src/HOL/Tools/ATP/atp_translate.ML
author wenzelm
Wed, 08 Jun 2011 22:13:49 +0200
changeset 44168 e77baf329f48
parent 44153 30aaab778416
parent 44163 446e6621762d
child 44175 6901ebafbb8d
permissions -rw-r--r--
merged
     1 (*  Title:      HOL/Tools/ATP/atp_translate.ML
     2     Author:     Fabian Immler, TU Muenchen
     3     Author:     Makarius
     4     Author:     Jasmin Blanchette, TU Muenchen
     5 
     6 Translation of HOL to FOL for Sledgehammer.
     7 *)
     8 
     9 signature ATP_TRANSLATE =
    10 sig
    11   type 'a fo_term = 'a ATP_Problem.fo_term
    12   type connective = ATP_Problem.connective
    13   type ('a, 'b, 'c) formula = ('a, 'b, 'c) ATP_Problem.formula
    14   type format = ATP_Problem.format
    15   type formula_kind = ATP_Problem.formula_kind
    16   type 'a problem = 'a ATP_Problem.problem
    17 
    18   type name = string * string
    19 
    20   datatype type_literal =
    21     TyLitVar of name * name |
    22     TyLitFree of name * name
    23 
    24   datatype arity_literal =
    25     TConsLit of name * name * name list |
    26     TVarLit of name * name
    27 
    28   type arity_clause =
    29     {name: string,
    30      prem_lits: arity_literal list,
    31      concl_lits: arity_literal}
    32 
    33   type class_rel_clause =
    34     {name: string,
    35      subclass: name,
    36      superclass: name}
    37 
    38   datatype combterm =
    39     CombConst of name * typ * typ list |
    40     CombVar of name * typ |
    41     CombApp of combterm * combterm
    42 
    43   datatype locality = General | Intro | Elim | Simp | Local | Assum | Chained
    44 
    45   datatype polymorphism = Polymorphic | Monomorphic | Mangled_Monomorphic
    46   datatype type_level =
    47     All_Types | Nonmonotonic_Types | Finite_Types | Const_Arg_Types | No_Types
    48   datatype type_heaviness = Heavyweight | Lightweight
    49 
    50   datatype type_sys =
    51     Simple_Types of type_level |
    52     Preds of polymorphism * type_level * type_heaviness |
    53     Tags of polymorphism * type_level * type_heaviness
    54 
    55   val bound_var_prefix : string
    56   val schematic_var_prefix: string
    57   val fixed_var_prefix: string
    58   val tvar_prefix: string
    59   val tfree_prefix: string
    60   val const_prefix: string
    61   val type_const_prefix: string
    62   val class_prefix: string
    63   val skolem_const_prefix : string
    64   val old_skolem_const_prefix : string
    65   val new_skolem_const_prefix : string
    66   val type_decl_prefix : string
    67   val sym_decl_prefix : string
    68   val preds_sym_formula_prefix : string
    69   val lightweight_tags_sym_formula_prefix : string
    70   val fact_prefix : string
    71   val conjecture_prefix : string
    72   val helper_prefix : string
    73   val class_rel_clause_prefix : string
    74   val arity_clause_prefix : string
    75   val tfree_clause_prefix : string
    76   val typed_helper_suffix : string
    77   val untyped_helper_suffix : string
    78   val type_tag_idempotence_helper_name : string
    79   val predicator_name : string
    80   val app_op_name : string
    81   val type_tag_name : string
    82   val type_pred_name : string
    83   val simple_type_prefix : string
    84   val prefixed_predicator_name : string
    85   val prefixed_app_op_name : string
    86   val prefixed_type_tag_name : string
    87   val ascii_of: string -> string
    88   val unascii_of: string -> string
    89   val strip_prefix_and_unascii : string -> string -> string option
    90   val proxy_table : (string * (string * (thm * (string * string)))) list
    91   val proxify_const : string -> (string * string) option
    92   val invert_const: string -> string
    93   val unproxify_const: string -> string
    94   val make_bound_var : string -> string
    95   val make_schematic_var : string * int -> string
    96   val make_fixed_var : string -> string
    97   val make_schematic_type_var : string * int -> string
    98   val make_fixed_type_var : string -> string
    99   val make_fixed_const : string -> string
   100   val make_fixed_type_const : string -> string
   101   val make_type_class : string -> string
   102   val new_skolem_var_name_from_const : string -> string
   103   val num_type_args : theory -> string -> int
   104   val atp_irrelevant_consts : string list
   105   val atp_schematic_consts_of : term -> typ list Symtab.table
   106   val make_arity_clauses :
   107     theory -> string list -> class list -> class list * arity_clause list
   108   val make_class_rel_clauses :
   109     theory -> class list -> class list -> class_rel_clause list
   110   val combtyp_of : combterm -> typ
   111   val strip_combterm_comb : combterm -> combterm * combterm list
   112   val atyps_of : typ -> typ list
   113   val combterm_from_term :
   114     theory -> (string * typ) list -> term -> combterm * typ list
   115   val is_locality_global : locality -> bool
   116   val type_sys_from_string : string -> type_sys
   117   val polymorphism_of_type_sys : type_sys -> polymorphism
   118   val level_of_type_sys : type_sys -> type_level
   119   val is_type_sys_virtually_sound : type_sys -> bool
   120   val is_type_sys_fairly_sound : type_sys -> bool
   121   val choose_format : format list -> type_sys -> format * type_sys
   122   val mk_aconns :
   123     connective -> ('a, 'b, 'c) formula list -> ('a, 'b, 'c) formula
   124   val unmangled_const_name : string -> string
   125   val unmangled_const : string -> string * string fo_term list
   126   val helper_table : ((string * bool) * thm list) list
   127   val should_specialize_helper : type_sys -> term -> bool
   128   val tfree_classes_of_terms : term list -> string list
   129   val tvar_classes_of_terms : term list -> string list
   130   val type_constrs_of_terms : theory -> term list -> string list
   131   val prepare_atp_problem :
   132     Proof.context -> format -> formula_kind -> formula_kind -> type_sys
   133     -> bool -> bool -> term list -> term -> ((string * locality) * term) list
   134     -> string problem * string Symtab.table * int * int
   135        * (string * locality) list vector * int list * int Symtab.table
   136   val atp_problem_weights : string problem -> (string * real) list
   137 end;
   138 
   139 structure ATP_Translate : ATP_TRANSLATE =
   140 struct
   141 
   142 open ATP_Util
   143 open ATP_Problem
   144 
   145 type name = string * string
   146 
   147 (* experimental *)
   148 val generate_useful_info = false
   149 
   150 fun useful_isabelle_info s =
   151   if generate_useful_info then
   152     SOME (ATerm ("[]", [ATerm ("isabelle_" ^ s, [])]))
   153   else
   154     NONE
   155 
   156 val intro_info = useful_isabelle_info "intro"
   157 val elim_info = useful_isabelle_info "elim"
   158 val simp_info = useful_isabelle_info "simp"
   159 
   160 val bound_var_prefix = "B_"
   161 val schematic_var_prefix = "V_"
   162 val fixed_var_prefix = "v_"
   163 
   164 val tvar_prefix = "T_"
   165 val tfree_prefix = "t_"
   166 
   167 val const_prefix = "c_"
   168 val type_const_prefix = "tc_"
   169 val class_prefix = "cl_"
   170 
   171 val skolem_const_prefix = "Sledgehammer" ^ Long_Name.separator ^ "Sko"
   172 val old_skolem_const_prefix = skolem_const_prefix ^ "o"
   173 val new_skolem_const_prefix = skolem_const_prefix ^ "n"
   174 
   175 val type_decl_prefix = "ty_"
   176 val sym_decl_prefix = "sy_"
   177 val preds_sym_formula_prefix = "psy_"
   178 val lightweight_tags_sym_formula_prefix = "tsy_"
   179 val fact_prefix = "fact_"
   180 val conjecture_prefix = "conj_"
   181 val helper_prefix = "help_"
   182 val class_rel_clause_prefix = "clar_"
   183 val arity_clause_prefix = "arity_"
   184 val tfree_clause_prefix = "tfree_"
   185 
   186 val typed_helper_suffix = "_T"
   187 val untyped_helper_suffix = "_U"
   188 val type_tag_idempotence_helper_name = helper_prefix ^ "ti_idem"
   189 
   190 val predicator_name = "hBOOL"
   191 val app_op_name = "hAPP"
   192 val type_tag_name = "ti"
   193 val type_pred_name = "is"
   194 val simple_type_prefix = "ty_"
   195 
   196 val prefixed_predicator_name = const_prefix ^ predicator_name
   197 val prefixed_app_op_name = const_prefix ^ app_op_name
   198 val prefixed_type_tag_name = const_prefix ^ type_tag_name
   199 
   200 (* Freshness almost guaranteed! *)
   201 val sledgehammer_weak_prefix = "Sledgehammer:"
   202 
   203 (*Escaping of special characters.
