src/HOL/Tools/meson.ML
author paulson
Fri, 22 Dec 2006 21:00:42 +0100
changeset 21900 f386d7eb17d1
parent 21678 fcfc4afde6b9
child 21999 0cf192e489e2
permissions -rw-r--r--
tidying the ATP communications
     1 (*  Title:      HOL/Tools/meson.ML
     2     ID:         $Id$
     3     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     4     Copyright   1992  University of Cambridge
     5 
     6 The MESON resolution proof procedure for HOL.
     7 
     8 When making clauses, avoids using the rewriter -- instead uses RS recursively
     9 
    10 NEED TO SORT LITERALS BY # OF VARS, USING ==>I/E.  ELIMINATES NEED FOR
    11 FUNCTION nodups -- if done to goal clauses too!
    12 *)
    13 
    14 signature BASIC_MESON =
    15 sig
    16   val size_of_subgoals	: thm -> int
    17   val make_cnf		: thm list -> thm -> thm list
    18   val finish_cnf	: thm list -> thm list
    19   val make_nnf		: thm -> thm
    20   val make_nnf1		: thm -> thm
    21   val skolemize		: thm -> thm
    22   val make_clauses	: thm list -> thm list
    23   val make_horns	: thm list -> thm list
    24   val best_prolog_tac	: (thm -> int) -> thm list -> tactic
    25   val depth_prolog_tac	: thm list -> tactic
    26   val gocls		: thm list -> thm list
    27   val skolemize_prems_tac	: thm list -> int -> tactic
    28   val MESON		: (thm list -> tactic) -> int -> tactic
    29   val best_meson_tac	: (thm -> int) -> int -> tactic
    30   val safe_best_meson_tac	: int -> tactic
    31   val depth_meson_tac	: int -> tactic
    32   val prolog_step_tac'	: thm list -> int -> tactic
    33   val iter_deepen_prolog_tac	: thm list -> tactic
    34   val iter_deepen_meson_tac	: thm list -> int -> tactic
    35   val meson_tac		: int -> tactic
    36   val negate_head	: thm -> thm
    37   val select_literal	: int -> thm -> thm
    38   val skolemize_tac	: int -> tactic
    39   val make_clauses_tac	: int -> tactic
    40 end
    41 
    42 
    43 structure Meson =
    44 struct
    45 
    46 val not_conjD = thm "meson_not_conjD";
    47 val not_disjD = thm "meson_not_disjD";
    48 val not_notD = thm "meson_not_notD";
    49 val not_allD = thm "meson_not_allD";
    50 val not_exD = thm "meson_not_exD";
    51 val imp_to_disjD = thm "meson_imp_to_disjD";
    52 val not_impD = thm "meson_not_impD";
    53 val iff_to_disjD = thm "meson_iff_to_disjD";
    54 val not_iffD = thm "meson_not_iffD";
    55 val conj_exD1 = thm "meson_conj_exD1";
    56 val conj_exD2 = thm "meson_conj_exD2";
    57 val disj_exD = thm "meson_disj_exD";
    58 val disj_exD1 = thm "meson_disj_exD1";
    59 val disj_exD2 = thm "meson_disj_exD2";
    60 val disj_assoc = thm "meson_disj_assoc";
    61 val disj_comm = thm "meson_disj_comm";
    62 val disj_FalseD1 = thm "meson_disj_FalseD1";
    63 val disj_FalseD2 = thm "meson_disj_FalseD2";
    64 
    65 val depth_limit = ref 2000;
    66 
    67 (**** Operators for forward proof ****)
    68 
    69 
    70 (** First-order Resolution **)
    71 
    72 fun typ_pair_of (ix, (sort,ty)) = (TVar (ix,sort), ty);
    73 fun term_pair_of (ix, (ty,t)) = (Var (ix,ty), t);
    74 
    75 val Envir.Envir {asol = tenv0, iTs = tyenv0, ...} = Envir.empty 0
    76 
    77 (*FIXME: currently does not "rename variables apart"*)
    78 fun first_order_resolve thA thB =
    79   let val thy = theory_of_thm thA
    80       val tmA = concl_of thA
    81       fun match pat = Pattern.first_order_match thy (pat,tmA) (tyenv0,tenv0)
    82       val Const("==>",_) $ tmB $ _ = prop_of thB
    83       val (tyenv,tenv) = match tmB
    84       val ct_pairs = map (pairself (cterm_of thy) o term_pair_of) (Vartab.dest tenv)
    85   in  thA RS (cterm_instantiate ct_pairs thB)  end
    86   handle _ => raise THM ("first_order_resolve", 0, [thA,thB]);
    87 
    88 (*raises exception if no rules apply -- unlike RL*)
    89 fun tryres (th, rls) = 
    90   let fun tryall [] = raise THM("tryres", 0, th::rls)
    91         | tryall (rl::rls) = (th RS rl handle THM _ => tryall rls)
