src/HOL/Complete_Lattice.thy
author haftmann
Thu, 21 Jul 2011 22:47:13 +0200
changeset 44814 e6928fc2332a
parent 44811 26ca0bad226a
child 44815 b1b436f75070
permissions -rw-r--r--
moved some lemmas
     1 (*  Author:     Tobias Nipkow, Lawrence C Paulson and Markus Wenzel; Florian Haftmann, TU Muenchen *)
     2 
     3 header {* Complete lattices, with special focus on sets *}
     4 
     5 theory Complete_Lattice
     6 imports Set
     7 begin
     8 
     9 notation
    10   less_eq (infix "\<sqsubseteq>" 50) and
    11   less (infix "\<sqsubset>" 50) and
    12   inf (infixl "\<sqinter>" 70) and
    13   sup (infixl "\<squnion>" 65) and
    14   top ("\<top>") and
    15   bot ("\<bottom>")
    16 
    17 
    18 subsection {* Syntactic infimum and supremum operations *}
    19 
    20 class Inf =
    21   fixes Inf :: "'a set \<Rightarrow> 'a" ("\<Sqinter>_" [900] 900)
    22 
    23 class Sup =
    24   fixes Sup :: "'a set \<Rightarrow> 'a" ("\<Squnion>_" [900] 900)
    25 
    26 subsection {* Abstract complete lattices *}
    27 
    28 class complete_lattice = bounded_lattice + Inf + Sup +
    29   assumes Inf_lower: "x \<in> A \<Longrightarrow> \<Sqinter>A \<sqsubseteq> x"
    30      and Inf_greatest: "(\<And>x. x \<in> A \<Longrightarrow> z \<sqsubseteq> x) \<Longrightarrow> z \<sqsubseteq> \<Sqinter>A"
    31   assumes Sup_upper: "x \<in> A \<Longrightarrow> x \<sqsubseteq> \<Squnion>A"
    32      and Sup_least: "(\<And>x. x \<in> A \<Longrightarrow> x \<sqsubseteq> z) \<Longrightarrow> \<Squnion>A \<sqsubseteq> z"
    33 begin
    34 
    35 lemma dual_complete_lattice:
    36   "class.complete_lattice Sup Inf (op \<ge>) (op >) sup inf \<top> \<bottom>"
    37   by (auto intro!: class.complete_lattice.intro dual_bounded_lattice)
    38     (unfold_locales, (fact bot_least top_greatest
    39         Sup_upper Sup_least Inf_lower Inf_greatest)+)
    40 
    41 lemma Inf_Sup: "\<Sqinter>A = \<Squnion>{b. \<forall>a \<in> A. b \<sqsubseteq> a}"
    42   by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least)
    43 
    44 lemma Sup_Inf:  "\<Squnion>A = \<Sqinter>{b. \<forall>a \<in> A. a \<sqsubseteq> b}"
    45   by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least)
    46 
    47 lemma Inf_empty [simp]:
    48   "\<Sqinter>{} = \<top>"
    49   by (auto intro: antisym Inf_greatest)
    50 
    51 lemma Sup_empty [simp]:
    52   "\<Squnion>{} = \<bottom>"
    53   by (auto intro: antisym Sup_least)
    54 
    55 lemma Inf_UNIV [simp]:
    56   "\<Sqinter>UNIV = \<bottom>"
    57   by (simp add: Sup_Inf Sup_empty [symmetric])
    58 
    59 lemma Sup_UNIV [simp]:
    60   "\<Squnion>UNIV = \<top>"
    61   by (simp add: Inf_Sup Inf_empty [symmetric])
    62 
    63 lemma Inf_insert: "\<Sqinter>insert a A = a \<sqinter> \<Sqinter>A"
    64   by (auto intro: le_infI le_infI1 le_infI2 antisym Inf_greatest Inf_lower)
    65 
    66 lemma Sup_insert: "\<Squnion>insert a A = a \<squnion> \<Squnion>A"
    67   by (auto intro: le_supI le_supI1 le_supI2 antisym Sup_least Sup_upper)
    68 
    69 lemma Inf_singleton [simp]:
    70   "\<Sqinter>{a} = a"
    71   by (auto intro: antisym Inf_lower Inf_greatest)
    72 
    73 lemma Sup_singleton [simp]:
    74   "\<Squnion>{a} = a"
    75   by (auto intro: antisym Sup_upper Sup_least)
    76 
    77 lemma Inf_binary:
    78   "\<Sqinter>{a, b} = a \<sqinter> b"
    79   by (simp add: Inf_insert)
    80 
    81 lemma Sup_binary:
    82   "\<Squnion>{a, b} = a \<squnion> b"
    83   by (simp add: Sup_insert)
    84 