   204   Alphanumeric characters are left unchanged.
   205   The character _ goes to __
   206   Characters in the range ASCII space to / go to _A to _P, respectively.
   207   Other characters go to _nnn where nnn is the decimal ASCII code.*)
   208 val upper_a_minus_space = Char.ord #"A" - Char.ord #" "
   209 
   210 fun stringN_of_int 0 _ = ""
   211   | stringN_of_int k n =
   212     stringN_of_int (k - 1) (n div 10) ^ string_of_int (n mod 10)
   213 
   214 fun ascii_of_char c =
   215   if Char.isAlphaNum c then
   216     String.str c
   217   else if c = #"_" then
   218     "__"
   219   else if #" " <= c andalso c <= #"/" then
   220     "_" ^ String.str (Char.chr (Char.ord c + upper_a_minus_space))
   221   else
   222     (* fixed width, in case more digits follow *)
   223     "_" ^ stringN_of_int 3 (Char.ord c)
   224 
   225 val ascii_of = String.translate ascii_of_char
   226 
   227 (** Remove ASCII armoring from names in proof files **)
   228 
   229 (* We don't raise error exceptions because this code can run inside a worker
   230    thread. Also, the errors are impossible. *)
   231 val unascii_of =
   232   let
   233     fun un rcs [] = String.implode(rev rcs)
   234       | un rcs [#"_"] = un (#"_" :: rcs) [] (* ERROR *)
   235         (* Three types of _ escapes: __, _A to _P, _nnn *)
   236       | un rcs (#"_" :: #"_" :: cs) = un (#"_"::rcs) cs
   237       | un rcs (#"_" :: c :: cs) =
   238         if #"A" <= c andalso c<= #"P" then
   239           (* translation of #" " to #"/" *)
   240           un (Char.chr (Char.ord c - upper_a_minus_space) :: rcs) cs
   241         else
   242           let val digits = List.take (c::cs, 3) handle General.Subscript => [] in
   243             case Int.fromString (String.implode digits) of
   244               SOME n => un (Char.chr n :: rcs) (List.drop (cs, 2))
   245             | NONE => un (c:: #"_"::rcs) cs (* ERROR *)
   246           end
   247       | un rcs (c :: cs) = un (c :: rcs) cs
   248   in un [] o String.explode end
   249 
   250 (* If string s has the prefix s1, return the result of deleting it,
   251    un-ASCII'd. *)
   252 fun strip_prefix_and_unascii s1 s =
   253   if String.isPrefix s1 s then
   254     SOME (unascii_of (String.extract (s, size s1, NONE)))
   255   else
   256     NONE
   257 
   258 val proxy_table =
   259   [("c_False", (@{const_name False}, (@{thm fFalse_def},
   260        ("fFalse", @{const_name ATP.fFalse})))),
   261    ("c_True", (@{const_name True}, (@{thm fTrue_def},
   262        ("fTrue", @{const_name ATP.fTrue})))),
   263    ("c_Not", (@{const_name Not}, (@{thm fNot_def},
   264        ("fNot", @{const_name ATP.fNot})))),
   265    ("c_conj", (@{const_name conj}, (@{thm fconj_def},
   266        ("fconj", @{const_name ATP.fconj})))),
   267    ("c_disj", (@{const_name disj}, (@{thm fdisj_def},
   268        ("fdisj", @{const_name ATP.fdisj})))),
   269    ("c_implies", (@{const_name implies}, (@{thm fimplies_def},
   270        ("fimplies", @{const_name ATP.fimplies})))),
   271    ("equal", (@{const_name HOL.eq}, (@{thm fequal_def},
   272        ("fequal", @{const_name ATP.fequal}))))]
   273 
   274 val proxify_const = AList.lookup (op =) proxy_table #> Option.map (snd o snd)
   275 
   276 (* Readable names for the more common symbolic functions. Do not mess with the
   277    table unless you know what you are doing. *)
   278 val const_trans_table =
   279   [(@{type_name Product_Type.prod}, "prod"),
   280    (@{type_name Sum_Type.sum}, "sum"),
   281    (@{const_name False}, "False"),
   282    (@{const_name True}, "True"),
   283    (@{const_name Not}, "Not"),
   284    (@{const_name conj}, "conj"),
   285    (@{const_name disj}, "disj"),
   286    (@{const_name implies}, "implies"),
   287    (@{const_name HOL.eq}, "equal"),
   288    (@{const_name If}, "If"),
   289    (@{const_name Set.member}, "member"),
   290    (@{const_name Meson.COMBI}, "COMBI"),
   291    (@{const_name Meson.COMBK}, "COMBK"),
   292    (@{const_name Meson.COMBB}, "COMBB"),
   293    (@{const_name Meson.COMBC}, "COMBC"),
   294    (@{const_name Meson.COMBS}, "COMBS")]
   295   |> Symtab.make
   296   |> fold (Symtab.update o swap o snd o snd o snd) proxy_table
   297 
   298 (* Invert the table of translations between Isabelle and ATPs. *)
   299 val const_trans_table_inv =
   300   const_trans_table |> Symtab.dest |> map swap |> Symtab.make
   301 val const_trans_table_unprox =
   302   Symtab.empty
   303   |> fold (fn (_, (isa, (_, (_, atp)))) => Symtab.update (atp, isa)) proxy_table
   304 
   305 val invert_const = perhaps (Symtab.lookup const_trans_table_inv)
   306 val unproxify_const = perhaps (Symtab.lookup const_trans_table_unprox)
   307 
   308 fun lookup_const c =
   309   case Symtab.lookup const_trans_table c of
   310     SOME c' => c'
   311   | NONE => ascii_of c
   312 
   313 (*Remove the initial ' character from a type variable, if it is present*)
   314 fun trim_type_var s =
   315   if s <> "" andalso String.sub(s,0) = #"'" then String.extract(s,1,NONE)
   316   else raise Fail ("trim_type: Malformed type variable encountered: " ^ s)
   317 
   318 fun ascii_of_indexname (v,0) = ascii_of v
   319   | ascii_of_indexname (v,i) = ascii_of v ^ "_" ^ string_of_int i
   320 
   321 fun make_bound_var x = bound_var_prefix ^ ascii_of x
   322 fun make_schematic_var v = schematic_var_prefix ^ ascii_of_indexname v
   323 fun make_fixed_var x = fixed_var_prefix ^ ascii_of x
   324 
   325 fun make_schematic_type_var (x,i) =
   326       tvar_prefix ^ (ascii_of_indexname (trim_type_var x, i))
   327 fun make_fixed_type_var x = tfree_prefix ^ (ascii_of (trim_type_var x))
   328 
   329 (* HOL.eq MUST BE "equal" because it's built into ATPs. *)
   330 fun make_fixed_const @{const_name HOL.eq} = "equal"
   331   | make_fixed_const c = const_prefix ^ lookup_const c
   332 
   333 fun make_fixed_type_const c = type_const_prefix ^ lookup_const c
   334 
   335 fun make_type_class clas = class_prefix ^ ascii_of clas
   336 
   337 fun new_skolem_var_name_from_const s =
   338   let val ss = s |> space_explode Long_Name.separator in
   339     nth ss (length ss - 2)
   340   end
   341 
   342 (* The number of type arguments of a constant, zero if it's monomorphic. For
   343    (instances of) Skolem pseudoconstants, this information is encoded in the
   344    constant name. *)
   345 fun num_type_args thy s =
   346   if String.isPrefix skolem_const_prefix s then
   347     s |> space_explode Long_Name.separator |> List.last |> Int.fromString |> the
   348   else
   349     (s, Sign.the_const_type thy s) |> Sign.const_typargs thy |> length
   350 
   351 (* These are either simplified away by "Meson.presimplify" (most of the time) or
   352    handled specially via "fFalse", "fTrue", ..., "fequal". *)
   353 val atp_irrelevant_consts =
   354   [@{const_name False}, @{const_name True}, @{const_name Not},
   355    @{const_name conj}, @{const_name disj}, @{const_name implies},
   356    @{const_name HOL.eq}, @{const_name If}, @{const_name Let}]
   357 
   358 val atp_monomorph_bad_consts =
   359   atp_irrelevant_consts @
   360   (* These are ignored anyway by the relevance filter (unless they appear in
   361      higher-order places) but not by the monomorphizer. *)
   362   [@{const_name all}, @{const_name "==>"}, @{const_name "=="},
   363    @{const_name Trueprop}, @{const_name All}, @{const_name Ex},
   364    @{const_name Ex1}, @{const_name Ball}, @{const_name Bex}]
   365 
   366 fun add_schematic_const (x as (_, T)) =
   367   Monomorph.typ_has_tvars T ? Symtab.insert_list (op =) x
   368 val add_schematic_consts_of =
   369   Term.fold_aterms (fn Const (x as (s, _)) =>
   370                        not (member (op =) atp_monomorph_bad_consts s)
   371                        ? add_schematic_const x
   372                       | _ => I)
   373 fun atp_schematic_consts_of t = add_schematic_consts_of t Symtab.empty
   374 
   375 (** Definitions and functions for FOL clauses and formulas for TPTP **)
   376 
   377 (* The first component is the type class; the second is a "TVar" or "TFree". *)
   378 datatype type_literal =
   379   TyLitVar of name * name |
   380   TyLitFree of name * name
   381 
   382 
   383 (** Isabelle arities **)
   384 
   385 datatype arity_literal =
   386   TConsLit of name * name * name list |
   387   TVarLit of name * name
   388 
   389 fun gen_TVars 0 = []
   390   | gen_TVars n = ("T_" ^ string_of_int n) :: gen_TVars (n-1)
   391 
   392 val type_class = the_single @{sort type}
   393 
   394 fun add_packed_sort tvar =
   395   fold (fn s => s <> type_class ? cons (`make_type_class s, `I tvar))
   396 
   397 type arity_clause =
   398   {name: string,
   399    prem_lits: arity_literal list,
   400    concl_lits: arity_literal}
   401 
   402 (* Arity of type constructor "tcon :: (arg1, ..., argN) res" *)
   403 fun make_axiom_arity_clause (tcons, name, (cls, args)) =
   404   let
   405     val tvars = gen_TVars (length args)
   406     val tvars_srts = ListPair.zip (tvars, args)
   407   in
   408     {name = name,
   409      prem_lits = [] |> fold (uncurry add_packed_sort) tvars_srts |> map TVarLit,
   410      concl_lits = TConsLit (`make_type_class cls,
   411                             `make_fixed_type_const tcons,
   412                             tvars ~~ tvars)}
   413   end
   414 
   415 fun arity_clause _ _ (_, []) = []
   416   | arity_clause seen n (tcons, ("HOL.type",_)::ars) =  (*ignore*)
   417       arity_clause seen n (tcons,ars)
   418   | arity_clause seen n (tcons, (ar as (class,_)) :: ars) =
   419       if member (op =) seen class then (*multiple arities for the same tycon, class pair*)
   420           make_axiom_arity_clause (tcons, lookup_const tcons ^ "_" ^ class ^ "_" ^ string_of_int n, ar) ::
   421           arity_clause seen (n+1) (tcons,ars)
   422       else
   423           make_axiom_arity_clause (tcons, lookup_const tcons ^ "_" ^ class, ar) ::
   424           arity_clause (class::seen) n (tcons,ars)
   425 
   426 fun multi_arity_clause [] = []
   427   | multi_arity_clause ((tcons, ars) :: tc_arlists) =
   428       arity_clause [] 1 (tcons, ars) @ multi_arity_clause tc_arlists
   429 
   430 (*Generate all pairs (tycon,class,sorts) such that tycon belongs to class in theory thy
   431   provided its arguments have the corresponding sorts.*)
   432 fun type_class_pairs thy tycons classes =
   433   let
   434     val alg = Sign.classes_of thy
   435     fun domain_sorts tycon = Sorts.mg_domain alg tycon o single
   436     fun add_class tycon class =
   437       cons (class, domain_sorts tycon class)
   438       handle Sorts.CLASS_ERROR _ => I
   439     fun try_classes tycon = (tycon, fold (add_class tycon) classes [])
   440   in map try_classes tycons end
   441 
   442 (*Proving one (tycon, class) membership may require proving others, so iterate.*)
   443 fun iter_type_class_pairs _ _ [] = ([], [])
   444   | iter_type_class_pairs thy tycons classes =
   445       let
   446         fun maybe_insert_class s =
   447           (s <> type_class andalso not (member (op =) classes s))
   448           ? insert (op =) s
   449         val cpairs = type_class_pairs thy tycons classes
   450         val newclasses =
   451           [] |> fold (fold (fold (fold maybe_insert_class) o snd) o snd) cpairs
   452         val (classes', cpairs') = iter_type_class_pairs thy tycons newclasses
   453       in (classes' @ classes, union (op =) cpairs' cpairs) end
   454 
   455 fun make_arity_clauses thy tycons =
   456   iter_type_class_pairs thy tycons ##> multi_arity_clause
   457 
   458 
   459 (** Isabelle class relations **)
   460 
   461 type class_rel_clause =
   462   {name: string,
   463    subclass: name,
   464    superclass: name}
   465 
   466 (*Generate all pairs (sub,super) such that sub is a proper subclass of super in theory thy.*)
   467 fun class_pairs _ [] _ = []
   468   | class_pairs thy subs supers =
   469       let
   470         val class_less = Sorts.class_less (Sign.classes_of thy)
   471         fun add_super sub super = class_less (sub, super) ? cons (sub, super)
   472         fun add_supers sub = fold (add_super sub) supers
   473       in fold add_supers subs [] end
   474 
   475 fun make_class_rel_clause (sub,super) =
