src/HOL/Probability/Independent_Family.thy
author huffman
Thu, 18 Aug 2011 13:36:58 -0700
changeset 45145 f0de18b62d63
parent 44791 cedb5cb948fd
child 46648 c36637603821
permissions -rw-r--r--
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
     1 (*  Title:      HOL/Probability/Independent_Family.thy
     2     Author:     Johannes Hölzl, TU München
     3 *)
     4 
     5 header {* Independent families of events, event sets, and random variables *}
     6 
     7 theory Independent_Family
     8   imports Probability_Measure
     9 begin
    10 
    11 lemma INT_decseq_offset:
    12   assumes "decseq F"
    13   shows "(\<Inter>i. F i) = (\<Inter>i\<in>{n..}. F i)"
    14 proof safe
    15   fix x i assume x: "x \<in> (\<Inter>i\<in>{n..}. F i)"
    16   show "x \<in> F i"
    17   proof cases
    18     from x have "x \<in> F n" by auto
    19     also assume "i \<le> n" with `decseq F` have "F n \<subseteq> F i"
    20       unfolding decseq_def by simp
    21     finally show ?thesis .
    22   qed (insert x, simp)
    23 qed auto
    24 
    25 definition (in prob_space)
    26   "indep_events A I \<longleftrightarrow> (A`I \<subseteq> events) \<and>
    27     (\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j)))"
    28 
    29 definition (in prob_space)
    30   "indep_event A B \<longleftrightarrow> indep_events (bool_case A B) UNIV"
    31 
    32 definition (in prob_space)
    33   "indep_sets F I \<longleftrightarrow> (\<forall>i\<in>I. F i \<subseteq> events) \<and>
    34     (\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> (\<forall>A\<in>Pi J F. prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))))"
    35 
    36 definition (in prob_space)
    37   "indep_set A B \<longleftrightarrow> indep_sets (bool_case A B) UNIV"
    38 
    39 definition (in prob_space)
    40   "indep_vars M' X I \<longleftrightarrow>
    41     (\<forall>i\<in>I. random_variable (M' i) (X i)) \<and>
    42     indep_sets (\<lambda>i. sigma_sets (space M) { X i -` A \<inter> space M | A. A \<in> sets (M' i)}) I"
    43 
    44 definition (in prob_space)
    45   "indep_var Ma A Mb B \<longleftrightarrow> indep_vars (bool_case Ma Mb) (bool_case A B) UNIV"
    46 
    47 lemma (in prob_space) indep_sets_cong[cong]:
    48   "I = J \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> F i = G i) \<Longrightarrow> indep_sets F I \<longleftrightarrow> indep_sets G J"
    49   by (simp add: indep_sets_def, intro conj_cong all_cong imp_cong ball_cong) blast+
    50 
    51 lemma (in prob_space) indep_sets_singleton_iff_indep_events:
    52   "indep_sets (\<lambda>i. {F i}) I \<longleftrightarrow> indep_events F I"
    53   unfolding indep_sets_def indep_events_def
    54   by (simp, intro conj_cong ball_cong all_cong imp_cong) (auto simp: Pi_iff)
    55 
    56 lemma (in prob_space) indep_events_finite_index_events:
    57   "indep_events F I \<longleftrightarrow> (\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> indep_events F J)"
    58   by (auto simp: indep_events_def)
    59 
    60 lemma (in prob_space) indep_sets_finite_index_sets:
    61   "indep_sets F I \<longleftrightarrow> (\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> indep_sets F J)"
    62 proof (intro iffI allI impI)
    63   assume *: "\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> indep_sets F J"
    64   show "indep_sets F I" unfolding indep_sets_def
    65   proof (intro conjI ballI allI impI)
    66     fix i assume "i \<in> I"
    67     with *[THEN spec, of "{i}"] show "F i \<subseteq> events"
    68       by (auto simp: indep_sets_def)
    69   qed (insert *, auto simp: indep_sets_def)
    70 qed (auto simp: indep_sets_def)
    71 
    72 lemma (in prob_space) indep_sets_mono_index:
    73   "J \<subseteq> I \<Longrightarrow> indep_sets F I \<Longrightarrow> indep_sets F J"
    74   unfolding indep_sets_def by auto
    75 
    76 lemma (in prob_space) indep_sets_mono_sets:
    77   assumes indep: "indep_sets F I"
    78   assumes mono: "\<And>i. i\<in>I \<Longrightarrow> G i \<subseteq> F i"
    79   shows "indep_sets G I"
    80 proof -
    81   have "(\<forall>i\<in>I. F i \<subseteq> events) \<Longrightarrow> (\<forall>i\<in>I. G i \<subseteq> events)"
    82     using mono by auto
    83   moreover have "\<And>A J. J \<subseteq> I \<Longrightarrow> A \<in> (\<Pi> j\<in>J. G j) \<Longrightarrow> A \<in> (\<Pi> j\<in>J. F j)"
    84     using mono by (auto simp: Pi_iff)
    85   ultimately show ?thesis
    86     using indep by (auto simp: indep_sets_def)
    87 qed
    88 
    89 lemma (in prob_space) indep_setsI:
    90   assumes "\<And>i. i \<in> I \<Longrightarrow> F i \<subseteq> events"
    91     and "\<And>A J. J \<noteq> {} \<Longrightarrow> J \<subseteq> I \<Longrightarrow> finite J \<Longrightarrow> (\<forall>j\<in>J. A j \<in> F j) \<Longrightarrow> prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
    92   shows "indep_sets F I"
    93   using assms unfolding indep_sets_def by (auto simp: Pi_iff)
    94 
    95 lemma (in prob_space) indep_setsD:
    96   assumes "indep_sets F I" and "J \<subseteq> I" "J \<noteq> {}" "finite J" "\<forall>j\<in>J. A j \<in> F j"
    97   shows "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
    98   using assms unfolding indep_sets_def by auto
    99 
   100 lemma (in prob_space) indep_setI:
   101   assumes ev: "A \<subseteq> events" "B \<subseteq> events"
   102     and indep: "\<And>a b. a \<in> A \<Longrightarrow> b \<in> B \<Longrightarrow> prob (a \<inter> b) = prob a * prob b"
   103   shows "indep_set A B"
   104   unfolding indep_set_def
   105 proof (rule indep_setsI)
   106   fix F J assume "J \<noteq> {}" "J \<subseteq> UNIV"
   107     and F: "\<forall>j\<in>J. F j \<in> (case j of True \<Rightarrow> A | False \<Rightarrow> B)"
   108   have "J \<in> Pow UNIV" by auto
   109   with F `J \<noteq> {}` indep[of "F True" "F False"]
   110   show "prob (\<Inter>j\<in>J. F j) = (\<Prod>j\<in>J. prob (F j))"
   111     unfolding UNIV_bool Pow_insert by (auto simp: ac_simps)
   112 qed (auto split: bool.split simp: ev)
   113 
   114 lemma (in prob_space) indep_setD:
   115   assumes indep: "indep_set A B" and ev: "a \<in> A" "b \<in> B"
   116   shows "prob (a \<inter> b) = prob a * prob b"
   117   using indep[unfolded indep_set_def, THEN indep_setsD, of UNIV "bool_case a b"] ev
   118   by (simp add: ac_simps UNIV_bool)
   119 
   120 lemma (in prob_space) indep_var_eq:
   121   "indep_var S X T Y \<longleftrightarrow>
   122     (random_variable S X \<and> random_variable T Y) \<and>
   123     indep_set
   124       (sigma_sets (space M) { X -` A \<inter> space M | A. A \<in> sets S})
   125       (sigma_sets (space M) { Y -` A \<inter> space M | A. A \<in> sets T})"
