src/HOL/SPARK/Tools/spark_vcs.ML
author berghofe
Fri, 15 Apr 2011 15:33:57 +0200
changeset 43227 e8777e3ea6ef
parent 42767 582cccdda0ed
child 43232 23f352990944
permissions -rw-r--r--
Added command for associating user-defined types with SPARK types.
     1 (*  Title:      HOL/SPARK/Tools/spark_vcs.ML
     2     Author:     Stefan Berghofer
     3     Copyright:  secunet Security Networks AG
     4 
     5 Store for verification conditions generated by SPARK/Ada.
     6 *)
     7 
     8 signature SPARK_VCS =
     9 sig
    10   val set_vcs: Fdl_Parser.decls -> Fdl_Parser.rules ->
    11     (string * string) * Fdl_Parser.vcs -> Path.T -> theory -> theory
    12   val add_proof_fun: (typ option -> 'a -> term) ->
    13     string * ((string list * string) option * 'a) ->
    14     theory -> theory
    15   val add_type: string * typ -> theory -> theory
    16   val lookup_vc: theory -> string -> (Element.context_i list *
    17     (string * thm list option * Element.context_i * Element.statement_i)) option
    18   val get_vcs: theory ->
    19     Element.context_i list * (binding * thm) list * (string *
    20     (string * thm list option * Element.context_i * Element.statement_i)) list
    21   val mark_proved: string -> thm list -> theory -> theory
    22   val close: theory -> theory
    23   val is_closed: theory -> bool
    24 end;
    25 
    26 structure SPARK_VCs: SPARK_VCS =
    27 struct
    28 
    29 open Fdl_Parser;
    30 
    31 
    32 (** theory data **)
    33 
    34 fun err_unfinished () = error "An unfinished SPARK environment is still open."
    35 
    36 val strip_number = pairself implode o take_suffix Fdl_Lexer.is_digit o raw_explode;
    37 
    38 val name_ord = prod_ord string_ord (option_ord int_ord) o
    39   pairself (strip_number ##> Int.fromString);
    40 
    41 structure VCtab = Table(type key = string val ord = name_ord);
    42 
    43 structure VCs = Theory_Data
    44 (
    45   type T =
    46     {pfuns: ((string list * string) option * term) Symtab.table,
    47      type_map: typ Symtab.table,
    48      env:
    49        {ctxt: Element.context_i list,
    50         defs: (binding * thm) list,
    51         types: fdl_type tab,
    52         funs: (string list * string) tab,
    53         ids: (term * string) Symtab.table * Name.context,
    54         proving: bool,
    55         vcs: (string * thm list option *
    56           (string * expr) list * (string * expr) list) VCtab.table,
    57         path: Path.T} option}
    58   val empty : T = {pfuns = Symtab.empty, type_map = Symtab.empty, env = NONE}
    59   val extend = I
    60   fun merge ({pfuns = pfuns1, type_map = type_map1, env = NONE},
    61         {pfuns = pfuns2, type_map = type_map2, env = NONE}) =
    62         {pfuns = Symtab.merge (eq_pair (op =) (op aconv)) (pfuns1, pfuns2),
    63          type_map = Symtab.merge (op =) (type_map1, type_map2),
    64          env = NONE}
    65     | merge _ = err_unfinished ()
    66 )
    67 
    68 
    69 (** utilities **)
    70 
    71 val to_lower = raw_explode #> map Symbol.to_ascii_lower #> implode;
    72 
    73 val lcase_eq = (op =) o pairself (to_lower o Long_Name.base_name);
    74 
    75 fun mk_unop s t =
    76   let val T = fastype_of t
    77   in Const (s, T --> T) $ t end;
    78 
    79 fun mk_times (t, u) =
    80   let
    81     val setT = fastype_of t;
    82     val T = HOLogic.dest_setT setT;
    83     val U = HOLogic.dest_setT (fastype_of u)
    84   in
    85     Const (@{const_name Sigma}, setT --> (T --> HOLogic.mk_setT U) -->
    86       HOLogic.mk_setT (HOLogic.mk_prodT (T, U))) $ t $ Abs ("", T, u)
    87   end;
    88 
    89 fun get_type thy ty =
    90   let val {type_map, ...} = VCs.get thy
    91   in Symtab.lookup type_map ty end;
    92 
    93 fun mk_type _ "integer" = HOLogic.intT
    94   | mk_type _ "boolean" = HOLogic.boolT
    95   | mk_type thy ty =
    96       (case get_type thy ty of
    97          NONE =>
    98            Syntax.check_typ (ProofContext.init_global thy)
    99              (Type (Sign.full_name thy (Binding.name ty), []))
   100        | SOME T => T);
   101 
   102 val booleanN = "boolean";
   103 val integerN = "integer";
   104 
   105 fun define_overloaded (def_name, eq) lthy =
   106   let
   107     val ((c, _), rhs) = eq |> Syntax.check_term lthy |>
   108       Logic.dest_equals |>> dest_Free;
   109     val ((_, (_, thm)), lthy') = Local_Theory.define
   110       ((Binding.name c, NoSyn), ((Binding.name def_name, []), rhs)) lthy
   111     val ctxt_thy = ProofContext.init_global (ProofContext.theory_of lthy');
   112     val thm' = singleton (ProofContext.export lthy' ctxt_thy) thm
   113   in (thm', lthy') end;
   114 
   115 fun strip_underscores s =
   116   strip_underscores (unsuffix "_" s) handle Fail _ => s;
   117 
   118 fun strip_tilde s =
   119   unsuffix "~" s ^ "_init" handle Fail _ => s;
   120 
   121 val mangle_name = strip_underscores #> strip_tilde;
   122 
   123 fun mk_variables thy xs ty (tab, ctxt) =
   124   let
   125     val T = mk_type thy ty;
   126     val (ys, ctxt') = Name.variants (map mangle_name xs) ctxt;
   127     val zs = map (Free o rpair T) ys;
   128   in (zs, (fold (Symtab.update o apsnd (rpair ty)) (xs ~~ zs) tab, ctxt')) end;
   129 
   130 fun get_record_info thy T = (case Record.dest_recTs T of
   131     [(tyname, [@{typ unit}])] =>
   132       Record.get_info thy (Long_Name.qualifier tyname)
   133   | _ => NONE);
   134 
   135 fun find_field fname = find_first (curry lcase_eq fname o fst);
   136 
   137 fun find_field' fname = get_first (fn (flds, fldty) =>
   138   if member (op =) flds fname then SOME fldty else NONE);