    85 lemma le_Inf_iff: "b \<sqsubseteq> \<Sqinter>A \<longleftrightarrow> (\<forall>a\<in>A. b \<sqsubseteq> a)"
    86   by (auto intro: Inf_greatest dest: Inf_lower)
    87 
    88 lemma Sup_le_iff: "\<Squnion>A \<sqsubseteq> b \<longleftrightarrow> (\<forall>a\<in>A. a \<sqsubseteq> b)"
    89   by (auto intro: Sup_least dest: Sup_upper)
    90 
    91 lemma Inf_superset_mono: "B \<subseteq> A \<Longrightarrow> \<Sqinter>A \<sqsubseteq> \<Sqinter>B"
    92   by (auto intro: Inf_greatest Inf_lower)
    93 
    94 lemma Sup_subset_mono: "A \<subseteq> B \<Longrightarrow> \<Squnion>A \<sqsubseteq> \<Squnion>B"
    95   by (auto intro: Sup_least Sup_upper)
    96 
    97 lemma Inf_mono:
    98   assumes "\<And>b. b \<in> B \<Longrightarrow> \<exists>a\<in>A. a \<sqsubseteq> b"
    99   shows "\<Sqinter>A \<sqsubseteq> \<Sqinter>B"
   100 proof (rule Inf_greatest)
   101   fix b assume "b \<in> B"
   102   with assms obtain a where "a \<in> A" and "a \<sqsubseteq> b" by blast
   103   from `a \<in> A` have "\<Sqinter>A \<sqsubseteq> a" by (rule Inf_lower)
   104   with `a \<sqsubseteq> b` show "\<Sqinter>A \<sqsubseteq> b" by auto
   105 qed
   106 
   107 lemma Sup_mono:
   108   assumes "\<And>a. a \<in> A \<Longrightarrow> \<exists>b\<in>B. a \<sqsubseteq> b"
   109   shows "\<Squnion>A \<sqsubseteq> \<Squnion>B"
   110 proof (rule Sup_least)
   111   fix a assume "a \<in> A"
   112   with assms obtain b where "b \<in> B" and "a \<sqsubseteq> b" by blast
   113   from `b \<in> B` have "b \<sqsubseteq> \<Squnion>B" by (rule Sup_upper)
   114   with `a \<sqsubseteq> b` show "a \<sqsubseteq> \<Squnion>B" by auto
   115 qed
   116 
   117 lemma Sup_upper2: "u \<in> A \<Longrightarrow> v \<sqsubseteq> u \<Longrightarrow> v \<sqsubseteq> \<Squnion>A"
   118   using Sup_upper [of u A] by auto
   119 
   120 lemma Inf_lower2: "u \<in> A \<Longrightarrow> u \<sqsubseteq> v \<Longrightarrow> \<Sqinter>A \<sqsubseteq> v"
   121   using Inf_lower [of u A] by auto
   122 
   123 lemma Inf_less_eq:
   124   assumes "\<And>v. v \<in> A \<Longrightarrow> v \<sqsubseteq> u"
   125     and "A \<noteq> {}"
   126   shows "\<Sqinter>A \<sqsubseteq> u"
   127 proof -
   128   from `A \<noteq> {}` obtain v where "v \<in> A" by blast
   129   moreover with assms have "v \<sqsubseteq> u" by blast
   130   ultimately show ?thesis by (rule Inf_lower2)
   131 qed
   132 
   133 lemma less_eq_Sup:
   134   assumes "\<And>v. v \<in> A \<Longrightarrow> u \<sqsubseteq> v"
   135     and "A \<noteq> {}"
   136   shows "u \<sqsubseteq> \<Squnion>A"
   137 proof -
   138   from `A \<noteq> {}` obtain v where "v \<in> A" by blast
   139   moreover with assms have "u \<sqsubseteq> v" by blast
   140   ultimately show ?thesis by (rule Sup_upper2)
   141 qed
   142 
   143 lemma less_eq_Inf_inter: "\<Sqinter>A \<squnion> \<Sqinter>B \<sqsubseteq> \<Sqinter>(A \<inter> B)"
   144   by (auto intro: Inf_greatest Inf_lower)
   145 
   146 lemma Sup_inter_less_eq: "\<Squnion>(A \<inter> B) \<sqsubseteq> \<Squnion>A \<sqinter> \<Squnion>B "
   147   by (auto intro: Sup_least Sup_upper)
   148 
   149 lemma Inf_union_distrib: "\<Sqinter>(A \<union> B) = \<Sqinter>A \<sqinter> \<Sqinter>B"
   150   by (rule antisym) (auto intro: Inf_greatest Inf_lower le_infI1 le_infI2)
   151 
   152 lemma Sup_union_distrib: "\<Squnion>(A \<union> B) = \<Squnion>A \<squnion> \<Squnion>B"
   153   by (rule antisym) (auto intro: Sup_least Sup_upper le_supI1 le_supI2)
   154 
   155 lemma Inf_top_conv [no_atp]:
   156   "\<Sqinter>A = \<top> \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)"