   126   unfolding indep_var_def indep_vars_def indep_set_def UNIV_bool
   127   by (intro arg_cong2[where f="op \<and>"] arg_cong2[where f=indep_sets] ext)
   128      (auto split: bool.split)
   129 
   130 lemma (in prob_space)
   131   assumes indep: "indep_set A B"
   132   shows indep_setD_ev1: "A \<subseteq> events"
   133     and indep_setD_ev2: "B \<subseteq> events"
   134   using indep unfolding indep_set_def indep_sets_def UNIV_bool by auto
   135 
   136 lemma (in prob_space) indep_sets_dynkin:
   137   assumes indep: "indep_sets F I"
   138   shows "indep_sets (\<lambda>i. sets (dynkin \<lparr> space = space M, sets = F i \<rparr>)) I"
   139     (is "indep_sets ?F I")
   140 proof (subst indep_sets_finite_index_sets, intro allI impI ballI)
   141   fix J assume "finite J" "J \<subseteq> I" "J \<noteq> {}"
   142   with indep have "indep_sets F J"
   143     by (subst (asm) indep_sets_finite_index_sets) auto
   144   { fix J K assume "indep_sets F K"
   145     let "?G S i" = "if i \<in> S then ?F i else F i"
   146     assume "finite J" "J \<subseteq> K"
   147     then have "indep_sets (?G J) K"
   148     proof induct
   149       case (insert j J)
   150       moreover def G \<equiv> "?G J"
   151       ultimately have G: "indep_sets G K" "\<And>i. i \<in> K \<Longrightarrow> G i \<subseteq> events" and "j \<in> K"
   152         by (auto simp: indep_sets_def)
   153       let ?D = "{E\<in>events. indep_sets (G(j := {E})) K }"
   154       { fix X assume X: "X \<in> events"
   155         assume indep: "\<And>J A. J \<noteq> {} \<Longrightarrow> J \<subseteq> K \<Longrightarrow> finite J \<Longrightarrow> j \<notin> J \<Longrightarrow> (\<forall>i\<in>J. A i \<in> G i)
   156           \<Longrightarrow> prob ((\<Inter>i\<in>J. A i) \<inter> X) = prob X * (\<Prod>i\<in>J. prob (A i))"
   157         have "indep_sets (G(j := {X})) K"
   158         proof (rule indep_setsI)
   159           fix i assume "i \<in> K" then show "(G(j:={X})) i \<subseteq> events"
   160             using G X by auto
   161         next
   162           fix A J assume J: "J \<noteq> {}" "J \<subseteq> K" "finite J" "\<forall>i\<in>J. A i \<in> (G(j := {X})) i"
   163           show "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
   164           proof cases
   165             assume "j \<in> J"
   166             with J have "A j = X" by auto
   167             show ?thesis
   168             proof cases
   169               assume "J = {j}" then show ?thesis by simp
   170             next
   171               assume "J \<noteq> {j}"
   172               have "prob (\<Inter>i\<in>J. A i) = prob ((\<Inter>i\<in>J-{j}. A i) \<inter> X)"
   173                 using `j \<in> J` `A j = X` by (auto intro!: arg_cong[where f=prob] split: split_if_asm)
   174               also have "\<dots> = prob X * (\<Prod>i\<in>J-{j}. prob (A i))"
   175               proof (rule indep)
   176                 show "J - {j} \<noteq> {}" "J - {j} \<subseteq> K" "finite (J - {j})" "j \<notin> J - {j}"
   177                   using J `J \<noteq> {j}` `j \<in> J` by auto
   178                 show "\<forall>i\<in>J - {j}. A i \<in> G i"
   179                   using J by auto
   180               qed
   181               also have "\<dots> = prob (A j) * (\<Prod>i\<in>J-{j}. prob (A i))"
   182                 using `A j = X` by simp
   183               also have "\<dots> = (\<Prod>i\<in>J. prob (A i))"
   184                 unfolding setprod.insert_remove[OF `finite J`, symmetric, of "\<lambda>i. prob  (A i)"]
   185                 using `j \<in> J` by (simp add: insert_absorb)
   186               finally show ?thesis .
   187             qed
   188           next
   189             assume "j \<notin> J"
   190             with J have "\<forall>i\<in>J. A i \<in> G i" by (auto split: split_if_asm)
   191             with J show ?thesis
   192               by (intro indep_setsD[OF G(1)]) auto
   193           qed
   194         qed }
   195       note indep_sets_insert = this
   196       have "dynkin_system \<lparr> space = space M, sets = ?D \<rparr>"
   197       proof (rule dynkin_systemI', simp_all cong del: indep_sets_cong, safe)
   198         show "indep_sets (G(j := {{}})) K"
   199           by (rule indep_sets_insert) auto
   200       next
   201         fix X assume X: "X \<in> events" and G': "indep_sets (G(j := {X})) K"
   202         show "indep_sets (G(j := {space M - X})) K"
   203         proof (rule indep_sets_insert)
   204           fix J A assume J: "J \<noteq> {}" "J \<subseteq> K" "finite J" "j \<notin> J" and A: "\<forall>i\<in>J. A i \<in> G i"
   205           then have A_sets: "\<And>i. i\<in>J \<Longrightarrow> A i \<in> events"
   206             using G by auto
   207           have "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) =
   208               prob ((\<Inter>j\<in>J. A j) - (\<Inter>i\<in>insert j J. (A(j := X)) i))"
   209             using A_sets sets_into_space X `J \<noteq> {}`
   210             by (auto intro!: arg_cong[where f=prob] split: split_if_asm)
   211           also have "\<dots> = prob (\<Inter>j\<in>J. A j) - prob (\<Inter>i\<in>insert j J. (A(j := X)) i)"
   212             using J `J \<noteq> {}` `j \<notin> J` A_sets X sets_into_space
   213             by (auto intro!: finite_measure_Diff finite_INT split: split_if_asm)
   214           finally have "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) =
   215               prob (\<Inter>j\<in>J. A j) - prob (\<Inter>i\<in>insert j J. (A(j := X)) i)" .
   216           moreover {
   217             have "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
   218               using J A `finite J` by (intro indep_setsD[OF G(1)]) auto
   219             then have "prob (\<Inter>j\<in>J. A j) = prob (space M) * (\<Prod>i\<in>J. prob (A i))"
   220               using prob_space by simp }
   221           moreover {
   222             have "prob (\<Inter>i\<in>insert j J. (A(j := X)) i) = (\<Prod>i\<in>insert j J. prob ((A(j := X)) i))"
   223               using J A `j \<in> K` by (intro indep_setsD[OF G']) auto
   224             then have "prob (\<Inter>i\<in>insert j J. (A(j := X)) i) = prob X * (\<Prod>i\<in>J. prob (A i))"
   225               using `finite J` `j \<notin> J` by (auto intro!: setprod_cong) }
   226           ultimately have "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) = (prob (space M) - prob X) * (\<Prod>i\<in>J. prob (A i))"
   227             by (simp add: field_simps)
   228           also have "\<dots> = prob (space M - X) * (\<Prod>i\<in>J. prob (A i))"
   229             using X A by (simp add: finite_measure_compl)
   230           finally show "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) = prob (space M - X) * (\<Prod>i\<in>J. prob (A i))" .
