src/HOL/Tools/Transfer/transfer.ML
author kuncar
Thu, 10 Apr 2014 17:48:18 +0200
changeset 57866 f4ba736040fa
parent 57862 src/HOL/Tools/transfer.ML@3373f5d1e074
child 58064 ba1ac087b3a7
permissions -rw-r--r--
setup for Transfer and Lifting from BNF; tuned thm names
     1 (*  Title:      HOL/Tools/Transfer/transfer.ML
     2     Author:     Brian Huffman, TU Muenchen
     3     Author:     Ondrej Kuncar, TU Muenchen
     4 
     5 Generic theorem transfer method.
     6 *)
     7 
     8 signature TRANSFER =
     9 sig
    10   type pred_data
    11   val rel_eq_onp: pred_data -> thm
    12 
    13   val bottom_rewr_conv: thm list -> conv
    14   val top_rewr_conv: thm list -> conv
    15 
    16   val prep_conv: conv
    17   val get_transfer_raw: Proof.context -> thm list
    18   val get_relator_eq_item_net: Proof.context -> thm Item_Net.T
    19   val get_relator_eq: Proof.context -> thm list
    20   val get_sym_relator_eq: Proof.context -> thm list
    21   val get_relator_eq_raw: Proof.context -> thm list
    22   val get_relator_domain: Proof.context -> thm list
    23   val morph_pred_data: morphism -> pred_data -> pred_data
    24   val lookup_pred_data: Proof.context -> string -> pred_data option
    25   val update_pred_data: string -> pred_data -> Context.generic -> Context.generic
    26   val get_compound_lhs: Proof.context -> (term * thm) Item_Net.T
    27   val get_compound_rhs: Proof.context -> (term * thm) Item_Net.T
    28   val transfer_add: attribute
    29   val transfer_del: attribute
    30   val transfer_raw_add: thm -> Context.generic -> Context.generic
    31   val transfer_raw_del: thm -> Context.generic -> Context.generic
    32   val transferred_attribute: thm list -> attribute
    33   val untransferred_attribute: thm list -> attribute
    34   val prep_transfer_domain_thm: Proof.context -> thm -> thm
    35   val transfer_domain_add: attribute
    36   val transfer_domain_del: attribute
    37   val transfer_rule_of_term: Proof.context -> bool -> term -> thm
    38   val transfer_rule_of_lhs: Proof.context -> term -> thm
    39   val eq_tac: Proof.context -> int -> tactic
    40   val transfer_step_tac: Proof.context -> int -> tactic
    41   val transfer_tac: bool -> Proof.context -> int -> tactic
    42   val transfer_prover_tac: Proof.context -> int -> tactic
    43   val gen_frees_tac: (string * typ) list -> Proof.context -> int -> tactic
    44   val setup: theory -> theory
    45 end
    46 
    47 structure Transfer : TRANSFER =
    48 struct
    49 
    50 (** Theory Data **)
    51 
    52 val compound_xhs_empty_net = Item_Net.init (Thm.eq_thm_prop o pairself snd) (single o fst);
    53 val rewr_rules = Item_Net.init Thm.eq_thm_prop (single o fst o HOLogic.dest_eq 
    54   o HOLogic.dest_Trueprop o Thm.concl_of);
    55 
    56 type pred_data = {rel_eq_onp: thm}
    57 
    58 val rel_eq_onp = #rel_eq_onp
    59 
    60 structure Data = Generic_Data
    61 (
    62   type T =
    63     { transfer_raw : thm Item_Net.T,
    64       known_frees : (string * typ) list,
    65       compound_lhs : (term * thm) Item_Net.T,
    66       compound_rhs : (term * thm) Item_Net.T,
    67       relator_eq : thm Item_Net.T,
    68       relator_eq_raw : thm Item_Net.T,
    69       relator_domain : thm Item_Net.T,
    70       pred_data : pred_data Symtab.table }
    71   val empty =
    72     { transfer_raw = Thm.intro_rules,
    73       known_frees = [],
    74       compound_lhs = compound_xhs_empty_net,
    75       compound_rhs = compound_xhs_empty_net,
    76       relator_eq = rewr_rules,
    77       relator_eq_raw = Thm.full_rules,
    78       relator_domain = Thm.full_rules,
    79       pred_data = Symtab.empty }
    80   val extend = I
    81   fun merge
    82     ( { transfer_raw = t1, known_frees = k1,
    83         compound_lhs = l1,
    84         compound_rhs = c1, relator_eq = r1,
    85         relator_eq_raw = rw1, relator_domain = rd1,
    86         pred_data = pd1 },
    87       { transfer_raw = t2, known_frees = k2,
    88         compound_lhs = l2,
    89         compound_rhs = c2, relator_eq = r2,
    90         relator_eq_raw = rw2, relator_domain = rd2,
    91         pred_data = pd2 } ) =
    92     { transfer_raw = Item_Net.merge (t1, t2),
    93       known_frees = Library.merge (op =) (k1, k2),
    94       compound_lhs = Item_Net.merge (l1, l2),
    95       compound_rhs = Item_Net.merge (c1, c2),
    96       relator_eq = Item_Net.merge (r1, r2),
    97       relator_eq_raw = Item_Net.merge (rw1, rw2),
    98       relator_domain = Item_Net.merge (rd1, rd2),
    99       pred_data = Symtab.merge (K true) (pd1, pd2) }
   100 )
   101 
   102 fun get_transfer_raw ctxt = ctxt
   103   |> (Item_Net.content o #transfer_raw o Data.get o Context.Proof)
   104 
   105 fun get_known_frees ctxt = ctxt