    92   in  tryall rls  end;
    93   
    94 (*Permits forward proof from rules that discharge assumptions. The supplied proof state st,
    95   e.g. from conj_forward, should have the form
    96     "[| P' ==> ?P; Q' ==> ?Q |] ==> ?P & ?Q"
    97   and the effect should be to instantiate ?P and ?Q with normalized versions of P' and Q'.*)
    98 fun forward_res nf st =
    99   let fun forward_tacf [prem] = rtac (nf prem) 1
   100         | forward_tacf prems = 
   101             error ("Bad proof state in forward_res, please inform lcp@cl.cam.ac.uk:\n" ^
   102                    string_of_thm st ^
   103                    "\nPremises:\n" ^
   104                    cat_lines (map string_of_thm prems))
   105   in
   106     case Seq.pull (ALLGOALS (METAHYPS forward_tacf) st)
   107     of SOME(th,_) => th
   108      | NONE => raise THM("forward_res", 0, [st])
   109   end;
   110 
   111 (*Are any of the logical connectives in "bs" present in the term?*)
   112 fun has_conns bs =
   113   let fun has (Const(a,_)) = false
   114         | has (Const("Trueprop",_) $ p) = has p
   115         | has (Const("Not",_) $ p) = has p
   116         | has (Const("op |",_) $ p $ q) = member (op =) bs "op |" orelse has p orelse has q
   117         | has (Const("op &",_) $ p $ q) = member (op =) bs "op &" orelse has p orelse has q
   118         | has (Const("All",_) $ Abs(_,_,p)) = member (op =) bs "All" orelse has p
   119         | has (Const("Ex",_) $ Abs(_,_,p)) = member (op =) bs "Ex" orelse has p
   120 	| has _ = false
   121   in  has  end;
   122   
   123 
   124 (**** Clause handling ****)
   125 
   126 fun literals (Const("Trueprop",_) $ P) = literals P
   127   | literals (Const("op |",_) $ P $ Q) = literals P @ literals Q
   128   | literals (Const("Not",_) $ P) = [(false,P)]
   129   | literals P = [(true,P)];
   130 
   131 (*number of literals in a term*)
   132 val nliterals = length o literals;
   133 
   134 
   135 (*** Tautology Checking ***)
   136 
   137 fun signed_lits_aux (Const ("op |", _) $ P $ Q) (poslits, neglits) = 
   138       signed_lits_aux Q (signed_lits_aux P (poslits, neglits))
   139   | signed_lits_aux (Const("Not",_) $ P) (poslits, neglits) = (poslits, P::neglits)
   140   | signed_lits_aux P (poslits, neglits) = (P::poslits, neglits);
   141   
   142 fun signed_lits th = signed_lits_aux (HOLogic.dest_Trueprop (concl_of th)) ([],[]);
   143 
   144 (*Literals like X=X are tautologous*)
   145 fun taut_poslit (Const("op =",_) $ t $ u) = t aconv u
   146   | taut_poslit (Const("True",_)) = true
   147   | taut_poslit _ = false;
   148 
   149 fun is_taut th =
   150   let val (poslits,neglits) = signed_lits th
   151   in  exists taut_poslit poslits
   152       orelse
   153       exists (member (op aconv) neglits) (HOLogic.false_const :: poslits)
   154   end
   155   handle TERM _ => false;	(*probably dest_Trueprop on a weird theorem*)		      
   156 
   157 
   158 (*** To remove trivial negated equality literals from clauses ***)
   159 
   160 (*They are typically functional reflexivity axioms and are the converses of
   161   injectivity equivalences*)
   162   
   163 val not_refl_disj_D = thm"meson_not_refl_disj_D";
   164 
   165 (*Is either term a Var that does not properly occur in the other term?*)
   166 fun eliminable (t as Var _, u) = t aconv u orelse not (Logic.occs(t,u))
   167   | eliminable (u, t as Var _) = t aconv u orelse not (Logic.occs(t,u))
   168   | eliminable _ = false;
   169 
   170 fun refl_clause_aux 0 th = th
   171   | refl_clause_aux n th =
   172        case HOLogic.dest_Trueprop (concl_of th) of
   173 	  (Const ("op |", _) $ (Const ("op |", _) $ _ $ _) $ _) => 
   174             refl_clause_aux n (th RS disj_assoc)    (*isolate an atom as first disjunct*)
   175 	| (Const ("op |", _) $ (Const("Not",_) $ (Const("op =",_) $ t $ u)) $ _) => 
   176 	    if eliminable(t,u) 
   177 	    then refl_clause_aux (n-1) (th RS not_refl_disj_D)  (*Var inequation: delete*)