   157   "\<top> = \<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)"
   158 proof -
   159   show "\<Sqinter>A = \<top> \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)"
   160   proof
   161     assume "\<forall>x\<in>A. x = \<top>"
   162     then have "A = {} \<or> A = {\<top>}" by auto
   163     then show "\<Sqinter>A = \<top>" by auto
   164   next
   165     assume "\<Sqinter>A = \<top>"
   166     show "\<forall>x\<in>A. x = \<top>"
   167     proof (rule ccontr)
   168       assume "\<not> (\<forall>x\<in>A. x = \<top>)"
   169       then obtain x where "x \<in> A" and "x \<noteq> \<top>" by blast
   170       then obtain B where "A = insert x B" by blast
   171       with `\<Sqinter>A = \<top>` `x \<noteq> \<top>` show False by (simp add: Inf_insert)
   172     qed
   173   qed
   174   then show "\<top> = \<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)" by auto
   175 qed
   176 
   177 lemma Sup_bot_conv [no_atp]:
   178   "\<Squnion>A = \<bottom> \<longleftrightarrow> (\<forall>x\<in>A. x = \<bottom>)" (is ?P)
   179   "\<bottom> = \<Squnion>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<bottom>)" (is ?Q)
   180 proof -
   181   interpret dual: complete_lattice Sup Inf "op \<ge>" "op >" sup inf \<top> \<bottom>
   182     by (fact dual_complete_lattice)
   183   from dual.Inf_top_conv show ?P and ?Q by simp_all
   184 qed
   185 
   186 definition INFI :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
   187   INF_def: "INFI A f = \<Sqinter> (f ` A)"
   188 
   189 definition SUPR :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
   190   SUP_def: "SUPR A f = \<Squnion> (f ` A)"
   191 
   192 text {*
   193   Note: must use names @{const INFI} and @{const SUPR} here instead of
   194   @{text INF} and @{text SUP} to allow the following syntax coexist
   195   with the plain constant names.
   196 *}
   197 
   198 end
   199 
   200 syntax
   201   "_INF1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3INF _./ _)" [0, 10] 10)
   202   "_INF"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3INF _:_./ _)" [0, 0, 10] 10)
   203   "_SUP1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3SUP _./ _)" [0, 10] 10)
   204   "_SUP"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3SUP _:_./ _)" [0, 0, 10] 10)
   205 
   206 syntax (xsymbols)
   207   "_INF1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Sqinter>_./ _)" [0, 10] 10)
   208   "_INF"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sqinter>_\<in>_./ _)" [0, 0, 10] 10)
   209   "_SUP1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Squnion>_./ _)" [0, 10] 10)
   210   "_SUP"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Squnion>_\<in>_./ _)" [0, 0, 10] 10)
   211 
   212 translations
   213   "INF x y. B"   == "INF x. INF y. B"
   214   "INF x. B"     == "CONST INFI CONST UNIV (%x. B)"
   215   "INF x. B"     == "INF x:CONST UNIV. B"
   216   "INF x:A. B"   == "CONST INFI A (%x. B)"
   217   "SUP x y. B"   == "SUP x. SUP y. B"
   218   "SUP x. B"     == "CONST SUPR CONST UNIV (%x. B)"
   219   "SUP x. B"     == "SUP x:CONST UNIV. B"
   220   "SUP x:A. B"   == "CONST SUPR A (%x. B)"
   221 
   222 print_translation {*
   223   [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax INFI} @{syntax_const "_INF"},
   224     Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax SUPR} @{syntax_const "_SUP"}]
   225 *} -- {* to avoid eta-contraction of body *}
   226 
   227 context complete_lattice
   228 begin
   229 
