 
   134 lemma nat_seg_image_imp_finite:
   135   "!!f A. A = f ` {i::nat. i<n} \<Longrightarrow> finite A"
   136 proof (induct n)
   137   case 0 thus ?case by simp
   138 next
   139   case (Suc n)
   140   let ?B = "f ` {i. i < n}"
   141   have finB: "finite ?B" by(rule Suc.hyps[OF refl])
   142   show ?case
   143   proof cases
   144     assume "\<exists>k<n. f n = f k"
   145     hence "A = ?B" using Suc.prems by(auto simp:less_Suc_eq)
   146     thus ?thesis using finB by simp
   147   next
   148     assume "\<not>(\<exists> k<n. f n = f k)"
   149     hence "A = insert (f n) ?B" using Suc.prems by(auto simp:less_Suc_eq)
   150     thus ?thesis using finB by simp
   151   qed
   152 qed
   153 
   154 lemma finite_conv_nat_seg_image:
   155   "finite A = (\<exists> (n::nat) f. A = f ` {i::nat. i<n})"
   156 by(blast intro: nat_seg_image_imp_finite dest: finite_imp_nat_seg_image_inj_on)
   157 
   158 lemma finite_imp_inj_to_nat_seg:
   159 assumes "finite A"
   160 shows "EX f n::nat. f`A = {i. i<n} & inj_on f A"
   161 proof -
   162   from finite_imp_nat_seg_image_inj_on[OF `finite A`]
   163   obtain f and n::nat where bij: "bij_betw f {i. i<n} A"
   164     by (auto simp:bij_betw_def)
   165   let ?f = "the_inv_into {i. i<n} f"
   166   have "inj_on ?f A & ?f ` A = {i. i<n}"
   167     by (fold bij_betw_def) (rule bij_betw_the_inv_into[OF bij])
   168   thus ?thesis by blast
   169 qed
   170 
   171 lemma finite_Collect_less_nat[iff]: "finite{n::nat. n<k}"
   172 by(fastsimp simp: finite_conv_nat_seg_image)
   173 
   174 text {* Finiteness and set theoretic constructions *}
   175 
   176 lemma finite_UnI: "finite F ==> finite G ==> finite (F Un G)"
   177 by (induct set: finite) simp_all
   178 
   179 lemma finite_subset: "A \<subseteq> B ==> finite B ==> finite A"
   180   -- {* Every subset of a finite set is finite. *}
   181 proof -
   182   assume "finite B"
   183   thus "!!A. A \<subseteq> B ==> finite A"
   184   proof induct
   185     case empty
   186     thus ?case by simp
   187   next
   188     case (insert x F A)
   189     have A: "A \<subseteq> insert x F" and r: "A - {x} \<subseteq> F ==> finite (A - {x})" by fact+
   190     show "finite A"
   191     proof cases
   192       assume x: "x \<in> A"
   193       with A have "A - {x} \<subseteq> F" by (simp add: subset_insert_iff)
   194       with r have "finite (A - {x})" .
   195       hence "finite (insert x (A - {x}))" ..
   196       also have "insert x (A - {x}) = A" using x by (rule insert_Diff)
   197       finally show ?thesis .
   198     next
   199       show "A \<subseteq> F ==> ?thesis" by fact
   200       assume "x \<notin> A"
   201       with A show "A \<subseteq> F" by (simp add: subset_insert_iff)
   202     qed
   203   qed
   204 qed
   205 
   206 lemma rev_finite_subset: "finite B ==> A \<subseteq> B ==> finite A"
   207 by (rule finite_subset)
   208 
   209 lemma finite_Un [iff]: "finite (F Un G) = (finite F & finite G)"
   210 by (blast intro: finite_subset [of _ "X Un Y", standard] finite_UnI)
   211 
   212 lemma finite_Collect_disjI[simp]:
   213   "finite{x. P x | Q x} = (finite{x. P x} & finite{x. Q x})"
   214 by(simp add:Collect_disj_eq)
   215 
   216 lemma finite_Int [simp, intro]: "finite F | finite G ==> finite (F Int G)"
   217   -- {* The converse obviously fails. *}
   218 by (blast intro: finite_subset)
   219 
   220 lemma finite_Collect_conjI [simp, intro]:
   221   "finite{x. P x} | finite{x. Q x} ==> finite{x. P x & Q x}"
   222   -- {* The converse obviously fails. *}
   223 by(simp add:Collect_conj_eq)
   224 
   225 lemma finite_Collect_le_nat[iff]: "finite{n::nat. n<=k}"
   226 by(simp add: le_eq_less_or_eq)
   227 
   228 lemma finite_insert [simp]: "finite (insert a A) = finite A"
   229   apply (subst insert_is_Un)
   230   apply (simp only: finite_Un, blast)
   231   done
   232 
   233 lemma finite_Union[simp, intro]:
   234  "\<lbrakk> finite A; !!M. M \<in> A \<Longrightarrow> finite M \<rbrakk> \<Longrightarrow> finite(\<Union>A)"
   235 by (induct rule:finite_induct) simp_all
   236 
   237 lemma finite_Inter[intro]: "EX A:M. finite(A) \<Longrightarrow> finite(Inter M)"
   238 by (blast intro: Inter_lower finite_subset)
   239 
   240 lemma finite_INT[intro]: "EX x:I. finite(A x) \<Longrightarrow> finite(INT x:I. A x)"
   241 by (blast intro: INT_lower finite_subset)
   242 
   243 lemma finite_empty_induct:
   244   assumes "finite A"
   245     and "P A"
   246     and "!!a A. finite A ==> a:A ==> P A ==> P (A - {a})"
   247   shows "P {}"
   248 proof -
   249   have "P (A - A)"
   250   proof -
   251     {
   252       fix c b :: "'a set"
   253       assume c: "finite c" and b: "finite b"
   254         and P1: "P b" and P2: "!!x y. finite y ==> x \<in> y ==> P y ==> P (y - {x})"
   255       have "c \<subseteq> b ==> P (b - c)"
   256         using c
   257       proof induct
   258         case empty
   259         from P1 show ?case by simp
   260       next
   261         case (insert x F)
   262         have "P (b - F - {x})"
   263         proof (rule P2)
   264           from _ b show "finite (b - F)" by (rule finite_subset) blast
   265           from insert show "x \<in> b - F" by simp
   266           from insert show "P (b - F)" by simp
   267         qed
   268         also have "b - F - {x} = b - insert x F" by (rule Diff_insert [symmetric])
   269         finally show ?case .
   270       qed
   271     }
   272     then show ?thesis by this (simp_all add: assms)
   273   qed
   274   then show ?thesis by simp
   275 qed
   276 
   277 lemma finite_Diff [simp]: "finite A ==> finite (A - B)"
   278 by (rule Diff_subset [THEN finite_subset])
   279 
   280 lemma finite_Diff2 [simp]:
   281   assumes "finite B" shows "finite (A - B) = finite A"
   282 proof -
   283   have "finite A \<longleftrightarrow> finite((A-B) Un (A Int B))" by(simp add: Un_Diff_Int)
   284   also have "\<dots> \<longleftrightarrow> finite(A-B)" using `finite B` by(simp)
   285   finally show ?thesis ..
   286 qed
   287 
   288 lemma finite_compl[simp]:
   289   "finite(A::'a set) \<Longrightarrow> finite(-A) = finite(UNIV::'a set)"
   290 by(simp add:Compl_eq_Diff_UNIV)
   291 
   292 lemma finite_Collect_not[simp]:
   293   "finite{x::'a. P x} \<Longrightarrow> finite{x. ~P x} = finite(UNIV::'a set)"
   294 by(simp add:Collect_neg_eq)
   295 
   296 lemma finite_Diff_insert [iff]: "finite (A - insert a B) = finite (A - B)"
   297   apply (subst Diff_insert)
   298   apply (case_tac "a : A - B")
   299    apply (rule finite_insert [symmetric, THEN trans])
   300    apply (subst insert_Diff, simp_all)
   301   done
   302 
   303 
   304 text {* Image and Inverse Image over Finite Sets *}
   305 
   306 lemma finite_imageI[simp]: "finite F ==> finite (h ` F)"
   307   -- {* The image of a finite set is finite. *}
   308   by (induct set: finite) simp_all
   309 
   310 lemma finite_image_set [simp]:
   311   "finite {x. P x} \<Longrightarrow> finite { f x | x. P x }"
   312   by (simp add: image_Collect [symmetric])
   313 
   314 lemma finite_surj: "finite A ==> B <= f ` A ==> finite B"
   315   apply (frule finite_imageI)
   316   apply (erule finite_subset, assumption)
   317   done
   318 
   319 lemma finite_range_imageI:
   320     "finite (range g) ==> finite (range (%x. f (g x)))"
   321   apply (drule finite_imageI, simp add: range_composition)
   322   done
   323 
   324 lemma finite_imageD: "finite (f`A) ==> inj_on f A ==> finite A"
   325 proof -
   326   have aux: "!!A. finite (A - {}) = finite A" by simp
   327   fix B :: "'a set"
   328   assume "finite B"
   329   thus "!!A. f`A = B ==> inj_on f A ==> finite A"
   330     apply induct
   331      apply simp
   332     apply (subgoal_tac "EX y:A. f y = x & F = f ` (A - {y})")
   333      apply clarify
   334      apply (simp (no_asm_use) add: inj_on_def)
   335      apply (blast dest!: aux [THEN iffD1], atomize)
   336     apply (erule_tac V = "ALL A. ?PP (A)" in thin_rl)
   337     apply (frule subsetD [OF equalityD2 insertI1], clarify)
   338     apply (rule_tac x = xa in bexI)
   339      apply (simp_all add: inj_on_image_set_diff)
   340     done
   341 qed (rule refl)
   342 
   343 
   344 lemma inj_vimage_singleton: "inj f ==> f-`{a} \<subseteq> {THE x. f x = a}"
   345   -- {* The inverse image of a singleton under an injective function
   346          is included in a singleton. *}
   347   apply (auto simp add: inj_on_def)
   348   apply (blast intro: the_equality [symmetric])
   349   done
   350 
   351 lemma finite_vimageI: "[|finite F; inj h|] ==> finite (h -` F)"
   352   -- {* The inverse image of a finite set under an injective function
   353          is finite. *}
   354   apply (induct set: finite)
   355    apply simp_all
   356   apply (subst vimage_insert)
   357   apply (simp add: finite_subset [OF inj_vimage_singleton])
   358   done
   359 
   360 lemma finite_vimageD:
   361   assumes fin: "finite (h -` F)" and surj: "surj h"
   362   shows "finite F"
   363 proof -
   364   have "finite (h ` (h -` F))" using fin by (rule finite_imageI)
   365   also have "h ` (h -` F) = F" using surj by (rule surj_image_vimage_eq)
   366   finally show "finite F" .
   367 qed
   368 
   369 lemma finite_vimage_iff: "bij h \<Longrightarrow> finite (h -` F) \<longleftrightarrow> finite F"
   370   unfolding bij_def by (auto elim: finite_vimageD finite_vimageI)
   371 
   372 
   373 text {* The finite UNION of finite sets *}
   374 
   375 lemma finite_UN_I: "finite A ==> (!!a. a:A ==> finite (B a)) ==> finite (UN a:A. B a)"
   376   by (induct set: finite) simp_all
   377 
   378 text {*
   379   Strengthen RHS to
   380   @{prop "((ALL x:A. finite (B x)) & finite {x. x:A & B x \<noteq> {}})"}?