   178 	    else refl_clause_aux (n-1) (th RS disj_comm)  (*not between Vars: ignore*)
   179 	| (Const ("op |", _) $ _ $ _) => refl_clause_aux n (th RS disj_comm)
   180 	| _ => (*not a disjunction*) th;
   181 
   182 fun notequal_lits_count (Const ("op |", _) $ P $ Q) = 
   183       notequal_lits_count P + notequal_lits_count Q
   184   | notequal_lits_count (Const("Not",_) $ (Const("op =",_) $ _ $ _)) = 1
   185   | notequal_lits_count _ = 0;
   186 
   187 (*Simplify a clause by applying reflexivity to its negated equality literals*)
   188 fun refl_clause th = 
   189   let val neqs = notequal_lits_count (HOLogic.dest_Trueprop (concl_of th))
   190   in  zero_var_indexes (refl_clause_aux neqs th)  end
   191   handle TERM _ => th;	(*probably dest_Trueprop on a weird theorem*)		      
   192 
   193 
   194 (*** The basic CNF transformation ***)
   195 
   196 val max_clauses = ref 40;
   197 
   198 fun sum x y = if x < !max_clauses andalso y < !max_clauses then x+y else !max_clauses;
   199 fun prod x y = if x < !max_clauses andalso y < !max_clauses then x*y else !max_clauses;
   200 
   201 (*Estimate the number of clauses in order to detect infeasible theorems*)
   202 fun signed_nclauses b (Const("Trueprop",_) $ t) = signed_nclauses b t
   203   | signed_nclauses b (Const("Not",_) $ t) = signed_nclauses (not b) t
   204   | signed_nclauses b (Const("op &",_) $ t $ u) = 
   205       if b then sum (signed_nclauses b t) (signed_nclauses b u)
   206            else prod (signed_nclauses b t) (signed_nclauses b u)
   207   | signed_nclauses b (Const("op |",_) $ t $ u) = 
   208       if b then prod (signed_nclauses b t) (signed_nclauses b u)
   209            else sum (signed_nclauses b t) (signed_nclauses b u)
   210   | signed_nclauses b (Const("op -->",_) $ t $ u) = 
   211       if b then prod (signed_nclauses (not b) t) (signed_nclauses b u)
   212            else sum (signed_nclauses (not b) t) (signed_nclauses b u)
   213   | signed_nclauses b (Const("op =", Type ("fun", [T, _])) $ t $ u) = 
   214       if T = HOLogic.boolT then (*Boolean equality is if-and-only-if*)
   215 	  if b then sum (prod (signed_nclauses (not b) t) (signed_nclauses b u))
   216 			(prod (signed_nclauses (not b) u) (signed_nclauses b t))
   217 	       else sum (prod (signed_nclauses b t) (signed_nclauses b u))
   218 			(prod (signed_nclauses (not b) t) (signed_nclauses (not b) u))
   219       else 1 
   220   | signed_nclauses b (Const("Ex", _) $ Abs (_,_,t)) = signed_nclauses b t
   221   | signed_nclauses b (Const("All",_) $ Abs (_,_,t)) = signed_nclauses b t
   222   | signed_nclauses _ _ = 1; (* literal *)
   223 
   224 val nclauses = signed_nclauses true;
   225 
   226 fun too_many_clauses t = nclauses t >= !max_clauses;
   227 
   228 (*Replaces universally quantified variables by FREE variables -- because
   229   assumptions may not contain scheme variables.  Later, call "generalize". *)
   230 fun freeze_spec th =
   231   let val newname = gensym "mes_"
   232       val spec' = read_instantiate [("x", newname)] spec
   233   in  th RS spec'  end;
   234 
   235 (*Used with METAHYPS below. There is one assumption, which gets bound to prem
   236   and then normalized via function nf. The normal form is given to resolve_tac,
   237   presumably to instantiate a Boolean variable.*)
   238 fun resop nf [prem] = resolve_tac (nf prem) 1;
   239 
   240 (*Any need to extend this list with 
   241   "HOL.type_class","Code_Generator.eq_class","ProtoPure.term"?*)
   242 val has_meta_conn = 
   243     exists_Const (fn (c,_) => c mem_string ["==", "==>", "all", "prop"]);
   244 
   245 fun apply_skolem_ths (th, rls) = 
   246   let fun tryall [] = raise THM("apply_skolem_ths", 0, th::rls)
   247         | tryall (rl::rls) = (first_order_resolve th rl handle THM _ => tryall rls)
   248   in  tryall rls  end;
   249   
   250 (*Conjunctive normal form, adding clauses from th in front of ths (for foldr).