   139 
   140 fun assoc_ty_err thy T s msg =
   141   error ("Type " ^ Syntax.string_of_typ_global thy T ^
   142     " associated with SPARK type " ^ s ^ "\n" ^ msg);
   143 
   144 
   145 (** generate properties of enumeration types **)
   146 
   147 fun add_enum_type tyname tyname' thy =
   148   let
   149     val {case_name, ...} = the (Datatype_Data.get_info thy tyname');
   150     val cs = map Const (the (Datatype_Data.get_constrs thy tyname'));
   151     val k = length cs;
   152     val T = Type (tyname', []);
   153     val p = Const (@{const_name pos}, T --> HOLogic.intT);
   154     val v = Const (@{const_name val}, HOLogic.intT --> T);
   155     val card = Const (@{const_name card},
   156       HOLogic.mk_setT T --> HOLogic.natT) $ HOLogic.mk_UNIV T;
   157 
   158     fun mk_binrel_def s f = Logic.mk_equals
   159       (Const (s, T --> T --> HOLogic.boolT),
   160        Abs ("x", T, Abs ("y", T,
   161          Const (s, HOLogic.intT --> HOLogic.intT --> HOLogic.boolT) $
   162            (f $ Bound 1) $ (f $ Bound 0))));
   163 
   164     val (((def1, def2), def3), lthy) = thy |>
   165 
   166       Class.instantiation ([tyname'], [], @{sort enum}) |>
   167 
   168       define_overloaded ("pos_" ^ tyname ^ "_def", Logic.mk_equals
   169         (p,
   170          list_comb (Const (case_name, replicate k HOLogic.intT @
   171              [T] ---> HOLogic.intT),
   172            map (HOLogic.mk_number HOLogic.intT) (0 upto k - 1)))) ||>>
   173 
   174       define_overloaded ("less_eq_" ^ tyname ^ "_def",
   175         mk_binrel_def @{const_name less_eq} p) ||>>
   176       define_overloaded ("less_" ^ tyname ^ "_def",
   177         mk_binrel_def @{const_name less} p);
   178 
   179     val UNIV_eq = Goal.prove lthy [] []
   180       (HOLogic.mk_Trueprop (HOLogic.mk_eq
   181          (HOLogic.mk_UNIV T, HOLogic.mk_set T cs)))
   182       (fn _ =>
   183          rtac @{thm subset_antisym} 1 THEN
   184          rtac @{thm subsetI} 1 THEN
   185          Datatype_Aux.exh_tac (K (#exhaust (Datatype_Data.the_info
   186            (ProofContext.theory_of lthy) tyname'))) 1 THEN
   187          ALLGOALS (asm_full_simp_tac (simpset_of lthy)));
   188 
   189     val finite_UNIV = Goal.prove lthy [] []
   190       (HOLogic.mk_Trueprop (Const (@{const_name finite},
   191          HOLogic.mk_setT T --> HOLogic.boolT) $ HOLogic.mk_UNIV T))
   192       (fn _ => simp_tac (simpset_of lthy addsimps [UNIV_eq]) 1);
   193 
   194     val card_UNIV = Goal.prove lthy [] []
   195       (HOLogic.mk_Trueprop (HOLogic.mk_eq
   196          (card, HOLogic.mk_number HOLogic.natT k)))
   197       (fn _ => simp_tac (simpset_of lthy addsimps [UNIV_eq]) 1);
   198 
   199     val range_pos = Goal.prove lthy [] []
   200       (HOLogic.mk_Trueprop (HOLogic.mk_eq
   201          (Const (@{const_name image}, (T --> HOLogic.intT) -->
   202             HOLogic.mk_setT T --> HOLogic.mk_setT HOLogic.intT) $
   203               p $ HOLogic.mk_UNIV T,
   204           Const (@{const_name atLeastLessThan}, HOLogic.intT -->
   205             HOLogic.intT --> HOLogic.mk_setT HOLogic.intT) $
   206               HOLogic.mk_number HOLogic.intT 0 $
   207               (@{term int} $ card))))
   208       (fn _ =>
   209          simp_tac (simpset_of lthy addsimps [card_UNIV]) 1 THEN
   210          simp_tac (simpset_of lthy addsimps [UNIV_eq, def1]) 1 THEN
   211          rtac @{thm subset_antisym} 1 THEN
   212          simp_tac (simpset_of lthy) 1 THEN
   213          rtac @{thm subsetI} 1 THEN
   214          asm_full_simp_tac (simpset_of lthy addsimps @{thms interval_expand}
   215            delsimps @{thms atLeastLessThan_iff}) 1);
   216 
   217     val lthy' =
   218       Class.prove_instantiation_instance (fn _ =>
   219         Class.intro_classes_tac [] THEN
   220         rtac finite_UNIV 1 THEN
   221         rtac range_pos 1 THEN
   222         simp_tac (HOL_basic_ss addsimps [def3]) 1 THEN
   223         simp_tac (HOL_basic_ss addsimps [def2]) 1) lthy;
   224 
   225     val (pos_eqs, val_eqs) = split_list (map_index (fn (i, c) =>
   226       let
   227         val n = HOLogic.mk_number HOLogic.intT i;
   228         val th = Goal.prove lthy' [] []
   229           (HOLogic.mk_Trueprop (HOLogic.mk_eq (p $ c, n)))
   230           (fn _ => simp_tac (simpset_of lthy' addsimps [def1]) 1);
   231         val th' = Goal.prove lthy' [] []
   232           (HOLogic.mk_Trueprop (HOLogic.mk_eq (v $ n, c)))
   233           (fn _ =>
   234              rtac (@{thm inj_pos} RS @{thm injD}) 1 THEN
   235              simp_tac (simpset_of lthy' addsimps
   236                [@{thm pos_val}, range_pos, card_UNIV, th]) 1)
   237       in (th, th') end) cs);
   238 
   239     val first_el = Goal.prove lthy' [] []
   240       (HOLogic.mk_Trueprop (HOLogic.mk_eq
   241          (Const (@{const_name first_el}, T), hd cs)))
   242       (fn _ => simp_tac (simpset_of lthy' addsimps
   243          [@{thm first_el_def}, hd val_eqs]) 1);
   244 
   245     val last_el = Goal.prove lthy' [] []
   246       (HOLogic.mk_Trueprop (HOLogic.mk_eq
   247          (Const (@{const_name last_el}, T), List.last cs)))
   248       (fn _ => simp_tac (simpset_of lthy' addsimps
   249          [@{thm last_el_def}, List.last val_eqs, card_UNIV]) 1);
   250 
   251     val simp_att = [Attrib.internal (K Simplifier.simp_add)]
   252 
   253   in
   254     lthy' |>
   255     Local_Theory.note
   256       ((Binding.name (tyname ^ "_card_UNIV"), simp_att), [card_UNIV]) ||>>
   257     Local_Theory.note
   258       ((Binding.name (tyname ^ "_pos"), simp_att), pos_eqs) ||>>
   259     Local_Theory.note