   476   {name = sub ^ "_" ^ super,
   477    subclass = `make_type_class sub,
   478    superclass = `make_type_class super}
   479 
   480 fun make_class_rel_clauses thy subs supers =
   481   map make_class_rel_clause (class_pairs thy subs supers)
   482 
   483 datatype combterm =
   484   CombConst of name * typ * typ list |
   485   CombVar of name * typ |
   486   CombApp of combterm * combterm
   487 
   488 fun combtyp_of (CombConst (_, T, _)) = T
   489   | combtyp_of (CombVar (_, T)) = T
   490   | combtyp_of (CombApp (t1, _)) = snd (dest_funT (combtyp_of t1))
   491 
   492 (*gets the head of a combinator application, along with the list of arguments*)
   493 fun strip_combterm_comb u =
   494     let fun stripc (CombApp(t,u), ts) = stripc (t, u::ts)
   495         |   stripc  x =  x
   496     in stripc(u,[]) end
   497 
   498 fun atyps_of T = fold_atyps (insert (op =)) T []
   499 
   500 fun new_skolem_const_name s num_T_args =
   501   [new_skolem_const_prefix, s, string_of_int num_T_args]
   502   |> space_implode Long_Name.separator
   503 
   504 (* Converts a term (with combinators) into a combterm. Also accumulates sort
   505    infomation. *)
   506 fun combterm_from_term thy bs (P $ Q) =
   507     let
   508       val (P', P_atomics_Ts) = combterm_from_term thy bs P
   509       val (Q', Q_atomics_Ts) = combterm_from_term thy bs Q
   510     in (CombApp (P', Q'), union (op =) P_atomics_Ts Q_atomics_Ts) end
   511   | combterm_from_term thy _ (Const (c, T)) =
   512     let
   513       val tvar_list =
   514         (if String.isPrefix old_skolem_const_prefix c then
   515            [] |> Term.add_tvarsT T |> map TVar
   516          else
   517            (c, T) |> Sign.const_typargs thy)
   518       val c' = CombConst (`make_fixed_const c, T, tvar_list)
   519     in (c', atyps_of T) end
   520   | combterm_from_term _ _ (Free (v, T)) =
   521     (CombConst (`make_fixed_var v, T, []), atyps_of T)
   522   | combterm_from_term _ _ (Var (v as (s, _), T)) =
   523     (if String.isPrefix Meson_Clausify.new_skolem_var_prefix s then
   524        let
   525          val Ts = T |> strip_type |> swap |> op ::
   526          val s' = new_skolem_const_name s (length Ts)
   527        in CombConst (`make_fixed_const s', T, Ts) end
   528      else
   529        CombVar ((make_schematic_var v, s), T), atyps_of T)
   530   | combterm_from_term _ bs (Bound j) =
   531     nth bs j
   532     |> (fn (s, T) => (CombConst (`make_bound_var s, T, []), atyps_of T))
   533   | combterm_from_term _ _ (Abs _) = raise Fail "HOL clause: Abs"
   534 
   535 datatype locality = General | Intro | Elim | Simp | Local | Assum | Chained
   536 
   537 (* (quasi-)underapproximation of the truth *)
   538 fun is_locality_global Local = false
   539   | is_locality_global Assum = false
   540   | is_locality_global Chained = false
   541   | is_locality_global _ = true
   542 
   543 datatype polymorphism = Polymorphic | Monomorphic | Mangled_Monomorphic
   544 datatype type_level =
   545   All_Types | Nonmonotonic_Types | Finite_Types | Const_Arg_Types | No_Types
   546 datatype type_heaviness = Heavyweight | Lightweight
   547 
   548 datatype type_sys =
   549   Simple_Types of type_level |
   550   Preds of polymorphism * type_level * type_heaviness |
   551   Tags of polymorphism * type_level * type_heaviness
   552 
   553 fun try_unsuffixes ss s =
   554   fold (fn s' => fn NONE => try (unsuffix s') s | some => some) ss NONE
   555 
   556 fun type_sys_from_string s =
   557   (case try (unprefix "poly_") s of
   558      SOME s => (SOME Polymorphic, s)
   559    | NONE =>
   560      case try (unprefix "mono_") s of
   561        SOME s => (SOME Monomorphic, s)
   562      | NONE =>
   563        case try (unprefix "mangled_") s of
   564          SOME s => (SOME Mangled_Monomorphic, s)
   565        | NONE => (NONE, s))
   566   ||> (fn s =>
   567           (* "_query" and "_bang" are for the ASCII-challenged Mirabelle. *)
   568           case try_unsuffixes ["?", "_query"] s of
   569             SOME s => (Nonmonotonic_Types, s)
   570           | NONE =>
   571             case try_unsuffixes ["!", "_bang"] s of
   572               SOME s => (Finite_Types, s)
   573             | NONE => (All_Types, s))
   574   ||> apsnd (fn s =>
   575                 case try (unsuffix "_heavy") s of
   576                   SOME s => (Heavyweight, s)
   577                 | NONE => (Lightweight, s))
   578   |> (fn (poly, (level, (heaviness, core))) =>
   579          case (core, (poly, level, heaviness)) of
   580            ("simple", (NONE, _, Lightweight)) => Simple_Types level
   581          | ("preds", (SOME poly, _, _)) => Preds (poly, level, heaviness)
   582          | ("tags", (SOME Polymorphic, All_Types, _)) =>
   583            Tags (Polymorphic, All_Types, heaviness)
   584          | ("tags", (SOME Polymorphic, _, _)) =>
   585            (* The actual light encoding is very unsound. *)
   586            Tags (Polymorphic, level, Heavyweight)
   587          | ("tags", (SOME poly, _, _)) => Tags (poly, level, heaviness)
   588          | ("args", (SOME poly, All_Types (* naja *), Lightweight)) =>
   589            Preds (poly, Const_Arg_Types, Lightweight)
   590          | ("erased", (NONE, All_Types (* naja *), Lightweight)) =>
   591            Preds (Polymorphic, No_Types, Lightweight)
   592          | _ => raise Same.SAME)
   593   handle Same.SAME => error ("Unknown type system: " ^ quote s ^ ".")
   594 
   595 fun polymorphism_of_type_sys (Simple_Types _) = Mangled_Monomorphic
   596   | polymorphism_of_type_sys (Preds (poly, _, _)) = poly
   597   | polymorphism_of_type_sys (Tags (poly, _, _)) = poly
   598 
   599 fun level_of_type_sys (Simple_Types level) = level
   600   | level_of_type_sys (Preds (_, level, _)) = level
   601   | level_of_type_sys (Tags (_, level, _)) = level
   602 
   603 fun heaviness_of_type_sys (Simple_Types _) = Heavyweight
   604   | heaviness_of_type_sys (Preds (_, _, heaviness)) = heaviness
   605   | heaviness_of_type_sys (Tags (_, _, heaviness)) = heaviness
   606 
   607 fun is_type_level_virtually_sound level =
   608   level = All_Types orelse level = Nonmonotonic_Types
   609 val is_type_sys_virtually_sound =
   610   is_type_level_virtually_sound o level_of_type_sys
   611 
   612 fun is_type_level_fairly_sound level =
   613   is_type_level_virtually_sound level orelse level = Finite_Types
   614 val is_type_sys_fairly_sound = is_type_level_fairly_sound o level_of_type_sys
   615 
   616 fun is_setting_higher_order THF (Simple_Types _) = true
   617   | is_setting_higher_order _ _ = false
   618 
   619 fun choose_format formats (Simple_Types level) =
   620     if member (op =) formats THF then (THF, Simple_Types level)
   621     else if member (op =) formats TFF then (TFF, Simple_Types level)
   622     else choose_format formats (Preds (Mangled_Monomorphic, level, Heavyweight))
   623   | choose_format formats type_sys =
   624     (case hd formats of
   625        CNF_UEQ =>
   626        (CNF_UEQ, case type_sys of
   627                    Preds stuff =>
   628                    (if is_type_sys_fairly_sound type_sys then Tags else Preds)
   629                        stuff
   630                  | _ => type_sys)
   631      | format => (format, type_sys))
   632 
   633 type translated_formula =
   634   {name: string,
   635    locality: locality,
   636    kind: formula_kind,
   637    combformula: (name, typ, combterm) formula,
   638    atomic_types: typ list}
   639 
   640 fun update_combformula f ({name, locality, kind, combformula, atomic_types}
   641                           : translated_formula) =
   642   {name = name, locality = locality, kind = kind, combformula = f combformula,
   643    atomic_types = atomic_types} : translated_formula
   644 
   645 fun fact_lift f ({combformula, ...} : translated_formula) = f combformula
   646 
   647 val type_instance = Sign.typ_instance o Proof_Context.theory_of
   648 
   649 fun insert_type ctxt get_T x xs =
   650   let val T = get_T x in
   651     if exists (curry (type_instance ctxt) T o get_T) xs then xs
   652     else x :: filter_out (curry (type_instance ctxt o swap) T o get_T) xs
   653   end
   654 
   655 (* The Booleans indicate whether all type arguments should be kept. *)
   656 datatype type_arg_policy =
   657   Explicit_Type_Args of bool |
   658   Mangled_Type_Args of bool |
   659   No_Type_Args
   660 
   661 fun should_drop_arg_type_args (Simple_Types _) =
   662     false (* since TFF doesn't support overloading *)
   663   | should_drop_arg_type_args type_sys =
   664     level_of_type_sys type_sys = All_Types andalso
   665     heaviness_of_type_sys type_sys = Heavyweight
   666 
   667 fun general_type_arg_policy (Tags (_, All_Types, Heavyweight)) = No_Type_Args
   668   | general_type_arg_policy type_sys =
   669     if level_of_type_sys type_sys = No_Types then
   670       No_Type_Args
   671     else if polymorphism_of_type_sys type_sys = Mangled_Monomorphic then
   672       Mangled_Type_Args (should_drop_arg_type_args type_sys)
   673     else
   674       Explicit_Type_Args (should_drop_arg_type_args type_sys)
   675 
   676 fun type_arg_policy type_sys s =
   677   if s = @{const_name HOL.eq} orelse
   678      (s = app_op_name andalso level_of_type_sys type_sys = Const_Arg_Types) then
   679     No_Type_Args
   680   else if s = type_tag_name then
   681     Explicit_Type_Args false
   682   else
   683     general_type_arg_policy type_sys
   684 
   685 (*Make literals for sorted type variables*)
   686 fun generic_add_sorts_on_type (_, []) = I
   687   | generic_add_sorts_on_type ((x, i), s :: ss) =
   688     generic_add_sorts_on_type ((x, i), ss)
   689     #> (if s = the_single @{sort HOL.type} then
   690           I
   691         else if i = ~1 then
   692           insert (op =) (TyLitFree (`make_type_class s, `make_fixed_type_var x))
   693         else
   694           insert (op =) (TyLitVar (`make_type_class s,
   695                                    (make_schematic_type_var (x, i), x))))
   696 fun add_sorts_on_tfree (TFree (s, S)) = generic_add_sorts_on_type ((s, ~1), S)
   697   | add_sorts_on_tfree _ = I
   698 fun add_sorts_on_tvar (TVar z) = generic_add_sorts_on_type z
   699   | add_sorts_on_tvar _ = I
   700 
   701 fun type_literals_for_types type_sys add_sorts_on_typ Ts =
   702   [] |> level_of_type_sys type_sys <> No_Types ? fold add_sorts_on_typ Ts
   703 
   704 fun mk_aconns c phis =
   705   let val (phis', phi') = split_last phis in
   706     fold_rev (mk_aconn c) phis' phi'
   707   end
   708 fun mk_ahorn [] phi = phi
   709   | mk_ahorn phis psi = AConn (AImplies, [mk_aconns AAnd phis, psi])
   710 fun mk_aquant _ [] phi = phi
   711   | mk_aquant q xs (phi as AQuant (q', xs', phi')) =
   712     if q = q' then AQuant (q, xs @ xs', phi') else AQuant (q, xs, phi)
   713   | mk_aquant q xs phi = AQuant (q, xs, phi)
   714 
   715 fun close_universally atom_vars phi =
   716   let
   717     fun formula_vars bounds (AQuant (_, xs, phi)) =
   718         formula_vars (map fst xs @ bounds) phi
   719       | formula_vars bounds (AConn (_, phis)) = fold (formula_vars bounds) phis
   720       | formula_vars bounds (AAtom tm) =
   721         union (op =) (atom_vars tm []
   722                       |> filter_out (member (op =) bounds o fst))
   723   in mk_aquant AForall (formula_vars [] phi []) phi end
   724 
   725 fun combterm_vars (CombApp (tm1, tm2)) = fold combterm_vars [tm1, tm2]
   726   | combterm_vars (CombConst _) = I
   727   | combterm_vars (CombVar (name, T)) = insert (op =) (name, SOME T)
   728 fun close_combformula_universally phi = close_universally combterm_vars phi
   729 
   730 fun term_vars (ATerm (name as (s, _), tms)) =
   731   is_tptp_variable s ? insert (op =) (name, NONE) #> fold term_vars tms
   732 fun close_formula_universally phi = close_universally term_vars phi
   733 
   734 val homo_infinite_type_name = @{type_name ind} (* any infinite type *)
   735 val homo_infinite_type = Type (homo_infinite_type_name, [])
   736 
   737 fun fo_term_from_typ format type_sys =
   738   let
   739     fun term (Type (s, Ts)) =
   740       ATerm (case (is_setting_higher_order format type_sys, s) of