   381 
   382   We'd need to prove
   383   @{prop "finite C ==> ALL A B. (UNION A B) <= C --> finite {x. x:A & B x \<noteq> {}}"}
   384   by induction. *}
   385 
   386 lemma finite_UN [simp]:
   387   "finite A ==> finite (UNION A B) = (ALL x:A. finite (B x))"
   388 by (blast intro: finite_UN_I finite_subset)
   389 
   390 lemma finite_Collect_bex[simp]: "finite A \<Longrightarrow>
   391   finite{x. EX y:A. Q x y} = (ALL y:A. finite{x. Q x y})"
   392 apply(subgoal_tac "{x. EX y:A. Q x y} = UNION A (%y. {x. Q x y})")
   393  apply auto
   394 done
   395 
   396 lemma finite_Collect_bounded_ex[simp]: "finite{y. P y} \<Longrightarrow>
   397   finite{x. EX y. P y & Q x y} = (ALL y. P y \<longrightarrow> finite{x. Q x y})"
   398 apply(subgoal_tac "{x. EX y. P y & Q x y} = UNION {y. P y} (%y. {x. Q x y})")
   399  apply auto
   400 done
   401 
   402 
   403 lemma finite_Plus: "[| finite A; finite B |] ==> finite (A <+> B)"
   404 by (simp add: Plus_def)
   405 
   406 lemma finite_PlusD: 
   407   fixes A :: "'a set" and B :: "'b set"
   408   assumes fin: "finite (A <+> B)"
   409   shows "finite A" "finite B"
   410 proof -
   411   have "Inl ` A \<subseteq> A <+> B" by auto
   412   hence "finite (Inl ` A :: ('a + 'b) set)" using fin by(rule finite_subset)
   413   thus "finite A" by(rule finite_imageD)(auto intro: inj_onI)
   414 next
   415   have "Inr ` B \<subseteq> A <+> B" by auto
   416   hence "finite (Inr ` B :: ('a + 'b) set)" using fin by(rule finite_subset)
   417   thus "finite B" by(rule finite_imageD)(auto intro: inj_onI)
   418 qed
   419 
   420 lemma finite_Plus_iff[simp]: "finite (A <+> B) \<longleftrightarrow> finite A \<and> finite B"
   421 by(auto intro: finite_PlusD finite_Plus)
   422 
   423 lemma finite_Plus_UNIV_iff[simp]:
   424   "finite (UNIV :: ('a + 'b) set) =
   425   (finite (UNIV :: 'a set) & finite (UNIV :: 'b set))"
   426 by(subst UNIV_Plus_UNIV[symmetric])(rule finite_Plus_iff)
   427 
   428 
   429 text {* Sigma of finite sets *}
   430 
   431 lemma finite_SigmaI [simp]:
   432     "finite A ==> (!!a. a:A ==> finite (B a)) ==> finite (SIGMA a:A. B a)"
   433   by (unfold Sigma_def) (blast intro!: finite_UN_I)
   434 
   435 lemma finite_cartesian_product: "[| finite A; finite B |] ==>
   436     finite (A <*> B)"
   437   by (rule finite_SigmaI)
   438 
   439 lemma finite_Prod_UNIV:
   440     "finite (UNIV::'a set) ==> finite (UNIV::'b set) ==> finite (UNIV::('a * 'b) set)"
   441   apply (subgoal_tac "(UNIV:: ('a * 'b) set) = Sigma UNIV (%x. UNIV)")
   442    apply (erule ssubst)
   443    apply (erule finite_SigmaI, auto)
   444   done
   445 
   446 lemma finite_cartesian_productD1:
   447      "[| finite (A <*> B); B \<noteq> {} |] ==> finite A"
   448 apply (auto simp add: finite_conv_nat_seg_image) 
   449 apply (drule_tac x=n in spec) 
   450 apply (drule_tac x="fst o f" in spec) 
   451 apply (auto simp add: o_def) 
   452  prefer 2 apply (force dest!: equalityD2) 
   453 apply (drule equalityD1) 
   454 apply (rename_tac y x)
   455 apply (subgoal_tac "\<exists>k. k<n & f k = (x,y)") 
   456  prefer 2 apply force
   457 apply clarify
   458 apply (rule_tac x=k in image_eqI, auto)
   459 done
   460 
   461 lemma finite_cartesian_productD2:
   462      "[| finite (A <*> B); A \<noteq> {} |] ==> finite B"
   463 apply (auto simp add: finite_conv_nat_seg_image) 
   464 apply (drule_tac x=n in spec) 
   465 apply (drule_tac x="snd o f" in spec) 
   466 apply (auto simp add: o_def) 
   467  prefer 2 apply (force dest!: equalityD2) 
   468 apply (drule equalityD1)
   469 apply (rename_tac x y)
   470 apply (subgoal_tac "\<exists>k. k<n & f k = (x,y)") 
   471  prefer 2 apply force
   472 apply clarify
   473 apply (rule_tac x=k in image_eqI, auto)
   474 done
   475 
   476 
   477 text {* The powerset of a finite set *}
   478 
   479 lemma finite_Pow_iff [iff]: "finite (Pow A) = finite A"
   480 proof
   481   assume "finite (Pow A)"
   482   with _ have "finite ((%x. {x}) ` A)" by (rule finite_subset) blast
   483   thus "finite A" by (rule finite_imageD [unfolded inj_on_def]) simp
   484 next
   485   assume "finite A"
   486   thus "finite (Pow A)"
   487     by induct (simp_all add: Pow_insert)
   488 qed
   489 
   490 lemma finite_Collect_subsets[simp,intro]: "finite A \<Longrightarrow> finite{B. B \<subseteq> A}"
   491 by(simp add: Pow_def[symmetric])
   492 
   493 
   494 lemma finite_UnionD: "finite(\<Union>A) \<Longrightarrow> finite A"
   495 by(blast intro: finite_subset[OF subset_Pow_Union])
   496 
   497 
   498 lemma finite_subset_image:
   499   assumes "finite B"
   500   shows "B \<subseteq> f ` A \<Longrightarrow> \<exists>C\<subseteq>A. finite C \<and> B = f ` C"
   501 using assms proof(induct)
   502   case empty thus ?case by simp
   503 next
   504   case insert thus ?case
   505     by (clarsimp simp del: image_insert simp add: image_insert[symmetric])
   506        blast
   507 qed
   508 
   509 
   510 subsection {* Class @{text finite}  *}
   511 
   512 setup {* Sign.add_path "finite" *} -- {*FIXME: name tweaking*}
   513 class finite =
   514   assumes finite_UNIV: "finite (UNIV \<Colon> 'a set)"
   515 setup {* Sign.parent_path *}
   516 hide const finite
   517 
   518 context finite
   519 begin
   520 
   521 lemma finite [simp]: "finite (A \<Colon> 'a set)"
   522   by (rule subset_UNIV finite_UNIV finite_subset)+
   523 
   524 end
   525 
   526 lemma UNIV_unit [no_atp]:
   527   "UNIV = {()}" by auto
   528 
   529 instance unit :: finite proof
   530 qed (simp add: UNIV_unit)
   531 
   532 lemma UNIV_bool [no_atp]:
   533   "UNIV = {False, True}" by auto
   534 
   535 instance bool :: finite proof
   536 qed (simp add: UNIV_bool)
   537 
   538 instance * :: (finite, finite) finite proof
   539 qed (simp only: UNIV_Times_UNIV [symmetric] finite_cartesian_product finite)
   540 
   541 lemma finite_option_UNIV [simp]:
   542   "finite (UNIV :: 'a option set) = finite (UNIV :: 'a set)"
   543   by (auto simp add: UNIV_option_conv elim: finite_imageD intro: inj_Some)
   544 
   545 instance option :: (finite) finite proof
   546 qed (simp add: UNIV_option_conv)
   547 
   548 lemma inj_graph: "inj (%f. {(x, y). y = f x})"
   549   by (rule inj_onI, auto simp add: expand_set_eq expand_fun_eq)
   550 
   551 instance "fun" :: (finite, finite) finite
   552 proof
   553   show "finite (UNIV :: ('a => 'b) set)"
   554   proof (rule finite_imageD)
   555     let ?graph = "%f::'a => 'b. {(x, y). y = f x}"
   556     have "range ?graph \<subseteq> Pow UNIV" by simp
   557     moreover have "finite (Pow (UNIV :: ('a * 'b) set))"
   558       by (simp only: finite_Pow_iff finite)
   559     ultimately show "finite (range ?graph)"
   560       by (rule finite_subset)
   561     show "inj ?graph" by (rule inj_graph)
   562   qed
   563 qed
   564 
   565 instance "+" :: (finite, finite) finite proof
   566 qed (simp only: UNIV_Plus_UNIV [symmetric] finite_Plus finite)
   567 
   568 
   569 subsection {* A basic fold functional for finite sets *}
   570 
   571 text {* The intended behaviour is
   572 @{text "fold f z {x\<^isub>1, ..., x\<^isub>n} = f x\<^isub>1 (\<dots> (f x\<^isub>n z)\<dots>)"}
   573 if @{text f} is ``left-commutative'':
   574 *}
   575 
   576 locale fun_left_comm =
   577   fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'b"
   578   assumes fun_left_comm: "f x (f y z) = f y (f x z)"
   579 begin
   580 
   581 text{* On a functional level it looks much nicer: *}
   582 
   583 lemma fun_comp_comm:  "f x \<circ> f y = f y \<circ> f x"
   584 by (simp add: fun_left_comm expand_fun_eq)
   585 
   586 end
   587 
   588 inductive fold_graph :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> bool"
   589 for f :: "'a \<Rightarrow> 'b \<Rightarrow> 'b" and z :: 'b where
   590   emptyI [intro]: "fold_graph f z {} z" |
   591   insertI [intro]: "x \<notin> A \<Longrightarrow> fold_graph f z A y
   592       \<Longrightarrow> fold_graph f z (insert x A) (f x y)"
   593 
   594 inductive_cases empty_fold_graphE [elim!]: "fold_graph f z {} x"
   595 
   596 definition fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b" where
   597 [code del]: "fold f z A = (THE y. fold_graph f z A y)"
   598 
   599 text{*A tempting alternative for the definiens is
   600 @{term "if finite A then THE y. fold_graph f z A y else e"}.
   601 It allows the removal of finiteness assumptions from the theorems
   602 @{text fold_comm}, @{text fold_reindex} and @{text fold_distrib}.
   603 The proofs become ugly. It is not worth the effort. (???) *}
   604 
   605 
   606 lemma Diff1_fold_graph:
   607   "fold_graph f z (A - {x}) y \<Longrightarrow> x \<in> A \<Longrightarrow> fold_graph f z A (f x y)"
   608 by (erule insert_Diff [THEN subst], rule fold_graph.intros, auto)
   609 
   610 lemma fold_graph_imp_finite: "fold_graph f z A x \<Longrightarrow> finite A"
   611 by (induct set: fold_graph) auto
   612 
   613 lemma finite_imp_fold_graph: "finite A \<Longrightarrow> \<exists>x. fold_graph f z A x"
   614 by (induct set: finite) auto
   615 
   616 
   617 subsubsection{*From @{const fold_graph} to @{term fold}*}
   618 
   619 context fun_left_comm
   620 begin
   621 
   622 lemma fold_graph_insertE_aux:
   623   "fold_graph f z A y \<Longrightarrow> a \<in> A \<Longrightarrow> \<exists>y'. y = f a y' \<and> fold_graph f z (A - {a}) y'"
   624 proof (induct set: fold_graph)
   625   case (insertI x A y) show ?case
   626   proof (cases "x = a")
   627     assume "x = a" with insertI show ?case by auto
   628   next
   629     assume "x \<noteq> a"
   630     then obtain y' where y: "y = f a y'" and y': "fold_graph f z (A - {a}) y'"
   631       using insertI by auto
   632     have 1: "f x y = f a (f x y')"
   633       unfolding y by (rule fun_left_comm)
   634     have 2: "fold_graph f z (insert x A - {a}) (f x y')"
   635       using y' and `x \<noteq> a` and `x \<notin> A`
   636       by (simp add: insert_Diff_if fold_graph.insertI)
   637     from 1 2 show ?case by fast
   638   qed
   639 qed simp
   640 
   641 lemma fold_graph_insertE:
   642   assumes "fold_graph f z (insert x A) v" and "x \<notin> A"
   643   obtains y where "v = f x y" and "fold_graph f z A y"
   644 using assms by (auto dest: fold_graph_insertE_aux [OF _ insertI1])
   645 
   646 lemma fold_graph_determ:
   647   "fold_graph f z A x \<Longrightarrow> fold_graph f z A y \<Longrightarrow> y = x"
   648 proof (induct arbitrary: y set: fold_graph)
   649   case (insertI x A y v)
   650   from `fold_graph f z (insert x A) v` and `x \<notin> A`
   651   obtain y' where "v = f x y'" and "fold_graph f z A y'"
   652     by (rule fold_graph_insertE)
   653   from `fold_graph f z A y'` have "y' = y" by (rule insertI)
   654   with `v = f x y'` show "v = f x y" by simp
   655 qed fast
   656 
   657 lemma fold_equality:
   658   "fold_graph f z A y \<Longrightarrow> fold f z A = y"
   659 by (unfold fold_def) (blast intro: fold_graph_determ)
   660 
   661 lemma fold_graph_fold: "finite A \<Longrightarrow> fold_graph f z A (fold f z A)"
   662 unfolding fold_def
   663 apply (rule theI')
   664 apply (rule ex_ex1I)
   665 apply (erule finite_imp_fold_graph)
   666 apply (erule (1) fold_graph_determ)
   667 done
   668 
   669 text{* The base case for @{text fold}: *}
   670 
   671 lemma (in -) fold_empty [simp]: "fold f z {} = z"
   672 by (unfold fold_def) blast
   673 
   674 text{* The various recursion equations for @{const fold}: *}
   675 
   676 lemma fold_insert [simp]:
   677   "finite A ==> x \<notin> A ==> fold f z (insert x A) = f x (fold f z A)"
   678 apply (rule fold_equality)
   679 apply (erule fold_graph.insertI)
   680 apply (erule fold_graph_fold)
   681 done
   682 
   683 lemma fold_fun_comm:
   684   "finite A \<Longrightarrow> f x (fold f z A) = fold f (f x z) A"
   685 proof (induct rule: finite_induct)
   686   case empty then show ?case by simp
   687 next
   688   case (insert y A) then show ?case
   689     by (simp add: fun_left_comm[of x])
   690 qed
   691 
   692 lemma fold_insert2:
   693   "finite A \<Longrightarrow> x \<notin> A \<Longrightarrow> fold f z (insert x A) = fold f (f x z) A"
   694 by (simp add: fold_fun_comm)
   695 
   696 lemma fold_rec:
   697 assumes "finite A" and "x \<in> A"
   698 shows "fold f z A = f x (fold f z (A - {x}))"
   699 proof -
   700   have A: "A = insert x (A - {x})" using `x \<in> A` by blast
   701   then have "fold f z A = fold f z (insert x (A - {x}))" by simp
   702   also have "\<dots> = f x (fold f z (A - {x}))"
   703     by (rule fold_insert) (simp add: `finite A`)+
   704   finally show ?thesis .