   106   |> (#known_frees o Data.get o Context.Proof)
   107 
   108 fun get_compound_lhs ctxt = ctxt
   109   |> (#compound_lhs o Data.get o Context.Proof)
   110 
   111 fun get_compound_rhs ctxt = ctxt
   112   |> (#compound_rhs o Data.get o Context.Proof)
   113 
   114 fun get_relator_eq_item_net ctxt = (#relator_eq o Data.get o Context.Proof) ctxt
   115 
   116 fun get_relator_eq ctxt = ctxt
   117   |> (Item_Net.content o #relator_eq o Data.get o Context.Proof)
   118   |> map safe_mk_meta_eq
   119 
   120 fun get_sym_relator_eq ctxt = ctxt
   121   |> (Item_Net.content o #relator_eq o Data.get o Context.Proof)
   122   |> map (Thm.symmetric o safe_mk_meta_eq)
   123 
   124 fun get_relator_eq_raw ctxt = ctxt
   125   |> (Item_Net.content o #relator_eq_raw o Data.get o Context.Proof)
   126 
   127 fun get_relator_domain ctxt = ctxt
   128   |> (Item_Net.content o #relator_domain o Data.get o Context.Proof)
   129 
   130 fun get_pred_data ctxt = ctxt
   131   |> (#pred_data o Data.get o Context.Proof)
   132 
   133 fun map_data f1 f2 f3 f4 f5 f6 f7 f8
   134   { transfer_raw, known_frees, compound_lhs, compound_rhs,
   135     relator_eq, relator_eq_raw, relator_domain, pred_data } =
   136   { transfer_raw = f1 transfer_raw,
   137     known_frees = f2 known_frees,
   138     compound_lhs = f3 compound_lhs,
   139     compound_rhs = f4 compound_rhs,
   140     relator_eq = f5 relator_eq,
   141     relator_eq_raw = f6 relator_eq_raw,
   142     relator_domain = f7 relator_domain,
   143     pred_data = f8 pred_data }
   144 
   145 fun map_transfer_raw   f = map_data f I I I I I I I
   146 fun map_known_frees    f = map_data I f I I I I I I
   147 fun map_compound_lhs   f = map_data I I f I I I I I
   148 fun map_compound_rhs   f = map_data I I I f I I I I
   149 fun map_relator_eq     f = map_data I I I I f I I I
   150 fun map_relator_eq_raw f = map_data I I I I I f I I
   151 fun map_relator_domain f = map_data I I I I I I f I
   152 fun map_pred_data      f = map_data I I I I I I I f
   153 
   154 fun add_transfer_thm thm = Data.map
   155   (map_transfer_raw (Item_Net.update thm) o
   156    map_compound_lhs
   157      (case HOLogic.dest_Trueprop (Thm.concl_of thm) of
   158         Const (@{const_name Rel}, _) $ _ $ (lhs as (_ $ _)) $ _ =>
   159           Item_Net.update (lhs, thm)
   160       | _ => I) o
   161    map_compound_rhs
   162      (case HOLogic.dest_Trueprop (Thm.concl_of thm) of
   163         Const (@{const_name Rel}, _) $ _ $ _ $ (rhs as (_ $ _)) =>
   164           Item_Net.update (rhs, thm)
   165       | _ => I) o
   166    map_known_frees (Term.add_frees (Thm.concl_of thm)))
   167 
   168 fun del_transfer_thm thm = Data.map 
   169   (map_transfer_raw (Item_Net.remove thm) o
   170    map_compound_lhs
   171      (case HOLogic.dest_Trueprop (Thm.concl_of thm) of
   172         Const (@{const_name Rel}, _) $ _ $ (lhs as (_ $ _)) $ _ =>
   173           Item_Net.remove (lhs, thm)
   174       | _ => I) o
   175    map_compound_rhs
   176      (case HOLogic.dest_Trueprop (Thm.concl_of thm) of
   177         Const (@{const_name Rel}, _) $ _ $ _ $ (rhs as (_ $ _)) =>
   178           Item_Net.remove (rhs, thm)
   179       | _ => I))
   180 
   181 fun transfer_raw_add thm ctxt = add_transfer_thm thm ctxt
   182 fun transfer_raw_del thm ctxt = del_transfer_thm thm ctxt
   183 
   184 (** Conversions **)
   185 
   186 fun bottom_rewr_conv rewrs = Conv.bottom_conv (K (Conv.try_conv (Conv.rewrs_conv rewrs))) @{context}
   187 fun top_rewr_conv rewrs = Conv.top_conv (K (Conv.try_conv (Conv.rewrs_conv rewrs))) @{context}
   188 
   189 fun transfer_rel_conv conv = 
   190   Conv.concl_conv ~1 (HOLogic.Trueprop_conv (Conv.fun2_conv (Conv.arg_conv conv)))
   191 
   192 val Rel_rule = Thm.symmetric @{thm Rel_def}
   193 
   194 fun dest_funcT cT =
   195   (case Thm.dest_ctyp cT of [T, U] => (T, U)
   196     | _ => raise TYPE ("dest_funcT", [Thm.typ_of cT], []))
   197 
   198 fun Rel_conv ct =
   199   let val (cT, cT') = dest_funcT (Thm.ctyp_of_term ct)
   200       val (cU, _) = dest_funcT cT'
   201   in Drule.instantiate' [SOME cT, SOME cU] [SOME ct] Rel_rule end
   202 
   203 (* Conversion to preprocess a transfer rule *)
   204 fun safe_Rel_conv ct =
   205   Conv.try_conv (HOLogic.Trueprop_conv (Conv.fun_conv (Conv.fun_conv Rel_conv))) ct
   206 
   207 fun prep_conv ct = (
   208       Conv.implies_conv safe_Rel_conv prep_conv
   209       else_conv
   210       safe_Rel_conv
   211       else_conv
   212       Conv.all_conv) ct
   213 
   214 (** Replacing explicit equalities with is_equality premises **)
   215 
   216 fun mk_is_equality t =
   217   Const (@{const_name is_equality}, Term.fastype_of t --> HOLogic.boolT) $ t
   218 
   219 val is_equality_lemma =
   220   @{lemma "(!!R. is_equality R ==> PROP (P R)) == PROP (P (op =))"