   741                (true, @{type_name bool}) => `I tptp_bool_type
   742              | (true, @{type_name fun}) => `I tptp_fun_type
   743              | _ => if s = homo_infinite_type_name andalso
   744                        (format = TFF orelse format = THF) then
   745                       `I tptp_individual_type
   746                     else
   747                       `make_fixed_type_const s,
   748              map term Ts)
   749     | term (TFree (s, _)) = ATerm (`make_fixed_type_var s, [])
   750     | term (TVar ((x as (s, _)), _)) =
   751       ATerm ((make_schematic_type_var x, s), [])
   752   in term end
   753 
   754 (* This shouldn't clash with anything else. *)
   755 val mangled_type_sep = "\000"
   756 
   757 fun generic_mangled_type_name f (ATerm (name, [])) = f name
   758   | generic_mangled_type_name f (ATerm (name, tys)) =
   759     f name ^ "(" ^ space_implode "," (map (generic_mangled_type_name f) tys)
   760     ^ ")"
   761 
   762 val bool_atype = AType (`I tptp_bool_type)
   763 
   764 fun make_simple_type s =
   765   if s = tptp_bool_type orelse s = tptp_fun_type orelse
   766      s = tptp_individual_type then
   767     s
   768   else
   769     simple_type_prefix ^ ascii_of s
   770 
   771 fun ho_type_from_fo_term format type_sys pred_sym ary =
   772   let
   773     fun to_atype ty =
   774       AType ((make_simple_type (generic_mangled_type_name fst ty),
   775               generic_mangled_type_name snd ty))
   776     fun to_afun f1 f2 tys = AFun (f1 (hd tys), f2 (nth tys 1))
   777     fun to_fo 0 ty = if pred_sym then bool_atype else to_atype ty
   778       | to_fo ary (ATerm (_, tys)) = to_afun to_atype (to_fo (ary - 1)) tys
   779     fun to_ho (ty as ATerm ((s, _), tys)) =
   780       if s = tptp_fun_type then to_afun to_ho to_ho tys else to_atype ty
   781   in if is_setting_higher_order format type_sys then to_ho else to_fo ary end
   782 
   783 fun mangled_type format type_sys pred_sym ary =
   784   ho_type_from_fo_term format type_sys pred_sym ary
   785   o fo_term_from_typ format type_sys
   786 
   787 fun mangled_const_name format type_sys T_args (s, s') =
   788   let
   789     val ty_args = map (fo_term_from_typ format type_sys) T_args
   790     fun type_suffix f g =
   791       fold_rev (curry (op ^) o g o prefix mangled_type_sep
   792                 o generic_mangled_type_name f) ty_args ""
   793   in (s ^ type_suffix fst ascii_of, s' ^ type_suffix snd I) end
   794 
   795 val parse_mangled_ident =
   796   Scan.many1 (not o member (op =) ["(", ")", ","]) >> implode
   797 
   798 fun parse_mangled_type x =
   799   (parse_mangled_ident
   800    -- Scan.optional ($$ "(" |-- Scan.optional parse_mangled_types [] --| $$ ")")
   801                     [] >> ATerm) x
   802 and parse_mangled_types x =
   803   (parse_mangled_type ::: Scan.repeat ($$ "," |-- parse_mangled_type)) x
   804 
   805 fun unmangled_type s =
   806   s |> suffix ")" |> raw_explode
   807     |> Scan.finite Symbol.stopper
   808            (Scan.error (!! (fn _ => raise Fail ("unrecognized mangled type " ^
   809                                                 quote s)) parse_mangled_type))
   810     |> fst
   811 
   812 val unmangled_const_name = space_explode mangled_type_sep #> hd
   813 fun unmangled_const s =
   814   let val ss = space_explode mangled_type_sep s in
   815     (hd ss, map unmangled_type (tl ss))
   816   end
   817 
   818 fun introduce_proxies format type_sys =
   819   let
   820     fun intro top_level (CombApp (tm1, tm2)) =
   821         CombApp (intro top_level tm1, intro false tm2)
   822       | intro top_level (CombConst (name as (s, _), T, T_args)) =
   823         (case proxify_const s of
   824            SOME proxy_base =>
   825            if top_level orelse is_setting_higher_order format type_sys then
   826              case (top_level, s) of
   827                (_, "c_False") => (`I tptp_false, [])
   828              | (_, "c_True") => (`I tptp_true, [])
   829              | (false, "c_Not") => (`I tptp_not, [])
   830              | (false, "c_conj") => (`I tptp_and, [])
   831              | (false, "c_disj") => (`I tptp_or, [])
   832              | (false, "c_implies") => (`I tptp_implies, [])
   833              | (false, s) =>
   834                if is_tptp_equal s then (`I tptp_equal, [])
   835                else (proxy_base |>> prefix const_prefix, T_args)
   836              | _ => (name, [])
   837            else
   838              (proxy_base |>> prefix const_prefix, T_args)
   839           | NONE => (name, T_args))
   840         |> (fn (name, T_args) => CombConst (name, T, T_args))
   841       | intro _ tm = tm
   842   in intro true end
   843 
   844 fun combformula_from_prop thy format type_sys eq_as_iff =
   845   let
   846     fun do_term bs t atomic_types =
   847       combterm_from_term thy bs (Envir.eta_contract t)
   848       |>> (introduce_proxies format type_sys #> AAtom)
   849       ||> union (op =) atomic_types
   850     fun do_quant bs q s T t' =
   851       let val s = Name.variant (map fst bs) s in
   852         do_formula ((s, T) :: bs) t'
   853         #>> mk_aquant q [(`make_bound_var s, SOME T)]
   854       end
   855     and do_conn bs c t1 t2 =
   856       do_formula bs t1 ##>> do_formula bs t2 #>> uncurry (mk_aconn c)
   857     and do_formula bs t =
   858       case t of
   859         @{const Trueprop} $ t1 => do_formula bs t1
   860       | @{const Not} $ t1 => do_formula bs t1 #>> mk_anot
   861       | Const (@{const_name All}, _) $ Abs (s, T, t') =>
   862         do_quant bs AForall s T t'
   863       | Const (@{const_name Ex}, _) $ Abs (s, T, t') =>
   864         do_quant bs AExists s T t'
   865       | @{const HOL.conj} $ t1 $ t2 => do_conn bs AAnd t1 t2
   866       | @{const HOL.disj} $ t1 $ t2 => do_conn bs AOr t1 t2
   867       | @{const HOL.implies} $ t1 $ t2 => do_conn bs AImplies t1 t2
   868       | Const (@{const_name HOL.eq}, Type (_, [@{typ bool}, _])) $ t1 $ t2 =>
   869         if eq_as_iff then do_conn bs AIff t1 t2 else do_term bs t
   870       | _ => do_term bs t
   871   in do_formula [] end
   872 
   873 fun presimplify_term _ [] t = t
   874   | presimplify_term ctxt presimp_consts t =
   875     t |> exists_Const (member (op =) presimp_consts o fst) t
   876          ? (Skip_Proof.make_thm (Proof_Context.theory_of ctxt)
   877             #> Meson.presimplify ctxt
   878             #> prop_of)
   879 
   880 fun concealed_bound_name j = sledgehammer_weak_prefix ^ string_of_int j
   881 fun conceal_bounds Ts t =
   882   subst_bounds (map (Free o apfst concealed_bound_name)
   883                     (0 upto length Ts - 1 ~~ Ts), t)
   884 fun reveal_bounds Ts =
   885   subst_atomic (map (fn (j, T) => (Free (concealed_bound_name j, T), Bound j))
   886                     (0 upto length Ts - 1 ~~ Ts))
   887 
   888 fun is_fun_equality (@{const_name HOL.eq},
   889                      Type (_, [Type (@{type_name fun}, _), _])) = true
   890   | is_fun_equality _ = false
   891 
   892 fun extensionalize_term ctxt t =
   893   if exists_Const is_fun_equality t then
   894     let val thy = Proof_Context.theory_of ctxt in
   895       t |> cterm_of thy |> Meson.extensionalize_conv ctxt
   896         |> prop_of |> Logic.dest_equals |> snd
   897     end
   898   else
   899     t
   900 
   901 fun introduce_combinators_in_term ctxt kind t =
   902   let val thy = Proof_Context.theory_of ctxt in
   903     if Meson.is_fol_term thy t then
   904       t
   905     else
   906       let
   907         fun aux Ts t =
   908           case t of
   909             @{const Not} $ t1 => @{const Not} $ aux Ts t1
   910           | (t0 as Const (@{const_name All}, _)) $ Abs (s, T, t') =>
   911             t0 $ Abs (s, T, aux (T :: Ts) t')
   912           | (t0 as Const (@{const_name All}, _)) $ t1 =>
   913             aux Ts (t0 $ eta_expand Ts t1 1)
   914           | (t0 as Const (@{const_name Ex}, _)) $ Abs (s, T, t') =>
   915             t0 $ Abs (s, T, aux (T :: Ts) t')
   916           | (t0 as Const (@{const_name Ex}, _)) $ t1 =>
   917             aux Ts (t0 $ eta_expand Ts t1 1)
   918           | (t0 as @{const HOL.conj}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
   919           | (t0 as @{const HOL.disj}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
   920           | (t0 as @{const HOL.implies}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
   921           | (t0 as Const (@{const_name HOL.eq}, Type (_, [@{typ bool}, _])))
   922               $ t1 $ t2 =>
   923             t0 $ aux Ts t1 $ aux Ts t2
   924           | _ => if not (exists_subterm (fn Abs _ => true | _ => false) t) then
   925                    t
   926                  else
   927                    t |> conceal_bounds Ts
   928                      |> Envir.eta_contract
   929                      |> cterm_of thy
   930                      |> Meson_Clausify.introduce_combinators_in_cterm
   931                      |> prop_of |> Logic.dest_equals |> snd
   932                      |> reveal_bounds Ts
   933         val (t, ctxt') = Variable.import_terms true [t] ctxt |>> the_single
   934       in t |> aux [] |> singleton (Variable.export_terms ctxt' ctxt) end
   935       handle THM _ =>
   936              (* A type variable of sort "{}" will make abstraction fail. *)
   937              if kind = Conjecture then HOLogic.false_const
   938              else HOLogic.true_const
   939   end
   940 
   941 (* Metis's use of "resolve_tac" freezes the schematic variables. We simulate the
   942    same in Sledgehammer to prevent the discovery of unreplayable proofs. *)
   943 fun freeze_term t =
   944   let
   945     fun aux (t $ u) = aux t $ aux u
   946       | aux (Abs (s, T, t)) = Abs (s, T, aux t)
   947       | aux (Var ((s, i), T)) =
   948         Free (sledgehammer_weak_prefix ^ s ^ "_" ^ string_of_int i, T)
   949       | aux t = t
   950   in t |> exists_subterm is_Var t ? aux end
   951 
   952 fun preprocess_prop ctxt presimp_consts kind t =
   953   let
   954     val thy = Proof_Context.theory_of ctxt
   955     val t = t |> Envir.beta_eta_contract
   956               |> transform_elim_prop
   957               |> Object_Logic.atomize_term thy
   958     val need_trueprop = (fastype_of t = @{typ bool})
   959   in
   960     t |> need_trueprop ? HOLogic.mk_Trueprop
   961       |> Raw_Simplifier.rewrite_term thy (Meson.unfold_set_const_simps ctxt) []
   962       |> extensionalize_term ctxt
   963       |> presimplify_term ctxt presimp_consts
   964       |> perhaps (try (HOLogic.dest_Trueprop))
   965       |> introduce_combinators_in_term ctxt kind
   966   end
   967 
   968 (* making fact and conjecture formulas *)
   969 fun make_formula thy format type_sys eq_as_iff name loc kind t =
   970   let
   971     val (combformula, atomic_types) =
   972       combformula_from_prop thy format type_sys eq_as_iff t []
   973   in
   974     {name = name, locality = loc, kind = kind, combformula = combformula,
   975      atomic_types = atomic_types}
   976   end
   977 
   978 fun make_fact ctxt format type_sys eq_as_iff preproc presimp_consts
   979               ((name, loc), t) =
   980   let val thy = Proof_Context.theory_of ctxt in
   981     case t |> preproc ? preprocess_prop ctxt presimp_consts Axiom
   982            |> make_formula thy format type_sys (eq_as_iff andalso format <> CNF)
   983                            name loc Axiom of
   984       formula as {combformula = AAtom (CombConst ((s, _), _, _)), ...} =>
   985       if s = tptp_true then NONE else SOME formula
   986     | formula => SOME formula
   987   end
   988 
   989 fun make_conjecture ctxt format prem_kind type_sys preproc presimp_consts ts =
   990   let
   991     val thy = Proof_Context.theory_of ctxt
   992     val last = length ts - 1
   993   in
   994     map2 (fn j => fn t =>
   995              let
   996                val (kind, maybe_negate) =
   997                  if j = last then
   998                    (Conjecture, I)
   999                  else
  1000                    (prem_kind,
  1001                     if prem_kind = Conjecture then update_combformula mk_anot
  1002                     else I)
  1003               in
  1004                 t |> preproc ?