   705 qed
   706 
   707 lemma fold_insert_remove:
   708   assumes "finite A"
   709   shows "fold f z (insert x A) = f x (fold f z (A - {x}))"
   710 proof -
   711   from `finite A` have "finite (insert x A)" by auto
   712   moreover have "x \<in> insert x A" by auto
   713   ultimately have "fold f z (insert x A) = f x (fold f z (insert x A - {x}))"
   714     by (rule fold_rec)
   715   then show ?thesis by simp
   716 qed
   717 
   718 end
   719 
   720 text{* A simplified version for idempotent functions: *}
   721 
   722 locale fun_left_comm_idem = fun_left_comm +
   723   assumes fun_left_idem: "f x (f x z) = f x z"
   724 begin
   725 
   726 text{* The nice version: *}
   727 lemma fun_comp_idem : "f x o f x = f x"
   728 by (simp add: fun_left_idem expand_fun_eq)
   729 
   730 lemma fold_insert_idem:
   731   assumes fin: "finite A"
   732   shows "fold f z (insert x A) = f x (fold f z A)"
   733 proof cases
   734   assume "x \<in> A"
   735   then obtain B where "A = insert x B" and "x \<notin> B" by (rule set_insert)
   736   then show ?thesis using assms by (simp add:fun_left_idem)
   737 next
   738   assume "x \<notin> A" then show ?thesis using assms by simp
   739 qed
   740 
   741 declare fold_insert[simp del] fold_insert_idem[simp]
   742 
   743 lemma fold_insert_idem2:
   744   "finite A \<Longrightarrow> fold f z (insert x A) = fold f (f x z) A"
   745 by(simp add:fold_fun_comm)
   746 
   747 end
   748 
   749 
   750 subsubsection {* Expressing set operations via @{const fold} *}
   751 
   752 lemma (in fun_left_comm) fun_left_comm_apply:
   753   "fun_left_comm (\<lambda>x. f (g x))"
   754 proof
   755 qed (simp_all add: fun_left_comm)
   756 
   757 lemma (in fun_left_comm_idem) fun_left_comm_idem_apply:
   758   "fun_left_comm_idem (\<lambda>x. f (g x))"
   759   by (rule fun_left_comm_idem.intro, rule fun_left_comm_apply, unfold_locales)
   760     (simp_all add: fun_left_idem)
   761 
   762 lemma fun_left_comm_idem_insert:
   763   "fun_left_comm_idem insert"
   764 proof
   765 qed auto
   766 
   767 lemma fun_left_comm_idem_remove:
   768   "fun_left_comm_idem (\<lambda>x A. A - {x})"
   769 proof
   770 qed auto
   771 
   772 lemma (in semilattice_inf) fun_left_comm_idem_inf:
   773   "fun_left_comm_idem inf"
   774 proof
   775 qed (auto simp add: inf_left_commute)
   776 
   777 lemma (in semilattice_sup) fun_left_comm_idem_sup:
   778   "fun_left_comm_idem sup"
   779 proof
   780 qed (auto simp add: sup_left_commute)
   781 
   782 lemma union_fold_insert:
   783   assumes "finite A"
   784   shows "A \<union> B = fold insert B A"
   785 proof -
   786   interpret fun_left_comm_idem insert by (fact fun_left_comm_idem_insert)
   787   from `finite A` show ?thesis by (induct A arbitrary: B) simp_all
   788 qed
   789 
   790 lemma minus_fold_remove:
   791   assumes "finite A"
   792   shows "B - A = fold (\<lambda>x A. A - {x}) B A"
   793 proof -
   794   interpret fun_left_comm_idem "\<lambda>x A. A - {x}" by (fact fun_left_comm_idem_remove)
   795   from `finite A` show ?thesis by (induct A arbitrary: B) auto
   796 qed
   797 
   798 context complete_lattice
   799 begin
   800 
   801 lemma inf_Inf_fold_inf:
   802   assumes "finite A"
   803   shows "inf B (Inf A) = fold inf B A"
   804 proof -
   805   interpret fun_left_comm_idem inf by (fact fun_left_comm_idem_inf)
   806   from `finite A` show ?thesis by (induct A arbitrary: B)
   807     (simp_all add: Inf_empty Inf_insert inf_commute fold_fun_comm)
   808 qed
   809 
   810 lemma sup_Sup_fold_sup:
   811   assumes "finite A"
   812   shows "sup B (Sup A) = fold sup B A"
   813 proof -
   814   interpret fun_left_comm_idem sup by (fact fun_left_comm_idem_sup)
   815   from `finite A` show ?thesis by (induct A arbitrary: B)
   816     (simp_all add: Sup_empty Sup_insert sup_commute fold_fun_comm)
   817 qed
   818 
   819 lemma Inf_fold_inf:
   820   assumes "finite A"
   821   shows "Inf A = fold inf top A"
   822   using assms inf_Inf_fold_inf [of A top] by (simp add: inf_absorb2)
   823 
   824 lemma Sup_fold_sup:
   825   assumes "finite A"
   826   shows "Sup A = fold sup bot A"
   827   using assms sup_Sup_fold_sup [of A bot] by (simp add: sup_absorb2)
   828 
   829 lemma inf_INFI_fold_inf:
   830   assumes "finite A"
   831   shows "inf B (INFI A f) = fold (\<lambda>A. inf (f A)) B A" (is "?inf = ?fold") 
   832 proof (rule sym)
   833   interpret fun_left_comm_idem inf by (fact fun_left_comm_idem_inf)
   834   interpret fun_left_comm_idem "\<lambda>A. inf (f A)" by (fact fun_left_comm_idem_apply)
   835   from `finite A` show "?fold = ?inf"
   836   by (induct A arbitrary: B)
   837     (simp_all add: INFI_def Inf_empty Inf_insert inf_left_commute)
   838 qed
   839 
   840 lemma sup_SUPR_fold_sup:
   841   assumes "finite A"
   842   shows "sup B (SUPR A f) = fold (\<lambda>A. sup (f A)) B A" (is "?sup = ?fold") 
   843 proof (rule sym)
   844   interpret fun_left_comm_idem sup by (fact fun_left_comm_idem_sup)
   845   interpret fun_left_comm_idem "\<lambda>A. sup (f A)" by (fact fun_left_comm_idem_apply)
   846   from `finite A` show "?fold = ?sup"
   847   by (induct A arbitrary: B)
   848     (simp_all add: SUPR_def Sup_empty Sup_insert sup_left_commute)
   849 qed
   850 
   851 lemma INFI_fold_inf:
   852   assumes "finite A"
   853   shows "INFI A f = fold (\<lambda>A. inf (f A)) top A"
   854   using assms inf_INFI_fold_inf [of A top] by simp
   855 
   856 lemma SUPR_fold_sup:
   857   assumes "finite A"
   858   shows "SUPR A f = fold (\<lambda>A. sup (f A)) bot A"
   859   using assms sup_SUPR_fold_sup [of A bot] by simp
   860 
   861 end
   862 
   863 
   864 subsection {* The derived combinator @{text fold_image} *}
   865 
   866 definition fold_image :: "('b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b"
   867 where "fold_image f g = fold (%x y. f (g x) y)"
   868 
   869 lemma fold_image_empty[simp]: "fold_image f g z {} = z"
   870 by(simp add:fold_image_def)
   871 
   872 context ab_semigroup_mult
   873 begin
   874 
   875 lemma fold_image_insert[simp]:
   876 assumes "finite A" and "a \<notin> A"
   877 shows "fold_image times g z (insert a A) = g a * (fold_image times g z A)"
   878 proof -
   879   interpret I: fun_left_comm "%x y. (g x) * y"
   880     by unfold_locales (simp add: mult_ac)
   881   show ?thesis using assms by(simp add:fold_image_def)
   882 qed
   883 
   884 (*
   885 lemma fold_commute:
   886   "finite A ==> (!!z. x * (fold times g z A) = fold times g (x * z) A)"
   887   apply (induct set: finite)
   888    apply simp
   889   apply (simp add: mult_left_commute [of x])
   890   done
   891 
   892 lemma fold_nest_Un_Int:
   893   "finite A ==> finite B
   894     ==> fold times g (fold times g z B) A = fold times g (fold times g z (A Int B)) (A Un B)"
   895   apply (induct set: finite)
   896    apply simp
   897   apply (simp add: fold_commute Int_insert_left insert_absorb)
   898   done
   899 
   900 lemma fold_nest_Un_disjoint:
   901   "finite A ==> finite B ==> A Int B = {}
   902     ==> fold times g z (A Un B) = fold times g (fold times g z B) A"
   903   by (simp add: fold_nest_Un_Int)
   904 *)
   905 
   906 lemma fold_image_reindex:
   907 assumes fin: "finite A"
   908 shows "inj_on h A \<Longrightarrow> fold_image times g z (h`A) = fold_image times (g\<circ>h) z A"