   231         qed (insert X, auto)
   232       next
   233         fix F :: "nat \<Rightarrow> 'a set" assume disj: "disjoint_family F" and "range F \<subseteq> ?D"
   234         then have F: "\<And>i. F i \<in> events" "\<And>i. indep_sets (G(j:={F i})) K" by auto
   235         show "indep_sets (G(j := {\<Union>k. F k})) K"
   236         proof (rule indep_sets_insert)
   237           fix J A assume J: "j \<notin> J" "J \<noteq> {}" "J \<subseteq> K" "finite J" and A: "\<forall>i\<in>J. A i \<in> G i"
   238           then have A_sets: "\<And>i. i\<in>J \<Longrightarrow> A i \<in> events"
   239             using G by auto
   240           have "prob ((\<Inter>j\<in>J. A j) \<inter> (\<Union>k. F k)) = prob (\<Union>k. (\<Inter>i\<in>insert j J. (A(j := F k)) i))"
   241             using `J \<noteq> {}` `j \<notin> J` `j \<in> K` by (auto intro!: arg_cong[where f=prob] split: split_if_asm)
   242           moreover have "(\<lambda>k. prob (\<Inter>i\<in>insert j J. (A(j := F k)) i)) sums prob (\<Union>k. (\<Inter>i\<in>insert j J. (A(j := F k)) i))"
   243           proof (rule finite_measure_UNION)
   244             show "disjoint_family (\<lambda>k. \<Inter>i\<in>insert j J. (A(j := F k)) i)"
   245               using disj by (rule disjoint_family_on_bisimulation) auto
   246             show "range (\<lambda>k. \<Inter>i\<in>insert j J. (A(j := F k)) i) \<subseteq> events"
   247               using A_sets F `finite J` `J \<noteq> {}` `j \<notin> J` by (auto intro!: Int)
   248           qed
   249           moreover { fix k
   250             from J A `j \<in> K` have "prob (\<Inter>i\<in>insert j J. (A(j := F k)) i) = prob (F k) * (\<Prod>i\<in>J. prob (A i))"
   251               by (subst indep_setsD[OF F(2)]) (auto intro!: setprod_cong split: split_if_asm)
   252             also have "\<dots> = prob (F k) * prob (\<Inter>i\<in>J. A i)"
   253               using J A `j \<in> K` by (subst indep_setsD[OF G(1)]) auto
   254             finally have "prob (\<Inter>i\<in>insert j J. (A(j := F k)) i) = prob (F k) * prob (\<Inter>i\<in>J. A i)" . }
   255           ultimately have "(\<lambda>k. prob (F k) * prob (\<Inter>i\<in>J. A i)) sums (prob ((\<Inter>j\<in>J. A j) \<inter> (\<Union>k. F k)))"
   256             by simp
   257           moreover
   258           have "(\<lambda>k. prob (F k) * prob (\<Inter>i\<in>J. A i)) sums (prob (\<Union>k. F k) * prob (\<Inter>i\<in>J. A i))"
   259             using disj F(1) by (intro finite_measure_UNION sums_mult2) auto
   260           then have "(\<lambda>k. prob (F k) * prob (\<Inter>i\<in>J. A i)) sums (prob (\<Union>k. F k) * (\<Prod>i\<in>J. prob (A i)))"
   261             using J A `j \<in> K` by (subst indep_setsD[OF G(1), symmetric]) auto
   262           ultimately
   263           show "prob ((\<Inter>j\<in>J. A j) \<inter> (\<Union>k. F k)) = prob (\<Union>k. F k) * (\<Prod>j\<in>J. prob (A j))"
   264             by (auto dest!: sums_unique)
   265         qed (insert F, auto)
   266       qed (insert sets_into_space, auto)
   267       then have mono: "sets (dynkin \<lparr>space = space M, sets = G j\<rparr>) \<subseteq>
   268         sets \<lparr>space = space M, sets = {E \<in> events. indep_sets (G(j := {E})) K}\<rparr>"
   269       proof (rule dynkin_system.dynkin_subset, simp_all cong del: indep_sets_cong, safe)
   270         fix X assume "X \<in> G j"
   271         then show "X \<in> events" using G `j \<in> K` by auto
   272         from `indep_sets G K`
   273         show "indep_sets (G(j := {X})) K"
   274           by (rule indep_sets_mono_sets) (insert `X \<in> G j`, auto)
   275       qed
   276       have "indep_sets (G(j:=?D)) K"
   277       proof (rule indep_setsI)
   278         fix i assume "i \<in> K" then show "(G(j := ?D)) i \<subseteq> events"
   279           using G(2) by auto
   280       next
   281         fix A J assume J: "J\<noteq>{}" "J \<subseteq> K" "finite J" and A: "\<forall>i\<in>J. A i \<in> (G(j := ?D)) i"
   282         show "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
   283         proof cases
   284           assume "j \<in> J"
   285           with A have indep: "indep_sets (G(j := {A j})) K" by auto
   286           from J A show ?thesis
   287             by (intro indep_setsD[OF indep]) auto
   288         next
   289           assume "j \<notin> J"
   290           with J A have "\<forall>i\<in>J. A i \<in> G i" by (auto split: split_if_asm)
   291           with J show ?thesis
   292             by (intro indep_setsD[OF G(1)]) auto
   293         qed
   294       qed
   295       then have "indep_sets (G(j:=sets (dynkin \<lparr>space = space M, sets = G j\<rparr>))) K"
   296         by (rule indep_sets_mono_sets) (insert mono, auto)
   297       then show ?case
   298         by (rule indep_sets_mono_sets) (insert `j \<in> K` `j \<notin> J`, auto simp: G_def)
   299     qed (insert `indep_sets F K`, simp) }
   300   from this[OF `indep_sets F J` `finite J` subset_refl]
   301   show "indep_sets (\<lambda>i. sets (dynkin \<lparr> space = space M, sets = F i \<rparr>)) J"
   302     by (rule indep_sets_mono_sets) auto
   303 qed
   304 
   305 lemma (in prob_space) indep_sets_sigma:
   306   assumes indep: "indep_sets F I"
   307   assumes stable: "\<And>i. i \<in> I \<Longrightarrow> Int_stable \<lparr> space = space M, sets = F i \<rparr>"
   308   shows "indep_sets (\<lambda>i. sets (sigma \<lparr> space = space M, sets = F i \<rparr>)) I"
   309 proof -
   310   from indep_sets_dynkin[OF indep]
   311   show ?thesis
   312   proof (rule indep_sets_mono_sets, subst sigma_eq_dynkin, simp_all add: stable)
   313     fix i assume "i \<in> I"
   314     with indep have "F i \<subseteq> events" by (auto simp: indep_sets_def)
   315     with sets_into_space show "F i \<subseteq> Pow (space M)" by auto
   316   qed
   317 qed
   318 
   319 lemma (in prob_space) indep_sets_sigma_sets:
   320   assumes "indep_sets F I"
   321   assumes "\<And>i. i \<in> I \<Longrightarrow> Int_stable \<lparr> space = space M, sets = F i \<rparr>"
   322   shows "indep_sets (\<lambda>i. sigma_sets (space M) (F i)) I"
   323   using indep_sets_sigma[OF assms] by (simp add: sets_sigma)
   324 
   325 lemma (in prob_space) indep_sets_sigma_sets_iff:
   326   assumes "\<And>i. i \<in> I \<Longrightarrow> Int_stable \<lparr> space = space M, sets = F i \<rparr>"
   327   shows "indep_sets (\<lambda>i. sigma_sets (space M) (F i)) I \<longleftrightarrow> indep_sets F I"
   328 proof
   329   assume "indep_sets F I" then show "indep_sets (\<lambda>i. sigma_sets (space M) (F i)) I"
   330     by (rule indep_sets_sigma_sets) fact
   331 next
   332   assume "indep_sets (\<lambda>i. sigma_sets (space M) (F i)) I" then show "indep_sets F I"
   333     by (rule indep_sets_mono_sets) (intro subsetI sigma_sets.Basic)
   334 qed
   335 
   336 lemma (in prob_space) indep_sets2_eq:
   337   "indep_set A B \<longleftrightarrow> A \<subseteq> events \<and> B \<subseteq> events \<and> (\<forall>a\<in>A. \<forall>b\<in>B. prob (a \<inter> b) = prob a * prob b)"
   338   unfolding indep_set_def
   339 proof (intro iffI ballI conjI)
   340   assume indep: "indep_sets (bool_case A B) UNIV"
   341   { fix a b assume "a \<in> A" "b \<in> B"
   342     with indep_setsD[OF indep, of UNIV "bool_case a b"]
   343     show "prob (a \<inter> b) = prob a * prob b"
   344       unfolding UNIV_bool by (simp add: ac_simps) }
   345   from indep show "A \<subseteq> events" "B \<subseteq> events"
   346     unfolding indep_sets_def UNIV_bool by auto
   347 next
   348   assume *: "A \<subseteq> events \<and> B \<subseteq> events \<and> (\<forall>a\<in>A. \<forall>b\<in>B. prob (a \<inter> b) = prob a * prob b)"
   349   show "indep_sets (bool_case A B) UNIV"
   350   proof (rule indep_setsI)
   351     fix i show "(case i of True \<Rightarrow> A | False \<Rightarrow> B) \<subseteq> events"
   352       using * by (auto split: bool.split)
   353   next
   354     fix J X assume "J \<noteq> {}" "J \<subseteq> UNIV" and X: "\<forall>j\<in>J. X j \<in> (case j of True \<Rightarrow> A | False \<Rightarrow> B)"
   355     then have "J = {True} \<or> J = {False} \<or> J = {True,False}"
   356       by (auto simp: UNIV_bool)
   357     then show "prob (\<Inter>j\<in>J. X j) = (\<Prod>j\<in>J. prob (X j))"
   358       using X * by auto
   359   qed
   360 qed
   361 
   362 lemma (in prob_space) indep_set_sigma_sets:
   363   assumes "indep_set A B"
   364   assumes A: "Int_stable \<lparr> space = space M, sets = A \<rparr>"
   365   assumes B: "Int_stable \<lparr> space = space M, sets = B \<rparr>"
   366   shows "indep_set (sigma_sets (space M) A) (sigma_sets (space M) B)"
   367 proof -
   368   have "indep_sets (\<lambda>i. sigma_sets (space M) (case i of True \<Rightarrow> A | False \<Rightarrow> B)) UNIV"
   369   proof (rule indep_sets_sigma_sets)
   370     show "indep_sets (bool_case A B) UNIV"
   371       by (rule `indep_set A B`[unfolded indep_set_def])
   372     fix i show "Int_stable \<lparr>space = space M, sets = case i of True \<Rightarrow> A | False \<Rightarrow> B\<rparr>"
   373       using A B by (cases i) auto
   374   qed
   375   then show ?thesis
   376     unfolding indep_set_def
   377     by (rule indep_sets_mono_sets) (auto split: bool.split)
   378 qed
   379 
   380 lemma (in prob_space) indep_sets_collect_sigma:
   381   fixes I :: "'j \<Rightarrow> 'i set" and J :: "'j set" and E :: "'i \<Rightarrow> 'a set set"
   382   assumes indep: "indep_sets E (\<Union>j\<in>J. I j)"
   383   assumes Int_stable: "\<And>i j. j \<in> J \<Longrightarrow> i \<in> I j \<Longrightarrow> Int_stable \<lparr>space = space M, sets = E i\<rparr>"
   384   assumes disjoint: "disjoint_family_on I J"
   385   shows "indep_sets (\<lambda>j. sigma_sets (space M) (\<Union>i\<in>I j. E i)) J"
   386 proof -
   387   let "?E j" = "{\<Inter>k\<in>K. E' k| E' K. finite K \<and> K \<noteq> {} \<and> K \<subseteq> I j \<and> (\<forall>k\<in>K. E' k \<in> E k) }"
   388 
   389   from indep have E: "\<And>j i. j \<in> J \<Longrightarrow> i \<in> I j \<Longrightarrow> E i \<subseteq> events"
   390     unfolding indep_sets_def by auto
   391   { fix j
   392     let ?S = "sigma \<lparr> space = space M, sets = (\<Union>i\<in>I j. E i) \<rparr>"
   393     assume "j \<in> J"
   394     from E[OF this] interpret S: sigma_algebra ?S
   395       using sets_into_space by (intro sigma_algebra_sigma) auto
   396 
   397     have "sigma_sets (space M) (\<Union>i\<in>I j. E i) = sigma_sets (space M) (?E j)"
   398     proof (rule sigma_sets_eqI)
   399       fix A assume "A \<in> (\<Union>i\<in>I j. E i)"
   400       then guess i ..