   251   Strips universal quantifiers and breaks up conjunctions.
   252   Eliminates existential quantifiers using skoths: Skolemization theorems.*)
   253 fun cnf skoths (th,ths) =
   254   let fun cnf_aux (th,ths) =
   255   	if not (can HOLogic.dest_Trueprop (prop_of th)) then ths (*meta-level: ignore*)
   256         else if not (has_conns ["All","Ex","op &"] (prop_of th))  
   257 	then th::ths (*no work to do, terminate*)
   258 	else case head_of (HOLogic.dest_Trueprop (concl_of th)) of
   259 	    Const ("op &", _) => (*conjunction*)
   260 		cnf_aux (th RS conjunct1, cnf_aux (th RS conjunct2, ths))
   261 	  | Const ("All", _) => (*universal quantifier*)
   262 	        cnf_aux (freeze_spec th,  ths)
   263 	  | Const ("Ex", _) => 
   264 	      (*existential quantifier: Insert Skolem functions*)
   265 	      cnf_aux (apply_skolem_ths (th,skoths), ths)
   266 	  | Const ("op |", _) => (*disjunction*)
   267 	      let val tac =
   268 		  (METAHYPS (resop cnf_nil) 1) THEN
   269 		   (fn st' => st' |> METAHYPS (resop cnf_nil) 1)
   270 	      in  Seq.list_of (tac (th RS disj_forward)) @ ths  end 
   271 	  | _ => (*no work to do*) th::ths 
   272       and cnf_nil th = cnf_aux (th,[])
   273   in 
   274     if too_many_clauses (concl_of th) 
   275     then (Output.debug ("cnf is ignoring: " ^ string_of_thm th); ths)
   276     else cnf_aux (th,ths)
   277   end;
   278 
   279 (*Convert all suitable free variables to schematic variables, 
   280   but don't discharge assumptions.*)
   281 fun generalize th = Thm.varifyT (forall_elim_vars 0 (forall_intr_frees th));
   282 
   283 fun make_cnf skoths th = cnf skoths (th, []);
   284 
   285 (*Generalization, removal of redundant equalities, removal of tautologies.*)
   286 fun finish_cnf ths = filter (not o is_taut) (map (refl_clause o generalize) ths);
   287 
   288 
   289 (**** Removal of duplicate literals ****)
   290 
   291 (*Forward proof, passing extra assumptions as theorems to the tactic*)
   292 fun forward_res2 nf hyps st =
   293   case Seq.pull
   294 	(REPEAT
   295 	 (METAHYPS (fn major::minors => rtac (nf (minors@hyps) major) 1) 1)
   296 	 st)
   297   of SOME(th,_) => th
   298    | NONE => raise THM("forward_res2", 0, [st]);
   299 
   300 (*Remove duplicates in P|Q by assuming ~P in Q
   301   rls (initially []) accumulates assumptions of the form P==>False*)
   302 fun nodups_aux rls th = nodups_aux rls (th RS disj_assoc)
   303     handle THM _ => tryres(th,rls)
   304     handle THM _ => tryres(forward_res2 nodups_aux rls (th RS disj_forward2),
   305 			   [disj_FalseD1, disj_FalseD2, asm_rl])
   306     handle THM _ => th;
   307 
   308 (*Remove duplicate literals, if there are any*)
   309 fun nodups th =
   310   if has_duplicates (op =) (literals (prop_of th))
   311     then nodups_aux [] th
   312     else th;
   313 
   314 
   315 (**** Generation of contrapositives ****)
   316 
   317 fun is_left (Const ("Trueprop", _) $ 
   318                (Const ("op |", _) $ (Const ("op |", _) $ _ $ _) $ _)) = true
   319   | is_left _ = false;
   320                
   321 (*Associate disjuctions to right -- make leftmost disjunct a LITERAL*)
   322 fun assoc_right th = 
   323   if is_left (prop_of th) then assoc_right (th RS disj_assoc)
   324   else th;
   325 
   326 (*Must check for negative literal first!*)
   327 val clause_rules = [disj_assoc, make_neg_rule, make_pos_rule];
   328 
   329 (*For ordinary resolution. *)
   330 val resolution_clause_rules = [disj_assoc, make_neg_rule', make_pos_rule'];