  1005                      (preprocess_prop ctxt presimp_consts kind #> freeze_term)
  1006                   |> make_formula thy format type_sys (format <> CNF)
  1007                                   (string_of_int j) Local kind
  1008                   |> maybe_negate
  1009               end)
  1010          (0 upto last) ts
  1011   end
  1012 
  1013 (** Finite and infinite type inference **)
  1014 
  1015 fun deep_freeze_atyp (TVar (_, S)) = TFree ("v", S)
  1016   | deep_freeze_atyp T = T
  1017 val deep_freeze_type = map_atyps deep_freeze_atyp
  1018 
  1019 (* Finite types such as "unit", "bool", "bool * bool", and "bool => bool" are
  1020    dangerous because their "exhaust" properties can easily lead to unsound ATP
  1021    proofs. On the other hand, all HOL infinite types can be given the same
  1022    models in first-order logic (via Löwenheim-Skolem). *)
  1023 
  1024 fun should_encode_type ctxt (nonmono_Ts as _ :: _) _ T =
  1025     exists (curry (type_instance ctxt) (deep_freeze_type T)) nonmono_Ts
  1026   | should_encode_type _ _ All_Types _ = true
  1027   | should_encode_type ctxt _ Finite_Types T = is_type_surely_finite ctxt T
  1028   | should_encode_type _ _ _ _ = false
  1029 
  1030 fun should_predicate_on_type ctxt nonmono_Ts (Preds (_, level, heaviness))
  1031                              should_predicate_on_var T =
  1032     (heaviness = Heavyweight orelse should_predicate_on_var ()) andalso
  1033     should_encode_type ctxt nonmono_Ts level T
  1034   | should_predicate_on_type _ _ _ _ _ = false
  1035 
  1036 fun is_var_or_bound_var (CombConst ((s, _), _, _)) =
  1037     String.isPrefix bound_var_prefix s
  1038   | is_var_or_bound_var (CombVar _) = true
  1039   | is_var_or_bound_var _ = false
  1040 
  1041 datatype tag_site = Top_Level | Eq_Arg | Elsewhere
  1042 
  1043 fun should_tag_with_type _ _ _ Top_Level _ _ = false
  1044   | should_tag_with_type ctxt nonmono_Ts (Tags (_, level, heaviness)) site u T =
  1045     (case heaviness of
  1046        Heavyweight => should_encode_type ctxt nonmono_Ts level T
  1047      | Lightweight =>
  1048        case (site, is_var_or_bound_var u) of
  1049          (Eq_Arg, true) => should_encode_type ctxt nonmono_Ts level T
  1050        | _ => false)
  1051   | should_tag_with_type _ _ _ _ _ _ = false
  1052 
  1053 fun homogenized_type ctxt nonmono_Ts level =
  1054   let
  1055     val should_encode = should_encode_type ctxt nonmono_Ts level
  1056     fun homo 0 T = if should_encode T then T else homo_infinite_type
  1057       | homo ary (Type (@{type_name fun}, [T1, T2])) =
  1058         homo 0 T1 --> homo (ary - 1) T2
  1059       | homo _ _ = raise Fail "expected function type"
  1060   in homo end
  1061 
  1062 (** "hBOOL" and "hAPP" **)
  1063 
  1064 type sym_info =
  1065   {pred_sym : bool, min_ary : int, max_ary : int, types : typ list}
  1066 
  1067 fun add_combterm_syms_to_table ctxt explicit_apply =
  1068   let
  1069     fun consider_var_arity const_T var_T max_ary =
  1070       let
  1071         fun iter ary T =
  1072           if ary = max_ary orelse type_instance ctxt (var_T, T) orelse
  1073              type_instance ctxt (T, var_T) then
  1074             ary
  1075           else
  1076             iter (ary + 1) (range_type T)
  1077       in iter 0 const_T end
  1078     fun add_var_or_bound_var T (accum as ((bool_vars, fun_var_Ts), sym_tab)) =
  1079       if explicit_apply = NONE andalso
  1080          (can dest_funT T orelse T = @{typ bool}) then
  1081         let
  1082           val bool_vars' = bool_vars orelse body_type T = @{typ bool}
  1083           fun repair_min_arity {pred_sym, min_ary, max_ary, types} =
  1084             {pred_sym = pred_sym andalso not bool_vars',
  1085              min_ary = fold (fn T' => consider_var_arity T' T) types min_ary,
  1086              max_ary = max_ary, types = types}
  1087           val fun_var_Ts' =
  1088             fun_var_Ts |> can dest_funT T ? insert_type ctxt I T
  1089         in
  1090           if bool_vars' = bool_vars andalso
  1091              pointer_eq (fun_var_Ts', fun_var_Ts) then
  1092             accum
  1093           else
  1094             ((bool_vars', fun_var_Ts'), Symtab.map (K repair_min_arity) sym_tab)
  1095         end
  1096       else
  1097         accum
  1098     fun add top_level tm (accum as ((bool_vars, fun_var_Ts), sym_tab)) =
  1099       let val (head, args) = strip_combterm_comb tm in
  1100         (case head of
  1101            CombConst ((s, _), T, _) =>
  1102            if String.isPrefix bound_var_prefix s then
  1103              add_var_or_bound_var T accum
  1104            else
  1105              let val ary = length args in
  1106                ((bool_vars, fun_var_Ts),
  1107                 case Symtab.lookup sym_tab s of
  1108                   SOME {pred_sym, min_ary, max_ary, types} =>
  1109                   let
  1110                     val pred_sym =
  1111                       pred_sym andalso top_level andalso not bool_vars
  1112                     val types' = types |> insert_type ctxt I T
  1113                     val min_ary =
  1114                       if is_some explicit_apply orelse
  1115                          pointer_eq (types', types) then
  1116                         min_ary
  1117                       else
  1118                         fold (consider_var_arity T) fun_var_Ts min_ary
  1119                   in
  1120                     Symtab.update (s, {pred_sym = pred_sym,
  1121                                        min_ary = Int.min (ary, min_ary),
  1122                                        max_ary = Int.max (ary, max_ary),
  1123                                        types = types'})
  1124                                   sym_tab
  1125                   end
  1126                 | NONE =>
  1127                   let
  1128                     val pred_sym = top_level andalso not bool_vars
  1129                     val min_ary =
  1130                       case explicit_apply of
  1131                         SOME true => 0
  1132                       | SOME false => ary
  1133                       | NONE => fold (consider_var_arity T) fun_var_Ts ary
  1134                   in
  1135                     Symtab.update_new (s, {pred_sym = pred_sym,
  1136                                            min_ary = min_ary, max_ary = ary,
  1137                                            types = [T]})
  1138                                       sym_tab
  1139                   end)
  1140              end
  1141          | CombVar (_, T) => add_var_or_bound_var T accum
  1142          | _ => accum)
  1143         |> fold (add false) args
  1144       end
  1145   in add true end
  1146 fun add_fact_syms_to_table ctxt explicit_apply =
  1147   fact_lift (formula_fold NONE
  1148                           (K (add_combterm_syms_to_table ctxt explicit_apply)))
  1149 
  1150 val default_sym_tab_entries : (string * sym_info) list =
  1151   (prefixed_predicator_name,
  1152    {pred_sym = true, min_ary = 1, max_ary = 1, types = []}) ::
  1153   ([tptp_false, tptp_true]
  1154    |> map (rpair {pred_sym = true, min_ary = 0, max_ary = 0, types = []})) @
  1155   ([tptp_equal, tptp_old_equal]
  1156    |> map (rpair {pred_sym = true, min_ary = 2, max_ary = 2, types = []}))
  1157 
  1158 fun sym_table_for_facts ctxt explicit_apply facts =
  1159   ((false, []), Symtab.empty)
  1160   |> fold (add_fact_syms_to_table ctxt explicit_apply) facts |> snd
  1161   |> fold Symtab.update default_sym_tab_entries
  1162 
  1163 fun min_arity_of sym_tab s =
  1164   case Symtab.lookup sym_tab s of
  1165     SOME ({min_ary, ...} : sym_info) => min_ary
  1166   | NONE =>
  1167     case strip_prefix_and_unascii const_prefix s of
  1168       SOME s =>
  1169       let val s = s |> unmangled_const_name |> invert_const in
  1170         if s = predicator_name then 1
  1171         else if s = app_op_name then 2
  1172         else if s = type_pred_name then 1
  1173         else 0
  1174       end
  1175     | NONE => 0
  1176 
  1177 (* True if the constant ever appears outside of the top-level position in
  1178    literals, or if it appears with different arities (e.g., because of different
  1179    type instantiations). If false, the constant always receives all of its
  1180    arguments and is used as a predicate. *)
  1181 fun is_pred_sym sym_tab s =
  1182   case Symtab.lookup sym_tab s of
  1183     SOME ({pred_sym, min_ary, max_ary, ...} : sym_info) =>
  1184     pred_sym andalso min_ary = max_ary
  1185   | NONE => false
  1186 
  1187 val predicator_combconst =
  1188   CombConst (`make_fixed_const predicator_name, @{typ "bool => bool"}, [])
  1189 fun predicator tm = CombApp (predicator_combconst, tm)
  1190 
  1191 fun introduce_predicators_in_combterm sym_tab tm =
  1192   case strip_combterm_comb tm of
  1193     (CombConst ((s, _), _, _), _) =>
  1194     if is_pred_sym sym_tab s then tm else predicator tm
  1195   | _ => predicator tm
  1196 
  1197 fun list_app head args = fold (curry (CombApp o swap)) args head
  1198 
  1199 val app_op = `make_fixed_const app_op_name
  1200 
  1201 fun explicit_app arg head =
  1202   let
  1203     val head_T = combtyp_of head
  1204     val (arg_T, res_T) = dest_funT head_T
  1205     val explicit_app =
  1206       CombConst (app_op, head_T --> head_T, [arg_T, res_T])
  1207   in list_app explicit_app [head, arg] end
  1208 fun list_explicit_app head args = fold explicit_app args head
  1209 
  1210 fun introduce_explicit_apps_in_combterm sym_tab =
  1211   let
  1212     fun aux tm =
  1213       case strip_combterm_comb tm of
  1214         (head as CombConst ((s, _), _, _), args) =>
  1215         args |> map aux
  1216              |> chop (min_arity_of sym_tab s)
  1217              |>> list_app head
  1218              |-> list_explicit_app
  1219       | (head, args) => list_explicit_app head (map aux args)
  1220   in aux end
  1221 
  1222 fun chop_fun 0 T = ([], T)
  1223   | chop_fun n (Type (@{type_name fun}, [dom_T, ran_T])) =
  1224     chop_fun (n - 1) ran_T |>> cons dom_T
  1225   | chop_fun _ _ = raise Fail "unexpected non-function"
  1226 
  1227 fun filter_type_args _ _ _ [] = []
  1228   | filter_type_args thy s arity T_args =
  1229     let
  1230       (* will throw "TYPE" for pseudo-constants *)
  1231       val U = if s = app_op_name then
  1232                 @{typ "('a => 'b) => 'a => 'b"} |> Logic.varifyT_global
  1233               else
  1234                 s |> Sign.the_const_type thy
  1235     in
  1236       case Term.add_tvarsT (U |> chop_fun arity |> snd) [] of
  1237         [] => []
  1238       | res_U_vars =>
  1239         let val U_args = (s, U) |> Sign.const_typargs thy in
  1240           U_args ~~ T_args
  1241           |> map_filter (fn (U, T) =>
  1242                             if member (op =) res_U_vars (dest_TVar U) then
  1243                               SOME T
  1244                             else
  1245                               NONE)
  1246         end
  1247     end
  1248     handle TYPE _ => T_args
  1249 
  1250 fun enforce_type_arg_policy_in_combterm ctxt format type_sys =
  1251   let
  1252     val thy = Proof_Context.theory_of ctxt
  1253     fun aux arity (CombApp (tm1, tm2)) =
  1254         CombApp (aux (arity + 1) tm1, aux 0 tm2)
  1255       | aux arity (CombConst (name as (s, _), T, T_args)) =
  1256         (case strip_prefix_and_unascii const_prefix s of
  1257            NONE => (name, T_args)
  1258          | SOME s'' =>
  1259            let
  1260              val s'' = invert_const s''
  1261              fun filtered_T_args false = T_args
  1262                | filtered_T_args true = filter_type_args thy s'' arity T_args
  1263            in
  1264              case type_arg_policy type_sys s'' of
  1265                Explicit_Type_Args drop_args =>
  1266                (name, filtered_T_args drop_args)
  1267              | Mangled_Type_Args drop_args =>
  1268                (mangled_const_name format type_sys (filtered_T_args drop_args)
  1269                                    name, [])
  1270              | No_Type_Args => (name, [])
  1271            end)
  1272         |> (fn (name, T_args) => CombConst (name, T, T_args))
  1273       | aux _ tm = tm
  1274   in aux 0 end
  1275 
  1276 fun repair_combterm ctxt format type_sys sym_tab =
  1277   not (is_setting_higher_order format type_sys)
  1278   ? (introduce_explicit_apps_in_combterm sym_tab
  1279      #> introduce_predicators_in_combterm sym_tab)
  1280   #> enforce_type_arg_policy_in_combterm ctxt format type_sys
  1281 fun repair_fact ctxt format type_sys sym_tab =
  1282   update_combformula (formula_map
  1283       (repair_combterm ctxt format type_sys sym_tab))
  1284 
  1285 (** Helper facts **)
  1286 
  1287 (* The Boolean indicates that a fairly sound type encoding is needed. *)
  1288 val helper_table =
  1289   [(("COMBI", false), @{thms Meson.COMBI_def}),
  1290    (("COMBK", false), @{thms Meson.COMBK_def}),
  1291    (("COMBB", false), @{thms Meson.COMBB_def}),
  1292    (("COMBC", false), @{thms Meson.COMBC_def}),
  1293    (("COMBS", false), @{thms Meson.COMBS_def}),
  1294    (("fequal", true),
  1295     (* This is a lie: Higher-order equality doesn't need a sound type encoding.
