src/HOL/BNF/Examples/Stream.thy
author hoelzl
Tue, 19 Nov 2013 17:07:52 +0100
changeset 55871 f7fef6b00bfe
parent 55870 c76dec4df4d7
parent 55866 5b34a5b93ec2
child 56062 0a9920e46b3a
permissions -rw-r--r--
merged
     1 (*  Title:      HOL/BNF/Examples/Stream.thy
     2     Author:     Dmitriy Traytel, TU Muenchen
     3     Author:     Andrei Popescu, TU Muenchen
     4     Copyright   2012, 2013
     5 
     6 Infinite streams.
     7 *)
     8 
     9 header {* Infinite Streams *}
    10 
    11 theory Stream
    12 imports "../BNF"
    13 begin
    14 
    15 codatatype (sset: 'a) stream (map: smap rel: stream_all2) =
    16   Stream (shd: 'a) (stl: "'a stream") (infixr "##" 65)
    17 
    18 code_datatype Stream
    19 
    20 lemma stream_case_cert:
    21   assumes "CASE \<equiv> case_stream c"
    22   shows "CASE (a ## s) \<equiv> c a s"
    23   using assms by simp_all
    24 
    25 setup {*
    26   Code.add_case @{thm stream_case_cert}
    27 *}
    28 
    29 (*for code generation only*)
    30 definition smember :: "'a \<Rightarrow> 'a stream \<Rightarrow> bool" where
    31   [code_abbrev]: "smember x s \<longleftrightarrow> x \<in> sset s"
    32 
    33 lemma smember_code[code, simp]: "smember x (Stream y s) = (if x = y then True else smember x s)"
    34   unfolding smember_def by auto
    35 
    36 hide_const (open) smember
    37 
    38 (* TODO: Provide by the package*)
    39 theorem sset_induct:
    40   "\<lbrakk>\<And>s. P (shd s) s; \<And>s y. \<lbrakk>y \<in> sset (stl s); P y (stl s)\<rbrakk> \<Longrightarrow> P y s\<rbrakk> \<Longrightarrow>
    41     \<forall>y \<in> sset s. P y s"
    42   apply (rule stream.dtor_set_induct)
    43   apply (auto simp add: shd_def stl_def fsts_def snds_def split_beta)
    44   apply (metis Stream_def fst_conv stream.case stream.dtor_ctor stream.exhaust)
    45   by (metis Stream_def sndI stl_def stream.collapse stream.dtor_ctor)
    46 
    47 lemma smap_simps[simp]:
    48   "shd (smap f s) = f (shd s)" "stl (smap f s) = smap f (stl s)"
    49   by (case_tac [!] s) auto
    50 
    51 theorem shd_sset: "shd s \<in> sset s"
    52   by (case_tac s) auto
    53 
    54 theorem stl_sset: "y \<in> sset (stl s) \<Longrightarrow> y \<in> sset s"
    55   by (case_tac s) auto
    56 
    57 (* only for the non-mutual case: *)
    58 theorem sset_induct1[consumes 1, case_names shd stl, induct set: "sset"]:
    59   assumes "y \<in> sset s" and "\<And>s. P (shd s) s"
    60   and "\<And>s y. \<lbrakk>y \<in> sset (stl s); P y (stl s)\<rbrakk> \<Longrightarrow> P y s"
    61   shows "P y s"
    62   using assms sset_induct by blast
    63 (* end TODO *)
    64 
    65 
    66 subsection {* prepend list to stream *}
    67 
    68 primrec shift :: "'a list \<Rightarrow> 'a stream \<Rightarrow> 'a stream" (infixr "@-" 65) where
    69   "shift [] s = s"
    70 | "shift (x # xs) s = x ## shift xs s"
    71 
    72 lemma smap_shift[simp]: "smap f (xs @- s) = map f xs @- smap f s"
    73   by (induct xs) auto
    74 
    75 lemma shift_append[simp]: "(xs @ ys) @- s = xs @- ys @- s"
    76   by (induct xs) auto
    77 
    78 lemma shift_simps[simp]:
    79    "shd (xs @- s) = (if xs = [] then shd s else hd xs)"
    80    "stl (xs @- s) = (if xs = [] then stl s else tl xs @- s)"
    81   by (induct xs) auto
    82 