   331 
   332 (*Create a goal or support clause, conclusing False*)
   333 fun make_goal th =   (*Must check for negative literal first!*)
   334     make_goal (tryres(th, clause_rules))
   335   handle THM _ => tryres(th, [make_neg_goal, make_pos_goal]);
   336 
   337 (*Sort clauses by number of literals*)
   338 fun fewerlits(th1,th2) = nliterals(prop_of th1) < nliterals(prop_of th2);
   339 
   340 fun sort_clauses ths = sort (make_ord fewerlits) ths;
   341 
   342 (*True if the given type contains bool anywhere*)
   343 fun has_bool (Type("bool",_)) = true
   344   | has_bool (Type(_, Ts)) = exists has_bool Ts
   345   | has_bool _ = false;
   346   
   347 (*Is the string the name of a connective? Really only | and Not can remain, 
   348   since this code expects to be called on a clause form.*)  
   349 val is_conn = member (op =)
   350     ["Trueprop", "op &", "op |", "op -->", "Not", 
   351      "All", "Ex", "Ball", "Bex"];
   352 
   353 (*True if the term contains a function--not a logical connective--where the type 
   354   of any argument contains bool.*)
   355 val has_bool_arg_const = 
   356     exists_Const
   357       (fn (c,T) => not(is_conn c) andalso exists (has_bool) (binder_types T));
   358       
   359 (*Raises an exception if any Vars in the theorem mention type bool. 
   360   Also rejects functions whose arguments are Booleans or other functions.*)
   361 fun is_fol_term t =
   362     not (exists (has_bool o fastype_of) (term_vars t)  orelse
   363 	 not (Term.is_first_order ["all","All","Ex"] t) orelse
   364 	 has_bool_arg_const t  orelse  
   365 	 has_meta_conn t);
   366 
   367 fun rigid t = not (is_Var (head_of t));
   368 
   369 fun ok4horn (Const ("Trueprop",_) $ (Const ("op |", _) $ t $ _)) = rigid t
   370   | ok4horn (Const ("Trueprop",_) $ t) = rigid t
   371   | ok4horn _ = false;
   372 
   373 (*Create a meta-level Horn clause*)
   374 fun make_horn crules th = 
   375   if ok4horn (concl_of th) 
   376   then make_horn crules (tryres(th,crules)) handle THM _ => th
   377   else th;
   378 
   379 (*Generate Horn clauses for all contrapositives of a clause. The input, th,
   380   is a HOL disjunction.*)
   381 fun add_contras crules (th,hcs) =
   382   let fun rots (0,th) = hcs
   383 	| rots (k,th) = zero_var_indexes (make_horn crules th) ::
   384 			rots(k-1, assoc_right (th RS disj_comm))
   385   in case nliterals(prop_of th) of
   386 	1 => th::hcs
   387       | n => rots(n, assoc_right th)
   388   end;
   389 
   390 (*Use "theorem naming" to label the clauses*)
   391 fun name_thms label =
   392     let fun name1 (th, (k,ths)) =
   393 	  (k-1, PureThy.put_name_hint (label ^ string_of_int k) th :: ths)
   394     in  fn ths => #2 (foldr name1 (length ths, []) ths)  end;
   395 
   396 (*Is the given disjunction an all-negative support clause?*)
   397 fun is_negative th = forall (not o #1) (literals (prop_of th));
   398 
   399 val neg_clauses = List.filter is_negative;
   400 
   401 
   402 (***** MESON PROOF PROCEDURE *****)
   403 
   404 fun rhyps (Const("==>",_) $ (Const("Trueprop",_) $ A) $ phi,
   405 	   As) = rhyps(phi, A::As)
   406   | rhyps (_, As) = As;
   407 
   408 (** Detecting repeated assumptions in a subgoal **)
   409 
   410 (*The stringtree detects repeated assumptions.*)
   411 fun ins_term (net,t) = Net.insert_term (op aconv) (t,t) net;
   412 
   413 (*detects repetitions in a list of terms*)
   414 fun has_reps [] = false
   415   | has_reps [_] = false