  1296        However, this is done so for backward compatibility: Including the
  1297        equality helpers by default in Metis breaks a few existing proofs. *)
  1298     @{thms fequal_def [THEN Meson.iff_to_disjD, THEN conjunct1]
  1299            fequal_def [THEN Meson.iff_to_disjD, THEN conjunct2]}),
  1300    (("fFalse", false), [@{lemma "~ fFalse" by (unfold fFalse_def) fast}]),
  1301    (("fFalse", true), @{thms True_or_False}),
  1302    (("fTrue", false), [@{lemma "fTrue" by (unfold fTrue_def) fast}]),
  1303    (("fTrue", true), @{thms True_or_False}),
  1304    (("fNot", false),
  1305     @{thms fNot_def [THEN Meson.iff_to_disjD, THEN conjunct1]
  1306            fNot_def [THEN Meson.iff_to_disjD, THEN conjunct2]}),
  1307    (("fconj", false),
  1308     @{lemma "~ P | ~ Q | fconj P Q" "~ fconj P Q | P" "~ fconj P Q | Q"
  1309         by (unfold fconj_def) fast+}),
  1310    (("fdisj", false),
  1311     @{lemma "~ P | fdisj P Q" "~ Q | fdisj P Q" "~ fdisj P Q | P | Q"
  1312         by (unfold fdisj_def) fast+}),
  1313    (("fimplies", false),
  1314     @{lemma "P | fimplies P Q" "~ Q | fimplies P Q" "~ fimplies P Q | ~ P | Q"
  1315         by (unfold fimplies_def) fast+}),
  1316    (("If", true), @{thms if_True if_False True_or_False})]
  1317   |> map (apsnd (map zero_var_indexes))
  1318 
  1319 val type_tag = `make_fixed_const type_tag_name
  1320 
  1321 fun type_tag_idempotence_fact () =
  1322   let
  1323     fun var s = ATerm (`I s, [])
  1324     fun tag tm = ATerm (type_tag, [var "T", tm])
  1325     val tagged_a = tag (var "A")
  1326   in
  1327     Formula (type_tag_idempotence_helper_name, Axiom,
  1328              AAtom (ATerm (`I tptp_equal, [tag tagged_a, tagged_a]))
  1329              |> close_formula_universally, simp_info, NONE)
  1330   end
  1331 
  1332 fun should_specialize_helper type_sys t =
  1333   case general_type_arg_policy type_sys of
  1334     Mangled_Type_Args _ => not (null (Term.hidden_polymorphism t))
  1335   | _ => false
  1336 
  1337 fun helper_facts_for_sym ctxt format type_sys (s, {types, ...} : sym_info) =
  1338   case strip_prefix_and_unascii const_prefix s of
  1339     SOME mangled_s =>
  1340     let
  1341       val thy = Proof_Context.theory_of ctxt
  1342       val unmangled_s = mangled_s |> unmangled_const_name
  1343       fun dub_and_inst needs_fairly_sound (th, j) =
  1344         ((unmangled_s ^ "_" ^ string_of_int j ^
  1345           (if mangled_s = unmangled_s then "" else "_" ^ ascii_of mangled_s) ^
  1346           (if needs_fairly_sound then typed_helper_suffix
  1347            else untyped_helper_suffix),
  1348           General),
  1349          let val t = th |> prop_of in
  1350            t |> should_specialize_helper type_sys t
  1351                 ? (case types of
  1352                      [T] => specialize_type thy (invert_const unmangled_s, T)
  1353                    | _ => I)
  1354          end)
  1355       val make_facts =
  1356         map_filter (make_fact ctxt format type_sys false false [])
  1357       val fairly_sound = is_type_sys_fairly_sound type_sys
  1358     in
  1359       helper_table
  1360       |> maps (fn ((helper_s, needs_fairly_sound), ths) =>
  1361                   if helper_s <> unmangled_s orelse
  1362                      (needs_fairly_sound andalso not fairly_sound) then
  1363                     []
  1364                   else
  1365                     ths ~~ (1 upto length ths)
  1366                     |> map (dub_and_inst needs_fairly_sound)
  1367                     |> make_facts)
  1368     end
  1369   | NONE => []
  1370 fun helper_facts_for_sym_table ctxt format type_sys sym_tab =
  1371   Symtab.fold_rev (append o helper_facts_for_sym ctxt format type_sys) sym_tab
  1372                   []
  1373 
  1374 (***************************************************************)
  1375 (* Type Classes Present in the Axiom or Conjecture Clauses     *)
  1376 (***************************************************************)
  1377 
  1378 fun set_insert (x, s) = Symtab.update (x, ()) s
  1379 
  1380 fun add_classes (sorts, cset) = List.foldl set_insert cset (flat sorts)
  1381 
  1382 (* Remove this trivial type class (FIXME: similar code elsewhere) *)
  1383 fun delete_type cset = Symtab.delete_safe (the_single @{sort HOL.type}) cset
  1384 
  1385 fun classes_of_terms get_Ts =
  1386   map (map snd o get_Ts)
  1387   #> List.foldl add_classes Symtab.empty
  1388   #> delete_type #> Symtab.keys
  1389 
  1390 val tfree_classes_of_terms = classes_of_terms OldTerm.term_tfrees
  1391 val tvar_classes_of_terms = classes_of_terms OldTerm.term_tvars
  1392 
  1393 (*fold type constructors*)
  1394 fun fold_type_constrs f (Type (a, Ts)) x =
  1395     fold (fold_type_constrs f) Ts (f (a,x))
  1396   | fold_type_constrs _ _ x = x
  1397 
  1398 (*Type constructors used to instantiate overloaded constants are the only ones needed.*)
  1399 fun add_type_constrs_in_term thy =
  1400   let
  1401     fun add (Const (@{const_name Meson.skolem}, _) $ _) = I
  1402       | add (t $ u) = add t #> add u
  1403       | add (Const (x as (s, _))) =
  1404         if String.isPrefix skolem_const_prefix s then I
  1405         else x |> Sign.const_typargs thy |> fold (fold_type_constrs set_insert)
  1406       | add (Abs (_, _, u)) = add u
  1407       | add _ = I
  1408   in add end
  1409 
  1410 fun type_constrs_of_terms thy ts =
  1411   Symtab.keys (fold (add_type_constrs_in_term thy) ts Symtab.empty)
  1412 
  1413 fun translate_formulas ctxt format prem_kind type_sys preproc hyp_ts concl_t
  1414                        facts =
  1415   let
  1416     val thy = Proof_Context.theory_of ctxt
  1417     val fact_ts = facts |> map snd
  1418     val presimp_consts = Meson.presimplified_consts ctxt
  1419     val make_fact = make_fact ctxt format type_sys true preproc presimp_consts
  1420     val (facts, fact_names) =
  1421       facts |> map (fn (name, t) => (name, t) |> make_fact |> rpair name)
  1422             |> map_filter (try (apfst the))
  1423             |> ListPair.unzip
  1424     (* Remove existing facts from the conjecture, as this can dramatically
  1425        boost an ATP's performance (for some reason). *)
  1426     val hyp_ts =
  1427       hyp_ts
  1428       |> map (fn t => if member (op aconv) fact_ts t then @{prop True} else t)
  1429     val goal_t = Logic.list_implies (hyp_ts, concl_t)
  1430     val all_ts = goal_t :: fact_ts
  1431     val subs = tfree_classes_of_terms all_ts
  1432     val supers = tvar_classes_of_terms all_ts
  1433     val tycons = type_constrs_of_terms thy all_ts
  1434     val conjs =
  1435       hyp_ts @ [concl_t]
  1436       |> make_conjecture ctxt format prem_kind type_sys preproc presimp_consts
  1437     val (supers', arity_clauses) =
  1438       if level_of_type_sys type_sys = No_Types then ([], [])
  1439       else make_arity_clauses thy tycons supers
  1440     val class_rel_clauses = make_class_rel_clauses thy subs supers'
  1441   in
  1442     (fact_names |> map single, (conjs, facts, class_rel_clauses, arity_clauses))
  1443   end
  1444 
  1445 fun fo_literal_from_type_literal (TyLitVar (class, name)) =
  1446     (true, ATerm (class, [ATerm (name, [])]))
  1447   | fo_literal_from_type_literal (TyLitFree (class, name)) =
  1448     (true, ATerm (class, [ATerm (name, [])]))
  1449 
  1450 fun formula_from_fo_literal (pos, t) = AAtom t |> not pos ? mk_anot
  1451 
  1452 val type_pred = `make_fixed_const type_pred_name
  1453 
  1454 fun type_pred_combterm ctxt format type_sys T tm =
  1455   CombApp (CombConst (type_pred, T --> @{typ bool}, [T])
  1456            |> enforce_type_arg_policy_in_combterm ctxt format type_sys, tm)
  1457 
  1458 fun var_occurs_positively_naked_in_term _ (SOME false) _ accum = accum
  1459   | var_occurs_positively_naked_in_term name _ (ATerm ((s, _), tms)) accum =
  1460     accum orelse (is_tptp_equal s andalso member (op =) tms (ATerm (name, [])))
  1461 fun is_var_nonmonotonic_in_formula _ _ (SOME false) _ = false
  1462   | is_var_nonmonotonic_in_formula pos phi _ name =
  1463     formula_fold pos (var_occurs_positively_naked_in_term name) phi false
  1464 
  1465 fun mk_const_aterm format type_sys x T_args args =
  1466   ATerm (x, map (fo_term_from_typ format type_sys) T_args @ args)
  1467 
  1468 fun tag_with_type ctxt format nonmono_Ts type_sys T tm =
  1469   CombConst (type_tag, T --> T, [T])
  1470   |> enforce_type_arg_policy_in_combterm ctxt format type_sys
  1471   |> term_from_combterm ctxt format nonmono_Ts type_sys Top_Level
  1472   |> (fn ATerm (s, tms) => ATerm (s, tms @ [tm]))
  1473 and term_from_combterm ctxt format nonmono_Ts type_sys =
  1474   let
  1475     fun aux site u =
  1476       let
  1477         val (head, args) = strip_combterm_comb u
  1478         val (x as (s, _), T_args) =
  1479           case head of
  1480             CombConst (name, _, T_args) => (name, T_args)
  1481           | CombVar (name, _) => (name, [])
  1482           | CombApp _ => raise Fail "impossible \"CombApp\""
  1483         val arg_site = if site = Top_Level andalso is_tptp_equal s then Eq_Arg
  1484                        else Elsewhere
  1485         val t = mk_const_aterm format type_sys x T_args
  1486                     (map (aux arg_site) args)
  1487         val T = combtyp_of u
  1488       in
  1489         t |> (if should_tag_with_type ctxt nonmono_Ts type_sys site u T then
  1490                 tag_with_type ctxt format nonmono_Ts type_sys T
  1491               else
  1492                 I)
  1493       end
  1494   in aux end
  1495 and formula_from_combformula ctxt format nonmono_Ts type_sys
  1496                              should_predicate_on_var =
  1497   let
  1498     val do_term = term_from_combterm ctxt format nonmono_Ts type_sys Top_Level
  1499     val do_bound_type =
  1500       case type_sys of
  1501         Simple_Types level =>
  1502         homogenized_type ctxt nonmono_Ts level 0
  1503         #> mangled_type format type_sys false 0 #> SOME
  1504       | _ => K NONE
  1505     fun do_out_of_bound_type pos phi universal (name, T) =
  1506       if should_predicate_on_type ctxt nonmono_Ts type_sys
  1507              (fn () => should_predicate_on_var pos phi universal name) T then
  1508         CombVar (name, T)
  1509         |> type_pred_combterm ctxt format type_sys T
  1510         |> do_term |> AAtom |> SOME
  1511       else
  1512         NONE
  1513     fun do_formula pos (AQuant (q, xs, phi)) =
  1514         let
  1515           val phi = phi |> do_formula pos
  1516           val universal = Option.map (q = AExists ? not) pos
  1517         in
  1518           AQuant (q, xs |> map (apsnd (fn NONE => NONE
  1519                                         | SOME T => do_bound_type T)),