    83 lemma sset_shift[simp]: "sset (xs @- s) = set xs \<union> sset s"
    84   by (induct xs) auto
    85 
    86 lemma shift_left_inj[simp]: "xs @- s1 = xs @- s2 \<longleftrightarrow> s1 = s2"
    87   by (induct xs) auto
    88 
    89 
    90 subsection {* set of streams with elements in some fixed set *}
    91 
    92 coinductive_set
    93   streams :: "'a set \<Rightarrow> 'a stream set"
    94   for A :: "'a set"
    95 where
    96   Stream[intro!, simp, no_atp]: "\<lbrakk>a \<in> A; s \<in> streams A\<rbrakk> \<Longrightarrow> a ## s \<in> streams A"
    97 
    98 lemma shift_streams: "\<lbrakk>w \<in> lists A; s \<in> streams A\<rbrakk> \<Longrightarrow> w @- s \<in> streams A"
    99   by (induct w) auto
   100 
   101 lemma streams_Stream: "x ## s \<in> streams A \<longleftrightarrow> x \<in> A \<and> s \<in> streams A"
   102   by (auto elim: streams.cases)
   103 
   104 lemma streams_stl: "s \<in> streams A \<Longrightarrow> stl s \<in> streams A"
   105   by (cases s) (auto simp: streams_Stream)
   106 
   107 lemma streams_shd: "s \<in> streams A \<Longrightarrow> shd s \<in> A"
   108   by (cases s) (auto simp: streams_Stream)
   109 
   110 lemma sset_streams:
   111   assumes "sset s \<subseteq> A"
   112   shows "s \<in> streams A"
   113 using assms proof (coinduction arbitrary: s)
   114   case streams then show ?case by (cases s) simp
   115 qed
   116 
   117 lemma streams_sset:
   118   assumes "s \<in> streams A"
   119   shows "sset s \<subseteq> A"
   120 proof
   121   fix x assume "x \<in> sset s" from this `s \<in> streams A` show "x \<in> A"
   122     by (induct s) (auto intro: streams_shd streams_stl)
   123 qed
   124 
   125 lemma streams_iff_sset: "s \<in> streams A \<longleftrightarrow> sset s \<subseteq> A"
   126   by (metis sset_streams streams_sset)
   127 
   128 lemma streams_mono:  "s \<in> streams A \<Longrightarrow> A \<subseteq> B \<Longrightarrow> s \<in> streams B"
   129   unfolding streams_iff_sset by auto
   130 
   131 lemma smap_streams: "s \<in> streams A \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<in> B) \<Longrightarrow> smap f s \<in> streams B"
   132   unfolding streams_iff_sset stream.set_map by auto
   133 
   134 lemma streams_empty: "streams {} = {}"
   135   by (auto elim: streams.cases)
   136 
   137 lemma streams_UNIV[simp]: "streams UNIV = UNIV"
   138   by (auto simp: streams_iff_sset)
   139 
   140 subsection {* nth, take, drop for streams *}
   141 
   142 primrec snth :: "'a stream \<Rightarrow> nat \<Rightarrow> 'a" (infixl "!!" 100) where
   143   "s !! 0 = shd s"
   144 | "s !! Suc n = stl s !! n"
   145 
   146 lemma snth_smap[simp]: "smap f s !! n = f (s !! n)"
   147   by (induct n arbitrary: s) auto
   148 
   149 lemma shift_snth_less[simp]: "p < length xs \<Longrightarrow> (xs @- s) !! p = xs ! p"
   150   by (induct p arbitrary: xs) (auto simp: hd_conv_nth nth_tl)
   151 
   152 lemma shift_snth_ge[simp]: "p \<ge> length xs \<Longrightarrow> (xs @- s) !! p = s !! (p - length xs)"
   153   by (induct p arbitrary: xs) (auto simp: Suc_diff_eq_diff_pred)
   154 
   155 lemma snth_sset[simp]: "s !! n \<in> sset s"
   156   by (induct n arbitrary: s) (auto intro: shd_sset stl_sset)
   157 
   158 lemma sset_range: "sset s = range (snth s)"
   159 proof (intro equalityI subsetI)
   160   fix x assume "x \<in> sset s"