   401       then show "A \<in> sigma_sets (space M) (?E j)"
   402         by (auto intro!: sigma_sets.intros exI[of _ "{i}"] exI[of _ "\<lambda>i. A"])
   403     next
   404       fix A assume "A \<in> ?E j"
   405       then obtain E' K where "finite K" "K \<noteq> {}" "K \<subseteq> I j" "\<And>k. k \<in> K \<Longrightarrow> E' k \<in> E k"
   406         and A: "A = (\<Inter>k\<in>K. E' k)"
   407         by auto
   408       then have "A \<in> sets ?S" unfolding A
   409         by (safe intro!: S.finite_INT)
   410            (auto simp: sets_sigma intro!: sigma_sets.Basic)
   411       then show "A \<in> sigma_sets (space M) (\<Union>i\<in>I j. E i)"
   412         by (simp add: sets_sigma)
   413     qed }
   414   moreover have "indep_sets (\<lambda>j. sigma_sets (space M) (?E j)) J"
   415   proof (rule indep_sets_sigma_sets)
   416     show "indep_sets ?E J"
   417     proof (intro indep_setsI)
   418       fix j assume "j \<in> J" with E show "?E j \<subseteq> events" by (force  intro!: finite_INT)
   419     next
   420       fix K A assume K: "K \<noteq> {}" "K \<subseteq> J" "finite K"
   421         and "\<forall>j\<in>K. A j \<in> ?E j"
   422       then have "\<forall>j\<in>K. \<exists>E' L. A j = (\<Inter>l\<in>L. E' l) \<and> finite L \<and> L \<noteq> {} \<and> L \<subseteq> I j \<and> (\<forall>l\<in>L. E' l \<in> E l)"
   423         by simp
   424       from bchoice[OF this] guess E' ..
   425       from bchoice[OF this] obtain L
   426         where A: "\<And>j. j\<in>K \<Longrightarrow> A j = (\<Inter>l\<in>L j. E' j l)"
   427         and L: "\<And>j. j\<in>K \<Longrightarrow> finite (L j)" "\<And>j. j\<in>K \<Longrightarrow> L j \<noteq> {}" "\<And>j. j\<in>K \<Longrightarrow> L j \<subseteq> I j"
   428         and E': "\<And>j l. j\<in>K \<Longrightarrow> l \<in> L j \<Longrightarrow> E' j l \<in> E l"
   429         by auto
   430 
   431       { fix k l j assume "k \<in> K" "j \<in> K" "l \<in> L j" "l \<in> L k"
   432         have "k = j"
   433         proof (rule ccontr)
   434           assume "k \<noteq> j"
   435           with disjoint `K \<subseteq> J` `k \<in> K` `j \<in> K` have "I k \<inter> I j = {}"
   436             unfolding disjoint_family_on_def by auto
   437           with L(2,3)[OF `j \<in> K`] L(2,3)[OF `k \<in> K`]
   438           show False using `l \<in> L k` `l \<in> L j` by auto
   439         qed }
   440       note L_inj = this
   441 
   442       def k \<equiv> "\<lambda>l. (SOME k. k \<in> K \<and> l \<in> L k)"
   443       { fix x j l assume *: "j \<in> K" "l \<in> L j"
   444         have "k l = j" unfolding k_def
   445         proof (rule some_equality)
   446           fix k assume "k \<in> K \<and> l \<in> L k"
   447           with * L_inj show "k = j" by auto
   448         qed (insert *, simp) }
   449       note k_simp[simp] = this
   450       let "?E' l" = "E' (k l) l"
   451       have "prob (\<Inter>j\<in>K. A j) = prob (\<Inter>l\<in>(\<Union>k\<in>K. L k). ?E' l)"
   452         by (auto simp: A intro!: arg_cong[where f=prob])
   453       also have "\<dots> = (\<Prod>l\<in>(\<Union>k\<in>K. L k). prob (?E' l))"
   454         using L K E' by (intro indep_setsD[OF indep]) (simp_all add: UN_mono)
   455       also have "\<dots> = (\<Prod>j\<in>K. \<Prod>l\<in>L j. prob (E' j l))"
   456         using K L L_inj by (subst setprod_UN_disjoint) auto
   457       also have "\<dots> = (\<Prod>j\<in>K. prob (A j))"
   458         using K L E' by (auto simp add: A intro!: setprod_cong indep_setsD[OF indep, symmetric]) blast
   459       finally show "prob (\<Inter>j\<in>K. A j) = (\<Prod>j\<in>K. prob (A j))" .