   909 using fin by induct auto
   910 
   911 (*
   912 text{*
   913   Fusion theorem, as described in Graham Hutton's paper,
   914   A Tutorial on the Universality and Expressiveness of Fold,
   915   JFP 9:4 (355-372), 1999.
   916 *}
   917 
   918 lemma fold_fusion:
   919   assumes "ab_semigroup_mult g"
   920   assumes fin: "finite A"
   921     and hyp: "\<And>x y. h (g x y) = times x (h y)"
   922   shows "h (fold g j w A) = fold times j (h w) A"
   923 proof -
   924   class_interpret ab_semigroup_mult [g] by fact
   925   show ?thesis using fin hyp by (induct set: finite) simp_all
   926 qed
   927 *)
   928 
   929 lemma fold_image_cong:
   930   "finite A \<Longrightarrow>
   931   (!!x. x:A ==> g x = h x) ==> fold_image times g z A = fold_image times h z A"
   932 apply (subgoal_tac "ALL C. C <= A --> (ALL x:C. g x = h x) --> fold_image times g z C = fold_image times h z C")
   933  apply simp
   934 apply (erule finite_induct, simp)
   935 apply (simp add: subset_insert_iff, clarify)
   936 apply (subgoal_tac "finite C")
   937  prefer 2 apply (blast dest: finite_subset [COMP swap_prems_rl])
   938 apply (subgoal_tac "C = insert x (C - {x})")
   939  prefer 2 apply blast
   940 apply (erule ssubst)
   941 apply (drule spec)
   942 apply (erule (1) notE impE)
   943 apply (simp add: Ball_def del: insert_Diff_single)
   944 done
   945 
   946 end
   947 
   948 context comm_monoid_mult
   949 begin
   950 
   951 lemma fold_image_1:
   952   "finite S \<Longrightarrow> (\<forall>x\<in>S. f x = 1) \<Longrightarrow> fold_image op * f 1 S = 1"
   953   apply (induct set: finite)
   954   apply simp by auto
   955 
   956 lemma fold_image_Un_Int:
   957   "finite A ==> finite B ==>
   958     fold_image times g 1 A * fold_image times g 1 B =
   959     fold_image times g 1 (A Un B) * fold_image times g 1 (A Int B)"
   960 by (induct set: finite) 
   961    (auto simp add: mult_ac insert_absorb Int_insert_left)
   962 
   963 lemma fold_image_Un_one:
   964   assumes fS: "finite S" and fT: "finite T"
   965   and I0: "\<forall>x \<in> S\<inter>T. f x = 1"
   966   shows "fold_image (op *) f 1 (S \<union> T) = fold_image (op *) f 1 S * fold_image (op *) f 1 T"
   967 proof-
   968   have "fold_image op * f 1 (S \<inter> T) = 1" 
   969     apply (rule fold_image_1)
   970     using fS fT I0 by auto 
   971   with fold_image_Un_Int[OF fS fT] show ?thesis by simp
   972 qed
   973 
   974 corollary fold_Un_disjoint:
   975   "finite A ==> finite B ==> A Int B = {} ==>
   976    fold_image times g 1 (A Un B) =
   977    fold_image times g 1 A * fold_image times g 1 B"
   978 by (simp add: fold_image_Un_Int)
   979 
   980 lemma fold_image_UN_disjoint:
   981   "\<lbrakk> finite I; ALL i:I. finite (A i);
   982      ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {} \<rbrakk>
   983    \<Longrightarrow> fold_image times g 1 (UNION I A) =
   984        fold_image times (%i. fold_image times g 1 (A i)) 1 I"
   985 apply (induct set: finite, simp, atomize)
   986 apply (subgoal_tac "ALL i:F. x \<noteq> i")
   987  prefer 2 apply blast
   988 apply (subgoal_tac "A x Int UNION F A = {}")
   989  prefer 2 apply blast
   990 apply (simp add: fold_Un_disjoint)
   991 done
   992 
   993 lemma fold_image_Sigma: "finite A ==> ALL x:A. finite (B x) ==>
   994   fold_image times (%x. fold_image times (g x) 1 (B x)) 1 A =
   995   fold_image times (split g) 1 (SIGMA x:A. B x)"
   996 apply (subst Sigma_def)
   997 apply (subst fold_image_UN_disjoint, assumption, simp)
   998  apply blast
   999 apply (erule fold_image_cong)
  1000 apply (subst fold_image_UN_disjoint, simp, simp)
  1001  apply blast
  1002 apply simp
  1003 done
  1004 
  1005 lemma fold_image_distrib: "finite A \<Longrightarrow>
  1006    fold_image times (%x. g x * h x) 1 A =
  1007    fold_image times g 1 A *  fold_image times h 1 A"
  1008 by (erule finite_induct) (simp_all add: mult_ac)
  1009 
  1010 lemma fold_image_related: 
  1011   assumes Re: "R e e" 
  1012   and Rop: "\<forall>x1 y1 x2 y2. R x1 x2 \<and> R y1 y2 \<longrightarrow> R (x1 * y1) (x2 * y2)" 
  1013   and fS: "finite S" and Rfg: "\<forall>x\<in>S. R (h x) (g x)"
  1014   shows "R (fold_image (op *) h e S) (fold_image (op *) g e S)"
  1015   using fS by (rule finite_subset_induct) (insert assms, auto)
  1016 
  1017 lemma  fold_image_eq_general:
  1018   assumes fS: "finite S"
  1019   and h: "\<forall>y\<in>S'. \<exists>!x. x\<in> S \<and> h(x) = y" 
  1020   and f12:  "\<forall>x\<in>S. h x \<in> S' \<and> f2(h x) = f1 x"
  1021   shows "fold_image (op *) f1 e S = fold_image (op *) f2 e S'"
  1022 proof-
  1023   from h f12 have hS: "h ` S = S'" by auto
  1024   {fix x y assume H: "x \<in> S" "y \<in> S" "h x = h y"
  1025     from f12 h H  have "x = y" by auto }
  1026   hence hinj: "inj_on h S" unfolding inj_on_def Ex1_def by blast
  1027   from f12 have th: "\<And>x. x \<in> S \<Longrightarrow> (f2 \<circ> h) x = f1 x" by auto 
  1028   from hS have "fold_image (op *) f2 e S' = fold_image (op *) f2 e (h ` S)" by simp
  1029   also have "\<dots> = fold_image (op *) (f2 o h) e S" 
  1030     using fold_image_reindex[OF fS hinj, of f2 e] .
  1031   also have "\<dots> = fold_image (op *) f1 e S " using th fold_image_cong[OF fS, of "f2 o h" f1 e]
  1032     by blast
  1033   finally show ?thesis ..
  1034 qed
  1035 
  1036 lemma fold_image_eq_general_inverses:
  1037   assumes fS: "finite S" 
  1038   and kh: "\<And>y. y \<in> T \<Longrightarrow> k y \<in> S \<and> h (k y) = y"
  1039   and hk: "\<And>x. x \<in> S \<Longrightarrow> h x \<in> T \<and> k (h x) = x  \<and> g (h x) = f x"
  1040   shows "fold_image (op *) f e S = fold_image (op *) g e T"
  1041   (* metis solves it, but not yet available here *)
  1042   apply (rule fold_image_eq_general[OF fS, of T h g f e])
  1043   apply (rule ballI)
  1044   apply (frule kh)
  1045   apply (rule ex1I[])
  1046   apply blast
  1047   apply clarsimp
  1048   apply (drule hk) apply simp
  1049   apply (rule sym)
  1050   apply (erule conjunct1[OF conjunct2[OF hk]])
  1051   apply (rule ballI)
  1052   apply (drule  hk)
  1053   apply blast
  1054   done
  1055 
  1056 end
  1057 
  1058 
  1059 subsection {* A fold functional for non-empty sets *}
  1060 
  1061 text{* Does not require start value. *}
  1062 
  1063 inductive
  1064   fold1Set :: "('a => 'a => 'a) => 'a set => 'a => bool"
  1065   for f :: "'a => 'a => 'a"
  1066 where
  1067   fold1Set_insertI [intro]:
  1068    "\<lbrakk> fold_graph f a A x; a \<notin> A \<rbrakk> \<Longrightarrow> fold1Set f (insert a A) x"
  1069 
  1070 definition fold1 :: "('a => 'a => 'a) => 'a set => 'a" where
  1071   "fold1 f A == THE x. fold1Set f A x"
  1072 
  1073 lemma fold1Set_nonempty:
  1074   "fold1Set f A x \<Longrightarrow> A \<noteq> {}"
  1075 by(erule fold1Set.cases, simp_all)
  1076 
  1077 inductive_cases empty_fold1SetE [elim!]: "fold1Set f {} x"
  1078 
  1079 inductive_cases insert_fold1SetE [elim!]: "fold1Set f (insert a X) x"
  1080 
  1081 
  1082 lemma fold1Set_sing [iff]: "(fold1Set f {a} b) = (a = b)"
  1083 by (blast elim: fold_graph.cases)
  1084 
  1085 lemma fold1_singleton [simp]: "fold1 f {a} = a"
  1086 by (unfold fold1_def) blast
  1087 
  1088 lemma finite_nonempty_imp_fold1Set:
  1089   "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> EX x. fold1Set f A x"
  1090 apply (induct A rule: finite_induct)
  1091 apply (auto dest: finite_imp_fold_graph [of _ f])
  1092 done
  1093 
  1094 text{*First, some lemmas about @{const fold_graph}.*}
  1095 
  1096 context ab_semigroup_mult
  1097 begin
  1098 
  1099 lemma fun_left_comm: "fun_left_comm(op *)"
  1100 by unfold_locales (simp add: mult_ac)
  1101 
  1102 lemma fold_graph_insert_swap:
  1103 assumes fold: "fold_graph times (b::'a) A y" and "b \<notin> A"
  1104 shows "fold_graph times z (insert b A) (z * y)"
  1105 proof -
  1106   interpret fun_left_comm "op *::'a \<Rightarrow> 'a \<Rightarrow> 'a" by (rule fun_left_comm)
  1107 from assms show ?thesis
  1108 proof (induct rule: fold_graph.induct)
  1109   case emptyI show ?case by (subst mult_commute [of z b], fast)
  1110 next
  1111   case (insertI x A y)
  1112     have "fold_graph times z (insert x (insert b A)) (x * (z * y))"
  1113       using insertI by force  --{*how does @{term id} get unfolded?*}
  1114     thus ?case by (simp add: insert_commute mult_ac)
  1115 qed
  1116 qed
  1117 
  1118 lemma fold_graph_permute_diff:
  1119 assumes fold: "fold_graph times b A x"
  1120 shows "!!a. \<lbrakk>a \<in> A; b \<notin> A\<rbrakk> \<Longrightarrow> fold_graph times a (insert b (A-{a})) x"
  1121 using fold
  1122 proof (induct rule: fold_graph.induct)
  1123   case emptyI thus ?case by simp
  1124 next
  1125   case (insertI x A y)
  1126   have "a = x \<or> a \<in> A" using insertI by simp
  1127   thus ?case
  1128   proof
  1129     assume "a = x"
  1130     with insertI show ?thesis
  1131       by (simp add: id_def [symmetric], blast intro: fold_graph_insert_swap)
  1132   next
  1133     assume ainA: "a \<in> A"
  1134     hence "fold_graph times a (insert x (insert b (A - {a}))) (x * y)"
  1135       using insertI by force
  1136     moreover
  1137     have "insert x (insert b (A - {a})) = insert b (insert x A - {a})"
  1138       using ainA insertI by blast
  1139     ultimately show ?thesis by simp
  1140   qed
  1141 qed
  1142 
  1143 lemma fold1_eq_fold:
  1144 assumes "finite A" "a \<notin> A" shows "fold1 times (insert a A) = fold times a A"
  1145 proof -
  1146   interpret fun_left_comm "op *::'a \<Rightarrow> 'a \<Rightarrow> 'a" by (rule fun_left_comm)
  1147   from assms show ?thesis
  1148 apply (simp add: fold1_def fold_def)
  1149 apply (rule the_equality)
  1150 apply (best intro: fold_graph_determ theI dest: finite_imp_fold_graph [of _ times])
  1151 apply (rule sym, clarify)
  1152 apply (case_tac "Aa=A")
  1153  apply (best intro: fold_graph_determ)
  1154 apply (subgoal_tac "fold_graph times a A x")
  1155  apply (best intro: fold_graph_determ)
  1156 apply (subgoal_tac "insert aa (Aa - {a}) = A")
  1157  prefer 2 apply (blast elim: equalityE)
  1158 apply (auto dest: fold_graph_permute_diff [where a=a])
  1159 done
  1160 qed
  1161 
  1162 lemma nonempty_iff: "(A \<noteq> {}) = (\<exists>x B. A = insert x B & x \<notin> B)"
  1163 apply safe
  1164  apply simp
  1165  apply (drule_tac x=x in spec)
  1166  apply (drule_tac x="A-{x}" in spec, auto)
  1167 done
  1168 
  1169 lemma fold1_insert:
  1170   assumes nonempty: "A \<noteq> {}" and A: "finite A" "x \<notin> A"
  1171   shows "fold1 times (insert x A) = x * fold1 times A"
  1172 proof -
  1173   interpret fun_left_comm "op *::'a \<Rightarrow> 'a \<Rightarrow> 'a" by (rule fun_left_comm)
  1174   from nonempty obtain a A' where "A = insert a A' & a ~: A'"
  1175     by (auto simp add: nonempty_iff)
  1176   with A show ?thesis
  1177     by (simp add: insert_commute [of x] fold1_eq_fold eq_commute)
  1178 qed
  1179 
  1180 end
  1181 
  1182 context ab_semigroup_idem_mult
  1183 begin
  1184 
  1185 lemma fun_left_comm_idem: "fun_left_comm_idem(op *)"
  1186 apply unfold_locales
  1187  apply (rule mult_left_commute)
  1188 apply (rule mult_left_idem)
  1189 done
  1190 
  1191 lemma fold1_insert_idem [simp]:
  1192   assumes nonempty: "A \<noteq> {}" and A: "finite A" 
  1193   shows "fold1 times (insert x A) = x * fold1 times A"
  1194 proof -
  1195   interpret fun_left_comm_idem "op *::'a \<Rightarrow> 'a \<Rightarrow> 'a"
  1196     by (rule fun_left_comm_idem)
  1197   from nonempty obtain a A' where A': "A = insert a A' & a ~: A'"
  1198     by (auto simp add: nonempty_iff)
  1199   show ?thesis
  1200   proof cases
  1201     assume "a = x"
  1202     thus ?thesis
  1203     proof cases
  1204       assume "A' = {}"
  1205       with prems show ?thesis by simp
  1206     next
  1207       assume "A' \<noteq> {}"
  1208       with prems show ?thesis
  1209         by (simp add: fold1_insert mult_assoc [symmetric])
  1210     qed
  1211   next
  1212     assume "a \<noteq> x"
  1213     with prems show ?thesis
  1214       by (simp add: insert_commute fold1_eq_fold)
  1215   qed
  1216 qed
  1217 
  1218 lemma hom_fold1_commute:
  1219 assumes hom: "!!x y. h (x * y) = h x * h y"
  1220 and N: "finite N" "N \<noteq> {}" shows "h (fold1 times N) = fold1 times (h ` N)"
  1221 using N proof (induct rule: finite_ne_induct)
  1222   case singleton thus ?case by simp
  1223 next
  1224   case (insert n N)
  1225   then have "h (fold1 times (insert n N)) = h (n * fold1 times N)" by simp
  1226   also have "\<dots> = h n * h (fold1 times N)" by(rule hom)
  1227   also have "h (fold1 times N) = fold1 times (h ` N)" by(rule insert)
  1228   also have "times (h n) \<dots> = fold1 times (insert (h n) (h ` N))"
  1229     using insert by(simp)
  1230   also have "insert (h n) (h ` N) = h ` insert n N" by simp
  1231   finally show ?case .