   260       ((Binding.name (tyname ^ "_val"), simp_att), val_eqs) ||>>
   261     Local_Theory.note
   262       ((Binding.name (tyname ^ "_first_el"), simp_att), [first_el]) ||>>
   263     Local_Theory.note
   264       ((Binding.name (tyname ^ "_last_el"), simp_att), [last_el]) |> snd |>
   265     Local_Theory.exit_global
   266   end;
   267 
   268 
   269 fun check_no_assoc thy s = case get_type thy s of
   270     NONE => ()
   271   | SOME _ => error ("Cannot associate a type with " ^ s ^
   272       "\nsince it is no record or enumeration type");
   273 
   274 fun check_enum [] [] = NONE 
   275   | check_enum els [] = SOME ("has no element(s) " ^ commas els)
   276   | check_enum [] cs = SOME ("has extra element(s) " ^
   277       commas (map (Long_Name.base_name o fst) cs))
   278   | check_enum (el :: els) ((cname, _) :: cs) =
   279       if lcase_eq (el, cname) then check_enum els cs
   280       else SOME ("either has no element " ^ el ^
   281         " or it is at the wrong position");
   282 
   283 fun add_type_def (s, Basic_Type ty) (ids, thy) =
   284       (check_no_assoc thy s;
   285        (ids,
   286         Typedecl.abbrev_global (Binding.name s, [], NoSyn)
   287           (mk_type thy ty) thy |> snd))
   288 
   289   | add_type_def (s, Enum_Type els) ((tab, ctxt), thy) =
   290       let
   291         val (thy', tyname) = (case get_type thy s of
   292             NONE =>
   293               let
   294                 val tyb = Binding.name s;
   295                 val tyname = Sign.full_name thy tyb
   296               in
   297                 (thy |>
   298                  Datatype.add_datatype {strict = true, quiet = true} [s]
   299                    [([], tyb, NoSyn,
   300                      map (fn s => (Binding.name s, [], NoSyn)) els)] |> snd |>
   301                  add_enum_type s tyname,
   302                  tyname)
   303               end
   304           | SOME (T as Type (tyname, [])) =>
   305               (case Datatype_Data.get_constrs thy tyname of
   306                  NONE => assoc_ty_err thy T s "is not a datatype"
   307                | SOME cs => (case check_enum els cs of
   308                    NONE => (thy, tyname)
   309                  | SOME msg => assoc_ty_err thy T s msg)));
   310         val cs = map Const (the (Datatype_Data.get_constrs thy' tyname))
   311       in
   312         ((fold (Symtab.update_new o apsnd (rpair s)) (els ~~ cs) tab,
   313           fold Name.declare els ctxt),
   314          thy')
   315       end
   316 
   317   | add_type_def (s, Array_Type (argtys, resty)) (ids, thy) =
   318       (check_no_assoc thy s;
   319        (ids,
   320         Typedecl.abbrev_global (Binding.name s, [], NoSyn)
   321           (foldr1 HOLogic.mk_prodT (map (mk_type thy) argtys) -->
   322              mk_type thy resty) thy |> snd))
   323 
   324   | add_type_def (s, Record_Type fldtys) (ids, thy) =
   325       (ids,
   326        let val fldTs = maps (fn (flds, ty) =>
   327          map (rpair (mk_type thy ty)) flds) fldtys
   328        in case get_type thy s of
   329            NONE =>
   330              Record.add_record true ([], Binding.name s) NONE
   331                (map (fn (fld, T) => (Binding.name fld, T, NoSyn)) fldTs) thy
   332          | SOME rT =>
   333              (case get_record_info thy rT of
   334                 NONE => assoc_ty_err thy rT s "is not a record type"
   335               | SOME {fields, ...} =>
   336                   (case subtract (lcase_eq o pairself fst) fldTs fields of
   337                      [] => ()
   338                    | flds => assoc_ty_err thy rT s ("has extra field(s) " ^
   339                        commas (map (Long_Name.base_name o fst) flds));
   340                    map (fn (fld, T) =>
   341                      case AList.lookup lcase_eq fields fld of
   342                        NONE => assoc_ty_err thy rT s ("has no field " ^ fld)
   343                      | SOME U => T = U orelse assoc_ty_err thy rT s
   344                          ("has field " ^
   345                           fld ^ " whose type\n" ^
   346                           Syntax.string_of_typ_global thy U ^
   347                           "\ndoes not match declared type\n" ^
   348                           Syntax.string_of_typ_global thy T)) fldTs;
   349                    thy))
   350        end)
   351 
   352   | add_type_def (s, Pending_Type) (ids, thy) =
   353       (check_no_assoc thy s;
   354        (ids, Typedecl.typedecl_global (Binding.name s, [], NoSyn) thy |> snd));
   355 
   356 
   357 fun term_of_expr thy types funs pfuns =
   358   let
   359     fun tm_of vs (Funct ("->", [e, e'])) =
   360           (HOLogic.mk_imp (fst (tm_of vs e), fst (tm_of vs e')), booleanN)
   361 
   362       | tm_of vs (Funct ("<->", [e, e'])) =
   363           (HOLogic.mk_eq (fst (tm_of vs e), fst (tm_of vs e')), booleanN)
   364 
   365       | tm_of vs (Funct ("or", [e, e'])) =
   366           (HOLogic.mk_disj (fst (tm_of vs e), fst (tm_of vs e')), booleanN)
   367 
   368       | tm_of vs (Funct ("and", [e, e'])) =
   369           (HOLogic.mk_conj (fst (tm_of vs e), fst (tm_of vs e')), booleanN)
   370 
   371       | tm_of vs (Funct ("not", [e])) =
   372           (HOLogic.mk_not (fst (tm_of vs e)), booleanN)
   373 
   374       | tm_of vs (Funct ("=", [e, e'])) =
   375           (HOLogic.mk_eq (fst (tm_of vs e), fst (tm_of vs e')), booleanN)
   376 
   377       | tm_of vs (Funct ("<>", [e, e'])) = (HOLogic.mk_not
   378           (HOLogic.mk_eq (fst (tm_of vs e), fst (tm_of vs e'))), booleanN)
   379 