   161   thus "x \<in> range (snth s)"
   162   proof (induct s)
   163     case (stl s x)
   164     then obtain n where "x = stl s !! n" by auto
   165     thus ?case by (auto intro: range_eqI[of _ _ "Suc n"])
   166   qed (auto intro: range_eqI[of _ _ 0])
   167 qed auto
   168 
   169 primrec stake :: "nat \<Rightarrow> 'a stream \<Rightarrow> 'a list" where
   170   "stake 0 s = []"
   171 | "stake (Suc n) s = shd s # stake n (stl s)"
   172 
   173 lemma length_stake[simp]: "length (stake n s) = n"
   174   by (induct n arbitrary: s) auto
   175 
   176 lemma stake_smap[simp]: "stake n (smap f s) = map f (stake n s)"
   177   by (induct n arbitrary: s) auto
   178 
   179 primrec sdrop :: "nat \<Rightarrow> 'a stream \<Rightarrow> 'a stream" where
   180   "sdrop 0 s = s"
   181 | "sdrop (Suc n) s = sdrop n (stl s)"
   182 
   183 lemma sdrop_simps[simp]:
   184   "shd (sdrop n s) = s !! n" "stl (sdrop n s) = sdrop (Suc n) s"
   185   by (induct n arbitrary: s)  auto
   186 
   187 lemma sdrop_smap[simp]: "sdrop n (smap f s) = smap f (sdrop n s)"
   188   by (induct n arbitrary: s) auto
   189 
   190 lemma sdrop_stl: "sdrop n (stl s) = stl (sdrop n s)"
   191   by (induct n) auto
   192 
   193 lemma stake_sdrop: "stake n s @- sdrop n s = s"
   194   by (induct n arbitrary: s) auto
   195 
   196 lemma id_stake_snth_sdrop:
   197   "s = stake i s @- s !! i ## sdrop (Suc i) s"
   198   by (subst stake_sdrop[symmetric, of _ i]) (metis sdrop_simps stream.collapse)
   199 
   200 lemma smap_alt: "smap f s = s' \<longleftrightarrow> (\<forall>n. f (s !! n) = s' !! n)" (is "?L = ?R")
   201 proof
   202   assume ?R
   203   then have "\<And>n. smap f (sdrop n s) = sdrop n s'"
   204     by coinduction (auto intro: exI[of _ 0] simp del: sdrop.simps(2))
   205   then show ?L using sdrop.simps(1) by metis
   206 qed auto
   207 
   208 lemma stake_invert_Nil[iff]: "stake n s = [] \<longleftrightarrow> n = 0"
   209   by (induct n) auto
   210 
   211 lemma sdrop_shift: "\<lbrakk>s = w @- s'; length w = n\<rbrakk> \<Longrightarrow> sdrop n s = s'"
   212   by (induct n arbitrary: w s) auto
   213 
   214 lemma stake_shift: "\<lbrakk>s = w @- s'; length w = n\<rbrakk> \<Longrightarrow> stake n s = w"
   215   by (induct n arbitrary: w s) auto
   216 
   217 lemma stake_add[simp]: "stake m s @ stake n (sdrop m s) = stake (m + n) s"
   218   by (induct m arbitrary: s) auto
   219 
   220 lemma sdrop_add[simp]: "sdrop n (sdrop m s) = sdrop (m + n) s"
   221   by (induct m arbitrary: s) auto
   222 
   223 partial_function (tailrec) sdrop_while :: "('a \<Rightarrow> bool) \<Rightarrow> 'a stream \<Rightarrow> 'a stream" where 
   224   "sdrop_while P s = (if P (shd s) then sdrop_while P (stl s) else s)"
   225 
   226 lemma sdrop_while_Stream[code]:
   227   "sdrop_while P (Stream a s) = (if P a then sdrop_while P s else Stream a s)"
   228   by (subst sdrop_while.simps) simp
   229 
   230 lemma sdrop_while_sdrop_LEAST:
   231   assumes "\<exists>n. P (s !! n)"
   232   shows "sdrop_while (Not o P) s = sdrop (LEAST n. P (s !! n)) s"
   233 proof -
   234   from assms obtain m where "P (s !! m)" "\<And>n. P (s !! n) \<Longrightarrow> m \<le> n"
   235     and *: "(LEAST n. P (s !! n)) = m" by atomize_elim (auto intro: LeastI Least_le)
   236   thus ?thesis unfolding *
   237   proof (induct m arbitrary: s)