  1520                   (if q = AForall then mk_ahorn else fold_rev (mk_aconn AAnd))
  1521                       (map_filter
  1522                            (fn (_, NONE) => NONE
  1523                              | (s, SOME T) =>
  1524                                do_out_of_bound_type pos phi universal (s, T))
  1525                            xs)
  1526                       phi)
  1527         end
  1528       | do_formula pos (AConn conn) = aconn_map pos do_formula conn
  1529       | do_formula _ (AAtom tm) = AAtom (do_term tm)
  1530   in do_formula o SOME end
  1531 
  1532 fun bound_tvars type_sys Ts =
  1533   mk_ahorn (map (formula_from_fo_literal o fo_literal_from_type_literal)
  1534                 (type_literals_for_types type_sys add_sorts_on_tvar Ts))
  1535 
  1536 fun formula_for_fact ctxt format nonmono_Ts type_sys
  1537                      ({combformula, atomic_types, ...} : translated_formula) =
  1538   combformula
  1539   |> close_combformula_universally
  1540   |> formula_from_combformula ctxt format nonmono_Ts type_sys
  1541                               is_var_nonmonotonic_in_formula true
  1542   |> bound_tvars type_sys atomic_types
  1543   |> close_formula_universally
  1544 
  1545 (* Each fact is given a unique fact number to avoid name clashes (e.g., because
  1546    of monomorphization). The TPTP explicitly forbids name clashes, and some of
  1547    the remote provers might care. *)
  1548 fun formula_line_for_fact ctxt format prefix encode freshen nonmono_Ts type_sys
  1549                           (j, formula as {name, locality, kind, ...}) =
  1550   Formula (prefix ^
  1551            (if freshen andalso
  1552                polymorphism_of_type_sys type_sys <> Polymorphic then
  1553               string_of_int j ^ "_"
  1554             else
  1555               "") ^ encode name,
  1556            kind, formula_for_fact ctxt format nonmono_Ts type_sys formula, NONE,
  1557            case locality of
  1558              Intro => intro_info
  1559            | Elim => elim_info
  1560            | Simp => simp_info
  1561            | _ => NONE)
  1562 
  1563 fun formula_line_for_class_rel_clause ({name, subclass, superclass, ...}
  1564                                        : class_rel_clause) =
  1565   let val ty_arg = ATerm (`I "T", []) in
  1566     Formula (class_rel_clause_prefix ^ ascii_of name, Axiom,
  1567              AConn (AImplies, [AAtom (ATerm (subclass, [ty_arg])),
  1568                                AAtom (ATerm (superclass, [ty_arg]))])
  1569              |> close_formula_universally, intro_info, NONE)
  1570   end
  1571 
  1572 fun fo_literal_from_arity_literal (TConsLit (c, t, args)) =
  1573     (true, ATerm (c, [ATerm (t, map (fn arg => ATerm (arg, [])) args)]))
  1574   | fo_literal_from_arity_literal (TVarLit (c, sort)) =
  1575     (false, ATerm (c, [ATerm (sort, [])]))
  1576 
  1577 fun formula_line_for_arity_clause ({name, prem_lits, concl_lits, ...}
  1578                                    : arity_clause) =
  1579   Formula (arity_clause_prefix ^ ascii_of name, Axiom,
  1580            mk_ahorn (map (formula_from_fo_literal o apfst not
  1581                           o fo_literal_from_arity_literal) prem_lits)
  1582                     (formula_from_fo_literal
  1583                          (fo_literal_from_arity_literal concl_lits))
  1584            |> close_formula_universally, intro_info, NONE)
  1585 
  1586 fun formula_line_for_conjecture ctxt format nonmono_Ts type_sys
  1587         ({name, kind, combformula, atomic_types, ...} : translated_formula) =
  1588   Formula (conjecture_prefix ^ name, kind,
  1589            formula_from_combformula ctxt format nonmono_Ts type_sys
  1590                is_var_nonmonotonic_in_formula false
  1591                (close_combformula_universally combformula)
  1592            |> bound_tvars type_sys atomic_types
  1593            |> close_formula_universally, NONE, NONE)
  1594 
  1595 fun free_type_literals type_sys ({atomic_types, ...} : translated_formula) =
  1596   atomic_types |> type_literals_for_types type_sys add_sorts_on_tfree
  1597                |> map fo_literal_from_type_literal
  1598 
  1599 fun formula_line_for_free_type j lit =
  1600   Formula (tfree_clause_prefix ^ string_of_int j, Hypothesis,
  1601            formula_from_fo_literal lit, NONE, NONE)
  1602 fun formula_lines_for_free_types type_sys facts =
  1603   let
  1604     val litss = map (free_type_literals type_sys) facts
  1605     val lits = fold (union (op =)) litss []
  1606   in map2 formula_line_for_free_type (0 upto length lits - 1) lits end
  1607 
  1608 (** Symbol declarations **)
  1609 
  1610 fun should_declare_sym type_sys pred_sym s =
  1611   is_tptp_user_symbol s andalso not (String.isPrefix bound_var_prefix s) andalso
  1612   (case type_sys of
  1613      Simple_Types _ => true
  1614    | Tags (_, _, Lightweight) => true
  1615    | _ => not pred_sym)
  1616 
  1617 fun sym_decl_table_for_facts ctxt type_sys repaired_sym_tab (conjs, facts) =
  1618   let
  1619     fun add_combterm in_conj tm =
  1620       let val (head, args) = strip_combterm_comb tm in
  1621         (case head of
  1622            CombConst ((s, s'), T, T_args) =>
  1623            let val pred_sym = is_pred_sym repaired_sym_tab s in
  1624              if should_declare_sym type_sys pred_sym s then
  1625                Symtab.map_default (s, [])
  1626                    (insert_type ctxt #3 (s', T_args, T, pred_sym, length args,
  1627                                          in_conj))
  1628              else
  1629                I
  1630            end
  1631          | _ => I)
  1632         #> fold (add_combterm in_conj) args
  1633       end
  1634     fun add_fact in_conj =
  1635       fact_lift (formula_fold NONE (K (add_combterm in_conj)))
  1636   in
  1637     Symtab.empty
  1638     |> is_type_sys_fairly_sound type_sys
  1639        ? (fold (add_fact true) conjs #> fold (add_fact false) facts)
  1640   end
  1641 
  1642 (* These types witness that the type classes they belong to allow infinite
  1643    models and hence that any types with these type classes is monotonic. *)
  1644 val known_infinite_types =
  1645   [@{typ nat}, Type ("Int.int", []), @{typ "nat => bool"}]
  1646 
  1647 (* This inference is described in section 2.3 of Claessen et al.'s "Sorting it
  1648    out with monotonicity" paper presented at CADE 2011. *)
  1649 fun add_combterm_nonmonotonic_types _ _ _ (SOME false) _ = I
  1650   | add_combterm_nonmonotonic_types ctxt level locality _
  1651         (CombApp (CombApp (CombConst ((s, _), Type (_, [T, _]), _), tm1),
  1652                            tm2)) =
  1653     (is_tptp_equal s andalso exists is_var_or_bound_var [tm1, tm2] andalso
  1654      (case level of
  1655         Nonmonotonic_Types =>
  1656         not (is_locality_global locality) orelse
  1657         not (is_type_surely_infinite ctxt known_infinite_types T)
  1658       | Finite_Types => is_type_surely_finite ctxt T
  1659       | _ => true)) ? insert_type ctxt I (deep_freeze_type T)
  1660   | add_combterm_nonmonotonic_types _ _ _ _ _ = I
  1661 fun add_fact_nonmonotonic_types ctxt level ({kind, locality, combformula, ...}
  1662                                             : translated_formula) =
  1663   formula_fold (SOME (kind <> Conjecture))
  1664                (add_combterm_nonmonotonic_types ctxt level locality) combformula
  1665 fun nonmonotonic_types_for_facts ctxt type_sys facts =
  1666   let val level = level_of_type_sys type_sys in
  1667     if level = Nonmonotonic_Types orelse level = Finite_Types then
  1668       [] |> fold (add_fact_nonmonotonic_types ctxt level) facts
  1669          (* We must add "bool" in case the helper "True_or_False" is added
  1670             later. In addition, several places in the code rely on the list of
  1671             nonmonotonic types not being empty. *)
  1672          |> insert_type ctxt I @{typ bool}
  1673     else
  1674       []
  1675   end
  1676 
  1677 fun decl_line_for_sym ctxt format nonmono_Ts type_sys s
  1678                       (s', T_args, T, pred_sym, ary, _) =
  1679   let
  1680     val (T_arg_Ts, level) =
  1681       case type_sys of
  1682         Simple_Types level => ([], level)
  1683       | _ => (replicate (length T_args) homo_infinite_type, No_Types)
  1684   in
  1685     Decl (sym_decl_prefix ^ s, (s, s'),
  1686           (T_arg_Ts ---> (T |> homogenized_type ctxt nonmono_Ts level ary))
  1687           |> mangled_type format type_sys pred_sym (length T_arg_Ts + ary))
  1688   end
  1689 
  1690 fun is_polymorphic_type T = fold_atyps (fn TVar _ => K true | _ => I) T false
  1691 
  1692 fun formula_line_for_preds_sym_decl ctxt format conj_sym_kind nonmono_Ts
  1693         type_sys n s j (s', T_args, T, _, ary, in_conj) =
  1694   let
  1695     val (kind, maybe_negate) =
  1696       if in_conj then (conj_sym_kind, conj_sym_kind = Conjecture ? mk_anot)
  1697       else (Axiom, I)
  1698     val (arg_Ts, res_T) = chop_fun ary T
  1699     val bound_names =
  1700       1 upto length arg_Ts |> map (`I o make_bound_var o string_of_int)
  1701     val bounds =
  1702       bound_names ~~ arg_Ts |> map (fn (name, T) => CombConst (name, T, []))
  1703     val bound_Ts =
  1704       arg_Ts |> map (fn T => if n > 1 orelse is_polymorphic_type T then SOME T
  1705                              else NONE)
  1706   in
  1707     Formula (preds_sym_formula_prefix ^ s ^
  1708              (if n > 1 then "_" ^ string_of_int j else ""), kind,
  1709              CombConst ((s, s'), T, T_args)
  1710              |> fold (curry (CombApp o swap)) bounds
  1711              |> type_pred_combterm ctxt format type_sys res_T
  1712              |> AAtom |> mk_aquant AForall (bound_names ~~ bound_Ts)
  1713              |> formula_from_combformula ctxt format nonmono_Ts type_sys
  1714                                          (K (K (K (K true)))) true
  1715              |> n > 1 ? bound_tvars type_sys (atyps_of T)
  1716              |> close_formula_universally
  1717              |> maybe_negate,
  1718              intro_info, NONE)
  1719   end
  1720 
  1721 fun formula_lines_for_lightweight_tags_sym_decl ctxt format conj_sym_kind
  1722         nonmono_Ts type_sys n s (j, (s', T_args, T, pred_sym, ary, in_conj)) =
  1723   let
  1724     val ident_base =
  1725       lightweight_tags_sym_formula_prefix ^ s ^
  1726       (if n > 1 then "_" ^ string_of_int j else "")
  1727     val (kind, maybe_negate) =
  1728       if in_conj then (conj_sym_kind, conj_sym_kind = Conjecture ? mk_anot)
  1729       else (Axiom, I)
  1730     val (arg_Ts, res_T) = chop_fun ary T
  1731     val bound_names =
  1732       1 upto length arg_Ts |> map (`I o make_bound_var o string_of_int)