   380       | tm_of vs (Funct ("<", [e, e'])) = (HOLogic.mk_binrel @{const_name less}
   381           (fst (tm_of vs e), fst (tm_of vs e')), booleanN)
   382 
   383       | tm_of vs (Funct (">", [e, e'])) = (HOLogic.mk_binrel @{const_name less}
   384           (fst (tm_of vs e'), fst (tm_of vs e)), booleanN)
   385 
   386       | tm_of vs (Funct ("<=", [e, e'])) = (HOLogic.mk_binrel @{const_name less_eq}
   387           (fst (tm_of vs e), fst (tm_of vs e')), booleanN)
   388 
   389       | tm_of vs (Funct (">=", [e, e'])) = (HOLogic.mk_binrel @{const_name less_eq}
   390           (fst (tm_of vs e'), fst (tm_of vs e)), booleanN)
   391 
   392       | tm_of vs (Funct ("+", [e, e'])) = (HOLogic.mk_binop @{const_name plus}
   393           (fst (tm_of vs e), fst (tm_of vs e')), integerN)
   394 
   395       | tm_of vs (Funct ("-", [e, e'])) = (HOLogic.mk_binop @{const_name minus}
   396           (fst (tm_of vs e), fst (tm_of vs e')), integerN)
   397 
   398       | tm_of vs (Funct ("*", [e, e'])) = (HOLogic.mk_binop @{const_name times}
   399           (fst (tm_of vs e), fst (tm_of vs e')), integerN)
   400 
   401       | tm_of vs (Funct ("/", [e, e'])) = (HOLogic.mk_binop @{const_name divide}
   402           (fst (tm_of vs e), fst (tm_of vs e')), integerN)
   403 
   404       | tm_of vs (Funct ("div", [e, e'])) = (HOLogic.mk_binop @{const_name sdiv}
   405           (fst (tm_of vs e), fst (tm_of vs e')), integerN)
   406 
   407       | tm_of vs (Funct ("mod", [e, e'])) = (HOLogic.mk_binop @{const_name mod}
   408           (fst (tm_of vs e), fst (tm_of vs e')), integerN)
   409 
   410       | tm_of vs (Funct ("-", [e])) =
   411           (mk_unop @{const_name uminus} (fst (tm_of vs e)), integerN)
   412 
   413       | tm_of vs (Funct ("**", [e, e'])) =
   414           (Const (@{const_name power}, HOLogic.intT --> HOLogic.natT -->
   415              HOLogic.intT) $ fst (tm_of vs e) $
   416                (@{const nat} $ fst (tm_of vs e')), integerN)
   417 
   418       | tm_of (tab, _) (Ident s) =
   419           (case Symtab.lookup tab s of
   420              SOME t_ty => t_ty
   421            | NONE => error ("Undeclared identifier " ^ s))
   422 
   423       | tm_of _ (Number i) = (HOLogic.mk_number HOLogic.intT i, integerN)
   424 
   425       | tm_of vs (Quantifier (s, xs, ty, e)) =
   426           let
   427             val (ys, vs') = mk_variables thy xs ty vs;
   428             val q = (case s of
   429                 "for_all" => HOLogic.mk_all
   430               | "for_some" => HOLogic.mk_exists)
   431           in
   432             (fold_rev (fn Free (x, T) => fn t => q (x, T, t))
   433                ys (fst (tm_of vs' e)),
   434              booleanN)
   435           end
   436 
   437       | tm_of vs (Funct (s, es)) =
   438 
   439           (* record field selection *)
   440           (case try (unprefix "fld_") s of
   441              SOME fname => (case es of
   442                [e] =>
   443                  let
   444                    val (t, rcdty) = tm_of vs e;
   445                    val rT = mk_type thy rcdty
   446                  in case (get_record_info thy rT, lookup types rcdty) of
   447                      (SOME {fields, ...}, SOME (Record_Type fldtys)) =>
   448                        (case (find_field fname fields,
   449                             find_field' fname fldtys) of
   450                           (SOME (fname', fT), SOME fldty) =>
   451                             (Const (fname', rT --> fT) $ t, fldty)
   452                         | _ => error ("Record " ^ rcdty ^
   453                             " has no field named " ^ fname))
   454                    | _ => error (rcdty ^ " is not a record type")
   455                  end
   456              | _ => error ("Function " ^ s ^ " expects one argument"))
   457            | NONE =>
   458 
   459           (* record field update *)
   460           (case try (unprefix "upf_") s of
   461              SOME fname => (case es of
   462                [e, e'] =>
   463                  let
   464                    val (t, rcdty) = tm_of vs e;
   465                    val rT = mk_type thy rcdty;
   466                    val (u, fldty) = tm_of vs e';
   467                    val fT = mk_type thy fldty
   468                  in case get_record_info thy rT of
   469                      SOME {fields, ...} =>
   470                        (case find_field fname fields of
   471                           SOME (fname', fU) =>
   472                             if fT = fU then
   473                               (Const (fname' ^ "_update",
   474                                  (fT --> fT) --> rT --> rT) $
   475                                    Abs ("x", fT, u) $ t,
   476                                rcdty)
   477                             else error ("Type\n" ^
   478                               Syntax.string_of_typ_global thy fT ^
   479                               "\ndoes not match type\n" ^
   480                               Syntax.string_of_typ_global thy fU ^
   481                               "\nof field " ^ fname)
   482                         | NONE => error ("Record " ^ rcdty ^
   483                             " has no field named " ^ fname))
   484                    | _ => error (rcdty ^ " is not a record type")
   485                  end
   486              | _ => error ("Function " ^ s ^ " expects two arguments"))
   487            | NONE =>
   488 
   489           (* enumeration type to integer *)
   490           (case try (unsuffix "__pos") s of
   491              SOME tyname => (case es of
   492                [e] => (Const (@{const_name pos},