   230 lemma INF_empty: "(\<Sqinter>x\<in>{}. f x) = \<top>"
   231   by (simp add: INF_def)
   232 
   233 lemma SUP_empty: "(\<Squnion>x\<in>{}. f x) = \<bottom>"
   234   by (simp add: SUP_def)
   235 
   236 lemma INF_insert: "(\<Sqinter>x\<in>insert a A. f x) = f a \<sqinter> INFI A f"
   237   by (simp add: INF_def Inf_insert)
   238 
   239 lemma SUP_insert: "(\<Squnion>x\<in>insert a A. f x) = f a \<squnion> SUPR A f"
   240   by (simp add: SUP_def Sup_insert)
   241 
   242 lemma INF_leI: "i \<in> A \<Longrightarrow> (\<Sqinter>i\<in>A. f i) \<sqsubseteq> f i"
   243   by (auto simp add: INF_def intro: Inf_lower)
   244 
   245 lemma le_SUP_I: "i \<in> A \<Longrightarrow> f i \<sqsubseteq> (\<Squnion>i\<in>A. f i)"
   246   by (auto simp add: SUP_def intro: Sup_upper)
   247 
   248 lemma INF_leI2: "i \<in> A \<Longrightarrow> f i \<sqsubseteq> u \<Longrightarrow> (\<Sqinter>i\<in>A. f i) \<sqsubseteq> u"
   249   using INF_leI [of i A f] by auto
   250 
   251 lemma le_SUP_I2: "i \<in> A \<Longrightarrow> u \<sqsubseteq> f i \<Longrightarrow> u \<sqsubseteq> (\<Squnion>i\<in>A. f i)"
   252   using le_SUP_I [of i A f] by auto
   253 
   254 lemma le_INF_I: "(\<And>i. i \<in> A \<Longrightarrow> u \<sqsubseteq> f i) \<Longrightarrow> u \<sqsubseteq> (\<Sqinter>i\<in>A. f i)"
   255   by (auto simp add: INF_def intro: Inf_greatest)
   256 
   257 lemma SUP_leI: "(\<And>i. i \<in> A \<Longrightarrow> f i \<sqsubseteq> u) \<Longrightarrow> (\<Squnion>i\<in>A. f i) \<sqsubseteq> u"
   258   by (auto simp add: SUP_def intro: Sup_least)
   259 
   260 lemma le_INF_iff: "u \<sqsubseteq> (\<Sqinter>i\<in>A. f i) \<longleftrightarrow> (\<forall>i \<in> A. u \<sqsubseteq> f i)"
   261   by (auto simp add: INF_def le_Inf_iff)
   262 
   263 lemma SUP_le_iff: "(\<Squnion>i\<in>A. f i) \<sqsubseteq> u \<longleftrightarrow> (\<forall>i \<in> A. f i \<sqsubseteq> u)"
   264   by (auto simp add: SUP_def Sup_le_iff)
   265 
   266 lemma INF_const [simp]: "A \<noteq> {} \<Longrightarrow> (\<Sqinter>i\<in>A. f) = f"
   267   by (auto intro: antisym INF_leI le_INF_I)
   268 
   269 lemma SUP_const [simp]: "A \<noteq> {} \<Longrightarrow> (\<Squnion>i\<in>A. f) = f"
   270   by (auto intro: antisym SUP_leI le_SUP_I)
   271 
   272 lemma INF_top: "(\<Sqinter>x\<in>A. \<top>) = \<top>"
   273   by (cases "A = {}") (simp_all add: INF_empty)
   274 
   275 lemma SUP_bot: "(\<Squnion>x\<in>A. \<bottom>) = \<bottom>"
   276   by (cases "A = {}") (simp_all add: SUP_empty)
   277 
   278 lemma INF_cong:
   279   "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> (\<Sqinter>x\<in>A. C x) = (\<Sqinter>x\<in>B. D x)"
   280   by (simp add: INF_def image_def)
   281 
   282 lemma SUP_cong:
   283   "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> (\<Squnion>x\<in>A. C x) = (\<Squnion>x\<in>B. D x)"
   284   by (simp add: SUP_def image_def)
   285 
   286 lemma INF_mono:
   287   "(\<And>m. m \<in> B \<Longrightarrow> \<exists>n\<in>A. f n \<sqsubseteq> g m) \<Longrightarrow> (\<Sqinter>n\<in>A. f n) \<sqsubseteq> (\<Sqinter>n\<in>B. g n)"
   288   by (force intro!: Inf_mono simp: INF_def)
   289 
   290 lemma SUP_mono:
   291   "(\<And>n. n \<in> A \<Longrightarrow> \<exists>m\<in>B. f n \<sqsubseteq> g m) \<Longrightarrow> (\<Squnion>n\<in>A. f n) \<sqsubseteq> (\<Squnion>n\<in>B. g n)"
   292   by (force intro!: Sup_mono simp: SUP_def)
   293 
   294 lemma INF_superset_mono:
   295   "B \<subseteq> A \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> f x \<sqsubseteq> g x) \<Longrightarrow> (\<Sqinter>x\<in>A. f x) \<sqsubseteq> (\<Sqinter>x\<in>B. g x)"