   460     qed
   461   next
   462     fix j assume "j \<in> J"
   463     show "Int_stable \<lparr> space = space M, sets = ?E j \<rparr>"
   464     proof (rule Int_stableI)
   465       fix a assume "a \<in> ?E j" then obtain Ka Ea
   466         where a: "a = (\<Inter>k\<in>Ka. Ea k)" "finite Ka" "Ka \<noteq> {}" "Ka \<subseteq> I j" "\<And>k. k\<in>Ka \<Longrightarrow> Ea k \<in> E k" by auto
   467       fix b assume "b \<in> ?E j" then obtain Kb Eb
   468         where b: "b = (\<Inter>k\<in>Kb. Eb k)" "finite Kb" "Kb \<noteq> {}" "Kb \<subseteq> I j" "\<And>k. k\<in>Kb \<Longrightarrow> Eb k \<in> E k" by auto
   469       let ?A = "\<lambda>k. (if k \<in> Ka \<inter> Kb then Ea k \<inter> Eb k else if k \<in> Kb then Eb k else if k \<in> Ka then Ea k else {})"
   470       have "a \<inter> b = INTER (Ka \<union> Kb) ?A"
   471         by (simp add: a b set_eq_iff) auto
   472       with a b `j \<in> J` Int_stableD[OF Int_stable] show "a \<inter> b \<in> ?E j"
   473         by (intro CollectI exI[of _ "Ka \<union> Kb"] exI[of _ ?A]) auto
   474     qed
   475   qed
   476   ultimately show ?thesis
   477     by (simp cong: indep_sets_cong)
   478 qed
   479 
   480 definition (in prob_space) terminal_events where
   481   "terminal_events A = (\<Inter>n. sigma_sets (space M) (UNION {n..} A))"
   482 
   483 lemma (in prob_space) terminal_events_sets:
   484   assumes A: "\<And>i. A i \<subseteq> events"
   485   assumes "\<And>i::nat. sigma_algebra \<lparr>space = space M, sets = A i\<rparr>"
   486   assumes X: "X \<in> terminal_events A"
   487   shows "X \<in> events"
   488 proof -
   489   let ?A = "(\<Inter>n. sigma_sets (space M) (UNION {n..} A))"
   490   interpret A: sigma_algebra "\<lparr>space = space M, sets = A i\<rparr>" for i by fact
   491   from X have "\<And>n. X \<in> sigma_sets (space M) (UNION {n..} A)" by (auto simp: terminal_events_def)
   492   from this[of 0] have "X \<in> sigma_sets (space M) (UNION UNIV A)" by simp
   493   then show "X \<in> events"
   494     by induct (insert A, auto)
   495 qed
   496 
   497 lemma (in prob_space) sigma_algebra_terminal_events:
   498   assumes "\<And>i::nat. sigma_algebra \<lparr>space = space M, sets = A i\<rparr>"
   499   shows "sigma_algebra \<lparr> space = space M, sets = terminal_events A \<rparr>"
   500   unfolding terminal_events_def
   501 proof (simp add: sigma_algebra_iff2, safe)
   502   let ?A = "(\<Inter>n. sigma_sets (space M) (UNION {n..} A))"
   503   interpret A: sigma_algebra "\<lparr>space = space M, sets = A i\<rparr>" for i by fact
   504   { fix X x assume "X \<in> ?A" "x \<in> X"
   505     then have "\<And>n. X \<in> sigma_sets (space M) (UNION {n..} A)" by auto
   506     from this[of 0] have "X \<in> sigma_sets (space M) (UNION UNIV A)" by simp
   507     then have "X \<subseteq> space M"
   508       by induct (insert A.sets_into_space, auto)
   509     with `x \<in> X` show "x \<in> space M" by auto }
   510   { fix F :: "nat \<Rightarrow> 'a set" and n assume "range F \<subseteq> ?A"
   511     then show "(UNION UNIV F) \<in> sigma_sets (space M) (UNION {n..} A)"
   512       by (intro sigma_sets.Union) auto }
   513 qed (auto intro!: sigma_sets.Compl sigma_sets.Empty)
   514 
   515 lemma (in prob_space) kolmogorov_0_1_law:
   516   fixes A :: "nat \<Rightarrow> 'a set set"
   517   assumes A: "\<And>i. A i \<subseteq> events"
   518   assumes "\<And>i::nat. sigma_algebra \<lparr>space = space M, sets = A i\<rparr>"
   519   assumes indep: "indep_sets A UNIV"
   520   and X: "X \<in> terminal_events A"
   521   shows "prob X = 0 \<or> prob X = 1"
   522 proof -
   523   let ?D = "\<lparr> space = space M, sets = {D \<in> events. prob (X \<inter> D) = prob X * prob D} \<rparr>"
   524   interpret A: sigma_algebra "\<lparr>space = space M, sets = A i\<rparr>" for i by fact
   525   interpret T: sigma_algebra "\<lparr> space = space M, sets = terminal_events A \<rparr>"
   526     by (rule sigma_algebra_terminal_events) fact
   527   have "X \<subseteq> space M" using T.space_closed X by auto
   528 
   529   have X_in: "X \<in> events"
   530     by (rule terminal_events_sets) fact+
   531 
   532   interpret D: dynkin_system ?D
   533   proof (rule dynkin_systemI)
   534     fix D assume "D \<in> sets ?D" then show "D \<subseteq> space ?D"
   535       using sets_into_space by auto
   536   next
   537     show "space ?D \<in> sets ?D"
   538       using prob_space `X \<subseteq> space M` by (simp add: Int_absorb2)
   539   next
   540     fix A assume A: "A \<in> sets ?D"
   541     have "prob (X \<inter> (space M - A)) = prob (X - (X \<inter> A))"
   542       using `X \<subseteq> space M` by (auto intro!: arg_cong[where f=prob])
   543     also have "\<dots> = prob X - prob (X \<inter> A)"
   544       using X_in A by (intro finite_measure_Diff) auto
   545     also have "\<dots> = prob X * prob (space M) - prob X * prob A"
   546       using A prob_space by auto
   547     also have "\<dots> = prob X * prob (space M - A)"
   548       using X_in A sets_into_space
   549       by (subst finite_measure_Diff) (auto simp: field_simps)
   550     finally show "space ?D - A \<in> sets ?D"
   551       using A `X \<subseteq> space M` by auto
   552   next
   553     fix F :: "nat \<Rightarrow> 'a set" assume dis: "disjoint_family F" and "range F \<subseteq> sets ?D"
   554     then have F: "range F \<subseteq> events" "\<And>i. prob (X \<inter> F i) = prob X * prob (F i)"
   555       by auto
   556     have "(\<lambda>i. prob (X \<inter> F i)) sums prob (\<Union>i. X \<inter> F i)"
   557     proof (rule finite_measure_UNION)
   558       show "range (\<lambda>i. X \<inter> F i) \<subseteq> events"
   559         using F X_in by auto
   560       show "disjoint_family (\<lambda>i. X \<inter> F i)"
   561         using dis by (rule disjoint_family_on_bisimulation) auto
   562     qed
   563     with F have "(\<lambda>i. prob X * prob (F i)) sums prob (X \<inter> (\<Union>i. F i))"
   564       by simp
   565     moreover have "(\<lambda>i. prob X * prob (F i)) sums (prob X * prob (\<Union>i. F i))"
   566       by (intro sums_mult finite_measure_UNION F dis)
   567     ultimately have "prob (X \<inter> (\<Union>i. F i)) = prob X * prob (\<Union>i. F i)"
   568       by (auto dest!: sums_unique)
   569     with F show "(\<Union>i. F i) \<in> sets ?D"
   570       by auto
   571   qed
   572 
   573   { fix n
   574     have "indep_sets (\<lambda>b. sigma_sets (space M) (\<Union>m\<in>bool_case {..n} {Suc n..} b. A m)) UNIV"
   575     proof (rule indep_sets_collect_sigma)
   576       have *: "(\<Union>b. case b of True \<Rightarrow> {..n} | False \<Rightarrow> {Suc n..}) = UNIV" (is "?U = _")
   577         by (simp split: bool.split add: set_eq_iff) (metis not_less_eq_eq)
   578       with indep show "indep_sets A ?U" by simp
   579       show "disjoint_family (bool_case {..n} {Suc n..})"
   580         unfolding disjoint_family_on_def by (auto split: bool.split)
   581       fix m
   582       show "Int_stable \<lparr>space = space M, sets = A m\<rparr>"
   583         unfolding Int_stable_def using A.Int by auto
   584     qed
   585     also have "(\<lambda>b. sigma_sets (space M) (\<Union>m\<in>bool_case {..n} {Suc n..} b. A m)) =
   586       bool_case (sigma_sets (space M) (\<Union>m\<in>{..n}. A m)) (sigma_sets (space M) (\<Union>m\<in>{Suc n..}. A m))"
   587       by (auto intro!: ext split: bool.split)