   493                  mk_type thy tyname --> HOLogic.intT) $ fst (tm_of vs e), integerN)
   494              | _ => error ("Function " ^ s ^ " expects one argument"))
   495            | NONE =>
   496 
   497           (* integer to enumeration type *)
   498           (case try (unsuffix "__val") s of
   499              SOME tyname => (case es of
   500                [e] => (Const (@{const_name val},
   501                  HOLogic.intT --> mk_type thy tyname) $ fst (tm_of vs e), tyname)
   502              | _ => error ("Function " ^ s ^ " expects one argument"))
   503            | NONE =>
   504 
   505           (* successor / predecessor of enumeration type element *)
   506           if s = "succ" orelse s = "pred" then (case es of
   507               [e] =>
   508                 let
   509                   val (t, tyname) = tm_of vs e;
   510                   val T = mk_type thy tyname
   511                 in (Const
   512                   (if s = "succ" then @{const_name succ}
   513                    else @{const_name pred}, T --> T) $ t, tyname)
   514                 end
   515             | _ => error ("Function " ^ s ^ " expects one argument"))
   516 
   517           (* user-defined proof function *)
   518           else
   519             (case Symtab.lookup pfuns s of
   520                SOME (SOME (_, resty), t) =>
   521                  (list_comb (t, map (fst o tm_of vs) es), resty)
   522              | _ => error ("Undeclared proof function " ^ s))))))
   523 
   524       | tm_of vs (Element (e, es)) =
   525           let val (t, ty) = tm_of vs e
   526           in case lookup types ty of
   527               SOME (Array_Type (_, elty)) =>
   528                 (t $ foldr1 HOLogic.mk_prod (map (fst o tm_of vs) es), elty)
   529             | _ => error (ty ^ " is not an array type")
   530           end
   531 
   532       | tm_of vs (Update (e, es, e')) =
   533           let val (t, ty) = tm_of vs e
   534           in case lookup types ty of
   535               SOME (Array_Type (idxtys, elty)) =>
   536                 let
   537                   val T = foldr1 HOLogic.mk_prodT (map (mk_type thy) idxtys);
   538                   val U = mk_type thy elty;
   539                   val fT = T --> U
   540                 in
   541                   (Const (@{const_name fun_upd}, fT --> T --> U --> fT) $
   542                      t $ foldr1 HOLogic.mk_prod (map (fst o tm_of vs) es) $
   543                        fst (tm_of vs e'),
   544                    ty)
   545                 end
   546             | _ => error (ty ^ " is not an array type")
   547           end
   548 
   549       | tm_of vs (Record (s, flds)) =
   550           let
   551             val T = mk_type thy s;
   552             val {extension = (ext_name, _), fields, ...} =
   553               (case get_record_info thy T of
   554                  NONE => error (s ^ " is not a record type")
   555                | SOME info => info);
   556             val flds' = map (apsnd (tm_of vs)) flds;
   557             val fnames = map (Long_Name.base_name o fst) fields;
   558             val fnames' = map fst flds;
   559             val (fvals, ftys) = split_list (map (fn s' =>
   560               case AList.lookup lcase_eq flds' s' of
   561                 SOME fval_ty => fval_ty
   562               | NONE => error ("Field " ^ s' ^ " missing in record " ^ s))
   563                   fnames);
   564             val _ = (case subtract lcase_eq fnames fnames' of
   565                 [] => ()
   566               | xs => error ("Extra field(s) " ^ commas xs ^
   567                   " in record " ^ s));
   568             val _ = (case duplicates (op =) fnames' of
   569                 [] => ()
   570               | xs => error ("Duplicate field(s) " ^ commas xs ^
   571                   " in record " ^ s))
   572           in
   573             (list_comb
   574                (Const (ext_name,
   575                   map (mk_type thy) ftys @ [HOLogic.unitT] ---> T),
   576                 fvals @ [HOLogic.unit]),
   577              s)
   578           end
   579 
   580       | tm_of vs (Array (s, default, assocs)) =
   581           (case lookup types s of
   582              SOME (Array_Type (idxtys, elty)) =>
   583                let
   584                  val Ts = map (mk_type thy) idxtys;
   585                  val T = foldr1 HOLogic.mk_prodT Ts;
   586                  val U = mk_type thy elty;
   587                  fun mk_idx' T (e, NONE) = HOLogic.mk_set T [fst (tm_of vs e)]
   588                    | mk_idx' T (e, SOME e') = Const (@{const_name atLeastAtMost},
   589                        T --> T --> HOLogic.mk_setT T) $
   590                          fst (tm_of vs e) $ fst (tm_of vs e');
   591                  fun mk_idx idx =
   592                    if length Ts <> length idx then
   593                      error ("Arity mismatch in construction of array " ^ s)
   594                    else foldr1 mk_times (map2 mk_idx' Ts idx);
   595                  fun mk_upd (idxs, e) t =
   596                    if length idxs = 1 andalso forall (is_none o snd) (hd idxs)
   597                    then
   598                      Const (@{const_name fun_upd}, (T --> U) -->
   599                          T --> U --> T --> U) $ t $
   600                        foldl1 HOLogic.mk_prod
   601                          (map (fst o tm_of vs o fst) (hd idxs)) $
   602                        fst (tm_of vs e)
   603                    else
   604                      Const (@{const_name fun_upds}, (T --> U) -->
   605                          HOLogic.mk_setT T --> U --> T --> U) $ t $