   296   -- {* The last inclusion is POSITIVE! *}
   297   by (blast intro: INF_mono dest: subsetD)
   298 
   299 lemma SUP_subset_mono:
   300   "A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<sqsubseteq> g x) \<Longrightarrow> (\<Squnion>x\<in>A. f x) \<sqsubseteq> (\<Squnion>x\<in>B. g x)"
   301   by (blast intro: SUP_mono dest: subsetD)
   302 
   303 lemma INF_commute: "(\<Sqinter>i\<in>A. \<Sqinter>j\<in>B. f i j) = (\<Sqinter>j\<in>B. \<Sqinter>i\<in>A. f i j)"
   304   by (iprover intro: INF_leI le_INF_I order_trans antisym)
   305 
   306 lemma SUP_commute: "(\<Squnion>i\<in>A. \<Squnion>j\<in>B. f i j) = (\<Squnion>j\<in>B. \<Squnion>i\<in>A. f i j)"
   307   by (iprover intro: SUP_leI le_SUP_I order_trans antisym)
   308 
   309 lemma INF_absorb:
   310   assumes "k \<in> I"
   311   shows "A k \<sqinter> (\<Sqinter>i\<in>I. A i) = (\<Sqinter>i\<in>I. A i)"
   312 proof -
   313   from assms obtain J where "I = insert k J" by blast
   314   then show ?thesis by (simp add: INF_insert)
   315 qed
   316 
   317 lemma SUP_absorb:
   318   assumes "k \<in> I"
   319   shows "A k \<squnion> (\<Squnion>i\<in>I. A i) = (\<Squnion>i\<in>I. A i)"
   320 proof -
   321   from assms obtain J where "I = insert k J" by blast
   322   then show ?thesis by (simp add: SUP_insert)
   323 qed
   324 
   325 lemma INF_union:
   326   "(\<Sqinter>i \<in> A \<union> B. M i) = (\<Sqinter>i \<in> A. M i) \<sqinter> (\<Sqinter>i\<in>B. M i)"
   327   by (auto intro!: antisym INF_mono intro: le_infI1 le_infI2 le_INF_I INF_leI)
   328 
   329 lemma SUP_union:
   330   "(\<Squnion>i \<in> A \<union> B. M i) = (\<Squnion>i \<in> A. M i) \<squnion> (\<Squnion>i\<in>B. M i)"
   331   by (auto intro!: antisym SUP_mono intro: le_supI1 le_supI2 SUP_leI le_SUP_I)
   332 
   333 lemma INF_constant:
   334   "(\<Sqinter>y\<in>A. c) = (if A = {} then \<top> else c)"
   335   by (simp add: INF_empty)
   336 
   337 lemma SUP_constant:
   338   "(\<Squnion>y\<in>A. c) = (if A = {} then \<bottom> else c)"
   339   by (simp add: SUP_empty)
   340 
   341 lemma INF_eq:
   342   "(\<Sqinter>x\<in>A. B x) = \<Sqinter>({Y. \<exists>x\<in>A. Y = B x})"
   343   by (simp add: INF_def image_def)
   344 
   345 lemma SUP_eq:
   346   "(\<Squnion>x\<in>A. B x) = \<Squnion>({Y. \<exists>x\<in>A. Y = B x})"
   347   by (simp add: SUP_def image_def)
   348 
   349 lemma INF_top_conv:
   350  "\<top> = (\<Sqinter>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = \<top>)"
   351  "(\<Sqinter>x\<in>A. B x) = \<top> \<longleftrightarrow> (\<forall>x\<in>A. B x = \<top>)"
   352   by (auto simp add: INF_def Inf_top_conv)
   353 
   354 lemma SUP_bot_conv:
   355  "\<bottom> = (\<Squnion>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = \<bottom>)"
   356  "(\<Squnion>x\<in>A. B x) = \<bottom> \<longleftrightarrow> (\<forall>x\<in>A. B x = \<bottom>)"
   357   by (auto simp add: SUP_def Sup_bot_conv)
   358 
   359 lemma less_INF_D:
   360   assumes "y < (\<Sqinter>i\<in>A. f i)" "i \<in> A" shows "y < f i"
   361 proof -
   362   note `y < (\<Sqinter>i\<in>A. f i)`
   363   also have "(\<Sqinter>i\<in>A. f i) \<le> f i" using `i \<in> A`
   364     by (rule INF_leI)
   365   finally show "y < f i" .
   366 qed
   367 
   368 lemma SUP_lessD:
   369   assumes "(\<Squnion>i\<in>A. f i) < y" "i \<in> A" shows "f i < y"
   370 proof -
   371   have "f i \<le> (\<Squnion>i\<in>A. f i)" using `i \<in> A`
   372     by (rule le_SUP_I)
   373   also note `(\<Squnion>i\<in>A. f i) < y`
   374   finally show "f i < y" .