   221     by (unfold is_equality_def, rule, drule meta_spec,
   222       erule meta_mp, rule refl, simp)}
   223 
   224 fun gen_abstract_equalities ctxt (dest : term -> term * (term -> term)) thm =
   225   let
   226     val thy = Thm.theory_of_thm thm
   227     val prop = Thm.prop_of thm
   228     val (t, mk_prop') = dest prop
   229     (* Only consider "op =" at non-base types *)
   230     fun is_eq (Const (@{const_name HOL.eq}, Type ("fun", [T, _]))) =
   231         (case T of Type (_, []) => false | _ => true)
   232       | is_eq _ = false
   233     val add_eqs = Term.fold_aterms (fn t => if is_eq t then insert (op =) t else I)
   234     val eq_consts = rev (add_eqs t [])
   235     val eqTs = map (snd o dest_Const) eq_consts
   236     val used = Term.add_free_names prop []
   237     val names = map (K "") eqTs |> Name.variant_list used
   238     val frees = map Free (names ~~ eqTs)
   239     val prems = map (HOLogic.mk_Trueprop o mk_is_equality) frees
   240     val prop1 = mk_prop' (Term.subst_atomic (eq_consts ~~ frees) t)
   241     val prop2 = fold Logic.all frees (Logic.list_implies (prems, prop1))
   242     val cprop = Thm.cterm_of thy prop2
   243     val equal_thm = Raw_Simplifier.rewrite ctxt false [is_equality_lemma] cprop
   244     fun forall_elim thm = Thm.forall_elim_vars (Thm.maxidx_of thm + 1) thm
   245   in
   246     forall_elim (thm COMP (equal_thm COMP @{thm equal_elim_rule2}))
   247   end
   248     handle TERM _ => thm
   249 
   250 fun abstract_equalities_transfer ctxt thm =
   251   let
   252     fun dest prop =
   253       let
   254         val prems = Logic.strip_imp_prems prop
   255         val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop)
   256         val ((rel, x), y) = apfst Term.dest_comb (Term.dest_comb concl)
   257       in
   258         (rel, fn rel' =>
   259           Logic.list_implies (prems, HOLogic.mk_Trueprop (rel' $ x $ y)))
   260       end
   261     val contracted_eq_thm = 
   262       Conv.fconv_rule (transfer_rel_conv (bottom_rewr_conv (get_relator_eq ctxt))) thm
   263       handle CTERM _ => thm
   264   in
   265     gen_abstract_equalities ctxt dest contracted_eq_thm
   266   end
   267 
   268 fun abstract_equalities_relator_eq ctxt rel_eq_thm =
   269   gen_abstract_equalities ctxt (fn x => (x, I))
   270     (rel_eq_thm RS @{thm is_equality_def [THEN iffD2]})
   271 
   272 fun abstract_equalities_domain ctxt thm =
   273   let
   274     fun dest prop =
   275       let
   276         val prems = Logic.strip_imp_prems prop
   277         val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop)
   278         val ((eq, dom), y) = apfst Term.dest_comb (Term.dest_comb concl)
   279       in
   280         (dom, fn dom' => Logic.list_implies (prems, HOLogic.mk_Trueprop (eq $ dom' $ y)))
   281       end
   282     fun transfer_rel_conv conv = 
   283       Conv.concl_conv ~1 (HOLogic.Trueprop_conv (Conv.arg1_conv (Conv.arg_conv conv)))
   284     val contracted_eq_thm = 
   285       Conv.fconv_rule (transfer_rel_conv (bottom_rewr_conv (get_relator_eq ctxt))) thm
   286   in
   287     gen_abstract_equalities ctxt dest contracted_eq_thm
   288   end 
   289 
   290 
   291 (** Replacing explicit Domainp predicates with Domainp assumptions **)
   292 
   293 fun mk_Domainp_assm (T, R) =
   294   HOLogic.mk_eq ((Const (@{const_name Domainp}, Term.fastype_of T --> Term.fastype_of R) $ T), R)
   295 
   296 val Domainp_lemma =
   297   @{lemma "(!!R. Domainp T = R ==> PROP (P R)) == PROP (P (Domainp T))"
   298     by (rule, drule meta_spec,
   299       erule meta_mp, rule refl, simp)}
   300 
   301 fun fold_Domainp f (t as Const (@{const_name Domainp},_) $ (Var (_,_))) = f t
   302   | fold_Domainp f (t $ u) = fold_Domainp f t #> fold_Domainp f u
   303   | fold_Domainp f (Abs (_, _, t)) = fold_Domainp f t
   304   | fold_Domainp _ _ = I
   305 
   306 fun subst_terms tab t = 
   307   let
   308     val t' = Termtab.lookup tab t
   309   in
   310     case t' of
   311       SOME t' => t'
   312       | NONE => 
   313         (case t of
   314           u $ v => (subst_terms tab u) $ (subst_terms tab v)
   315           | Abs (a, T, t) => Abs (a, T, subst_terms tab t)
   316           | t => t)
   317   end
   318 
   319 fun gen_abstract_domains ctxt (dest : term -> term * (term -> term)) thm =
   320   let
   321     val thy = Thm.theory_of_thm thm
   322     val prop = Thm.prop_of thm
   323     val (t, mk_prop') = dest prop
   324     val Domainp_tms = rev (fold_Domainp (fn t => insert op= t) t [])
   325     val Domainp_Ts = map (snd o dest_funT o snd o dest_Const o fst o dest_comb) Domainp_tms
   326     val used = Term.add_free_names t []
   327     val rels = map (snd o dest_comb) Domainp_tms
   328     val rel_names = map (fst o fst o dest_Var) rels