   606                        foldl1 (HOLogic.mk_binop @{const_name sup})
   607                          (map mk_idx idxs) $
   608                        fst (tm_of vs e)
   609                in
   610                  (fold mk_upd assocs
   611                     (case default of
   612                        SOME e => Abs ("x", T, fst (tm_of vs e))
   613                      | NONE => Const (@{const_name undefined}, T --> U)),
   614                   s)
   615                end
   616            | _ => error (s ^ " is not an array type"))
   617 
   618   in tm_of end;
   619 
   620 
   621 fun term_of_rule thy types funs pfuns ids rule =
   622   let val tm_of = fst o term_of_expr thy types funs pfuns ids
   623   in case rule of
   624       Inference_Rule (es, e) => Logic.list_implies
   625         (map (HOLogic.mk_Trueprop o tm_of) es, HOLogic.mk_Trueprop (tm_of e))
   626     | Substitution_Rule (es, e, e') => Logic.list_implies
   627         (map (HOLogic.mk_Trueprop o tm_of) es,
   628          HOLogic.mk_Trueprop (HOLogic.mk_eq (tm_of e, tm_of e')))
   629   end;
   630 
   631 
   632 val builtin = Symtab.make (map (rpair ())
   633   ["->", "<->", "or", "and", "not", "=", "<>", "<", ">", "<=", ">=",
   634    "+", "-", "*", "/", "div", "mod", "**"]);
   635 
   636 fun complex_expr (Number _) = false
   637   | complex_expr (Ident _) = false 
   638   | complex_expr (Funct (s, es)) =
   639       not (Symtab.defined builtin s) orelse exists complex_expr es
   640   | complex_expr (Quantifier (_, _, _, e)) = complex_expr e
   641   | complex_expr _ = true;
   642 
   643 fun complex_rule (Inference_Rule (es, e)) =
   644       complex_expr e orelse exists complex_expr es
   645   | complex_rule (Substitution_Rule (es, e, e')) =
   646       complex_expr e orelse complex_expr e' orelse
   647       exists complex_expr es;
   648 
   649 val is_pfun =
   650   Symtab.defined builtin orf
   651   can (unprefix "fld_") orf can (unprefix "upf_") orf
   652   can (unsuffix "__pos") orf can (unsuffix "__val") orf
   653   equal "succ" orf equal "pred";
   654 
   655 fun fold_opt f = the_default I o Option.map f;
   656 fun fold_pair f g (x, y) = f x #> g y;
   657 
   658 fun fold_expr f g (Funct (s, es)) = f s #> fold (fold_expr f g) es
   659   | fold_expr f g (Ident s) = g s
   660   | fold_expr f g (Number _) = I
   661   | fold_expr f g (Quantifier (_, _, _, e)) = fold_expr f g e
   662   | fold_expr f g (Element (e, es)) =
   663       fold_expr f g e #> fold (fold_expr f g) es
   664   | fold_expr f g (Update (e, es, e')) =
   665       fold_expr f g e #> fold (fold_expr f g) es #> fold_expr f g e'
   666   | fold_expr f g (Record (_, flds)) = fold (fold_expr f g o snd) flds
   667   | fold_expr f g (Array (_, default, assocs)) =
   668       fold_opt (fold_expr f g) default #>
   669       fold (fold_pair
   670         (fold (fold (fold_pair
   671           (fold_expr f g) (fold_opt (fold_expr f g)))))
   672         (fold_expr f g)) assocs;
   673 
   674 val add_expr_pfuns = fold_expr
   675   (fn s => if is_pfun s then I else insert (op =) s) (K I);
   676 
   677 val add_expr_idents = fold_expr (K I) (insert (op =));
   678 
   679 fun pfun_type thy (argtys, resty) =
   680   map (mk_type thy) argtys ---> mk_type thy resty;
   681 
   682 fun check_pfun_type thy s t optty1 optty2 =
   683   let
   684     val T = fastype_of t;
   685     fun check ty =
   686       let val U = pfun_type thy ty
   687       in
   688         T = U orelse
   689         error ("Type\n" ^
   690           Syntax.string_of_typ_global thy T ^
   691           "\nof function " ^
   692           Syntax.string_of_term_global thy t ^
   693           " associated with proof function " ^ s ^
   694           "\ndoes not match declared type\n" ^
   695           Syntax.string_of_typ_global thy U)
   696       end
   697   in (Option.map check optty1; Option.map check optty2; ()) end;
   698 
   699 fun upd_option x y = if is_some x then x else y;
   700 
   701 fun check_pfuns_types thy funs =
   702   Symtab.map (fn s => fn (optty, t) =>
   703    let val optty' = lookup funs s
   704    in
   705      (check_pfun_type thy s t optty optty';
   706       (NONE |> upd_option optty |> upd_option optty', t))
   707    end);
   708 
   709 
   710 (** the VC store **)
   711 
   712 fun err_vcs names = error (Pretty.string_of
   713   (Pretty.big_list "The following verification conditions have not been proved:"
   714     (map Pretty.str names)))
   715 
   716 fun set_env (env as {funs, ...}) thy = VCs.map (fn
   717     {pfuns, type_map, env = NONE} =>
   718       {pfuns = check_pfuns_types thy funs pfuns,
   719        type_map = type_map,
   720        env = SOME env}
   721   | _ => err_unfinished ()) thy;
   722 
   723 fun mk_pat s = (case Int.fromString s of
   724     SOME i => [HOLogic.mk_Trueprop (Var (("C", i), HOLogic.boolT))]
   725   | NONE => error ("Bad conclusion identifier: C" ^ s));
   726 
   727 fun mk_vc thy types funs pfuns ids (tr, proved, ps, cs) =
   728   let val prop_of =
   729     HOLogic.mk_Trueprop o fst o term_of_expr thy types funs pfuns ids
   730   in
   731     (tr, proved,
   732      Element.Assumes (map (fn (s', e) =>
   733        ((Binding.name ("H" ^ s'), []), [(prop_of e, [])])) ps),
   734      Element.Shows (map (fn (s', e) =>
   735        (Attrib.empty_binding, [(prop_of e, mk_pat s')])) cs))
   736   end;
   737 
   738 fun fold_vcs f vcs =
   739   VCtab.fold (fn (_, (_, _, ps, cs)) => fold f ps #> fold f cs) vcs;
   740 
   741 fun pfuns_of_vcs pfuns vcs =
   742   fold_vcs (add_expr_pfuns o snd) vcs [] |>
   743   filter_out (Symtab.defined pfuns);