  1232 qed
  1233 
  1234 lemma fold1_eq_fold_idem:
  1235   assumes "finite A"
  1236   shows "fold1 times (insert a A) = fold times a A"
  1237 proof (cases "a \<in> A")
  1238   case False
  1239   with assms show ?thesis by (simp add: fold1_eq_fold)
  1240 next
  1241   interpret fun_left_comm_idem times by (fact fun_left_comm_idem)
  1242   case True then obtain b B
  1243     where A: "A = insert a B" and "a \<notin> B" by (rule set_insert)
  1244   with assms have "finite B" by auto
  1245   then have "fold times a (insert a B) = fold times (a * a) B"
  1246     using `a \<notin> B` by (rule fold_insert2)
  1247   then show ?thesis
  1248     using `a \<notin> B` `finite B` by (simp add: fold1_eq_fold A)
  1249 qed
  1250 
  1251 end
  1252 
  1253 
  1254 text{* Now the recursion rules for definitions: *}
  1255 
  1256 lemma fold1_singleton_def: "g = fold1 f \<Longrightarrow> g {a} = a"
  1257 by simp
  1258 
  1259 lemma (in ab_semigroup_mult) fold1_insert_def:
  1260   "\<lbrakk> g = fold1 times; finite A; x \<notin> A; A \<noteq> {} \<rbrakk> \<Longrightarrow> g (insert x A) = x * g A"
  1261 by (simp add:fold1_insert)
  1262 
  1263 lemma (in ab_semigroup_idem_mult) fold1_insert_idem_def:
  1264   "\<lbrakk> g = fold1 times; finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> g (insert x A) = x * g A"
  1265 by simp
  1266 
  1267 subsubsection{* Determinacy for @{term fold1Set} *}
  1268 
  1269 (*Not actually used!!*)
  1270 (*
  1271 context ab_semigroup_mult
  1272 begin
  1273 
  1274 lemma fold_graph_permute:
  1275   "[|fold_graph times id b (insert a A) x; a \<notin> A; b \<notin> A|]
  1276    ==> fold_graph times id a (insert b A) x"
  1277 apply (cases "a=b") 
  1278 apply (auto dest: fold_graph_permute_diff) 
  1279 done
  1280 
  1281 lemma fold1Set_determ:
  1282   "fold1Set times A x ==> fold1Set times A y ==> y = x"
  1283 proof (clarify elim!: fold1Set.cases)
  1284   fix A x B y a b
  1285   assume Ax: "fold_graph times id a A x"
  1286   assume By: "fold_graph times id b B y"
  1287   assume anotA:  "a \<notin> A"
  1288   assume bnotB:  "b \<notin> B"
  1289   assume eq: "insert a A = insert b B"
  1290   show "y=x"
  1291   proof cases
  1292     assume same: "a=b"
  1293     hence "A=B" using anotA bnotB eq by (blast elim!: equalityE)
  1294     thus ?thesis using Ax By same by (blast intro: fold_graph_determ)
  1295   next
  1296     assume diff: "a\<noteq>b"
  1297     let ?D = "B - {a}"
  1298     have B: "B = insert a ?D" and A: "A = insert b ?D"
  1299      and aB: "a \<in> B" and bA: "b \<in> A"
  1300       using eq anotA bnotB diff by (blast elim!:equalityE)+
  1301     with aB bnotB By
  1302     have "fold_graph times id a (insert b ?D) y" 
  1303       by (auto intro: fold_graph_permute simp add: insert_absorb)
  1304     moreover
  1305     have "fold_graph times id a (insert b ?D) x"
  1306       by (simp add: A [symmetric] Ax) 
  1307     ultimately show ?thesis by (blast intro: fold_graph_determ) 
  1308   qed
  1309 qed
  1310 
  1311 lemma fold1Set_equality: "fold1Set times A y ==> fold1 times A = y"
  1312   by (unfold fold1_def) (blast intro: fold1Set_determ)
  1313 
  1314 end
  1315 *)
  1316 
  1317 declare
  1318   empty_fold_graphE [rule del]  fold_graph.intros [rule del]
  1319   empty_fold1SetE [rule del]  insert_fold1SetE [rule del]
  1320   -- {* No more proofs involve these relations. *}
  1321 
  1322 subsubsection {* Lemmas about @{text fold1} *}
  1323 
  1324 context ab_semigroup_mult
  1325 begin
  1326 
  1327 lemma fold1_Un:
  1328 assumes A: "finite A" "A \<noteq> {}"
  1329 shows "finite B \<Longrightarrow> B \<noteq> {} \<Longrightarrow> A Int B = {} \<Longrightarrow>
  1330        fold1 times (A Un B) = fold1 times A * fold1 times B"
  1331 using A by (induct rule: finite_ne_induct)
  1332   (simp_all add: fold1_insert mult_assoc)
  1333 
  1334 lemma fold1_in:
  1335   assumes A: "finite (A)" "A \<noteq> {}" and elem: "\<And>x y. x * y \<in> {x,y}"
  1336   shows "fold1 times A \<in> A"
  1337 using A
  1338 proof (induct rule:finite_ne_induct)
  1339   case singleton thus ?case by simp
  1340 next
  1341   case insert thus ?case using elem by (force simp add:fold1_insert)
  1342 qed
  1343 
  1344 end
  1345 
  1346 lemma (in ab_semigroup_idem_mult) fold1_Un2:
  1347 assumes A: "finite A" "A \<noteq> {}"
  1348 shows "finite B \<Longrightarrow> B \<noteq> {} \<Longrightarrow>
  1349        fold1 times (A Un B) = fold1 times A * fold1 times B"
  1350 using A
  1351 proof(induct rule:finite_ne_induct)
  1352   case singleton thus ?case by simp
  1353 next
  1354   case insert thus ?case by (simp add: mult_assoc)
  1355 qed
  1356 
  1357 
  1358 subsection {* Locales as mini-packages for fold operations *}
  1359 
  1360 subsubsection {* The natural case *}
  1361 
  1362 locale folding =
  1363   fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'b"
  1364   fixes F :: "'a set \<Rightarrow> 'b \<Rightarrow> 'b"
  1365   assumes commute_comp: "f y \<circ> f x = f x \<circ> f y"
  1366   assumes eq_fold: "finite A \<Longrightarrow> F A s = fold f s A"
  1367 begin
  1368 
  1369 lemma empty [simp]:
  1370   "F {} = id"
  1371   by (simp add: eq_fold expand_fun_eq)
  1372 
  1373 lemma insert [simp]:
  1374   assumes "finite A" and "x \<notin> A"
  1375   shows "F (insert x A) = F A \<circ> f x"
  1376 proof -
  1377   interpret fun_left_comm f proof
  1378   qed (insert commute_comp, simp add: expand_fun_eq)
  1379   from fold_insert2 assms
  1380   have "\<And>s. fold f s (insert x A) = fold f (f x s) A" .
  1381   with `finite A` show ?thesis by (simp add: eq_fold expand_fun_eq)
  1382 qed
  1383 
  1384 lemma remove:
  1385   assumes "finite A" and "x \<in> A"
  1386   shows "F A = F (A - {x}) \<circ> f x"
  1387 proof -
  1388   from `x \<in> A` obtain B where A: "A = insert x B" and "x \<notin> B"
  1389     by (auto dest: mk_disjoint_insert)
  1390   moreover from `finite A` this have "finite B" by simp
  1391   ultimately show ?thesis by simp
  1392 qed
  1393 
  1394 lemma insert_remove:
  1395   assumes "finite A"
  1396   shows "F (insert x A) = F (A - {x}) \<circ> f x"
  1397   using assms by (cases "x \<in> A") (simp_all add: remove insert_absorb)
  1398 
  1399 lemma commute_left_comp:
  1400   "f y \<circ> (f x \<circ> g) = f x \<circ> (f y \<circ> g)"
  1401   by (simp add: o_assoc commute_comp)
  1402 
  1403 lemma commute_comp':
  1404   assumes "finite A"
  1405   shows "f x \<circ> F A = F A \<circ> f x"
  1406   using assms by (induct A)
  1407     (simp, simp del: o_apply add: o_assoc, simp del: o_apply add: o_assoc [symmetric] commute_comp)
  1408 
  1409 lemma commute_left_comp':
  1410   assumes "finite A"
  1411   shows "f x \<circ> (F A \<circ> g) = F A \<circ> (f x \<circ> g)"
  1412   using assms by (simp add: o_assoc commute_comp')
  1413 
  1414 lemma commute_comp'':
  1415   assumes "finite A" and "finite B"
  1416   shows "F B \<circ> F A = F A \<circ> F B"
  1417   using assms by (induct A)
  1418     (simp_all add: o_assoc, simp add: o_assoc [symmetric] commute_comp')
  1419 
  1420 lemma commute_left_comp'':
  1421   assumes "finite A" and "finite B"
  1422   shows "F B \<circ> (F A \<circ> g) = F A \<circ> (F B \<circ> g)"
  1423   using assms by (simp add: o_assoc commute_comp'')
  1424 
  1425 lemmas commute_comps = o_assoc [symmetric] commute_comp commute_left_comp
  1426   commute_comp' commute_left_comp' commute_comp'' commute_left_comp''
  1427 
  1428 lemma union_inter:
  1429   assumes "finite A" and "finite B"
  1430   shows "F (A \<union> B) \<circ> F (A \<inter> B) = F A \<circ> F B"
  1431   using assms by (induct A)
  1432     (simp_all del: o_apply add: insert_absorb Int_insert_left commute_comps,
  1433       simp add: o_assoc)
  1434 
  1435 lemma union:
  1436   assumes "finite A" and "finite B"
  1437   and "A \<inter> B = {}"
  1438   shows "F (A \<union> B) = F A \<circ> F B"
  1439 proof -
  1440   from union_inter `finite A` `finite B` have "F (A \<union> B) \<circ> F (A \<inter> B) = F A \<circ> F B" .