   588     finally have indep: "indep_set (sigma_sets (space M) (\<Union>m\<in>{..n}. A m)) (sigma_sets (space M) (\<Union>m\<in>{Suc n..}. A m))"
   589       unfolding indep_set_def by simp
   590 
   591     have "sigma_sets (space M) (\<Union>m\<in>{..n}. A m) \<subseteq> sets ?D"
   592     proof (simp add: subset_eq, rule)
   593       fix D assume D: "D \<in> sigma_sets (space M) (\<Union>m\<in>{..n}. A m)"
   594       have "X \<in> sigma_sets (space M) (\<Union>m\<in>{Suc n..}. A m)"
   595         using X unfolding terminal_events_def by simp
   596       from indep_setD[OF indep D this] indep_setD_ev1[OF indep] D
   597       show "D \<in> events \<and> prob (X \<inter> D) = prob X * prob D"
   598         by (auto simp add: ac_simps)
   599     qed }
   600   then have "(\<Union>n. sigma_sets (space M) (\<Union>m\<in>{..n}. A m)) \<subseteq> sets ?D" (is "?A \<subseteq> _")
   601     by auto
   602 
   603   have "sigma \<lparr> space = space M, sets = ?A \<rparr> =
   604     dynkin \<lparr> space = space M, sets = ?A \<rparr>" (is "sigma ?UA = dynkin ?UA")
   605   proof (rule sigma_eq_dynkin)
   606     { fix B n assume "B \<in> sigma_sets (space M) (\<Union>m\<in>{..n}. A m)"
   607       then have "B \<subseteq> space M"
   608         by induct (insert A sets_into_space, auto) }
   609     then show "sets ?UA \<subseteq> Pow (space ?UA)" by auto
   610     show "Int_stable ?UA"
   611     proof (rule Int_stableI)
   612       fix a assume "a \<in> ?A" then guess n .. note a = this
   613       fix b assume "b \<in> ?A" then guess m .. note b = this
   614       interpret Amn: sigma_algebra "sigma \<lparr>space = space M, sets = (\<Union>i\<in>{..max m n}. A i)\<rparr>"
   615         using A sets_into_space by (intro sigma_algebra_sigma) auto
   616       have "sigma_sets (space M) (\<Union>i\<in>{..n}. A i) \<subseteq> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)"
   617         by (intro sigma_sets_subseteq UN_mono) auto
   618       with a have "a \<in> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)" by auto
   619       moreover
   620       have "sigma_sets (space M) (\<Union>i\<in>{..m}. A i) \<subseteq> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)"
   621         by (intro sigma_sets_subseteq UN_mono) auto
   622       with b have "b \<in> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)" by auto
   623       ultimately have "a \<inter> b \<in> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)"
   624         using Amn.Int[of a b] by (simp add: sets_sigma)
   625       then show "a \<inter> b \<in> (\<Union>n. sigma_sets (space M) (\<Union>i\<in>{..n}. A i))" by auto
   626     qed
   627   qed
   628   moreover have "sets (dynkin ?UA) \<subseteq> sets ?D"
   629   proof (rule D.dynkin_subset)
   630     show "sets ?UA \<subseteq> sets ?D" using `?A \<subseteq> sets ?D` by auto
   631   qed simp
   632   ultimately have "sets (sigma ?UA) \<subseteq> sets ?D" by simp
   633   moreover
   634   have "\<And>n. sigma_sets (space M) (\<Union>i\<in>{n..}. A i) \<subseteq> sigma_sets (space M) ?A"
   635     by (intro sigma_sets_subseteq UN_mono) (auto intro: sigma_sets.Basic)
   636   then have "terminal_events A \<subseteq> sets (sigma ?UA)"
   637     unfolding sets_sigma terminal_events_def by auto
   638   moreover note `X \<in> terminal_events A`
   639   ultimately have "X \<in> sets ?D" by auto
   640   then show ?thesis by auto
   641 qed
   642 
   643 lemma (in prob_space) borel_0_1_law:
   644   fixes F :: "nat \<Rightarrow> 'a set"
   645   assumes F: "range F \<subseteq> events" "indep_events F UNIV"
   646   shows "prob (\<Inter>n. \<Union>m\<in>{n..}. F m) = 0 \<or> prob (\<Inter>n. \<Union>m\<in>{n..}. F m) = 1"
   647 proof (rule kolmogorov_0_1_law[of "\<lambda>i. sigma_sets (space M) { F i }"])
   648   show "\<And>i. sigma_sets (space M) {F i} \<subseteq> events"
   649     using F(1) sets_into_space
   650     by (subst sigma_sets_singleton) auto
   651   { fix i show "sigma_algebra \<lparr>space = space M, sets = sigma_sets (space M) {F i}\<rparr>"
   652       using sigma_algebra_sigma[of "\<lparr>space = space M, sets = {F i}\<rparr>"] F sets_into_space
   653       by (auto simp add: sigma_def) }
   654   show "indep_sets (\<lambda>i. sigma_sets (space M) {F i}) UNIV"
   655   proof (rule indep_sets_sigma_sets)
   656     show "indep_sets (\<lambda>i. {F i}) UNIV"
   657       unfolding indep_sets_singleton_iff_indep_events by fact
   658     fix i show "Int_stable \<lparr>space = space M, sets = {F i}\<rparr>"
   659       unfolding Int_stable_def by simp
   660   qed
   661   let "?Q n" = "\<Union>i\<in>{n..}. F i"
   662   show "(\<Inter>n. \<Union>m\<in>{n..}. F m) \<in> terminal_events (\<lambda>i. sigma_sets (space M) {F i})"
   663     unfolding terminal_events_def
   664   proof
   665     fix j
   666     interpret S: sigma_algebra "sigma \<lparr> space = space M, sets = (\<Union>i\<in>{j..}. sigma_sets (space M) {F i})\<rparr>"
   667       using order_trans[OF F(1) space_closed]
   668       by (intro sigma_algebra_sigma) (simp add: sigma_sets_singleton subset_eq)
   669     have "(\<Inter>n. ?Q n) = (\<Inter>n\<in>{j..}. ?Q n)"
   670       by (intro decseq_SucI INT_decseq_offset UN_mono) auto
   671     also have "\<dots> \<in> sets (sigma \<lparr> space = space M, sets = (\<Union>i\<in>{j..}. sigma_sets (space M) {F i})\<rparr>)"
   672       using order_trans[OF F(1) space_closed]
   673       by (safe intro!: S.countable_INT S.countable_UN)
   674          (auto simp: sets_sigma sigma_sets_singleton intro!: sigma_sets.Basic bexI)
   675     finally show "(\<Inter>n. ?Q n) \<in> sigma_sets (space M) (\<Union>i\<in>{j..}. sigma_sets (space M) {F i})"
   676       by (simp add: sets_sigma)
   677   qed
   678 qed
   679 
   680 lemma (in prob_space) indep_sets_finite:
   681   assumes I: "I \<noteq> {}" "finite I"
   682     and F: "\<And>i. i \<in> I \<Longrightarrow> F i \<subseteq> events" "\<And>i. i \<in> I \<Longrightarrow> space M \<in> F i"
   683   shows "indep_sets F I \<longleftrightarrow> (\<forall>A\<in>Pi I F. prob (\<Inter>j\<in>I. A j) = (\<Prod>j\<in>I. prob (A j)))"
   684 proof
   685   assume *: "indep_sets F I"
   686   from I show "\<forall>A\<in>Pi I F. prob (\<Inter>j\<in>I. A j) = (\<Prod>j\<in>I. prob (A j))"
   687     by (intro indep_setsD[OF *] ballI) auto
   688 next
   689   assume indep: "\<forall>A\<in>Pi I F. prob (\<Inter>j\<in>I. A j) = (\<Prod>j\<in>I. prob (A j))"
   690   show "indep_sets F I"
   691   proof (rule indep_setsI[OF F(1)])
   692     fix A J assume J: "J \<noteq> {}" "J \<subseteq> I" "finite J"
   693     assume A: "\<forall>j\<in>J. A j \<in> F j"
   694     let "?A j" = "if j \<in> J then A j else space M"
   695     have "prob (\<Inter>j\<in>I. ?A j) = prob (\<Inter>j\<in>J. A j)"
   696       using subset_trans[OF F(1) space_closed] J A
   697       by (auto intro!: arg_cong[where f=prob] split: split_if_asm) blast
   698     also
   699     from A F have "(\<lambda>j. if j \<in> J then A j else space M) \<in> Pi I F" (is "?A \<in> _")
   700       by (auto split: split_if_asm)
   701     with indep have "prob (\<Inter>j\<in>I. ?A j) = (\<Prod>j\<in>I. prob (?A j))"
   702       by auto
   703     also have "\<dots> = (\<Prod>j\<in>J. prob (A j))"
   704       unfolding if_distrib setprod.If_cases[OF `finite I`]
   705       using prob_space `J \<subseteq> I` by (simp add: Int_absorb1 setprod_1)
   706     finally show "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))" ..