   744 
   745 fun declare_missing_pfuns thy funs pfuns vcs (tab, ctxt) =
   746   let
   747     val (fs, (tys, Ts)) =
   748       pfuns_of_vcs pfuns vcs |>
   749       map_filter (fn s => lookup funs s |>
   750         Option.map (fn ty => (s, (SOME ty, pfun_type thy ty)))) |>
   751       split_list ||> split_list;
   752     val (fs', ctxt') = Name.variants fs ctxt
   753   in
   754     (fold Symtab.update_new (fs ~~ (tys ~~ map Free (fs' ~~ Ts))) pfuns,
   755      Element.Fixes (map2 (fn s => fn T =>
   756        (Binding.name s, SOME T, NoSyn)) fs' Ts),
   757      (tab, ctxt'))
   758   end;
   759 
   760 fun add_proof_fun prep (s, (optty, raw_t)) thy =
   761   VCs.map (fn
   762       {env = SOME {proving = true, ...}, ...} => err_unfinished ()
   763     | {pfuns, type_map, env} =>
   764         let
   765           val optty' = (case env of
   766               SOME {funs, ...} => lookup funs s
   767             | NONE => NONE);
   768           val optty'' = NONE |> upd_option optty |> upd_option optty';
   769           val t = prep (Option.map (pfun_type thy) optty'') raw_t;
   770           val _ = (case fold_aterms (fn u =>
   771               if is_Var u orelse is_Free u then insert (op =) u else I) t [] of
   772               [] => ()
   773             | ts => error ("Term\n" ^ Syntax.string_of_term_global thy t ^
   774                 "\nto be associated with proof function " ^ s ^
   775                 " contains free variable(s) " ^
   776                 commas (map (Syntax.string_of_term_global thy) ts)));
   777         in
   778           (check_pfun_type thy s t optty optty';
   779            if is_some optty'' orelse is_none env then
   780              {pfuns = Symtab.update_new (s, (optty'', t)) pfuns,
   781               type_map = type_map,
   782               env = env}
   783                handle Symtab.DUP _ => error ("Proof function " ^ s ^
   784                  " already associated with function")
   785            else error ("Undeclared proof function " ^ s))
   786         end) thy;
   787 
   788 fun add_type (s, T as Type (tyname, Ts)) thy =
   789       thy |>
   790       VCs.map (fn
   791           {env = SOME _, ...} => err_unfinished ()
   792         | {pfuns, type_map, env} =>
   793             {pfuns = pfuns,
   794              type_map = Symtab.update_new (s, T) type_map,
   795              env = env}
   796               handle Symtab.DUP _ => error ("SPARK type " ^ s ^
   797                 " already associated with type")) |>
   798       (fn thy' =>
   799          case Datatype_Data.get_constrs thy' tyname of
   800            NONE => thy'
   801          | SOME cs =>
   802              if null Ts then
   803                (map
   804                   (fn (_, Type (_, [])) => ()
   805                     | (cname, _) => assoc_ty_err thy T s
   806                         ("has illegal constructor " ^
   807                          Long_Name.base_name cname)) cs;
   808                 add_enum_type s tyname thy')
   809              else assoc_ty_err thy T s "is illegal")
   810   | add_type (s, T) thy = assoc_ty_err thy T s "is illegal";
   811 
   812 val is_closed = is_none o #env o VCs.get;
   813 
   814 fun lookup_vc thy name =
   815   (case VCs.get thy of
   816     {env = SOME {vcs, types, funs, ids, ctxt, ...}, pfuns, ...} =>
   817       (case VCtab.lookup vcs name of
   818          SOME vc =>           
   819            let val (pfuns', ctxt', ids') =
   820              declare_missing_pfuns thy funs pfuns vcs ids
   821            in SOME (ctxt @ [ctxt'], mk_vc thy types funs pfuns' ids' vc) end
   822        | NONE => NONE)
   823   | _ => NONE);
   824 
   825 fun get_vcs thy = (case VCs.get thy of
   826     {env = SOME {vcs, types, funs, ids, ctxt, defs, ...}, pfuns, ...} =>
   827       let val (pfuns', ctxt', ids') =
   828         declare_missing_pfuns thy funs pfuns vcs ids
   829       in
   830         (ctxt @ [ctxt'], defs,
   831          VCtab.dest vcs |>
   832          map (apsnd (mk_vc thy types funs pfuns' ids')))
   833       end
   834   | _ => ([], [], []));
   835 
   836 fun mark_proved name thms = VCs.map (fn
   837     {pfuns, type_map,
   838      env = SOME {ctxt, defs, types, funs, ids, vcs, path, ...}} =>
   839       {pfuns = pfuns,
   840        type_map = type_map,
   841        env = SOME {ctxt = ctxt, defs = defs,
   842          types = types, funs = funs, ids = ids,
   843          proving = true,
   844          vcs = VCtab.map_entry name (fn (trace, _, ps, cs) =>
   845            (trace, SOME thms, ps, cs)) vcs,
   846          path = path}}
   847   | x => x);
   848 
   849 fun close thy =
   850   thy |>
   851   VCs.map (fn
   852       {pfuns, type_map, env = SOME {vcs, path, ...}} =>
   853         (case VCtab.fold_rev (fn vc as (_, (_, p, _, _)) =>
   854              (if is_some p then apfst else apsnd) (cons vc)) vcs ([], []) of
   855            (proved, []) =>
   856              (Thm.join_proofs (maps (the o #2 o snd) proved);
   857               File.write (Path.ext "prv" path)
   858                 (concat (map (fn (s, _) => snd (strip_number s) ^
   859                    " -- proved by " ^ Distribution.version ^ "\n") proved));
   860               {pfuns = pfuns, type_map = type_map, env = NONE})
   861          | (_, unproved) => err_vcs (map fst unproved))
   862     | _ => error "No SPARK environment is currently open") |>
   863   Sign.parent_path;
   864 
   865 
   866 (** set up verification conditions **)
   867 
   868 fun partition_opt f =
   869   let
   870     fun part ys zs [] = (rev ys, rev zs)