  1441   with `A \<inter> B = {}` show ?thesis by simp
  1442 qed
  1443 
  1444 end
  1445 
  1446 
  1447 subsubsection {* The natural case with idempotency *}
  1448 
  1449 locale folding_idem = folding +
  1450   assumes idem_comp: "f x \<circ> f x = f x"
  1451 begin
  1452 
  1453 lemma idem_left_comp:
  1454   "f x \<circ> (f x \<circ> g) = f x \<circ> g"
  1455   by (simp add: o_assoc idem_comp)
  1456 
  1457 lemma in_comp_idem:
  1458   assumes "finite A" and "x \<in> A"
  1459   shows "F A \<circ> f x = F A"
  1460 using assms by (induct A)
  1461   (auto simp add: commute_comps idem_comp, simp add: commute_left_comp' [symmetric] commute_comp')
  1462 
  1463 lemma subset_comp_idem:
  1464   assumes "finite A" and "B \<subseteq> A"
  1465   shows "F A \<circ> F B = F A"
  1466 proof -
  1467   from assms have "finite B" by (blast dest: finite_subset)
  1468   then show ?thesis using `B \<subseteq> A` by (induct B)
  1469     (simp_all add: o_assoc in_comp_idem `finite A`)
  1470 qed
  1471 
  1472 declare insert [simp del]
  1473 
  1474 lemma insert_idem [simp]:
  1475   assumes "finite A"
  1476   shows "F (insert x A) = F A \<circ> f x"
  1477   using assms by (cases "x \<in> A") (simp_all add: insert in_comp_idem insert_absorb)
  1478 
  1479 lemma union_idem:
  1480   assumes "finite A" and "finite B"
  1481   shows "F (A \<union> B) = F A \<circ> F B"
  1482 proof -
  1483   from assms have "finite (A \<union> B)" and "A \<inter> B \<subseteq> A \<union> B" by auto
  1484   then have "F (A \<union> B) \<circ> F (A \<inter> B) = F (A \<union> B)" by (rule subset_comp_idem)
  1485   with assms show ?thesis by (simp add: union_inter)
  1486 qed
  1487 
  1488 end
  1489 
  1490 
  1491 subsubsection {* The image case with fixed function *}
  1492 
  1493 no_notation times (infixl "*" 70)
  1494 no_notation Groups.one ("1")
  1495 
  1496 locale folding_image_simple = comm_monoid +
  1497   fixes g :: "('b \<Rightarrow> 'a)"
  1498   fixes F :: "'b set \<Rightarrow> 'a"
  1499   assumes eq_fold_g: "finite A \<Longrightarrow> F A = fold_image f g 1 A"
  1500 begin
  1501 
  1502 lemma empty [simp]:
  1503   "F {} = 1"
  1504   by (simp add: eq_fold_g)
  1505 
  1506 lemma insert [simp]:
  1507   assumes "finite A" and "x \<notin> A"
  1508   shows "F (insert x A) = g x * F A"
  1509 proof -
  1510   interpret fun_left_comm "%x y. (g x) * y" proof
  1511   qed (simp add: ac_simps)
  1512   with assms have "fold_image (op *) g 1 (insert x A) = g x * fold_image (op *) g 1 A"
  1513     by (simp add: fold_image_def)
  1514   with `finite A` show ?thesis by (simp add: eq_fold_g)
  1515 qed
  1516 
  1517 lemma remove:
  1518   assumes "finite A" and "x \<in> A"
  1519   shows "F A = g x * F (A - {x})"
  1520 proof -
  1521   from `x \<in> A` obtain B where A: "A = insert x B" and "x \<notin> B"
  1522     by (auto dest: mk_disjoint_insert)
  1523   moreover from `finite A` this have "finite B" by simp
  1524   ultimately show ?thesis by simp
  1525 qed
  1526 
  1527 lemma insert_remove:
  1528   assumes "finite A"
  1529   shows "F (insert x A) = g x * F (A - {x})"
  1530   using assms by (cases "x \<in> A") (simp_all add: remove insert_absorb)
  1531 
  1532 lemma neutral:
  1533   assumes "finite A" and "\<forall>x\<in>A. g x = 1"
  1534   shows "F A = 1"
  1535   using assms by (induct A) simp_all
  1536 
  1537 lemma union_inter:
  1538   assumes "finite A" and "finite B"
  1539   shows "F (A \<union> B) * F (A \<inter> B) = F A * F B"
  1540 using assms proof (induct A)
  1541   case empty then show ?case by simp
  1542 next
  1543   case (insert x A) then show ?case
  1544     by (auto simp add: insert_absorb Int_insert_left commute [of _ "g x"] assoc left_commute)
  1545 qed
  1546 
  1547 corollary union_inter_neutral:
  1548   assumes "finite A" and "finite B"
  1549   and I0: "\<forall>x \<in> A\<inter>B. g x = 1"
  1550   shows "F (A \<union> B) = F A * F B"
  1551   using assms by (simp add: union_inter [symmetric] neutral)
  1552 
  1553 corollary union_disjoint:
  1554   assumes "finite A" and "finite B"
  1555   assumes "A \<inter> B = {}"
  1556   shows "F (A \<union> B) = F A * F B"
  1557   using assms by (simp add: union_inter_neutral)
  1558 
  1559 end
  1560 
  1561 
  1562 subsubsection {* The image case with flexible function *}
  1563 
  1564 locale folding_image = comm_monoid +
  1565   fixes F :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b set \<Rightarrow> 'a"
  1566   assumes eq_fold: "\<And>g. finite A \<Longrightarrow> F g A = fold_image f g 1 A"
  1567 
  1568 sublocale folding_image < folding_image_simple "op *" 1 g "F g" proof
  1569 qed (fact eq_fold)
  1570 
  1571 context folding_image
  1572 begin
  1573 
  1574 lemma reindex: (* FIXME polymorhism *)
  1575   assumes "finite A" and "inj_on h A"
  1576   shows "F g (h ` A) = F (g \<circ> h) A"
  1577   using assms by (induct A) auto
  1578 
  1579 lemma cong:
  1580   assumes "finite A" and "\<And>x. x \<in> A \<Longrightarrow> g x = h x"
  1581   shows "F g A = F h A"
  1582 proof -
  1583   from assms have "ALL C. C <= A --> (ALL x:C. g x = h x) --> F g C = F h C"
  1584   apply - apply (erule finite_induct) apply simp
  1585   apply (simp add: subset_insert_iff, clarify)
  1586   apply (subgoal_tac "finite C")
  1587   prefer 2 apply (blast dest: finite_subset [COMP swap_prems_rl])
  1588   apply (subgoal_tac "C = insert x (C - {x})")
  1589   prefer 2 apply blast
  1590   apply (erule ssubst)
  1591   apply (drule spec)
  1592   apply (erule (1) notE impE)
  1593   apply (simp add: Ball_def del: insert_Diff_single)
  1594   done
  1595   with assms show ?thesis by simp
  1596 qed
  1597 
  1598 lemma UNION_disjoint:
  1599   assumes "finite I" and "\<forall>i\<in>I. finite (A i)"
  1600   and "\<forall>i\<in>I. \<forall>j\<in>I. i \<noteq> j \<longrightarrow> A i \<inter> A j = {}"
  1601   shows "F g (UNION I A) = F (F g \<circ> A) I"
  1602 apply (insert assms)
  1603 apply (induct set: finite, simp, atomize)
  1604 apply (subgoal_tac "\<forall>i\<in>Fa. x \<noteq> i")
  1605  prefer 2 apply blast
  1606 apply (subgoal_tac "A x Int UNION Fa A = {}")
  1607  prefer 2 apply blast
  1608 apply (simp add: union_disjoint)
  1609 done
  1610 
  1611 lemma distrib:
  1612   assumes "finite A"
  1613   shows "F (\<lambda>x. g x * h x) A = F g A * F h A"
  1614   using assms by (rule finite_induct) (simp_all add: assoc commute left_commute)
  1615 
  1616 lemma related: 
  1617   assumes Re: "R 1 1" 
  1618   and Rop: "\<forall>x1 y1 x2 y2. R x1 x2 \<and> R y1 y2 \<longrightarrow> R (x1 * y1) (x2 * y2)" 
  1619   and fS: "finite S" and Rfg: "\<forall>x\<in>S. R (h x) (g x)"
  1620   shows "R (F h S) (F g S)"
  1621   using fS by (rule finite_subset_induct) (insert assms, auto)
  1622 
  1623 lemma eq_general:
  1624   assumes fS: "finite S"
  1625   and h: "\<forall>y\<in>S'. \<exists>!x. x \<in> S \<and> h x = y" 
  1626   and f12:  "\<forall>x\<in>S. h x \<in> S' \<and> f2 (h x) = f1 x"
  1627   shows "F f1 S = F f2 S'"
  1628 proof-
  1629   from h f12 have hS: "h ` S = S'" by blast
  1630   {fix x y assume H: "x \<in> S" "y \<in> S" "h x = h y"
  1631     from f12 h H  have "x = y" by auto }
  1632   hence hinj: "inj_on h S" unfolding inj_on_def Ex1_def by blast
  1633   from f12 have th: "\<And>x. x \<in> S \<Longrightarrow> (f2 \<circ> h) x = f1 x" by auto 
  1634   from hS have "F f2 S' = F f2 (h ` S)" by simp
  1635   also have "\<dots> = F (f2 o h) S" using reindex [OF fS hinj, of f2] .
  1636   also have "\<dots> = F f1 S " using th cong [OF fS, of "f2 o h" f1]
  1637     by blast
  1638   finally show ?thesis ..
  1639 qed
  1640 
  1641 lemma eq_general_inverses:
  1642   assumes fS: "finite S" 
  1643   and kh: "\<And>y. y \<in> T \<Longrightarrow> k y \<in> S \<and> h (k y) = y"
  1644   and hk: "\<And>x. x \<in> S \<Longrightarrow> h x \<in> T \<and> k (h x) = x \<and> g (h x) = j x"
  1645   shows "F j S = F g T"
  1646   (* metis solves it, but not yet available here *)
  1647   apply (rule eq_general [OF fS, of T h g j])
  1648   apply (rule ballI)
  1649   apply (frule kh)
  1650   apply (rule ex1I[])
  1651   apply blast
  1652   apply clarsimp
  1653   apply (drule hk) apply simp
  1654   apply (rule sym)
  1655   apply (erule conjunct1[OF conjunct2[OF hk]])
  1656   apply (rule ballI)
  1657   apply (drule hk)
  1658   apply blast
  1659   done
  1660 
  1661 end
  1662 
  1663 
  1664 subsubsection {* The image case with fixed function and idempotency *}
  1665 
  1666 locale folding_image_simple_idem = folding_image_simple +
  1667   assumes idem: "x * x = x"
  1668 
  1669 sublocale folding_image_simple_idem < semilattice proof
  1670 qed (fact idem)
  1671 
  1672 context folding_image_simple_idem
  1673 begin
  1674 
  1675 lemma in_idem:
  1676   assumes "finite A" and "x \<in> A"
  1677   shows "g x * F A = F A"
  1678   using assms by (induct A) (auto simp add: left_commute)
  1679 
  1680 lemma subset_idem:
  1681   assumes "finite A" and "B \<subseteq> A"
  1682   shows "F B * F A = F A"
  1683 proof -
  1684   from assms have "finite B" by (blast dest: finite_subset)
  1685   then show ?thesis using `B \<subseteq> A` by (induct B)
  1686     (auto simp add: assoc in_idem `finite A`)
  1687 qed
  1688 
  1689 declare insert [simp del]
  1690 
  1691 lemma insert_idem [simp]:
  1692   assumes "finite A"
  1693   shows "F (insert x A) = g x * F A"
  1694   using assms by (cases "x \<in> A") (simp_all add: insert in_idem insert_absorb)
  1695 
  1696 lemma union_idem:
  1697   assumes "finite A" and "finite B"
  1698   shows "F (A \<union> B) = F A * F B"
  1699 proof -
  1700   from assms have "finite (A \<union> B)" and "A \<inter> B \<subseteq> A \<union> B" by auto
  1701   then have "F (A \<inter> B) * F (A \<union> B) = F (A \<union> B)" by (rule subset_idem)
  1702   with assms show ?thesis by (simp add: union_inter [of A B, symmetric] commute)
  1703 qed
  1704 
  1705 end
  1706 
  1707 
  1708 subsubsection {* The image case with flexible function and idempotency *}
  1709 
  1710 locale folding_image_idem = folding_image +
  1711   assumes idem: "x * x = x"
  1712 
  1713 sublocale folding_image_idem < folding_image_simple_idem "op *" 1 g "F g" proof
  1714 qed (fact idem)
  1715 
  1716 
  1717 subsubsection {* The neutral-less case *}
  1718 
  1719 locale folding_one = abel_semigroup +
  1720   fixes F :: "'a set \<Rightarrow> 'a"
  1721   assumes eq_fold: "finite A \<Longrightarrow> F A = fold1 f A"
  1722 begin
  1723 
  1724 lemma singleton [simp]:
  1725   "F {x} = x"
  1726   by (simp add: eq_fold)
  1727 
  1728 lemma eq_fold':
  1729   assumes "finite A" and "x \<notin> A"
  1730   shows "F (insert x A) = fold (op *) x A"
  1731 proof -
  1732   interpret ab_semigroup_mult "op *" proof qed (simp_all add: ac_simps)
  1733   with assms show ?thesis by (simp add: eq_fold fold1_eq_fold)
  1734 qed