   329     val names = map (fn name => ("D" ^ name)) rel_names |> Name.variant_list used
   330     val frees = map Free (names ~~ Domainp_Ts)
   331     val prems = map (HOLogic.mk_Trueprop o mk_Domainp_assm) (rels ~~ frees);
   332     val t' = subst_terms (fold Termtab.update (Domainp_tms ~~ frees) Termtab.empty) t
   333     val prop1 = fold Logic.all frees (Logic.list_implies (prems, mk_prop' t'))
   334     val prop2 = Logic.list_rename_params (rev names) prop1
   335     val cprop = Thm.cterm_of thy prop2
   336     val equal_thm = Raw_Simplifier.rewrite ctxt false [Domainp_lemma] cprop
   337     fun forall_elim thm = Thm.forall_elim_vars (Thm.maxidx_of thm + 1) thm;
   338   in
   339     forall_elim (thm COMP (equal_thm COMP @{thm equal_elim_rule2}))
   340   end
   341     handle TERM _ => thm
   342 
   343 fun abstract_domains_transfer ctxt thm =
   344   let
   345     fun dest prop =
   346       let
   347         val prems = Logic.strip_imp_prems prop
   348         val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop)
   349         val ((rel, x), y) = apfst Term.dest_comb (Term.dest_comb concl)
   350       in
   351         (x, fn x' =>
   352           Logic.list_implies (prems, HOLogic.mk_Trueprop (rel $ x' $ y)))
   353       end
   354   in
   355     gen_abstract_domains ctxt dest thm
   356   end
   357 
   358 fun abstract_domains_relator_domain ctxt thm =
   359   let
   360     fun dest prop =
   361       let
   362         val prems = Logic.strip_imp_prems prop
   363         val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop)
   364         val ((rel, x), y) = apfst Term.dest_comb (Term.dest_comb concl)
   365       in
   366         (y, fn y' =>
   367           Logic.list_implies (prems, HOLogic.mk_Trueprop (rel $ x $ y')))
   368       end
   369   in
   370     gen_abstract_domains ctxt dest thm
   371   end
   372 
   373 fun detect_transfer_rules thm =
   374   let
   375     fun is_transfer_rule tm = case (HOLogic.dest_Trueprop tm) of
   376       (Const (@{const_name HOL.eq}, _)) $ ((Const (@{const_name Domainp}, _)) $ _) $ _ => false
   377       | _ $ _ $ _ => true
   378       | _ => false
   379     fun safe_transfer_rule_conv ctm =
   380       if is_transfer_rule (term_of ctm) then safe_Rel_conv ctm else Conv.all_conv ctm
   381   in
   382     Conv.fconv_rule (Conv.prems_conv ~1 safe_transfer_rule_conv) thm
   383   end
   384 
   385 (** Adding transfer domain rules **)
   386 
   387 fun prep_transfer_domain_thm ctxt thm = 
   388   (abstract_equalities_domain ctxt o detect_transfer_rules) thm 
   389 
   390 fun add_transfer_domain_thm thm ctxt = (add_transfer_thm o 
   391   prep_transfer_domain_thm (Context.proof_of ctxt)) thm ctxt
   392 
   393 fun del_transfer_domain_thm thm ctxt = (del_transfer_thm o 
   394   prep_transfer_domain_thm (Context.proof_of ctxt)) thm ctxt
   395 
   396 (** Transfer proof method **)
   397 
   398 val post_simps =
   399   @{thms transfer_forall_eq [symmetric]
   400     transfer_implies_eq [symmetric] transfer_bforall_unfold}
   401 
   402 fun gen_frees_tac keepers ctxt = SUBGOAL (fn (t, i) =>
   403   let
   404     val keepers = keepers @ get_known_frees ctxt
   405     val vs = rev (Term.add_frees t [])
   406     val vs' = filter_out (member (op =) keepers) vs
   407   in
   408     Induct.arbitrary_tac ctxt 0 vs' i
   409   end)
   410 
   411 fun mk_relT (T, U) = T --> U --> HOLogic.boolT
   412 
   413 fun mk_Rel t =
   414   let val T = fastype_of t
   415   in Const (@{const_name Transfer.Rel}, T --> T) $ t end
   416 
   417 fun transfer_rule_of_terms (prj : typ * typ -> typ) ctxt tab t u =
   418   let
   419     val thy = Proof_Context.theory_of ctxt
   420     (* precondition: prj(T,U) must consist of only TFrees and type "fun" *)
   421     fun rel (T as Type ("fun", [T1, T2])) (U as Type ("fun", [U1, U2])) =
   422         let
   423           val r1 = rel T1 U1
   424           val r2 = rel T2 U2
   425           val rT = fastype_of r1 --> fastype_of r2 --> mk_relT (T, U)
   426         in
   427           Const (@{const_name rel_fun}, rT) $ r1 $ r2
   428         end
   429       | rel T U =
   430         let
   431           val (a, _) = dest_TFree (prj (T, U))
   432         in
   433           Free (the (AList.lookup (op =) tab a), mk_relT (T, U))
   434         end
   435     fun zip _ thms (Bound i) (Bound _) = (nth thms i, [])
   436       | zip ctxt thms (Abs (x, T, t)) (Abs (y, U, u)) =
   437         let
   438           val ([x', y'], ctxt') = Variable.variant_fixes [x, y] ctxt
   439           val prop = mk_Rel (rel T U) $ Free (x', T) $ Free (y', U)
   440           val cprop = Thm.cterm_of thy (HOLogic.mk_Trueprop prop)
   441           val thm0 = Thm.assume cprop
   442           val (thm1, hyps) = zip ctxt' (thm0 :: thms) t u