   871       | part ys zs (x :: xs) = (case f x of
   872             SOME y => part (y :: ys) zs xs
   873           | NONE => part ys (x :: zs) xs)
   874   in part [] [] end;
   875 
   876 fun dest_def (id, (Substitution_Rule ([], Ident s, rhs))) = SOME (id, (s, rhs))
   877   | dest_def _ = NONE;
   878 
   879 fun mk_rulename (s, i) = Binding.name (s ^ string_of_int i);
   880 
   881 fun add_const (s, ty) ((tab, ctxt), thy) =
   882   let
   883     val T = mk_type thy ty;
   884     val b = Binding.name s;
   885     val c = Const (Sign.full_name thy b, T)
   886   in
   887     (c,
   888      ((Symtab.update (s, (c, ty)) tab, Name.declare s ctxt),
   889       Sign.add_consts_i [(b, T, NoSyn)] thy))
   890   end;
   891 
   892 fun add_def types funs pfuns consts (id, (s, e)) (ids as (tab, ctxt), thy) =
   893   (case lookup consts s of
   894      SOME ty =>
   895        let
   896          val (t, ty') = term_of_expr thy types funs pfuns ids e;
   897          val T = mk_type thy ty;
   898          val T' = mk_type thy ty';
   899          val _ = T = T' orelse
   900            error ("Declared type " ^ ty ^ " of " ^ s ^
   901              "\ndoes not match type " ^ ty' ^ " in definition");
   902          val id' = mk_rulename id;
   903          val lthy = Named_Target.theory_init thy;
   904          val ((t', (_, th)), lthy') = Specification.definition
   905            (NONE, ((id', []), HOLogic.mk_Trueprop (HOLogic.mk_eq
   906              (Free (s, T), t)))) lthy;
   907          val phi = ProofContext.export_morphism lthy' lthy
   908        in
   909          ((id', Morphism.thm phi th),
   910           ((Symtab.update (s, (Morphism.term phi t', ty)) tab,
   911             Name.declare s ctxt),
   912            Local_Theory.exit_global lthy'))
   913        end
   914    | NONE => error ("Undeclared constant " ^ s));
   915 
   916 fun add_var (s, ty) (ids, thy) =
   917   let val ([Free p], ids') = mk_variables thy [s] ty ids
   918   in (p, (ids', thy)) end;
   919 
   920 fun add_init_vars vcs (ids_thy as ((tab, _), _)) =
   921   fold_map add_var
   922     (map_filter
   923        (fn s => case try (unsuffix "~") s of
   924           SOME s' => (case Symtab.lookup tab s' of
   925             SOME (_, ty) => SOME (s, ty)
   926           | NONE => error ("Undeclared identifier " ^ s'))
   927         | NONE => NONE)
   928        (fold_vcs (add_expr_idents o snd) vcs []))
   929     ids_thy;
   930 
   931 fun is_trivial_vc ([], [(_, Ident "true")]) = true
   932   | is_trivial_vc _ = false;
   933 
   934 fun rulenames rules = commas
   935   (map (fn ((s, i), _) => s ^ "(" ^ string_of_int i ^ ")") rules);
   936 
   937 (* sort definitions according to their dependency *)
   938 fun sort_defs _ _ [] sdefs = rev sdefs
   939   | sort_defs pfuns consts defs sdefs =
   940       (case find_first (fn (_, (_, e)) =>
   941          forall (Symtab.defined pfuns) (add_expr_pfuns e []) andalso
   942          forall (fn id =>
   943            member (fn (s, (_, (s', _))) => s = s') sdefs id orelse
   944            consts id)
   945              (add_expr_idents e [])) defs of
   946          SOME d => sort_defs pfuns consts
   947            (remove (op =) d defs) (d :: sdefs)
   948        | NONE => error ("Bad definitions: " ^ rulenames defs));
   949 
   950 fun set_vcs ({types, vars, consts, funs} : decls)
   951       (rules, _) ((_, ident), vcs) path thy =
   952   let
   953     val {pfuns, ...} = VCs.get thy;
   954     val (defs, rules') = partition_opt dest_def rules;
   955     val consts' =
   956       subtract (fn ((_, (s, _)), (s', _)) => s = s') defs (items consts);
   957     (* ignore all complex rules in rls files *)
   958     val (rules'', other_rules) =
   959       List.partition (complex_rule o snd) rules';
   960     val _ = if null rules'' then ()
   961       else warning ("Ignoring rules: " ^ rulenames rules'');
   962 
   963     val vcs' = VCtab.make (maps (fn (tr, vcs) =>
   964       map (fn (s, (ps, cs)) => (s, (tr, NONE, ps, cs)))
   965         (filter_out (is_trivial_vc o snd) vcs)) vcs);
   966 
   967     val _ = (case filter_out (is_some o lookup funs)
   968         (pfuns_of_vcs pfuns vcs') of
   969         [] => ()
   970       | fs => error ("Undeclared proof function(s) " ^ commas fs));
   971 
   972     val (((defs', vars''), ivars), (ids, thy')) =
   973       ((Symtab.empty |>
   974         Symtab.update ("false", (HOLogic.false_const, booleanN)) |>
   975         Symtab.update ("true", (HOLogic.true_const, booleanN)),
   976         Name.context),
   977        thy |> Sign.add_path (Long_Name.base_name ident)) |>
   978       fold add_type_def (items types) |>
   979       fold (snd oo add_const) consts' |> (fn ids_thy as ((tab, _), _) =>
   980         ids_thy |>
   981         fold_map (add_def types funs pfuns consts)
   982           (sort_defs pfuns (Symtab.defined tab) defs []) ||>>
   983         fold_map add_var (items vars) ||>>
   984         add_init_vars vcs');
   985 
   986     val ctxt =
   987       [Element.Fixes (map (fn (s, T) =>
   988          (Binding.name s, SOME T, NoSyn)) (vars'' @ ivars)),
   989        Element.Assumes (map (fn (id, rl) =>
   990          ((mk_rulename id, []),
   991           [(term_of_rule thy' types funs pfuns ids rl, [])]))
   992            other_rules),
   993        Element.Notes (Thm.definitionK,
   994          [((Binding.name "defns", []), map (rpair [] o single o snd) defs')])]
   995           
   996   in
   997     set_env {ctxt = ctxt, defs = defs', types = types, funs = funs,
   998       ids = ids, proving = false, vcs = vcs', path = path} thy'
   999   end;
  1000 
  1001 end;