   238     case (Suc m)
   239     hence "sdrop_while (Not \<circ> P) (stl s) = sdrop m (stl s)"
   240       by (metis (full_types) not_less_eq_eq snth.simps(2))
   241     moreover from Suc(3) have "\<not> (P (s !! 0))" by blast
   242     ultimately show ?case by (subst sdrop_while.simps) simp
   243   qed (metis comp_apply sdrop.simps(1) sdrop_while.simps snth.simps(1))
   244 qed
   245 
   246 primcorec sfilter where
   247   "shd (sfilter P s) = shd (sdrop_while (Not o P) s)"
   248 | "stl (sfilter P s) = sfilter P (stl (sdrop_while (Not o P) s))"
   249 
   250 lemma sfilter_Stream: "sfilter P (x ## s) = (if P x then x ## sfilter P s else sfilter P s)"
   251 proof (cases "P x")
   252   case True thus ?thesis by (subst sfilter.ctr) (simp add: sdrop_while_Stream)
   253 next
   254   case False thus ?thesis by (subst (1 2) sfilter.ctr) (simp add: sdrop_while_Stream)
   255 qed
   256 
   257 
   258 subsection {* unary predicates lifted to streams *}
   259 
   260 definition "stream_all P s = (\<forall>p. P (s !! p))"
   261 
   262 lemma stream_all_iff[iff]: "stream_all P s \<longleftrightarrow> Ball (sset s) P"
   263   unfolding stream_all_def sset_range by auto
   264 
   265 lemma stream_all_shift[simp]: "stream_all P (xs @- s) = (list_all P xs \<and> stream_all P s)"
   266   unfolding stream_all_iff list_all_iff by auto
   267 
   268 lemma stream_all_Stream: "stream_all P (x ## X) \<longleftrightarrow> P x \<and> stream_all P X"
   269   by simp
   270 
   271 
   272 subsection {* recurring stream out of a list *}
   273 
   274 primcorec cycle :: "'a list \<Rightarrow> 'a stream" where
   275   "shd (cycle xs) = hd xs"
   276 | "stl (cycle xs) = cycle (tl xs @ [hd xs])"
   277 lemma cycle_decomp: "u \<noteq> [] \<Longrightarrow> cycle u = u @- cycle u"
   278 proof (coinduction arbitrary: u)
   279   case Eq_stream then show ?case using stream.collapse[of "cycle u"]
   280     by (auto intro!: exI[of _ "tl u @ [hd u]"])
   281 qed
   282 
   283 lemma cycle_Cons[code]: "cycle (x # xs) = x ## cycle (xs @ [x])"
   284   by (subst cycle.ctr) simp
   285 
   286 lemma cycle_rotated: "\<lbrakk>v \<noteq> []; cycle u = v @- s\<rbrakk> \<Longrightarrow> cycle (tl u @ [hd u]) = tl v @- s"
   287   by (auto dest: arg_cong[of _ _ stl])
   288 
   289 lemma stake_append: "stake n (u @- s) = take (min (length u) n) u @ stake (n - length u) s"
   290 proof (induct n arbitrary: u)
   291   case (Suc n) thus ?case by (cases u) auto
   292 qed auto
   293 
   294 lemma stake_cycle_le[simp]:
   295   assumes "u \<noteq> []" "n < length u"
   296   shows "stake n (cycle u) = take n u"
   297 using min_absorb2[OF less_imp_le_nat[OF assms(2)]]
   298   by (subst cycle_decomp[OF assms(1)], subst stake_append) auto
   299 
   300 lemma stake_cycle_eq[simp]: "u \<noteq> [] \<Longrightarrow> stake (length u) (cycle u) = u"
   301   by (metis cycle_decomp stake_shift)
   302 
   303 lemma sdrop_cycle_eq[simp]: "u \<noteq> [] \<Longrightarrow> sdrop (length u) (cycle u) = cycle u"
   304   by (metis cycle_decomp sdrop_shift)
   305 
   306 lemma stake_cycle_eq_mod_0[simp]: "\<lbrakk>u \<noteq> []; n mod length u = 0\<rbrakk> \<Longrightarrow>
   307    stake n (cycle u) = concat (replicate (n div length u) u)"
   308   by (induct "n div length u" arbitrary: n u) (auto simp: stake_add[symmetric])