   375 qed
   376 
   377 lemma INF_UNIV_range:
   378   "(\<Sqinter>x. f x) = \<Sqinter>range f"
   379   by (fact INF_def)
   380 
   381 lemma SUP_UNIV_range:
   382   "(\<Squnion>x. f x) = \<Squnion>range f"
   383   by (fact SUP_def)
   384 
   385 lemma INF_UNIV_bool_expand:
   386   "(\<Sqinter>b. A b) = A True \<sqinter> A False"
   387   by (simp add: UNIV_bool INF_empty INF_insert inf_commute)
   388 
   389 lemma SUP_UNIV_bool_expand:
   390   "(\<Squnion>b. A b) = A True \<squnion> A False"
   391   by (simp add: UNIV_bool SUP_empty SUP_insert sup_commute)
   392 
   393 end
   394 
   395 class complete_boolean_algebra = boolean_algebra + complete_lattice
   396 begin
   397 
   398 lemma dual_complete_boolean_algebra:
   399   "class.complete_boolean_algebra Sup Inf (op \<ge>) (op >) sup inf \<top> \<bottom> (\<lambda>x y. x \<squnion> - y) uminus"
   400   by (rule class.complete_boolean_algebra.intro, rule dual_complete_lattice, rule dual_boolean_algebra)
   401 
   402 lemma uminus_Inf:
   403   "- (\<Sqinter>A) = \<Squnion>(uminus ` A)"
   404 proof (rule antisym)
   405   show "- \<Sqinter>A \<le> \<Squnion>(uminus ` A)"
   406     by (rule compl_le_swap2, rule Inf_greatest, rule compl_le_swap2, rule Sup_upper) simp
   407   show "\<Squnion>(uminus ` A) \<le> - \<Sqinter>A"
   408     by (rule Sup_least, rule compl_le_swap1, rule Inf_lower) auto
   409 qed
   410 
   411 lemma uminus_Sup:
   412   "- (\<Squnion>A) = \<Sqinter>(uminus ` A)"
   413 proof -
   414   have "\<Squnion>A = - \<Sqinter>(uminus ` A)" by (simp add: image_image uminus_Inf)
   415   then show ?thesis by simp
   416 qed
   417   
   418 lemma uminus_INF: "- (\<Sqinter>x\<in>A. B x) = (\<Squnion>x\<in>A. - B x)"
   419   by (simp add: INF_def SUP_def uminus_Inf image_image)
   420 
   421 lemma uminus_SUP: "- (\<Squnion>x\<in>A. B x) = (\<Sqinter>x\<in>A. - B x)"
   422   by (simp add: INF_def SUP_def uminus_Sup image_image)
   423 
   424 end
   425 
   426 class complete_linorder = linorder + complete_lattice
   427 begin
   428 
   429 lemma dual_complete_linorder:
   430   "class.complete_linorder Sup Inf (op \<ge>) (op >) sup inf \<top> \<bottom>"
   431   by (rule class.complete_linorder.intro, rule dual_complete_lattice, rule dual_linorder)
   432 
   433 lemma Inf_less_iff:
   434   "\<Sqinter>S \<sqsubset> a \<longleftrightarrow> (\<exists>x\<in>S. x \<sqsubset> a)"
   435   unfolding not_le [symmetric] le_Inf_iff by auto
   436 
   437 lemma less_Sup_iff:
   438   "a \<sqsubset> \<Squnion>S \<longleftrightarrow> (\<exists>x\<in>S. a \<sqsubset> x)"
   439   unfolding not_le [symmetric] Sup_le_iff by auto
   440 
   441 lemma INF_less_iff:
   442   "(\<Sqinter>i\<in>A. f i) \<sqsubset> a \<longleftrightarrow> (\<exists>x\<in>A. f x \<sqsubset> a)"
   443   unfolding INF_def Inf_less_iff by auto
   444 
   445 lemma less_SUP_iff:
   446   "a \<sqsubset> (\<Squnion>i\<in>A. f i) \<longleftrightarrow> (\<exists>x\<in>A. a \<sqsubset> f x)"
   447   unfolding SUP_def less_Sup_iff by auto
   448 
   449 lemma Sup_eq_top_iff:
   450   "\<Squnion>A = \<top> \<longleftrightarrow> (\<forall>x<\<top>. \<exists>i\<in>A. x < i)"
   451 proof
   452   assume *: "\<Squnion>A = \<top>"
   453   show "(\<forall>x<\<top>. \<exists>i\<in>A. x < i)" unfolding * [symmetric]
   454   proof (intro allI impI)
   455     fix x assume "x < \<Squnion>A" then show "\<exists>i\<in>A. x < i"
   456       unfolding less_Sup_iff by auto
   457   qed
   458 next
   459   assume *: "\<forall>x<\<top>. \<exists>i\<in>A. x < i"
   460   show "\<Squnion>A = \<top>"
   461   proof (rule ccontr)
   462     assume "\<Squnion>A \<noteq> \<top>"
   463     with top_greatest [of "\<Squnion>A"]
   464     have "\<Squnion>A < \<top>" unfolding le_less by auto
   465     then have "\<Squnion>A < \<Squnion>A"
   466       using * unfolding less_Sup_iff by auto
   467     then show False by auto
   468   qed
   469 qed
   470 
   471 lemma Inf_eq_bot_iff:
   472   "\<Sqinter>A = \<bottom> \<longleftrightarrow> (\<forall>x>\<bottom>. \<exists>i\<in>A. i < x)"
   473 proof -
   474   interpret dual: complete_linorder Sup Inf "op \<ge>" "op >" sup inf \<top> \<bottom>
   475     by (fact dual_complete_linorder)
   476   from dual.Sup_eq_top_iff show ?thesis .