  1735 
  1736 lemma insert [simp]:
  1737   assumes "finite A" and "x \<notin> A"
  1738   shows "F (insert x A) = (if A = {} then x else x * F A)"
  1739 proof (cases "A = {}")
  1740   case True then show ?thesis by simp
  1741 next
  1742   case False then obtain b where "b \<in> A" by blast
  1743   then obtain B where *: "A = insert b B" "b \<notin> B" by (blast dest: mk_disjoint_insert)
  1744   with `finite A` have "finite B" by simp
  1745   interpret fold: folding "op *" "\<lambda>a b. fold (op *) b a" proof
  1746   qed (simp_all add: expand_fun_eq ac_simps)
  1747   thm fold.commute_comp' [of B b, simplified expand_fun_eq, simplified]
  1748   from `finite B` fold.commute_comp' [of B x]
  1749     have "op * x \<circ> (\<lambda>b. fold op * b B) = (\<lambda>b. fold op * b B) \<circ> op * x" by simp
  1750   then have A: "x * fold op * b B = fold op * (b * x) B" by (simp add: expand_fun_eq commute)
  1751   from `finite B` * fold.insert [of B b]
  1752     have "(\<lambda>x. fold op * x (insert b B)) = (\<lambda>x. fold op * x B) \<circ> op * b" by simp
  1753   then have B: "fold op * x (insert b B) = fold op * (b * x) B" by (simp add: expand_fun_eq)
  1754   from A B assms * show ?thesis by (simp add: eq_fold' del: fold.insert)
  1755 qed
  1756 
  1757 lemma remove:
  1758   assumes "finite A" and "x \<in> A"
  1759   shows "F A = (if A - {x} = {} then x else x * F (A - {x}))"
  1760 proof -
  1761   from assms obtain B where "A = insert x B" and "x \<notin> B" by (blast dest: mk_disjoint_insert)
  1762   with assms show ?thesis by simp
  1763 qed
  1764 
  1765 lemma insert_remove:
  1766   assumes "finite A"
  1767   shows "F (insert x A) = (if A - {x} = {} then x else x * F (A - {x}))"
  1768   using assms by (cases "x \<in> A") (simp_all add: insert_absorb remove)
  1769 
  1770 lemma union_disjoint:
  1771   assumes "finite A" "A \<noteq> {}" and "finite B" "B \<noteq> {}" and "A \<inter> B = {}"
  1772   shows "F (A \<union> B) = F A * F B"
  1773   using assms by (induct A rule: finite_ne_induct) (simp_all add: ac_simps)
  1774 
  1775 lemma union_inter:
  1776   assumes "finite A" and "finite B" and "A \<inter> B \<noteq> {}"
  1777   shows "F (A \<union> B) * F (A \<inter> B) = F A * F B"
  1778 proof -
  1779   from assms have "A \<noteq> {}" and "B \<noteq> {}" by auto
  1780   from `finite A` `A \<noteq> {}` `A \<inter> B \<noteq> {}` show ?thesis proof (induct A rule: finite_ne_induct)
  1781     case (singleton x) then show ?case by (simp add: insert_absorb ac_simps)
  1782   next
  1783     case (insert x A) show ?case proof (cases "x \<in> B")
  1784       case True then have "B \<noteq> {}" by auto
  1785       with insert True `finite B` show ?thesis by (cases "A \<inter> B = {}")
  1786         (simp_all add: insert_absorb ac_simps union_disjoint)
  1787     next
  1788       case False with insert have "F (A \<union> B) * F (A \<inter> B) = F A * F B" by simp
  1789       moreover from False `finite B` insert have "finite (A \<union> B)" "x \<notin> A \<union> B" "A \<union> B \<noteq> {}"
  1790         by auto
  1791       ultimately show ?thesis using False `finite A` `x \<notin> A` `A \<noteq> {}` by (simp add: assoc)
  1792     qed
  1793   qed
  1794 qed
  1795 
  1796 lemma closed:
  1797   assumes "finite A" "A \<noteq> {}" and elem: "\<And>x y. x * y \<in> {x, y}"
  1798   shows "F A \<in> A"
  1799 using `finite A` `A \<noteq> {}` proof (induct rule: finite_ne_induct)
  1800   case singleton then show ?case by simp
  1801 next
  1802   case insert with elem show ?case by force
  1803 qed
  1804 
  1805 end
  1806 
  1807 
  1808 subsubsection {* The neutral-less case with idempotency *}
  1809 
  1810 locale folding_one_idem = folding_one +
  1811   assumes idem: "x * x = x"
  1812 
  1813 sublocale folding_one_idem < semilattice proof
  1814 qed (fact idem)
  1815 
  1816 context folding_one_idem
  1817 begin
  1818 
  1819 lemma in_idem:
  1820   assumes "finite A" and "x \<in> A"
  1821   shows "x * F A = F A"
  1822 proof -
  1823   from assms have "A \<noteq> {}" by auto
  1824   with `finite A` show ?thesis using `x \<in> A` by (induct A rule: finite_ne_induct) (auto simp add: ac_simps)
  1825 qed
  1826 
  1827 lemma subset_idem:
  1828   assumes "finite A" "B \<noteq> {}" and "B \<subseteq> A"
  1829   shows "F B * F A = F A"
  1830 proof -
  1831   from assms have "finite B" by (blast dest: finite_subset)
  1832   then show ?thesis using `B \<noteq> {}` `B \<subseteq> A` by (induct B rule: finite_ne_induct)
  1833     (simp_all add: assoc in_idem `finite A`)
  1834 qed
  1835 
  1836 declare insert [simp del]
  1837 
  1838 lemma eq_fold_idem':
  1839   assumes "finite A"
  1840   shows "F (insert a A) = fold (op *) a A"
  1841 proof -
  1842   interpret ab_semigroup_idem_mult "op *" proof qed (simp_all add: ac_simps)
  1843   with assms show ?thesis by (simp add: eq_fold fold1_eq_fold_idem)
  1844 qed
  1845 
  1846 lemma insert_idem [simp]:
  1847   assumes "finite A"
  1848   shows "F (insert x A) = (if A = {} then x else x * F A)"
  1849 proof (cases "x \<in> A")
  1850   case False with `finite A` show ?thesis by (rule insert)
  1851 next
  1852   case True then have "A \<noteq> {}" by auto
  1853   with `finite A` show ?thesis by (simp add: in_idem insert_absorb True)
  1854 qed
  1855   
  1856 lemma union_idem:
  1857   assumes "finite A" "A \<noteq> {}" and "finite B" "B \<noteq> {}"
  1858   shows "F (A \<union> B) = F A * F B"
  1859 proof (cases "A \<inter> B = {}")
  1860   case True with assms show ?thesis by (simp add: union_disjoint)
  1861 next
  1862   case False
  1863   from assms have "finite (A \<union> B)" and "A \<inter> B \<subseteq> A \<union> B" by auto
  1864   with False have "F (A \<inter> B) * F (A \<union> B) = F (A \<union> B)" by (auto intro: subset_idem)
  1865   with assms False show ?thesis by (simp add: union_inter [of A B, symmetric] commute)
  1866 qed
  1867 
  1868 lemma hom_commute:
  1869   assumes hom: "\<And>x y. h (x * y) = h x * h y"
  1870   and N: "finite N" "N \<noteq> {}" shows "h (F N) = F (h ` N)"
  1871 using N proof (induct rule: finite_ne_induct)
  1872   case singleton thus ?case by simp
  1873 next
  1874   case (insert n N)
  1875   then have "h (F (insert n N)) = h (n * F N)" by simp
  1876   also have "\<dots> = h n * h (F N)" by (rule hom)
  1877   also have "h (F N) = F (h ` N)" by(rule insert)
  1878   also have "h n * \<dots> = F (insert (h n) (h ` N))"
  1879     using insert by(simp)
  1880   also have "insert (h n) (h ` N) = h ` insert n N" by simp
  1881   finally show ?case .
  1882 qed
  1883 
  1884 end
  1885 
  1886 notation times (infixl "*" 70)
  1887 notation Groups.one ("1")
  1888 
  1889 
  1890 subsection {* Finite cardinality *}
  1891 
  1892 text {* This definition, although traditional, is ugly to work with:
  1893 @{text "card A == LEAST n. EX f. A = {f i | i. i < n}"}.
  1894 But now that we have @{text fold_image} things are easy:
  1895 *}
  1896 
  1897 definition card :: "'a set \<Rightarrow> nat" where
  1898   "card A = (if finite A then fold_image (op +) (\<lambda>x. 1) 0 A else 0)"
  1899 
  1900 interpretation card!: folding_image_simple "op +" 0 "\<lambda>x. 1" card proof
  1901 qed (simp add: card_def)
  1902 
  1903 lemma card_infinite [simp]:
  1904   "\<not> finite A \<Longrightarrow> card A = 0"
  1905   by (simp add: card_def)
  1906 
  1907 lemma card_empty:
  1908   "card {} = 0"
  1909   by (fact card.empty)
  1910 
  1911 lemma card_insert_disjoint:
  1912   "finite A ==> x \<notin> A ==> card (insert x A) = Suc (card A)"
  1913   by simp
  1914 
  1915 lemma card_insert_if:
  1916   "finite A ==> card (insert x A) = (if x \<in> A then card A else Suc (card A))"
  1917   by auto (simp add: card.insert_remove card.remove)
  1918 
  1919 lemma card_ge_0_finite:
  1920   "card A > 0 \<Longrightarrow> finite A"
  1921   by (rule ccontr) simp
  1922 
  1923 lemma card_0_eq [simp, no_atp]:
  1924   "finite A \<Longrightarrow> card A = 0 \<longleftrightarrow> A = {}"
  1925   by (auto dest: mk_disjoint_insert)
  1926 
  1927 lemma finite_UNIV_card_ge_0:
  1928   "finite (UNIV :: 'a set) \<Longrightarrow> card (UNIV :: 'a set) > 0"
  1929   by (rule ccontr) simp
  1930 
  1931 lemma card_eq_0_iff:
  1932   "card A = 0 \<longleftrightarrow> A = {} \<or> \<not> finite A"
  1933   by auto
  1934 
  1935 lemma card_gt_0_iff:
  1936   "0 < card A \<longleftrightarrow> A \<noteq> {} \<and> finite A"
  1937   by (simp add: neq0_conv [symmetric] card_eq_0_iff) 
  1938 
  1939 lemma card_Suc_Diff1: "finite A ==> x: A ==> Suc (card (A - {x})) = card A"
  1940 apply(rule_tac t = A in insert_Diff [THEN subst], assumption)
  1941 apply(simp del:insert_Diff_single)
  1942 done
  1943 
  1944 lemma card_Diff_singleton:
  1945   "finite A ==> x: A ==> card (A - {x}) = card A - 1"
  1946 by (simp add: card_Suc_Diff1 [symmetric])
  1947 
  1948 lemma card_Diff_singleton_if:
  1949   "finite A ==> card (A-{x}) = (if x : A then card A - 1 else card A)"
  1950 by (simp add: card_Diff_singleton)
  1951 
  1952 lemma card_Diff_insert[simp]:
  1953 assumes "finite A" and "a:A" and "a ~: B"
  1954 shows "card(A - insert a B) = card(A - B) - 1"
  1955 proof -
  1956   have "A - insert a B = (A - B) - {a}" using assms by blast
  1957   then show ?thesis using assms by(simp add:card_Diff_singleton)
  1958 qed
  1959 
  1960 lemma card_insert: "finite A ==> card (insert x A) = Suc (card (A - {x}))"
  1961 by (simp add: card_insert_if card_Suc_Diff1 del:card_Diff_insert)
  1962 
  1963 lemma card_insert_le: "finite A ==> card A <= card (insert x A)"
  1964 by (simp add: card_insert_if)
  1965 
  1966 lemma card_mono:
  1967   assumes "finite B" and "A \<subseteq> B"
  1968   shows "card A \<le> card B"
  1969 proof -
  1970   from assms have "finite A" by (auto intro: finite_subset)
  1971   then show ?thesis using assms proof (induct A arbitrary: B)
  1972     case empty then show ?case by simp
  1973   next
  1974     case (insert x A)
  1975     then have "x \<in> B" by simp
  1976     from insert have "A \<subseteq> B - {x}" and "finite (B - {x})" by auto
  1977     with insert.hyps have "card A \<le> card (B - {x})" by auto
  1978     with `finite A` `x \<notin> A` `finite B` `x \<in> B` show ?case by simp (simp only: card.remove)
  1979   qed
  1980 qed
  1981 
  1982 lemma card_seteq: "finite B ==> (!!A. A <= B ==> card B <= card A ==> A = B)"
  1983 apply (induct set: finite, simp, clarify)
  1984 apply (subgoal_tac "finite A & A - {x} <= F")
  1985  prefer 2 apply (blast intro: finite_subset, atomize)
  1986 apply (drule_tac x = "A - {x}" in spec)
  1987 apply (simp add: card_Diff_singleton_if split add: split_if_asm)
  1988 apply (case_tac "card A", auto)
  1989 done
  1990 
  1991 lemma psubset_card_mono: "finite B ==> A < B ==> card A < card B"
  1992 apply (simp add: psubset_eq linorder_not_le [symmetric])