   309 
   310 lemma sdrop_cycle_eq_mod_0[simp]: "\<lbrakk>u \<noteq> []; n mod length u = 0\<rbrakk> \<Longrightarrow>
   311    sdrop n (cycle u) = cycle u"
   312   by (induct "n div length u" arbitrary: n u) (auto simp: sdrop_add[symmetric])
   313 
   314 lemma stake_cycle: "u \<noteq> [] \<Longrightarrow>
   315    stake n (cycle u) = concat (replicate (n div length u) u) @ take (n mod length u) u"
   316   by (subst mod_div_equality[of n "length u", symmetric], unfold stake_add[symmetric]) auto
   317 
   318 lemma sdrop_cycle: "u \<noteq> [] \<Longrightarrow> sdrop n (cycle u) = cycle (rotate (n mod length u) u)"
   319   by (induct n arbitrary: u) (auto simp: rotate1_rotate_swap rotate1_hd_tl rotate_conv_mod[symmetric])
   320 
   321 
   322 subsection {* iterated application of a function *}
   323 
   324 primcorec siterate where
   325   "shd (siterate f x) = x"
   326 | "stl (siterate f x) = siterate f (f x)"
   327 
   328 lemma stake_Suc: "stake (Suc n) s = stake n s @ [s !! n]"
   329   by (induct n arbitrary: s) auto
   330 
   331 lemma snth_siterate[simp]: "siterate f x !! n = (f^^n) x"
   332   by (induct n arbitrary: x) (auto simp: funpow_swap1)
   333 
   334 lemma sdrop_siterate[simp]: "sdrop n (siterate f x) = siterate f ((f^^n) x)"
   335   by (induct n arbitrary: x) (auto simp: funpow_swap1)
   336 
   337 lemma stake_siterate[simp]: "stake n (siterate f x) = map (\<lambda>n. (f^^n) x) [0 ..< n]"
   338   by (induct n arbitrary: x) (auto simp del: stake.simps(2) simp: stake_Suc)
   339 
   340 lemma sset_siterate: "sset (siterate f x) = {(f^^n) x | n. True}"
   341   by (auto simp: sset_range)
   342 
   343 lemma smap_siterate: "smap f (siterate f x) = siterate f (f x)"
   344   by (coinduction arbitrary: x) auto
   345 
   346 
   347 subsection {* stream repeating a single element *}
   348 
   349 abbreviation "sconst \<equiv> siterate id"
   350 
   351 lemma shift_replicate_sconst[simp]: "replicate n x @- sconst x = sconst x"
   352   by (subst (3) stake_sdrop[symmetric]) (simp add: map_replicate_trivial)
   353 
   354 lemma stream_all_same[simp]: "sset (sconst x) = {x}"
   355   by (simp add: sset_siterate)
   356 
   357 lemma same_cycle: "sconst x = cycle [x]"
   358   by coinduction auto
   359 
   360 lemma smap_sconst: "smap f (sconst x) = sconst (f x)"
   361   by coinduction auto
   362 
   363 lemma sconst_streams: "x \<in> A \<Longrightarrow> sconst x \<in> streams A"
   364   by (simp add: streams_iff_sset)
   365 
   366 
   367 subsection {* stream of natural numbers *}
   368 
   369 abbreviation "fromN \<equiv> siterate Suc"
   370 
   371 abbreviation "nats \<equiv> fromN 0"
   372 
   373 lemma sset_fromN[simp]: "sset (fromN n) = {n ..}"
   374   by (auto simp add: sset_siterate) arith
   375 
   376 
   377 subsection {* flatten a stream of lists *}
   378 
   379 primcorec flat where
   380   "shd (flat ws) = hd (shd ws)"
   381 | "stl (flat ws) = flat (if tl (shd ws) = [] then stl ws else tl (shd ws) ## stl ws)"
   382 
   383 lemma flat_Cons[simp, code]: "flat ((x # xs) ## ws) = x ## flat (if xs = [] then ws else xs ## ws)"
   384   by (subst flat.ctr) simp
   385 
   386 lemma flat_Stream[simp]: "xs \<noteq> [] \<Longrightarrow> flat (xs ## ws) = xs @- flat ws"
   387   by (induct xs) auto
   388 