   477 qed
   478 
   479 end
   480 
   481 
   482 subsection {* @{typ bool} and @{typ "_ \<Rightarrow> _"} as complete lattice *}
   483 
   484 instantiation bool :: complete_boolean_algebra
   485 begin
   486 
   487 definition
   488   "\<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x)"
   489 
   490 definition
   491   "\<Squnion>A \<longleftrightarrow> (\<exists>x\<in>A. x)"
   492 
   493 instance proof
   494 qed (auto simp add: Inf_bool_def Sup_bool_def)
   495 
   496 end
   497 
   498 lemma INF_bool_eq [simp]:
   499   "INFI = Ball"
   500 proof (rule ext)+
   501   fix A :: "'a set"
   502   fix P :: "'a \<Rightarrow> bool"
   503   show "(\<Sqinter>x\<in>A. P x) \<longleftrightarrow> (\<forall>x\<in>A. P x)"
   504     by (auto simp add: Ball_def INF_def Inf_bool_def)
   505 qed
   506 
   507 lemma SUP_bool_eq [simp]:
   508   "SUPR = Bex"
   509 proof (rule ext)+
   510   fix A :: "'a set"
   511   fix P :: "'a \<Rightarrow> bool"
   512   show "(\<Squnion>x\<in>A. P x) \<longleftrightarrow> (\<exists>x\<in>A. P x)"
   513     by (auto simp add: Bex_def SUP_def Sup_bool_def)
   514 qed
   515 
   516 instantiation "fun" :: (type, complete_lattice) complete_lattice
   517 begin
   518 
   519 definition
   520   "\<Sqinter>A = (\<lambda>x. \<Sqinter>{y. \<exists>f\<in>A. y = f x})"
   521 
   522 lemma Inf_apply:
   523   "(\<Sqinter>A) x = \<Sqinter>{y. \<exists>f\<in>A. y = f x}"
   524   by (simp add: Inf_fun_def)
   525 
   526 definition
   527   "\<Squnion>A = (\<lambda>x. \<Squnion>{y. \<exists>f\<in>A. y = f x})"
   528 
   529 lemma Sup_apply:
   530   "(\<Squnion>A) x = \<Squnion>{y. \<exists>f\<in>A. y = f x}"
   531   by (simp add: Sup_fun_def)
   532 
   533 instance proof
   534 qed (auto simp add: le_fun_def Inf_apply Sup_apply
   535   intro: Inf_lower Sup_upper Inf_greatest Sup_least)
   536 
   537 end
   538 
   539 lemma INF_apply:
   540   "(\<Sqinter>y\<in>A. f y) x = (\<Sqinter>y\<in>A. f y x)"
   541   by (auto intro: arg_cong [of _ _ Inf] simp add: INF_def Inf_apply)
   542 
   543 lemma SUP_apply:
   544   "(\<Squnion>y\<in>A. f y) x = (\<Squnion>y\<in>A. f y x)"
   545   by (auto intro: arg_cong [of _ _ Sup] simp add: SUP_def Sup_apply)
   546 
   547 instance "fun" :: (type, complete_boolean_algebra) complete_boolean_algebra ..