   416   | has_reps [t,u] = (t aconv u)
   417   | has_reps ts = (Library.foldl ins_term (Net.empty, ts);  false)
   418 		  handle Net.INSERT => true;
   419 
   420 (*Like TRYALL eq_assume_tac, but avoids expensive THEN calls*)
   421 fun TRYING_eq_assume_tac 0 st = Seq.single st
   422   | TRYING_eq_assume_tac i st =
   423        TRYING_eq_assume_tac (i-1) (eq_assumption i st)
   424        handle THM _ => TRYING_eq_assume_tac (i-1) st;
   425 
   426 fun TRYALL_eq_assume_tac st = TRYING_eq_assume_tac (nprems_of st) st;
   427 
   428 (*Loop checking: FAIL if trying to prove the same thing twice
   429   -- if *ANY* subgoal has repeated literals*)
   430 fun check_tac st =
   431   if exists (fn prem => has_reps (rhyps(prem,[]))) (prems_of st)
   432   then  Seq.empty  else  Seq.single st;
   433 
   434 
   435 (* net_resolve_tac actually made it slower... *)
   436 fun prolog_step_tac horns i =
   437     (assume_tac i APPEND resolve_tac horns i) THEN check_tac THEN
   438     TRYALL_eq_assume_tac;
   439 
   440 (*Sums the sizes of the subgoals, ignoring hypotheses (ancestors)*)
   441 fun addconcl(prem,sz) = size_of_term(Logic.strip_assums_concl prem) + sz
   442 
   443 fun size_of_subgoals st = foldr addconcl 0 (prems_of st);
   444 
   445 
   446 (*Negation Normal Form*)
   447 val nnf_rls = [imp_to_disjD, iff_to_disjD, not_conjD, not_disjD,
   448                not_impD, not_iffD, not_allD, not_exD, not_notD];
   449 
   450 fun ok4nnf (Const ("Trueprop",_) $ (Const ("Not", _) $ t)) = rigid t
   451   | ok4nnf (Const ("Trueprop",_) $ t) = rigid t
   452   | ok4nnf _ = false;
   453 
   454 fun make_nnf1 th = 
   455   if ok4nnf (concl_of th) 
   456   then make_nnf1 (tryres(th, nnf_rls))
   457     handle THM _ =>
   458         forward_res make_nnf1
   459            (tryres(th, [conj_forward,disj_forward,all_forward,ex_forward]))
   460     handle THM _ => th
   461   else th;
   462 
   463 (*The simplification removes defined quantifiers and occurrences of True and False. 
   464   nnf_ss also includes the one-point simprocs,
   465   which are needed to avoid the various one-point theorems from generating junk clauses.*)
   466 val nnf_simps =
   467      [simp_implies_def, Ex1_def, Ball_def, Bex_def, if_True, 
   468       if_False, if_cancel, if_eq_cancel, cases_simp];
   469 val nnf_extra_simps =
   470       thms"split_ifs" @ ex_simps @ all_simps @ simp_thms;
   471 
   472 val nnf_ss =
   473     HOL_basic_ss addsimps nnf_extra_simps 
   474                  addsimprocs [defALL_regroup,defEX_regroup,neq_simproc,let_simproc];
   475 
   476 fun make_nnf th = case prems_of th of
   477     [] => th |> rewrite_rule (map safe_mk_meta_eq nnf_simps)
   478 	     |> simplify nnf_ss  
   479 	     |> make_nnf1
   480   | _ => raise THM ("make_nnf: premises in argument", 0, [th]);
   481 
   482 (*Pull existential quantifiers to front. This accomplishes Skolemization for
   483   clauses that arise from a subgoal.*)
   484 fun skolemize th =
   485   if not (has_conns ["Ex"] (prop_of th)) then th
   486   else (skolemize (tryres(th, [choice, conj_exD1, conj_exD2,
   487                               disj_exD, disj_exD1, disj_exD2])))
   488     handle THM _ =>
   489         skolemize (forward_res skolemize
   490                    (tryres (th, [conj_forward, disj_forward, all_forward])))
   491     handle THM _ => forward_res skolemize (th RS ex_forward);
   492 
   493 
   494 (*Make clauses from a list of theorems, previously Skolemized and put into nnf.