   389 lemma flat_unfold: "shd ws \<noteq> [] \<Longrightarrow> flat ws = shd ws @- flat (stl ws)"
   390   by (cases ws) auto
   391 
   392 lemma flat_snth: "\<forall>xs \<in> sset s. xs \<noteq> [] \<Longrightarrow> flat s !! n = (if n < length (shd s) then 
   393   shd s ! n else flat (stl s) !! (n - length (shd s)))"
   394   by (metis flat_unfold not_less shd_sset shift_snth_ge shift_snth_less)
   395 
   396 lemma sset_flat[simp]: "\<forall>xs \<in> sset s. xs \<noteq> [] \<Longrightarrow> 
   397   sset (flat s) = (\<Union>xs \<in> sset s. set xs)" (is "?P \<Longrightarrow> ?L = ?R")
   398 proof safe
   399   fix x assume ?P "x : ?L"
   400   then obtain m where "x = flat s !! m" by (metis image_iff sset_range)
   401   with `?P` obtain n m' where "x = s !! n ! m'" "m' < length (s !! n)"
   402   proof (atomize_elim, induct m arbitrary: s rule: less_induct)
   403     case (less y)
   404     thus ?case
   405     proof (cases "y < length (shd s)")
   406       case True thus ?thesis by (metis flat_snth less(2,3) snth.simps(1))
   407     next
   408       case False
   409       hence "x = flat (stl s) !! (y - length (shd s))" by (metis less(2,3) flat_snth)
   410       moreover
   411       { from less(2) have *: "length (shd s) > 0" by (cases s) simp_all
   412         with False have "y > 0" by (cases y) simp_all
   413         with * have "y - length (shd s) < y" by simp
   414       }
   415       moreover have "\<forall>xs \<in> sset (stl s). xs \<noteq> []" using less(2) by (cases s) auto
   416       ultimately have "\<exists>n m'. x = stl s !! n ! m' \<and> m' < length (stl s !! n)" by (intro less(1)) auto
   417       thus ?thesis by (metis snth.simps(2))
   418     qed
   419   qed
   420   thus "x \<in> ?R" by (auto simp: sset_range dest!: nth_mem)
   421 next
   422   fix x xs assume "xs \<in> sset s" ?P "x \<in> set xs" thus "x \<in> ?L"
   423     by (induct rule: sset_induct1)
   424       (metis UnI1 flat_unfold shift.simps(1) sset_shift,
   425        metis UnI2 flat_unfold shd_sset stl_sset sset_shift)
   426 qed
   427 
   428 
   429 subsection {* merge a stream of streams *}
   430 
   431 definition smerge :: "'a stream stream \<Rightarrow> 'a stream" where
   432   "smerge ss = flat (smap (\<lambda>n. map (\<lambda>s. s !! n) (stake (Suc n) ss) @ stake n (ss !! n)) nats)"
   433 
   434 lemma stake_nth[simp]: "m < n \<Longrightarrow> stake n s ! m = s !! m"
   435   by (induct n arbitrary: s m) (auto simp: nth_Cons', metis Suc_pred snth.simps(2))
   436 
   437 lemma snth_sset_smerge: "ss !! n !! m \<in> sset (smerge ss)"
   438 proof (cases "n \<le> m")
   439   case False thus ?thesis unfolding smerge_def
   440     by (subst sset_flat)
   441       (auto simp: stream.set_map in_set_conv_nth simp del: stake.simps
   442         intro!: exI[of _ n, OF disjI2] exI[of _ m, OF mp])
   443 next
   444   case True thus ?thesis unfolding smerge_def
   445     by (subst sset_flat)
   446       (auto simp: stream.set_map in_set_conv_nth image_iff simp del: stake.simps snth.simps
   447         intro!: exI[of _ m, OF disjI1] bexI[of _ "ss !! n"] exI[of _ n, OF mp])
   448 qed
   449 
   450 lemma sset_smerge: "sset (smerge ss) = UNION (sset ss) sset"
   451 proof safe
   452   fix x assume "x \<in> sset (smerge ss)"
   453   thus "x \<in> UNION (sset ss) sset"