   443           val ((r1, x), y) = apfst Thm.dest_comb (Thm.dest_comb (Thm.dest_arg cprop))
   444           val r2 = Thm.dest_fun2 (Thm.dest_arg (cprop_of thm1))
   445           val (a1, (b1, _)) = apsnd dest_funcT (dest_funcT (ctyp_of_term r1))
   446           val (a2, (b2, _)) = apsnd dest_funcT (dest_funcT (ctyp_of_term r2))
   447           val tinsts = [SOME a1, SOME b1, SOME a2, SOME b2]
   448           val insts = [SOME (Thm.dest_arg r1), SOME (Thm.dest_arg r2)]
   449           val rule = Drule.instantiate' tinsts insts @{thm Rel_abs}
   450           val thm2 = Thm.forall_intr x (Thm.forall_intr y (Thm.implies_intr cprop thm1))
   451         in
   452           (thm2 COMP rule, hyps)
   453         end
   454       | zip ctxt thms (f $ t) (g $ u) =
   455         let
   456           val (thm1, hyps1) = zip ctxt thms f g
   457           val (thm2, hyps2) = zip ctxt thms t u
   458         in
   459           (thm2 RS (thm1 RS @{thm Rel_app}), hyps1 @ hyps2)
   460         end
   461       | zip _ _ t u =
   462         let
   463           val T = fastype_of t
   464           val U = fastype_of u
   465           val prop = mk_Rel (rel T U) $ t $ u
   466           val cprop = Thm.cterm_of thy (HOLogic.mk_Trueprop prop)
   467         in
   468           (Thm.assume cprop, [cprop])
   469         end
   470     val r = mk_Rel (rel (fastype_of t) (fastype_of u))
   471     val goal = HOLogic.mk_Trueprop (r $ t $ u)
   472     val rename = Thm.trivial (cterm_of thy goal)
   473     val (thm, hyps) = zip ctxt [] t u
   474   in
   475     Drule.implies_intr_list hyps (thm RS rename)
   476   end
   477 
   478 (* create a lambda term of the same shape as the given term *)
   479 fun skeleton (is_atom : term -> bool) ctxt t =
   480   let
   481     fun dummy ctxt =
   482       let
   483         val (c, ctxt) = yield_singleton Variable.variant_fixes "a" ctxt
   484       in
   485         (Free (c, dummyT), ctxt)
   486       end
   487     fun go (Bound i) ctxt = (Bound i, ctxt)
   488       | go (Abs (x, _, t)) ctxt =
   489         let
   490           val (t', ctxt) = go t ctxt
   491         in
   492           (Abs (x, dummyT, t'), ctxt)
   493         end
   494       | go (tu as (t $ u)) ctxt =
   495         if is_atom tu andalso not (Term.is_open tu) then dummy ctxt else
   496         let
   497           val (t', ctxt) = go t ctxt
   498           val (u', ctxt) = go u ctxt
   499         in
   500           (t' $ u', ctxt)
   501         end
   502       | go _ ctxt = dummy ctxt
   503   in
   504     go t ctxt |> fst |> Syntax.check_term ctxt |>
   505       map_types (map_type_tfree (fn (a, _) => TFree (a, @{sort type})))
   506   end
   507 
   508 (** Monotonicity analysis **)
   509 
   510 (* TODO: Put extensible table in theory data *)
   511 val monotab =
   512   Symtab.make
   513     [(@{const_name transfer_implies}, [~1, 1]),
   514      (@{const_name transfer_forall}, [1])(*,
   515      (@{const_name implies}, [~1, 1]),
   516      (@{const_name All}, [1])*)]
   517 
   518 (*
   519 Function bool_insts determines the set of boolean-relation variables
   520 that can be instantiated to implies, rev_implies, or iff.
   521 
   522 Invariants: bool_insts p (t, u) requires that
   523   u :: _ => _ => ... => bool, and
   524   t is a skeleton of u
   525 *)
   526 fun bool_insts p (t, u) =
   527   let
   528     fun strip2 (t1 $ t2, u1 $ u2, tus) =
   529         strip2 (t1, u1, (t2, u2) :: tus)
   530       | strip2 x = x
   531     fun or3 ((a, b, c), (x, y, z)) = (a orelse x, b orelse y, c orelse z)
   532     fun go Ts p (Abs (_, T, t), Abs (_, _, u)) tab = go (T :: Ts) p (t, u) tab
   533       | go Ts p (t, u) tab =
   534         let
   535           val (a, _) = dest_TFree (Term.body_type (Term.fastype_of1 (Ts, t)))
   536           val (_, tf, tus) = strip2 (t, u, [])
   537           val ps_opt = case tf of Const (c, _) => Symtab.lookup monotab c | _ => NONE
   538           val tab1 =
   539             case ps_opt of
   540               SOME ps =>
   541               let
   542                 val ps' = map (fn x => p * x) (take (length tus) ps)
   543               in
   544                 fold I (map2 (go Ts) ps' tus) tab
   545               end
   546             | NONE => tab
   547           val tab2 = Symtab.make [(a, (p >= 0, p <= 0, is_none ps_opt))]
   548         in
   549           Symtab.join (K or3) (tab1, tab2)
   550         end
   551     val tab = go [] p (t, u) Symtab.empty
   552     fun f (a, (true, false, false)) = SOME (a, @{const implies})
   553       | f (a, (false, true, false)) = SOME (a, @{const rev_implies})
   554       | f (a, (true, true, _))      = SOME (a, HOLogic.eq_const HOLogic.boolT)
   555       | f _                         = NONE
   556   in
   557     map_filter f (Symtab.dest tab)