   707   qed
   708 qed
   709 
   710 lemma (in prob_space) indep_vars_finite:
   711   fixes I :: "'i set"
   712   assumes I: "I \<noteq> {}" "finite I"
   713     and rv: "\<And>i. i \<in> I \<Longrightarrow> random_variable (sigma (M' i)) (X i)"
   714     and Int_stable: "\<And>i. i \<in> I \<Longrightarrow> Int_stable (M' i)"
   715     and space: "\<And>i. i \<in> I \<Longrightarrow> space (M' i) \<in> sets (M' i)"
   716   shows "indep_vars (\<lambda>i. sigma (M' i)) X I \<longleftrightarrow>
   717     (\<forall>A\<in>(\<Pi> i\<in>I. sets (M' i)). prob (\<Inter>j\<in>I. X j -` A j \<inter> space M) = (\<Prod>j\<in>I. prob (X j -` A j \<inter> space M)))"
   718 proof -
   719   from rv have X: "\<And>i. i \<in> I \<Longrightarrow> X i \<in> space M \<rightarrow> space (M' i)"
   720     unfolding measurable_def by simp
   721 
   722   { fix i assume "i\<in>I"
   723     have "sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (sigma (M' i))}
   724       = sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
   725       unfolding sigma_sets_vimage_commute[OF X, OF `i \<in> I`]
   726       by (subst sigma_sets_sigma_sets_eq) auto }
   727   note this[simp]
   728 
   729   { fix i assume "i\<in>I"
   730     have "Int_stable \<lparr>space = space M, sets = {X i -` A \<inter> space M |A. A \<in> sets (M' i)}\<rparr>"
   731     proof (rule Int_stableI)
   732       fix a assume "a \<in> {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
   733       then obtain A where "a = X i -` A \<inter> space M" "A \<in> sets (M' i)" by auto
   734       moreover
   735       fix b assume "b \<in> {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
   736       then obtain B where "b = X i -` B \<inter> space M" "B \<in> sets (M' i)" by auto
   737       moreover
   738       have "(X i -` A \<inter> space M) \<inter> (X i -` B \<inter> space M) = X i -` (A \<inter> B) \<inter> space M" by auto
   739       moreover note Int_stable[OF `i \<in> I`]
   740       ultimately
   741       show "a \<inter> b \<in> {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
   742         by (auto simp del: vimage_Int intro!: exI[of _ "A \<inter> B"] dest: Int_stableD)
   743     qed }
   744   note indep_sets_sigma_sets_iff[OF this, simp]
   745 
   746   { fix i assume "i \<in> I"
   747     { fix A assume "A \<in> sets (M' i)"
   748       then have "A \<in> sets (sigma (M' i))" by (auto simp: sets_sigma intro: sigma_sets.Basic)
   749       moreover
   750       from rv[OF `i\<in>I`] have "X i \<in> measurable M (sigma (M' i))" by auto
   751       ultimately
   752       have "X i -` A \<inter> space M \<in> sets M" by (auto intro: measurable_sets) }
   753     with X[OF `i\<in>I`] space[OF `i\<in>I`]
   754     have "{X i -` A \<inter> space M |A. A \<in> sets (M' i)} \<subseteq> events"
   755       "space M \<in> {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
   756       by (auto intro!: exI[of _ "space (M' i)"]) }
   757   note indep_sets_finite[OF I this, simp]
   758 
   759   have "(\<forall>A\<in>\<Pi> i\<in>I. {X i -` A \<inter> space M |A. A \<in> sets (M' i)}. prob (INTER I A) = (\<Prod>j\<in>I. prob (A j))) =
   760     (\<forall>A\<in>\<Pi> i\<in>I. sets (M' i). prob ((\<Inter>j\<in>I. X j -` A j) \<inter> space M) = (\<Prod>x\<in>I. prob (X x -` A x \<inter> space M)))"
   761     (is "?L = ?R")
   762   proof safe
   763     fix A assume ?L and A: "A \<in> (\<Pi> i\<in>I. sets (M' i))"
   764     from `?L`[THEN bspec, of "\<lambda>i. X i -` A i \<inter> space M"] A `I \<noteq> {}`
   765     show "prob ((\<Inter>j\<in>I. X j -` A j) \<inter> space M) = (\<Prod>x\<in>I. prob (X x -` A x \<inter> space M))"
   766       by (auto simp add: Pi_iff)
   767   next
   768     fix A assume ?R and A: "A \<in> (\<Pi> i\<in>I. {X i -` A \<inter> space M |A. A \<in> sets (M' i)})"
   769     from A have "\<forall>i\<in>I. \<exists>B. A i = X i -` B \<inter> space M \<and> B \<in> sets (M' i)" by auto
   770     from bchoice[OF this] obtain B where B: "\<forall>i\<in>I. A i = X i -` B i \<inter> space M"
   771       "B \<in> (\<Pi> i\<in>I. sets (M' i))" by auto
   772     from `?R`[THEN bspec, OF B(2)] B(1) `I \<noteq> {}`
   773     show "prob (INTER I A) = (\<Prod>j\<in>I. prob (A j))"
   774       by simp
   775   qed
   776   then show ?thesis using `I \<noteq> {}`
   777     by (simp add: rv indep_vars_def)
   778 qed
   779 
   780 lemma (in prob_space) indep_vars_compose:
   781   assumes "indep_vars M' X I"
   782   assumes rv:
   783     "\<And>i. i \<in> I \<Longrightarrow> sigma_algebra (N i)"
   784     "\<And>i. i \<in> I \<Longrightarrow> Y i \<in> measurable (M' i) (N i)"
   785   shows "indep_vars N (\<lambda>i. Y i \<circ> X i) I"
   786   unfolding indep_vars_def
   787 proof
   788   from rv `indep_vars M' X I`
   789   show "\<forall>i\<in>I. random_variable (N i) (Y i \<circ> X i)"
   790     by (auto intro!: measurable_comp simp: indep_vars_def)
   791 
   792   have "indep_sets (\<lambda>i. sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}) I"
   793     using `indep_vars M' X I` by (simp add: indep_vars_def)
   794   then show "indep_sets (\<lambda>i. sigma_sets (space M) {(Y i \<circ> X i) -` A \<inter> space M |A. A \<in> sets (N i)}) I"
   795   proof (rule indep_sets_mono_sets)
   796     fix i assume "i \<in> I"
   797     with `indep_vars M' X I` have X: "X i \<in> space M \<rightarrow> space (M' i)"
   798       unfolding indep_vars_def measurable_def by auto
   799     { fix A assume "A \<in> sets (N i)"
   800       then have "\<exists>B. (Y i \<circ> X i) -` A \<inter> space M = X i -` B \<inter> space M \<and> B \<in> sets (M' i)"
   801         by (intro exI[of _ "Y i -` A \<inter> space (M' i)"])
   802            (auto simp: vimage_compose intro!: measurable_sets rv `i \<in> I` funcset_mem[OF X]) }
   803     then show "sigma_sets (space M) {(Y i \<circ> X i) -` A \<inter> space M |A. A \<in> sets (N i)} \<subseteq>
   804       sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
   805       by (intro sigma_sets_subseteq) (auto simp: vimage_compose)
   806   qed
   807 qed
   808 
   809 lemma (in prob_space) indep_varsD:
   810   assumes X: "indep_vars M' X I"
   811   assumes I: "I \<noteq> {}" "finite I" "\<And>i. i \<in> I \<Longrightarrow> A i \<in> sets (M' i)"
   812   shows "prob (\<Inter>i\<in>I. X i -` A i \<inter> space M) = (\<Prod>i\<in>I. prob (X i -` A i \<inter> space M))"
   813 proof (rule indep_setsD)
   814   show "indep_sets (\<lambda>i. sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}) I"
   815     using X by (auto simp: indep_vars_def)
   816   show "I \<subseteq> I" "I \<noteq> {}" "finite I" using I by auto
   817   show "\<forall>i\<in>I. X i -` A i \<inter> space M \<in> sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
   818     using I by (auto intro: sigma_sets.Basic)
   819 qed
   820 
   821 lemma (in prob_space) indep_distribution_eq_measure:
   822   assumes I: "I \<noteq> {}" "finite I"
   823   assumes rv: "\<And>i. random_variable (M' i) (X i)"
   824   shows "indep_vars M' X I \<longleftrightarrow>
   825     (\<forall>A\<in>sets (\<Pi>\<^isub>M i\<in>I. (M' i \<lparr> measure := ereal\<circ>distribution (X i) \<rparr>)).
   826       distribution (\<lambda>x. \<lambda>i\<in>I. X i x) A =
   827       finite_measure.\<mu>' (\<Pi>\<^isub>M i\<in>I. (M' i \<lparr> measure := ereal\<circ>distribution (X i) \<rparr>)) A)"
   828     (is "_ \<longleftrightarrow> (\<forall>X\<in>_. distribution ?D X = finite_measure.\<mu>' (Pi\<^isub>M I ?M) X)")
   829 proof -
   830   interpret M': prob_space "?M i" for i
   831     using rv by (rule distribution_prob_space)
   832   interpret P: finite_product_prob_space ?M I
   833     proof qed fact
   834 
   835   let ?D' = "(Pi\<^isub>M I ?M) \<lparr> measure := ereal \<circ> distribution ?D \<rparr>"
   836   have "random_variable P.P ?D"
   837     using `finite I` rv by (intro random_variable_restrict) auto
   838   then interpret D: prob_space ?D'
   839     by (rule distribution_prob_space)
   840 
   841   show ?thesis
   842   proof (intro iffI ballI)
   843     assume "indep_vars M' X I"
   844     fix A assume "A \<in> sets P.P"
   845     moreover
   846     have "D.prob A = P.prob A"
   847     proof (rule prob_space_unique_Int_stable)
   848       show "prob_space ?D'" by default
   849       show "prob_space (Pi\<^isub>M I ?M)" by default
   850       show "Int_stable P.G" using M'.Int
   851         by (intro Int_stable_product_algebra_generator) (simp add: Int_stable_def)
   852       show "space P.G \<in> sets P.G"
   853         using M'.top by (simp add: product_algebra_generator_def)
   854       show "space ?D' = space P.G"  "sets ?D' = sets (sigma P.G)"
   855         by (simp_all add: product_algebra_def product_algebra_generator_def sets_sigma)
   856       show "space P.P = space P.G" "sets P.P = sets (sigma P.G)"
   857         by (simp_all add: product_algebra_def)
   858       show "A \<in> sets (sigma P.G)"
   859         using `A \<in> sets P.P` by (simp add: product_algebra_def)
   860 
   861       fix E assume E: "E \<in> sets P.G"
   862       then have "E \<in> sets P.P"
   863         by (simp add: sets_sigma sigma_sets.Basic product_algebra_def)
   864       then have "D.prob E = distribution ?D E"
   865         unfolding D.\<mu>'_def by simp
   866       also
   867       from E obtain F where "E = Pi\<^isub>E I F" and F: "\<And>i. i \<in> I \<Longrightarrow> F i \<in> sets (M' i)"
   868         by (auto simp: product_algebra_generator_def)
   869       with `I \<noteq> {}` have "distribution ?D E = prob (\<Inter>i\<in>I. X i -` F i \<inter> space M)"
   870         using `I \<noteq> {}` by (auto intro!: arg_cong[where f=prob] simp: Pi_iff distribution_def)
   871       also have "\<dots> = (\<Prod>i\<in>I. prob (X i -` F i \<inter> space M))"
   872         using `indep_vars M' X I` I F by (rule indep_varsD)
   873       also have "\<dots> = P.prob E"
   874         using F by (simp add: `E = Pi\<^isub>E I F` P.prob_times M'.\<mu>'_def distribution_def)
   875       finally show "D.prob E = P.prob E" .