   454     unfolding smerge_def by (subst (asm) sset_flat)
   455       (auto simp: stream.set_map in_set_conv_nth sset_range simp del: stake.simps, fast+)
   456 next
   457   fix s x assume "s \<in> sset ss" "x \<in> sset s"
   458   thus "x \<in> sset (smerge ss)" using snth_sset_smerge by (auto simp: sset_range)
   459 qed
   460 
   461 
   462 subsection {* product of two streams *}
   463 
   464 definition sproduct :: "'a stream \<Rightarrow> 'b stream \<Rightarrow> ('a \<times> 'b) stream" where
   465   "sproduct s1 s2 = smerge (smap (\<lambda>x. smap (Pair x) s2) s1)"
   466 
   467 lemma sset_sproduct: "sset (sproduct s1 s2) = sset s1 \<times> sset s2"
   468   unfolding sproduct_def sset_smerge by (auto simp: stream.set_map)
   469 
   470 
   471 subsection {* interleave two streams *}
   472 
   473 primcorec sinterleave where
   474   "shd (sinterleave s1 s2) = shd s1"
   475 | "stl (sinterleave s1 s2) = sinterleave s2 (stl s1)"
   476 
   477 lemma sinterleave_code[code]:
   478   "sinterleave (x ## s1) s2 = x ## sinterleave s2 s1"
   479   by (subst sinterleave.ctr) simp
   480 
   481 lemma sinterleave_snth[simp]:
   482   "even n \<Longrightarrow> sinterleave s1 s2 !! n = s1 !! (n div 2)"
   483    "odd n \<Longrightarrow> sinterleave s1 s2 !! n = s2 !! (n div 2)"
   484   by (induct n arbitrary: s1 s2)
   485     (auto dest: even_nat_Suc_div_2 odd_nat_plus_one_div_two[folded nat_2])
   486 
   487 lemma sset_sinterleave: "sset (sinterleave s1 s2) = sset s1 \<union> sset s2"
   488 proof (intro equalityI subsetI)
   489   fix x assume "x \<in> sset (sinterleave s1 s2)"
   490   then obtain n where "x = sinterleave s1 s2 !! n" unfolding sset_range by blast
   491   thus "x \<in> sset s1 \<union> sset s2" by (cases "even n") auto
   492 next
   493   fix x assume "x \<in> sset s1 \<union> sset s2"
   494   thus "x \<in> sset (sinterleave s1 s2)"
   495   proof
   496     assume "x \<in> sset s1"
   497     then obtain n where "x = s1 !! n" unfolding sset_range by blast
   498     hence "sinterleave s1 s2 !! (2 * n) = x" by simp
   499     thus ?thesis unfolding sset_range by blast
   500   next
   501     assume "x \<in> sset s2"
   502     then obtain n where "x = s2 !! n" unfolding sset_range by blast
   503     hence "sinterleave s1 s2 !! (2 * n + 1) = x" by simp
   504     thus ?thesis unfolding sset_range by blast
   505   qed
   506 qed
   507 
   508 
   509 subsection {* zip *}
   510 
   511 primcorec szip where
   512   "shd (szip s1 s2) = (shd s1, shd s2)"
   513 | "stl (szip s1 s2) = szip (stl s1) (stl s2)"
   514 
   515 lemma szip_unfold[code]: "szip (Stream a s1) (Stream b s2) = Stream (a, b) (szip s1 s2)"
   516   by (subst szip.ctr) simp
   517 
   518 lemma snth_szip[simp]: "szip s1 s2 !! n = (s1 !! n, s2 !! n)"
   519   by (induct n arbitrary: s1 s2) auto
   520 
   521 
   522 subsection {* zip via function *}
   523 
   524 primcorec smap2 where
   525   "shd (smap2 f s1 s2) = f (shd s1) (shd s2)"
   526 | "stl (smap2 f s1 s2) = smap2 f (stl s1) (stl s2)"
   527 
   528 lemma smap2_unfold[code]:
   529   "smap2 f (Stream a s1) (Stream b s2) = Stream (f a b) (smap2 f s1 s2)"
   530   by (subst smap2.ctr) simp
   531 
   532 lemma smap2_szip:
   533   "smap2 f s1 s2 = smap (split f) (szip s1 s2)"
   534   by (coinduction arbitrary: s1 s2) auto
   535 
   536 end