   558   end
   559 
   560 fun retrieve_terms t net = map fst (Item_Net.retrieve net t)
   561   
   562 fun matches_list ctxt term = 
   563   is_some o find_first (fn pat => Pattern.matches (Proof_Context.theory_of ctxt) (pat, term))
   564 
   565 fun transfer_rule_of_term ctxt equiv t : thm =
   566   let
   567     val compound_rhs = get_compound_rhs ctxt
   568     fun is_rhs t = compound_rhs |> retrieve_terms t |> matches_list ctxt t
   569     val s = skeleton is_rhs ctxt t
   570     val frees = map fst (Term.add_frees s [])
   571     val tfrees = map fst (Term.add_tfrees s [])
   572     fun prep a = "R" ^ Library.unprefix "'" a
   573     val (rnames, ctxt') = Variable.variant_fixes (map prep tfrees) ctxt
   574     val tab = tfrees ~~ rnames
   575     fun prep a = the (AList.lookup (op =) tab a)
   576     val thm = transfer_rule_of_terms fst ctxt' tab s t
   577     val binsts = bool_insts (if equiv then 0 else 1) (s, t)
   578     val cbool = @{ctyp bool}
   579     val relT = @{typ "bool => bool => bool"}
   580     val idx = Thm.maxidx_of thm + 1
   581     val thy = Proof_Context.theory_of ctxt
   582     fun tinst (a, _) = (ctyp_of thy (TVar ((a, idx), @{sort type})), cbool)
   583     fun inst (a, t) = (cterm_of thy (Var (Name.clean_index (prep a, idx), relT)), cterm_of thy t)
   584   in
   585     thm
   586       |> Thm.generalize (tfrees, rnames @ frees) idx
   587       |> Thm.instantiate (map tinst binsts, map inst binsts)
   588   end
   589 
   590 fun transfer_rule_of_lhs ctxt t : thm =
   591   let
   592     val compound_lhs = get_compound_lhs ctxt
   593     fun is_lhs t = compound_lhs |> retrieve_terms t |> matches_list ctxt t
   594     val s = skeleton is_lhs ctxt t
   595     val frees = map fst (Term.add_frees s [])
   596     val tfrees = map fst (Term.add_tfrees s [])
   597     fun prep a = "R" ^ Library.unprefix "'" a
   598     val (rnames, ctxt') = Variable.variant_fixes (map prep tfrees) ctxt
   599     val tab = tfrees ~~ rnames
   600     fun prep a = the (AList.lookup (op =) tab a)
   601     val thm = transfer_rule_of_terms snd ctxt' tab t s
   602     val binsts = bool_insts 1 (s, t)
   603     val cbool = @{ctyp bool}
   604     val relT = @{typ "bool => bool => bool"}
   605     val idx = Thm.maxidx_of thm + 1
   606     val thy = Proof_Context.theory_of ctxt
   607     fun tinst (a, _) = (ctyp_of thy (TVar ((a, idx), @{sort type})), cbool)
   608     fun inst (a, t) = (cterm_of thy (Var (Name.clean_index (prep a, idx), relT)), cterm_of thy t)
   609   in
   610     thm
   611       |> Thm.generalize (tfrees, rnames @ frees) idx
   612       |> Thm.instantiate (map tinst binsts, map inst binsts)
   613   end
   614 
   615 fun eq_rules_tac eq_rules = TRY o REPEAT_ALL_NEW (resolve_tac eq_rules) 
   616   THEN_ALL_NEW rtac @{thm is_equality_eq}
   617 
   618 fun eq_tac ctxt = eq_rules_tac (get_relator_eq_raw ctxt)
   619 
   620 fun transfer_step_tac ctxt = (REPEAT_ALL_NEW (resolve_tac (get_transfer_raw ctxt)) 
   621   THEN_ALL_NEW (DETERM o eq_rules_tac (get_relator_eq_raw ctxt)))
   622 
   623 fun transfer_tac equiv ctxt i =
   624   let
   625     val pre_simps = @{thms transfer_forall_eq transfer_implies_eq}
   626     val start_rule =
   627       if equiv then @{thm transfer_start} else @{thm transfer_start'}
   628     val rules = get_transfer_raw ctxt
   629     val eq_rules = get_relator_eq_raw ctxt
   630     (* allow unsolved subgoals only for standard transfer method, not for transfer' *)
   631     val end_tac = if equiv then K all_tac else K no_tac
   632     val err_msg = "Transfer failed to convert goal to an object-logic formula"
   633     fun main_tac (t, i) =
   634       rtac start_rule i THEN
   635       (rtac (transfer_rule_of_term ctxt equiv (HOLogic.dest_Trueprop t))
   636         THEN_ALL_NEW
   637           (SOLVED' (REPEAT_ALL_NEW (resolve_tac rules) THEN_ALL_NEW (DETERM o eq_rules_tac eq_rules))
   638             ORELSE' end_tac)) (i + 1)
   639         handle TERM (_, ts) => raise TERM (err_msg, ts)
   640   in
   641     EVERY
   642       [rewrite_goal_tac ctxt pre_simps i THEN
   643        SUBGOAL main_tac i,
   644        (* FIXME: rewrite_goal_tac does unwanted eta-contraction *)
   645        rewrite_goal_tac ctxt post_simps i,
   646        Goal.norm_hhf_tac ctxt i]
   647   end
   648 
   649 fun transfer_prover_tac ctxt = SUBGOAL (fn (t, i) =>
   650   let
   651     val rhs = (snd o Term.dest_comb o HOLogic.dest_Trueprop) t
   652     val rule1 = transfer_rule_of_term ctxt false rhs
   653     val rules = get_transfer_raw ctxt
   654     val eq_rules = get_relator_eq_raw ctxt
   655     val expand_eq_in_rel = transfer_rel_conv (top_rewr_conv [@{thm rel_fun_eq[symmetric,THEN eq_reflection]}])
   656   in
   657     EVERY
   658       [CONVERSION prep_conv i,