   495   The resulting clauses are HOL disjunctions.*)
   496 fun make_clauses ths =
   497     (sort_clauses (map (generalize o nodups) (foldr (cnf[]) [] ths)));
   498 
   499 (*Convert a list of clauses (disjunctions) to Horn clauses (contrapositives)*)
   500 fun make_horns ths =
   501     name_thms "Horn#"
   502       (distinct Drule.eq_thm_prop (foldr (add_contras clause_rules) [] ths));
   503 
   504 (*Could simply use nprems_of, which would count remaining subgoals -- no
   505   discrimination as to their size!  With BEST_FIRST, fails for problem 41.*)
   506 
   507 fun best_prolog_tac sizef horns =
   508     BEST_FIRST (has_fewer_prems 1, sizef) (prolog_step_tac horns 1);
   509 
   510 fun depth_prolog_tac horns =
   511     DEPTH_FIRST (has_fewer_prems 1) (prolog_step_tac horns 1);
   512 
   513 (*Return all negative clauses, as possible goal clauses*)
   514 fun gocls cls = name_thms "Goal#" (map make_goal (neg_clauses cls));
   515 
   516 fun skolemize_prems_tac prems =
   517     cut_facts_tac (map (skolemize o make_nnf) prems)  THEN'
   518     REPEAT o (etac exE);
   519 
   520 (*Expand all definitions (presumably of Skolem functions) in a proof state.*)
   521 fun expand_defs_tac st =
   522   let val defs = filter (can dest_equals) (#hyps (crep_thm st))
   523   in  PRIMITIVE (LocalDefs.expand defs) st  end;
   524 
   525 (*Basis of all meson-tactics.  Supplies cltac with clauses: HOL disjunctions*)
   526 fun MESON cltac i st = 
   527   SELECT_GOAL
   528     (EVERY [rtac ccontr 1,
   529 	    METAHYPS (fn negs =>
   530 		      EVERY1 [skolemize_prems_tac negs,
   531 			      METAHYPS (cltac o make_clauses)]) 1,
   532             expand_defs_tac]) i st
   533   handle THM _ => no_tac st;	(*probably from make_meta_clause, not first-order*)		      
   534 
   535 (** Best-first search versions **)
   536 
   537 (*ths is a list of additional clauses (HOL disjunctions) to use.*)
   538 fun best_meson_tac sizef =
   539   MESON (fn cls =>
   540          THEN_BEST_FIRST (resolve_tac (gocls cls) 1)
   541                          (has_fewer_prems 1, sizef)
   542                          (prolog_step_tac (make_horns cls) 1));
   543 
   544 (*First, breaks the goal into independent units*)
   545 val safe_best_meson_tac =
   546      SELECT_GOAL (TRY Safe_tac THEN
   547                   TRYALL (best_meson_tac size_of_subgoals));
   548 
   549 (** Depth-first search version **)
   550 
   551 val depth_meson_tac =
   552      MESON (fn cls => EVERY [resolve_tac (gocls cls) 1,
   553                              depth_prolog_tac (make_horns cls)]);
   554 
   555 
   556 (** Iterative deepening version **)
   557 
   558 (*This version does only one inference per call;
   559   having only one eq_assume_tac speeds it up!*)
   560 fun prolog_step_tac' horns =
   561     let val (horn0s, hornps) = (*0 subgoals vs 1 or more*)
   562             take_prefix Thm.no_prems horns
   563         val nrtac = net_resolve_tac horns
   564     in  fn i => eq_assume_tac i ORELSE
   565                 match_tac horn0s i ORELSE  (*no backtracking if unit MATCHES*)
   566                 ((assume_tac i APPEND nrtac i) THEN check_tac)
   567     end;
   568 
   569 fun iter_deepen_prolog_tac horns =
   570     ITER_DEEPEN (has_fewer_prems 1) (prolog_step_tac' horns);
   571 
   572 fun iter_deepen_meson_tac ths = MESON 
   573  (fn cls =>
   574       case (gocls (cls@ths)) of
   575 	   [] => no_tac  (*no goal clauses*)
   576 	 | goes => 
   577 	     let val horns = make_horns (cls@ths)
   578 	         val _ = if !Output.show_debug_msgs 
   579 	                 then Output.debug ("meson method called:\n" ^ 
   580 	     	                  space_implode "\n" (map string_of_thm (cls@ths)) ^ 
   581 	     	                  "\nclauses:\n" ^ 
   582 	     	                  space_implode "\n" (map string_of_thm horns))
   583 	     	         else ()
   584 	     in THEN_ITER_DEEPEN (resolve_tac goes 1) (has_fewer_prems 1) (prolog_step_tac' horns)