  1733     val bounds = bound_names |> map (fn name => ATerm (name, []))
  1734     val cst = mk_const_aterm format type_sys (s, s') T_args
  1735     val atomic_Ts = atyps_of T
  1736     fun eq tms =
  1737       (if pred_sym then AConn (AIff, map AAtom tms)
  1738        else AAtom (ATerm (`I tptp_equal, tms)))
  1739       |> bound_tvars type_sys atomic_Ts
  1740       |> close_formula_universally
  1741       |> maybe_negate
  1742     val should_encode = should_encode_type ctxt nonmono_Ts All_Types
  1743     val tag_with = tag_with_type ctxt format nonmono_Ts type_sys
  1744     val add_formula_for_res =
  1745       if should_encode res_T then
  1746         cons (Formula (ident_base ^ "_res", kind,
  1747                        eq [tag_with res_T (cst bounds), cst bounds],
  1748                        simp_info, NONE))
  1749       else
  1750         I
  1751     fun add_formula_for_arg k =
  1752       let val arg_T = nth arg_Ts k in
  1753         if should_encode arg_T then
  1754           case chop k bounds of
  1755             (bounds1, bound :: bounds2) =>
  1756             cons (Formula (ident_base ^ "_arg" ^ string_of_int (k + 1), kind,
  1757                            eq [cst (bounds1 @ tag_with arg_T bound :: bounds2),
  1758                                cst bounds],
  1759                            simp_info, NONE))
  1760           | _ => raise Fail "expected nonempty tail"
  1761         else
  1762           I
  1763       end
  1764   in
  1765     [] |> not pred_sym ? add_formula_for_res
  1766        |> fold add_formula_for_arg (ary - 1 downto 0)
  1767   end
  1768 
  1769 fun result_type_of_decl (_, _, T, _, ary, _) = chop_fun ary T |> snd
  1770 
  1771 fun problem_lines_for_sym_decls ctxt format conj_sym_kind nonmono_Ts type_sys
  1772                                 (s, decls) =
  1773   case type_sys of
  1774     Simple_Types _ =>
  1775     decls |> map (decl_line_for_sym ctxt format nonmono_Ts type_sys s)
  1776   | Preds _ =>
  1777     let
  1778       val decls =
  1779         case decls of
  1780           decl :: (decls' as _ :: _) =>
  1781           let val T = result_type_of_decl decl in
  1782             if forall (curry (type_instance ctxt o swap) T
  1783                        o result_type_of_decl) decls' then
  1784               [decl]
  1785             else
  1786               decls
  1787           end
  1788         | _ => decls
  1789       val n = length decls
  1790       val decls =
  1791         decls
  1792         |> filter (should_predicate_on_type ctxt nonmono_Ts type_sys (K true)
  1793                    o result_type_of_decl)
  1794     in
  1795       (0 upto length decls - 1, decls)
  1796       |-> map2 (formula_line_for_preds_sym_decl ctxt format conj_sym_kind
  1797                                                 nonmono_Ts type_sys n s)
  1798     end
  1799   | Tags (_, _, heaviness) =>
  1800     (case heaviness of
  1801        Heavyweight => []
  1802      | Lightweight =>
  1803        let val n = length decls in
  1804          (0 upto n - 1 ~~ decls)
  1805          |> maps (formula_lines_for_lightweight_tags_sym_decl ctxt format
  1806                       conj_sym_kind nonmono_Ts type_sys n s)
  1807        end)
  1808 
  1809 fun problem_lines_for_sym_decl_table ctxt format conj_sym_kind nonmono_Ts
  1810                                      type_sys sym_decl_tab =
  1811   sym_decl_tab
  1812   |> Symtab.dest
  1813   |> sort_wrt fst
  1814   |> rpair []
  1815   |-> fold_rev (append o problem_lines_for_sym_decls ctxt format conj_sym_kind
  1816                                                      nonmono_Ts type_sys)
  1817 
  1818 fun needs_type_tag_idempotence (Tags (poly, level, heaviness)) =
  1819     poly <> Mangled_Monomorphic andalso
  1820     ((level = All_Types andalso heaviness = Lightweight) orelse
  1821      level = Nonmonotonic_Types orelse level = Finite_Types)
  1822   | needs_type_tag_idempotence _ = false
  1823 
  1824 fun offset_of_heading_in_problem _ [] j = j
  1825   | offset_of_heading_in_problem needle ((heading, lines) :: problem) j =
  1826     if heading = needle then j
  1827     else offset_of_heading_in_problem needle problem (j + length lines)
  1828 
  1829 val implicit_declsN = "Should-be-implicit typings"
  1830 val explicit_declsN = "Explicit typings"
  1831 val factsN = "Relevant facts"
  1832 val class_relsN = "Class relationships"
  1833 val aritiesN = "Arities"
  1834 val helpersN = "Helper facts"
  1835 val conjsN = "Conjectures"
  1836 val free_typesN = "Type variables"
  1837 
  1838 val explicit_apply = NONE (* for experimental purposes *)
  1839 
  1840 fun prepare_atp_problem ctxt format conj_sym_kind prem_kind type_sys
  1841                         readable_names preproc hyp_ts concl_t facts =
  1842   let
  1843     val (format, type_sys) = choose_format [format] type_sys
  1844     val (fact_names, (conjs, facts, class_rel_clauses, arity_clauses)) =
  1845       translate_formulas ctxt format prem_kind type_sys preproc hyp_ts concl_t
  1846                          facts
  1847     val sym_tab = conjs @ facts |> sym_table_for_facts ctxt explicit_apply
  1848     val nonmono_Ts = conjs @ facts |> nonmonotonic_types_for_facts ctxt type_sys
  1849     val repair = repair_fact ctxt format type_sys sym_tab
  1850     val (conjs, facts) = (conjs, facts) |> pairself (map repair)
  1851     val repaired_sym_tab =
  1852       conjs @ facts |> sym_table_for_facts ctxt (SOME false)
  1853     val helpers =
  1854       repaired_sym_tab |> helper_facts_for_sym_table ctxt format type_sys
  1855                        |> map repair
  1856     val lavish_nonmono_Ts =
  1857       if null nonmono_Ts orelse nonmono_Ts = [@{typ bool}] orelse
  1858          polymorphism_of_type_sys type_sys <> Polymorphic then
  1859         nonmono_Ts
  1860       else
  1861         [TVar (("'a", 0), HOLogic.typeS)]
  1862     val sym_decl_lines =
  1863       (conjs, helpers @ facts)
  1864       |> sym_decl_table_for_facts ctxt type_sys repaired_sym_tab
  1865       |> problem_lines_for_sym_decl_table ctxt format conj_sym_kind
  1866                                           lavish_nonmono_Ts type_sys
  1867     val helper_lines =
  1868       0 upto length helpers - 1 ~~ helpers
  1869       |> map (formula_line_for_fact ctxt format helper_prefix I false
  1870                                     lavish_nonmono_Ts type_sys)
  1871       |> (if needs_type_tag_idempotence type_sys then
  1872             cons (type_tag_idempotence_fact ())
  1873           else
  1874             I)
  1875     (* Reordering these might confuse the proof reconstruction code or the SPASS
  1876        FLOTTER hack. *)
  1877     val problem =
  1878       [(explicit_declsN, sym_decl_lines),
  1879        (factsN,
  1880         map (formula_line_for_fact ctxt format fact_prefix ascii_of true
  1881                                    nonmono_Ts type_sys)
  1882             (0 upto length facts - 1 ~~ facts)),
  1883        (class_relsN, map formula_line_for_class_rel_clause class_rel_clauses),
  1884        (aritiesN, map formula_line_for_arity_clause arity_clauses),
  1885        (helpersN, helper_lines),
  1886        (conjsN,
  1887         map (formula_line_for_conjecture ctxt format nonmono_Ts type_sys)
  1888             conjs),
  1889        (free_typesN, formula_lines_for_free_types type_sys (facts @ conjs))]
  1890     val problem =
  1891       problem
  1892       |> (case format of
  1893             CNF => ensure_cnf_problem
  1894           | CNF_UEQ => filter_cnf_ueq_problem
  1895           | _ => I)
  1896       |> (if is_format_typed format then
  1897             declare_undeclared_syms_in_atp_problem type_decl_prefix
  1898                                                    implicit_declsN
  1899           else
  1900             I)
  1901     val (problem, pool) = problem |> nice_atp_problem readable_names
  1902     val helpers_offset = offset_of_heading_in_problem helpersN problem 0
  1903     val typed_helpers =
  1904       map_filter (fn (j, {name, ...}) =>
  1905                      if String.isSuffix typed_helper_suffix name then SOME j
  1906                      else NONE)
  1907                  ((helpers_offset + 1 upto helpers_offset + length helpers)
  1908                   ~~ helpers)
  1909     fun add_sym_arity (s, {min_ary, ...} : sym_info) =
  1910       if min_ary > 0 then
  1911         case strip_prefix_and_unascii const_prefix s of
  1912           SOME s => Symtab.insert (op =) (s, min_ary)
  1913         | NONE => I
  1914       else
  1915         I
  1916   in
  1917     (problem,
  1918      case pool of SOME the_pool => snd the_pool | NONE => Symtab.empty,
  1919      offset_of_heading_in_problem conjsN problem 0,
  1920      offset_of_heading_in_problem factsN problem 0,
  1921      fact_names |> Vector.fromList,
  1922      typed_helpers,
  1923      Symtab.empty |> Symtab.fold add_sym_arity sym_tab)
  1924   end
  1925 
  1926 (* FUDGE *)
  1927 val conj_weight = 0.0
  1928 val hyp_weight = 0.1
  1929 val fact_min_weight = 0.2
  1930 val fact_max_weight = 1.0
  1931 val type_info_default_weight = 0.8
  1932 
  1933 fun add_term_weights weight (ATerm (s, tms)) =
  1934   is_tptp_user_symbol s ? Symtab.default (s, weight)
  1935   #> fold (add_term_weights weight) tms
  1936 fun add_problem_line_weights weight (Formula (_, _, phi, _, _)) =
  1937     formula_fold NONE (K (add_term_weights weight)) phi
  1938   | add_problem_line_weights _ _ = I
  1939 
  1940 fun add_conjectures_weights [] = I
  1941   | add_conjectures_weights conjs =
  1942     let val (hyps, conj) = split_last conjs in
  1943       add_problem_line_weights conj_weight conj
  1944       #> fold (add_problem_line_weights hyp_weight) hyps
  1945     end
  1946 
  1947 fun add_facts_weights facts =
  1948   let
  1949     val num_facts = length facts
  1950     fun weight_of j =
  1951       fact_min_weight + (fact_max_weight - fact_min_weight) * Real.fromInt j
  1952                         / Real.fromInt num_facts
  1953   in
  1954     map weight_of (0 upto num_facts - 1) ~~ facts
  1955     |> fold (uncurry add_problem_line_weights)
  1956   end
  1957 
  1958 (* Weights are from 0.0 (most important) to 1.0 (least important). *)
  1959 fun atp_problem_weights problem =
  1960   let val get = these o AList.lookup (op =) problem in
  1961     Symtab.empty
  1962     |> add_conjectures_weights (get free_typesN @ get conjsN)
  1963     |> add_facts_weights (get factsN)
  1964     |> fold (fold (add_problem_line_weights type_info_default_weight) o get)
  1965             [explicit_declsN, class_relsN, aritiesN]
  1966     |> Symtab.dest
  1967     |> sort (prod_ord Real.compare string_ord o pairself swap)
  1968   end
  1969 
  1970 end;