   659        rtac @{thm transfer_prover_start} i,
   660        ((rtac rule1 ORELSE' (CONVERSION expand_eq_in_rel THEN' rtac rule1))
   661         THEN_ALL_NEW
   662          (REPEAT_ALL_NEW (resolve_tac rules) THEN_ALL_NEW (DETERM o eq_rules_tac eq_rules))) (i+1),
   663        rtac @{thm refl} i]
   664   end)
   665 
   666 (** Transfer attribute **)
   667 
   668 fun transferred ctxt extra_rules thm =
   669   let
   670     val start_rule = @{thm transfer_start}
   671     val start_rule' = @{thm transfer_start'}
   672     val rules = extra_rules @ get_transfer_raw ctxt
   673     val eq_rules = get_relator_eq_raw ctxt
   674     val err_msg = "Transfer failed to convert goal to an object-logic formula"
   675     val pre_simps = @{thms transfer_forall_eq transfer_implies_eq}
   676     val thm1 = Drule.forall_intr_vars thm
   677     val instT = rev (Term.add_tvars (Thm.full_prop_of thm1) [])
   678                 |> map (fn v as ((a, _), S) => (v, TFree (a, S)))
   679     val thm2 = thm1
   680       |> Thm.certify_instantiate (instT, [])
   681       |> Raw_Simplifier.rewrite_rule ctxt pre_simps
   682     val ctxt' = Variable.declare_names (Thm.full_prop_of thm2) ctxt
   683     val t = HOLogic.dest_Trueprop (Thm.concl_of thm2)
   684     val rule = transfer_rule_of_lhs ctxt' t
   685     val tac =
   686       resolve_tac [thm2 RS start_rule', thm2 RS start_rule] 1 THEN
   687       (rtac rule
   688         THEN_ALL_NEW
   689           (SOLVED' (REPEAT_ALL_NEW (resolve_tac rules)
   690             THEN_ALL_NEW (DETERM o eq_rules_tac eq_rules)))) 1
   691         handle TERM (_, ts) => raise TERM (err_msg, ts)
   692     val thm3 = Goal.prove_internal ctxt' [] @{cpat "Trueprop ?P"} (K tac)
   693     val tnames = map (fst o dest_TFree o snd) instT
   694   in
   695     thm3
   696       |> Raw_Simplifier.rewrite_rule ctxt' post_simps
   697       |> Simplifier.norm_hhf ctxt'
   698       |> Drule.generalize (tnames, [])
   699       |> Drule.zero_var_indexes
   700   end
   701 (*
   702     handle THM _ => thm
   703 *)
   704 
   705 fun untransferred ctxt extra_rules thm =
   706   let
   707     val start_rule = @{thm untransfer_start}
   708     val rules = extra_rules @ get_transfer_raw ctxt
   709     val eq_rules = get_relator_eq_raw ctxt
   710     val err_msg = "Transfer failed to convert goal to an object-logic formula"
   711     val pre_simps = @{thms transfer_forall_eq transfer_implies_eq}
   712     val thm1 = Drule.forall_intr_vars thm
   713     val instT = rev (Term.add_tvars (Thm.full_prop_of thm1) [])
   714                 |> map (fn v as ((a, _), S) => (v, TFree (a, S)))
   715     val thm2 = thm1
   716       |> Thm.certify_instantiate (instT, [])
   717       |> Raw_Simplifier.rewrite_rule ctxt pre_simps
   718     val ctxt' = Variable.declare_names (Thm.full_prop_of thm2) ctxt
   719     val t = HOLogic.dest_Trueprop (Thm.concl_of thm2)
   720     val rule = transfer_rule_of_term ctxt' true t
   721     val tac =
   722       rtac (thm2 RS start_rule) 1 THEN
   723       (rtac rule
   724         THEN_ALL_NEW
   725           (SOLVED' (REPEAT_ALL_NEW (resolve_tac rules)
   726             THEN_ALL_NEW (DETERM o eq_rules_tac eq_rules)))) 1
   727         handle TERM (_, ts) => raise TERM (err_msg, ts)
   728     val thm3 = Goal.prove_internal ctxt' [] @{cpat "Trueprop ?P"} (K tac)
   729     val tnames = map (fst o dest_TFree o snd) instT
   730   in
   731     thm3
   732       |> Raw_Simplifier.rewrite_rule ctxt' post_simps
   733       |> Simplifier.norm_hhf ctxt'
   734       |> Drule.generalize (tnames, [])
   735       |> Drule.zero_var_indexes
   736   end
   737 
   738 (** Methods and attributes **)
   739 
   740 val free = Args.context -- Args.term >> (fn (_, Free v) => v | (ctxt, t) =>
   741   error ("Bad free variable: " ^ Syntax.string_of_term ctxt t))
   742 
   743 val fixing = Scan.optional (Scan.lift (Args.$$$ "fixing" -- Args.colon)
   744   |-- Scan.repeat free) []
   745 
   746 fun transfer_method equiv : (Proof.context -> Proof.method) context_parser =
   747   fixing >> (fn vs => fn ctxt =>
   748     SIMPLE_METHOD' (gen_frees_tac vs ctxt THEN' transfer_tac equiv ctxt))
   749 
   750 val transfer_prover_method : (Proof.context -> Proof.method) context_parser =
   751   Scan.succeed (fn ctxt => SIMPLE_METHOD' (transfer_prover_tac ctxt))
   752 
   753 (* Attribute for transfer rules *)
   754 
   755 fun prep_rule ctxt = 
   756   abstract_domains_transfer ctxt o abstract_equalities_transfer ctxt o Conv.fconv_rule prep_conv
   757 
   758 val transfer_add =
   759   Thm.declaration_attribute (fn thm => fn ctxt => 
   760     (add_transfer_thm o prep_rule (Context.proof_of ctxt)) thm ctxt)
   761 
   762 val transfer_del =
   763   Thm.declaration_attribute (fn thm => fn ctxt => 