   585 	     end
   586  );
   587 
   588 fun meson_claset_tac ths cs =
   589   SELECT_GOAL (TRY (safe_tac cs) THEN TRYALL (iter_deepen_meson_tac ths));
   590 
   591 val meson_tac = CLASET' (meson_claset_tac []);
   592 
   593 
   594 (**** Code to support ordinary resolution, rather than Model Elimination ****)
   595 
   596 (*Convert a list of clauses (disjunctions) to meta-level clauses (==>), 
   597   with no contrapositives, for ordinary resolution.*)
   598 
   599 (*Rules to convert the head literal into a negated assumption. If the head
   600   literal is already negated, then using notEfalse instead of notEfalse'
   601   prevents a double negation.*)
   602 val notEfalse = read_instantiate [("R","False")] notE;
   603 val notEfalse' = rotate_prems 1 notEfalse;
   604 
   605 fun negated_asm_of_head th = 
   606     th RS notEfalse handle THM _ => th RS notEfalse';
   607 
   608 (*Converting one clause*)
   609 fun make_meta_clause th = 
   610   negated_asm_of_head (make_horn resolution_clause_rules th);
   611   
   612 fun make_meta_clauses ths =
   613     name_thms "MClause#"
   614       (distinct Drule.eq_thm_prop (map make_meta_clause ths));
   615 
   616 (*Permute a rule's premises to move the i-th premise to the last position.*)
   617 fun make_last i th =
   618   let val n = nprems_of th 
   619   in  if 1 <= i andalso i <= n 
   620       then Thm.permute_prems (i-1) 1 th
   621       else raise THM("select_literal", i, [th])
   622   end;
   623 
   624 (*Maps a rule that ends "... ==> P ==> False" to "... ==> ~P" while suppressing
   625   double-negations.*)
   626 val negate_head = rewrite_rule [atomize_not, not_not RS eq_reflection];
   627 
   628 (*Maps the clause  [P1,...Pn]==>False to [P1,...,P(i-1),P(i+1),...Pn] ==> ~P*)
   629 fun select_literal i cl = negate_head (make_last i cl);
   630 
   631 
   632 (*Top-level Skolemization. Allows part of the conversion to clauses to be
   633   expressed as a tactic (or Isar method).  Each assumption of the selected 
   634   goal is converted to NNF and then its existential quantifiers are pulled
   635   to the front. Finally, all existential quantifiers are eliminated, 
   636   leaving !!-quantified variables. Perhaps Safe_tac should follow, but it
   637   might generate many subgoals.*)
   638 
   639 fun skolemize_tac i st = 
   640   let val ts = Logic.strip_assums_hyp (List.nth (prems_of st, i-1))
   641   in 
   642      EVERY' [METAHYPS
   643 	    (fn hyps => (cut_facts_tac (map (skolemize o make_nnf) hyps) 1
   644                          THEN REPEAT (etac exE 1))),
   645             REPEAT_DETERM_N (length ts) o (etac thin_rl)] i st
   646   end
   647   handle Subscript => Seq.empty;
   648 
   649 (*Top-level conversion to meta-level clauses. Each clause has  
   650   leading !!-bound universal variables, to express generality. To get 
   651   meta-clauses instead of disjunctions, uncomment "make_meta_clauses" below.*)
   652 val make_clauses_tac = 
   653   SUBGOAL
   654     (fn (prop,_) =>
   655      let val ts = Logic.strip_assums_hyp prop
   656      in EVERY1 
   657 	 [METAHYPS
   658 	    (fn hyps => 
   659               (Method.insert_tac
   660                 (map forall_intr_vars 
   661                   ( (**make_meta_clauses**) (make_clauses hyps))) 1)),
   662 	  REPEAT_DETERM_N (length ts) o (etac thin_rl)]
   663      end);
   664      
   665      
   666 (*** setup the special skoklemization methods ***)
   667 
   668 (*No CHANGED_PROP here, since these always appear in the preamble*)
   669 
   670 val skolemize_setup =
   671   Method.add_methods
   672     [("skolemize", Method.no_args (Method.SIMPLE_METHOD' skolemize_tac),
   673       "Skolemization into existential quantifiers"),
   674      ("make_clauses", Method.no_args (Method.SIMPLE_METHOD' make_clauses_tac), 
   675       "Conversion to !!-quantified meta-level clauses")];
   676 
   677 end;
   678 
   679 structure BasicMeson: BASIC_MESON = Meson;
   680 open BasicMeson;