   876     qed
   877     ultimately show "distribution ?D A = P.prob A"
   878       by (simp add: D.\<mu>'_def)
   879   next
   880     assume eq: "\<forall>A\<in>sets P.P. distribution ?D A = P.prob A"
   881     have [simp]: "\<And>i. sigma (M' i) = M' i"
   882       using rv by (intro sigma_algebra.sigma_eq) simp
   883     have "indep_vars (\<lambda>i. sigma (M' i)) X I"
   884     proof (subst indep_vars_finite[OF I])
   885       fix i assume [simp]: "i \<in> I"
   886       show "random_variable (sigma (M' i)) (X i)"
   887         using rv[of i] by simp
   888       show "Int_stable (M' i)" "space (M' i) \<in> sets (M' i)"
   889         using M'.Int[of _ i] M'.top by (auto simp: Int_stable_def)
   890     next
   891       show "\<forall>A\<in>\<Pi> i\<in>I. sets (M' i). prob (\<Inter>j\<in>I. X j -` A j \<inter> space M) = (\<Prod>j\<in>I. prob (X j -` A j \<inter> space M))"
   892       proof
   893         fix A assume A: "A \<in> (\<Pi> i\<in>I. sets (M' i))"
   894         then have A_in_P: "(Pi\<^isub>E I A) \<in> sets P.P"
   895           by (auto intro!: product_algebraI)
   896         have "prob (\<Inter>j\<in>I. X j -` A j \<inter> space M) = distribution ?D (Pi\<^isub>E I A)"
   897           using `I \<noteq> {}`by (auto intro!: arg_cong[where f=prob] simp: Pi_iff distribution_def)
   898         also have "\<dots> = P.prob (Pi\<^isub>E I A)" using A_in_P eq by simp
   899         also have "\<dots> = (\<Prod>i\<in>I. M'.prob i (A i))"
   900           using A by (intro P.prob_times) auto
   901         also have "\<dots> = (\<Prod>i\<in>I. prob (X i -` A i \<inter> space M))"
   902           using A by (auto intro!: setprod_cong simp: M'.\<mu>'_def Pi_iff distribution_def)
   903         finally show "prob (\<Inter>j\<in>I. X j -` A j \<inter> space M) = (\<Prod>j\<in>I. prob (X j -` A j \<inter> space M))" .
   904       qed
   905     qed
   906     then show "indep_vars M' X I"
   907       by simp
   908   qed
   909 qed
   910 
   911 lemma (in prob_space) indep_varD:
   912   assumes indep: "indep_var Ma A Mb B"
   913   assumes sets: "Xa \<in> sets Ma" "Xb \<in> sets Mb"
   914   shows "prob ((\<lambda>x. (A x, B x)) -` (Xa \<times> Xb) \<inter> space M) =
   915     prob (A -` Xa \<inter> space M) * prob (B -` Xb \<inter> space M)"
   916 proof -
   917   have "prob ((\<lambda>x. (A x, B x)) -` (Xa \<times> Xb) \<inter> space M) =
   918     prob (\<Inter>i\<in>UNIV. (bool_case A B i -` bool_case Xa Xb i \<inter> space M))"
   919     by (auto intro!: arg_cong[where f=prob] simp: UNIV_bool)
   920   also have "\<dots> = (\<Prod>i\<in>UNIV. prob (bool_case A B i -` bool_case Xa Xb i \<inter> space M))"
   921     using indep unfolding indep_var_def
   922     by (rule indep_varsD) (auto split: bool.split intro: sets)
   923   also have "\<dots> = prob (A -` Xa \<inter> space M) * prob (B -` Xb \<inter> space M)"
   924     unfolding UNIV_bool by simp
   925   finally show ?thesis .
   926 qed
   927 
   928 lemma (in prob_space)
   929   assumes "indep_var S X T Y"
   930   shows indep_var_rv1: "random_variable S X"
   931     and indep_var_rv2: "random_variable T Y"
   932 proof -
   933   have "\<forall>i\<in>UNIV. random_variable (bool_case S T i) (bool_case X Y i)"
   934     using assms unfolding indep_var_def indep_vars_def by auto
   935   then show "random_variable S X" "random_variable T Y"
   936     unfolding UNIV_bool by auto
   937 qed
   938 
   939 lemma (in prob_space) indep_var_distributionD:
   940   assumes indep: "indep_var S X T Y"
   941   defines "P \<equiv> S\<lparr>measure := ereal\<circ>distribution X\<rparr> \<Otimes>\<^isub>M T\<lparr>measure := ereal\<circ>distribution Y\<rparr>"
   942   assumes "A \<in> sets P"
   943   shows "joint_distribution X Y A = finite_measure.\<mu>' P A"
   944 proof -
   945   from indep have rvs: "random_variable S X" "random_variable T Y"
   946     by (blast dest: indep_var_rv1 indep_var_rv2)+
   947 
   948   let ?S = "S\<lparr>measure := ereal\<circ>distribution X\<rparr>"
   949   let ?T = "T\<lparr>measure := ereal\<circ>distribution Y\<rparr>"
   950   interpret X: prob_space ?S by (rule distribution_prob_space) fact
   951   interpret Y: prob_space ?T by (rule distribution_prob_space) fact
   952   interpret XY: pair_prob_space ?S ?T by default
   953 
   954   let ?J = "XY.P\<lparr> measure := ereal \<circ> joint_distribution X Y \<rparr>"
   955   interpret J: prob_space ?J
   956     by (rule joint_distribution_prob_space) (simp_all add: rvs)
   957 
   958   have "finite_measure.\<mu>' (XY.P\<lparr> measure := ereal \<circ> joint_distribution X Y \<rparr>) A = XY.\<mu>' A"
   959   proof (rule prob_space_unique_Int_stable)
   960     show "Int_stable (pair_measure_generator ?S ?T)" (is "Int_stable ?P")
   961       by fact
   962     show "space ?P \<in> sets ?P"
   963       unfolding space_pair_measure[simplified pair_measure_def space_sigma]
   964       using X.top Y.top by (auto intro!: pair_measure_generatorI)
   965 
   966     show "prob_space ?J" by default
   967     show "space ?J = space ?P"
   968       by (simp add: pair_measure_generator_def space_pair_measure)
   969     show "sets ?J = sets (sigma ?P)"
   970       by (simp add: pair_measure_def)
   971 
   972     show "prob_space XY.P" by default
   973     show "space XY.P = space ?P" "sets XY.P = sets (sigma ?P)"
   974       by (simp_all add: pair_measure_generator_def pair_measure_def)
   975 
   976     show "A \<in> sets (sigma ?P)"
   977       using `A \<in> sets P` unfolding P_def pair_measure_def by simp
   978 
   979     fix X assume "X \<in> sets ?P"
   980     then obtain A B where "A \<in> sets S" "B \<in> sets T" "X = A \<times> B"
   981       by (auto simp: sets_pair_measure_generator)
   982     then show "J.\<mu>' X = XY.\<mu>' X"
   983       unfolding J.\<mu>'_def XY.\<mu>'_def using indep
   984       by (simp add: XY.pair_measure_times)
   985          (simp add: distribution_def indep_varD)
   986   qed
   987   then show ?thesis
   988     using `A \<in> sets P` unfolding P_def J.\<mu>'_def XY.\<mu>'_def by simp
   989 qed
   990 
   991 end