   764     (del_transfer_thm o prep_rule (Context.proof_of ctxt)) thm ctxt)
   765 
   766 val transfer_attribute =
   767   Attrib.add_del transfer_add transfer_del
   768 
   769 (* Attributes for transfer domain rules *)
   770 
   771 val transfer_domain_add = Thm.declaration_attribute add_transfer_domain_thm
   772 
   773 val transfer_domain_del = Thm.declaration_attribute del_transfer_domain_thm
   774 
   775 val transfer_domain_attribute =
   776   Attrib.add_del transfer_domain_add transfer_domain_del
   777 
   778 (* Attributes for transferred rules *)
   779 
   780 fun transferred_attribute thms = Thm.rule_attribute
   781   (fn context => transferred (Context.proof_of context) thms)
   782 
   783 fun untransferred_attribute thms = Thm.rule_attribute
   784   (fn context => untransferred (Context.proof_of context) thms)
   785 
   786 val transferred_attribute_parser =
   787   Attrib.thms >> transferred_attribute
   788 
   789 val untransferred_attribute_parser =
   790   Attrib.thms >> untransferred_attribute
   791 
   792 fun morph_pred_data phi {rel_eq_onp} = {rel_eq_onp = Morphism.thm phi rel_eq_onp}
   793 
   794 fun lookup_pred_data ctxt type_name = Symtab.lookup (get_pred_data ctxt) type_name
   795   |> Option.map (morph_pred_data (Morphism.transfer_morphism (Proof_Context.theory_of ctxt)))
   796 
   797 fun update_pred_data type_name qinfo ctxt = 
   798   Data.map (map_pred_data (Symtab.update (type_name, qinfo))) ctxt
   799 
   800 (* Theory setup *)
   801 
   802 val relator_eq_setup =
   803   let
   804     val name = @{binding relator_eq}
   805     fun add_thm thm context = context
   806       |> Data.map (map_relator_eq (Item_Net.update thm))
   807       |> Data.map (map_relator_eq_raw
   808           (Item_Net.update (abstract_equalities_relator_eq (Context.proof_of context) thm)))
   809     fun del_thm thm context = context
   810       |> Data.map (map_relator_eq (Item_Net.remove thm))
   811       |> Data.map (map_relator_eq_raw
   812           (Item_Net.remove (abstract_equalities_relator_eq (Context.proof_of context) thm)))
   813     val add = Thm.declaration_attribute add_thm
   814     val del = Thm.declaration_attribute del_thm
   815     val text = "declaration of relator equality rule (used by transfer method)"
   816     val content = Item_Net.content o #relator_eq o Data.get
   817   in
   818     Attrib.setup name (Attrib.add_del add del) text
   819     #> Global_Theory.add_thms_dynamic (name, content)
   820   end
   821 
   822 val relator_domain_setup =
   823   let
   824     val name = @{binding relator_domain}
   825     fun add_thm thm context = 
   826       let
   827         val thm = abstract_domains_relator_domain (Context.proof_of context) thm
   828       in
   829         context |> Data.map (map_relator_domain (Item_Net.update thm)) |> add_transfer_domain_thm thm
   830       end
   831     fun del_thm thm context = 
   832       let
   833         val thm = abstract_domains_relator_domain (Context.proof_of context) thm
   834       in
   835         context |> Data.map (map_relator_domain (Item_Net.remove thm)) |> del_transfer_domain_thm thm
   836       end
   837     val add = Thm.declaration_attribute add_thm
   838     val del = Thm.declaration_attribute del_thm
   839     val text = "declaration of relator domain rule (used by transfer method)"
   840     val content = Item_Net.content o #relator_domain o Data.get
   841   in
   842     Attrib.setup name (Attrib.add_del add del) text
   843     #> Global_Theory.add_thms_dynamic (name, content)
   844   end
   845 
   846 val setup =
   847   relator_eq_setup
   848   #> relator_domain_setup
   849   #> Attrib.setup @{binding transfer_rule} transfer_attribute
   850      "transfer rule for transfer method"
   851   #> Global_Theory.add_thms_dynamic
   852      (@{binding transfer_raw}, Item_Net.content o #transfer_raw o Data.get)
   853   #> Attrib.setup @{binding transfer_domain_rule} transfer_domain_attribute
   854      "transfer domain rule for transfer method"
   855   #> Attrib.setup @{binding transferred} transferred_attribute_parser
   856      "raw theorem transferred to abstract theorem using transfer rules"
   857   #> Attrib.setup @{binding untransferred} untransferred_attribute_parser
   858      "abstract theorem transferred to raw theorem using transfer rules"
   859   #> Global_Theory.add_thms_dynamic
   860      (@{binding relator_eq_raw}, Item_Net.content o #relator_eq_raw o Data.get)
   861   #> Method.setup @{binding transfer} (transfer_method true)
   862      "generic theorem transfer method"
   863   #> Method.setup @{binding transfer'} (transfer_method false)
   864      "generic theorem transfer method"
   865   #> Method.setup @{binding transfer_prover} transfer_prover_method
   866      "for proving transfer rules"
   867 
   868 end