  1993 apply (blast dest: card_seteq)
  1994 done
  1995 
  1996 lemma card_Un_Int: "finite A ==> finite B
  1997     ==> card A + card B = card (A Un B) + card (A Int B)"
  1998   by (fact card.union_inter [symmetric])
  1999 
  2000 lemma card_Un_disjoint: "finite A ==> finite B
  2001     ==> A Int B = {} ==> card (A Un B) = card A + card B"
  2002   by (fact card.union_disjoint)
  2003 
  2004 lemma card_Diff_subset:
  2005   assumes "finite B" and "B \<subseteq> A"
  2006   shows "card (A - B) = card A - card B"
  2007 proof (cases "finite A")
  2008   case False with assms show ?thesis by simp
  2009 next
  2010   case True with assms show ?thesis by (induct B arbitrary: A) simp_all
  2011 qed
  2012 
  2013 lemma card_Diff_subset_Int:
  2014   assumes AB: "finite (A \<inter> B)" shows "card (A - B) = card A - card (A \<inter> B)"
  2015 proof -
  2016   have "A - B = A - A \<inter> B" by auto
  2017   thus ?thesis
  2018     by (simp add: card_Diff_subset AB) 
  2019 qed
  2020 
  2021 lemma card_Diff1_less: "finite A ==> x: A ==> card (A - {x}) < card A"
  2022 apply (rule Suc_less_SucD)
  2023 apply (simp add: card_Suc_Diff1 del:card_Diff_insert)
  2024 done
  2025 
  2026 lemma card_Diff2_less:
  2027   "finite A ==> x: A ==> y: A ==> card (A - {x} - {y}) < card A"
  2028 apply (case_tac "x = y")
  2029  apply (simp add: card_Diff1_less del:card_Diff_insert)
  2030 apply (rule less_trans)
  2031  prefer 2 apply (auto intro!: card_Diff1_less simp del:card_Diff_insert)
  2032 done
  2033 
  2034 lemma card_Diff1_le: "finite A ==> card (A - {x}) <= card A"
  2035 apply (case_tac "x : A")
  2036  apply (simp_all add: card_Diff1_less less_imp_le)
  2037 done
  2038 
  2039 lemma card_psubset: "finite B ==> A \<subseteq> B ==> card A < card B ==> A < B"
  2040 by (erule psubsetI, blast)
  2041 
  2042 lemma insert_partition:
  2043   "\<lbrakk> x \<notin> F; \<forall>c1 \<in> insert x F. \<forall>c2 \<in> insert x F. c1 \<noteq> c2 \<longrightarrow> c1 \<inter> c2 = {} \<rbrakk>
  2044   \<Longrightarrow> x \<inter> \<Union> F = {}"
  2045 by auto
  2046 
  2047 lemma finite_psubset_induct[consumes 1, case_names psubset]:
  2048   assumes fin: "finite A" 
  2049   and     major: "\<And>A. finite A \<Longrightarrow> (\<And>B. B \<subset> A \<Longrightarrow> P B) \<Longrightarrow> P A" 
  2050   shows "P A"
  2051 using fin
  2052 proof (induct A taking: card rule: measure_induct_rule)
  2053   case (less A)
  2054   have fin: "finite A" by fact
  2055   have ih: "\<And>B. \<lbrakk>card B < card A; finite B\<rbrakk> \<Longrightarrow> P B" by fact
  2056   { fix B 
  2057     assume asm: "B \<subset> A"
  2058     from asm have "card B < card A" using psubset_card_mono fin by blast
  2059     moreover
  2060     from asm have "B \<subseteq> A" by auto
  2061     then have "finite B" using fin finite_subset by blast
  2062     ultimately 
  2063     have "P B" using ih by simp
  2064   }
  2065   with fin show "P A" using major by blast
  2066 qed
  2067 
  2068 text{* main cardinality theorem *}
  2069 lemma card_partition [rule_format]:
  2070   "finite C ==>
  2071      finite (\<Union> C) -->
  2072      (\<forall>c\<in>C. card c = k) -->
  2073      (\<forall>c1 \<in> C. \<forall>c2 \<in> C. c1 \<noteq> c2 --> c1 \<inter> c2 = {}) -->
  2074      k * card(C) = card (\<Union> C)"
  2075 apply (erule finite_induct, simp)
  2076 apply (simp add: card_Un_disjoint insert_partition 
  2077        finite_subset [of _ "\<Union> (insert x F)"])
  2078 done
  2079 
  2080 lemma card_eq_UNIV_imp_eq_UNIV:
  2081   assumes fin: "finite (UNIV :: 'a set)"
  2082   and card: "card A = card (UNIV :: 'a set)"
  2083   shows "A = (UNIV :: 'a set)"
  2084 proof
  2085   show "A \<subseteq> UNIV" by simp
  2086   show "UNIV \<subseteq> A"
  2087   proof
  2088     fix x
  2089     show "x \<in> A"
  2090     proof (rule ccontr)
  2091       assume "x \<notin> A"
  2092       then have "A \<subset> UNIV" by auto
  2093       with fin have "card A < card (UNIV :: 'a set)" by (fact psubset_card_mono)
  2094       with card show False by simp
  2095     qed
  2096   qed
  2097 qed
  2098 
  2099 text{*The form of a finite set of given cardinality*}
  2100 
  2101 lemma card_eq_SucD:
  2102 assumes "card A = Suc k"
  2103 shows "\<exists>b B. A = insert b B & b \<notin> B & card B = k & (k=0 \<longrightarrow> B={})"
  2104 proof -
  2105   have fin: "finite A" using assms by (auto intro: ccontr)
  2106   moreover have "card A \<noteq> 0" using assms by auto
  2107   ultimately obtain b where b: "b \<in> A" by auto
  2108   show ?thesis
  2109   proof (intro exI conjI)
  2110     show "A = insert b (A-{b})" using b by blast
  2111     show "b \<notin> A - {b}" by blast
  2112     show "card (A - {b}) = k" and "k = 0 \<longrightarrow> A - {b} = {}"
  2113       using assms b fin by(fastsimp dest:mk_disjoint_insert)+
  2114   qed
  2115 qed
  2116 
  2117 lemma card_Suc_eq:
  2118   "(card A = Suc k) =
  2119    (\<exists>b B. A = insert b B & b \<notin> B & card B = k & (k=0 \<longrightarrow> B={}))"
  2120 apply(rule iffI)
  2121  apply(erule card_eq_SucD)
  2122 apply(auto)
  2123 apply(subst card_insert)
  2124  apply(auto intro:ccontr)
  2125 done
  2126 
  2127 lemma finite_fun_UNIVD2:
  2128   assumes fin: "finite (UNIV :: ('a \<Rightarrow> 'b) set)"
  2129   shows "finite (UNIV :: 'b set)"
  2130 proof -
  2131   from fin have "finite (range (\<lambda>f :: 'a \<Rightarrow> 'b. f arbitrary))"
  2132     by(rule finite_imageI)
  2133   moreover have "UNIV = range (\<lambda>f :: 'a \<Rightarrow> 'b. f arbitrary)"
  2134     by(rule UNIV_eq_I) auto
  2135   ultimately show "finite (UNIV :: 'b set)" by simp
  2136 qed
  2137 
  2138 lemma card_UNIV_unit: "card (UNIV :: unit set) = 1"
  2139   unfolding UNIV_unit by simp
  2140 
  2141 
  2142 subsubsection {* Cardinality of image *}
  2143 
  2144 lemma card_image_le: "finite A ==> card (f ` A) <= card A"
  2145 apply (induct set: finite)
  2146  apply simp
  2147 apply (simp add: le_SucI card_insert_if)
  2148 done
  2149 
  2150 lemma card_image:
  2151   assumes "inj_on f A"
  2152   shows "card (f ` A) = card A"
  2153 proof (cases "finite A")
  2154   case True then show ?thesis using assms by (induct A) simp_all
  2155 next
  2156   case False then have "\<not> finite (f ` A)" using assms by (auto dest: finite_imageD)
  2157   with False show ?thesis by simp
  2158 qed
  2159 
  2160 lemma bij_betw_same_card: "bij_betw f A B \<Longrightarrow> card A = card B"
  2161 by(auto simp: card_image bij_betw_def)
  2162 
  2163 lemma endo_inj_surj: "finite A ==> f ` A \<subseteq> A ==> inj_on f A ==> f ` A = A"
  2164 by (simp add: card_seteq card_image)
  2165 
  2166 lemma eq_card_imp_inj_on:
  2167   "[| finite A; card(f ` A) = card A |] ==> inj_on f A"
  2168 apply (induct rule:finite_induct)
  2169 apply simp
  2170 apply(frule card_image_le[where f = f])
  2171 apply(simp add:card_insert_if split:if_splits)
  2172 done
  2173 
  2174 lemma inj_on_iff_eq_card:
  2175   "finite A ==> inj_on f A = (card(f ` A) = card A)"
  2176 by(blast intro: card_image eq_card_imp_inj_on)
  2177 
  2178 
  2179 lemma card_inj_on_le:
  2180   "[|inj_on f A; f ` A \<subseteq> B; finite B |] ==> card A \<le> card B"
  2181 apply (subgoal_tac "finite A") 
  2182  apply (force intro: card_mono simp add: card_image [symmetric])
  2183 apply (blast intro: finite_imageD dest: finite_subset) 
  2184 done
  2185 
  2186 lemma card_bij_eq:
  2187   "[|inj_on f A; f ` A \<subseteq> B; inj_on g B; g ` B \<subseteq> A;
  2188      finite A; finite B |] ==> card A = card B"
  2189 by (auto intro: le_antisym card_inj_on_le)
  2190 
  2191 
  2192 subsubsection {* Cardinality of sums *}
  2193 
  2194 lemma card_Plus:
  2195   assumes "finite A" and "finite B"
  2196   shows "card (A <+> B) = card A + card B"
  2197 proof -
  2198   have "Inl`A \<inter> Inr`B = {}" by fast
  2199   with assms show ?thesis
  2200     unfolding Plus_def
  2201     by (simp add: card_Un_disjoint card_image)
  2202 qed
  2203 
  2204 lemma card_Plus_conv_if:
  2205   "card (A <+> B) = (if finite A \<and> finite B then card A + card B else 0)"
  2206   by (auto simp add: card_Plus)
  2207 
  2208 
  2209 subsubsection {* Cardinality of the Powerset *}
  2210 
  2211 lemma card_Pow: "finite A ==> card (Pow A) = Suc (Suc 0) ^ card A"  (* FIXME numeral 2 (!?) *)
  2212 apply (induct set: finite)
  2213  apply (simp_all add: Pow_insert)
  2214 apply (subst card_Un_disjoint, blast)
  2215   apply (blast intro: finite_imageI, blast)
  2216 apply (subgoal_tac "inj_on (insert x) (Pow F)")
  2217  apply (simp add: card_image Pow_insert)
  2218 apply (unfold inj_on_def)
  2219 apply (blast elim!: equalityE)
  2220 done
  2221 
  2222 text {* Relates to equivalence classes.  Based on a theorem of F. Kammüller.  *}
  2223 
  2224 lemma dvd_partition:
  2225   "finite (Union C) ==>
  2226     ALL c : C. k dvd card c ==>
  2227     (ALL c1: C. ALL c2: C. c1 \<noteq> c2 --> c1 Int c2 = {}) ==>
  2228   k dvd card (Union C)"
  2229 apply(frule finite_UnionD)
  2230 apply(rotate_tac -1)
  2231 apply (induct set: finite, simp_all, clarify)
  2232 apply (subst card_Un_disjoint)
  2233    apply (auto simp add: disjoint_eq_subset_Compl)
  2234 done
  2235 
  2236 
  2237 subsubsection {* Relating injectivity and surjectivity *}
  2238 
  2239 lemma finite_surj_inj: "finite(A) \<Longrightarrow> A <= f`A \<Longrightarrow> inj_on f A"
  2240 apply(rule eq_card_imp_inj_on, assumption)
  2241 apply(frule finite_imageI)
  2242 apply(drule (1) card_seteq)
  2243  apply(erule card_image_le)
  2244 apply simp
  2245 done
  2246 
  2247 lemma finite_UNIV_surj_inj: fixes f :: "'a \<Rightarrow> 'a"
  2248 shows "finite(UNIV:: 'a set) \<Longrightarrow> surj f \<Longrightarrow> inj f"
  2249 by (blast intro: finite_surj_inj subset_UNIV dest:surj_range)
  2250 
  2251 lemma finite_UNIV_inj_surj: fixes f :: "'a \<Rightarrow> 'a"
  2252 shows "finite(UNIV:: 'a set) \<Longrightarrow> inj f \<Longrightarrow> surj f"
  2253 by(fastsimp simp:surj_def dest!: endo_inj_surj)
  2254 
  2255 corollary infinite_UNIV_nat[iff]: "~finite(UNIV::nat set)"
  2256 proof
  2257   assume "finite(UNIV::nat set)"
  2258   with finite_UNIV_inj_surj[of Suc]
  2259   show False by simp (blast dest: Suc_neq_Zero surjD)
  2260 qed
  2261 
  2262 (* Often leads to bogus ATP proofs because of reduced type information, hence no_atp *)
  2263 lemma infinite_UNIV_char_0[no_atp]:
  2264   "\<not> finite (UNIV::'a::semiring_char_0 set)"
  2265 proof
  2266   assume "finite (UNIV::'a set)"
  2267   with subset_UNIV have "finite (range of_nat::'a set)"
  2268     by (rule finite_subset)
  2269   moreover have "inj (of_nat::nat \<Rightarrow> 'a)"
  2270     by (simp add: inj_on_def)
  2271   ultimately have "finite (UNIV::nat set)"
  2272     by (rule finite_imageD)
  2273   then show "False"
  2274     by simp
  2275 qed
  2276 
  2277 end