   548 
   549 
   550 subsection {* Inter *}
   551 
   552 abbreviation Inter :: "'a set set \<Rightarrow> 'a set" where
   553   "Inter S \<equiv> \<Sqinter>S"
   554   
   555 notation (xsymbols)
   556   Inter  ("\<Inter>_" [90] 90)
   557 
   558 lemma Inter_eq:
   559   "\<Inter>A = {x. \<forall>B \<in> A. x \<in> B}"
   560 proof (rule set_eqI)
   561   fix x
   562   have "(\<forall>Q\<in>{P. \<exists>B\<in>A. P \<longleftrightarrow> x \<in> B}. Q) \<longleftrightarrow> (\<forall>B\<in>A. x \<in> B)"
   563     by auto
   564   then show "x \<in> \<Inter>A \<longleftrightarrow> x \<in> {x. \<forall>B \<in> A. x \<in> B}"
   565     by (simp add: Inf_fun_def Inf_bool_def) (simp add: mem_def)
   566 qed
   567 
   568 lemma Inter_iff [simp,no_atp]: "A \<in> \<Inter>C \<longleftrightarrow> (\<forall>X\<in>C. A \<in> X)"
   569   by (unfold Inter_eq) blast
   570 
   571 lemma InterI [intro!]: "(\<And>X. X \<in> C \<Longrightarrow> A \<in> X) \<Longrightarrow> A \<in> \<Inter>C"
   572   by (simp add: Inter_eq)
   573 
   574 text {*
   575   \medskip A ``destruct'' rule -- every @{term X} in @{term C}
   576   contains @{term A} as an element, but @{prop "A \<in> X"} can hold when
   577   @{prop "X \<in> C"} does not!  This rule is analogous to @{text spec}.
   578 *}
   579 
   580 lemma InterD [elim, Pure.elim]: "A \<in> \<Inter>C \<Longrightarrow> X \<in> C \<Longrightarrow> A \<in> X"
   581   by auto
   582 
   583 lemma InterE [elim]: "A \<in> \<Inter>C \<Longrightarrow> (X \<notin> C \<Longrightarrow> R) \<Longrightarrow> (A \<in> X \<Longrightarrow> R) \<Longrightarrow> R"
   584   -- {* ``Classical'' elimination rule -- does not require proving
   585     @{prop "X \<in> C"}. *}
   586   by (unfold Inter_eq) blast
   587 
   588 lemma Inter_lower: "B \<in> A \<Longrightarrow> \<Inter>A \<subseteq> B"
   589   by (fact Inf_lower)
   590 
   591 lemma Inter_subset:
   592   "(\<And>X. X \<in> A \<Longrightarrow> X \<subseteq> B) \<Longrightarrow> A \<noteq> {} \<Longrightarrow> \<Inter>A \<subseteq> B"
   593   by (fact Inf_less_eq)
   594 
   595 lemma Inter_greatest: "(\<And>X. X \<in> A \<Longrightarrow> C \<subseteq> X) \<Longrightarrow> C \<subseteq> Inter A"
   596   by (fact Inf_greatest)
   597 
   598 lemma Int_eq_Inter: "A \<inter> B = \<Inter>{A, B}"
   599   by (fact Inf_binary [symmetric])
   600 
   601 lemma Inter_empty [simp]: "\<Inter>{} = UNIV"
   602   by (fact Inf_empty)
   603 
   604 lemma Inter_UNIV [simp]: "\<Inter>UNIV = {}"
   605   by (fact Inf_UNIV)
   606 
   607 lemma Inter_insert [simp]: "\<Inter>(insert a B) = a \<inter> \<Inter>B"
   608   by (fact Inf_insert)
   609 
   610 lemma Inter_Un_subset: "\<Inter>A \<union> \<Inter>B \<subseteq> \<Inter>(A \<inter> B)"
   611   by (fact less_eq_Inf_inter)
   612 
   613 lemma Inter_Un_distrib: "\<Inter>(A \<union> B) = \<Inter>A \<inter> \<Inter>B"
   614   by (fact Inf_union_distrib)
   615 
   616 lemma Inter_UNIV_conv [simp, no_atp]:
   617   "\<Inter>A = UNIV \<longleftrightarrow> (\<forall>x\<in>A. x = UNIV)"
   618   "UNIV = \<Inter>A \<longleftrightarrow> (\<forall>x\<in>A. x = UNIV)"
   619   by (fact Inf_top_conv)+
   620 
   621 lemma Inter_anti_mono: "B \<subseteq> A \<Longrightarrow> \<Inter>A \<subseteq> \<Inter>B"
   622   by (fact Inf_superset_mono)
   623 
   624 
   625 subsection {* Intersections of families *}
   626 
   627 abbreviation INTER :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where
   628   "INTER \<equiv> INFI"
   629 
   630 text {*
   631   Note: must use name @{const INTER} here instead of @{text INT}
   632   to allow the following syntax coexist with the plain constant name.
   633 *}
   634 
   635 syntax
   636   "_INTER1"     :: "pttrns => 'b set => 'b set"           ("(3INT _./ _)" [0, 10] 10)
   637   "_INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3INT _:_./ _)" [0, 0, 10] 10)
   638 
   639 syntax (xsymbols)
   640   "_INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>_./ _)" [0, 10] 10)
   641   "_INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>_\<in>_./ _)" [0, 0, 10] 10)
   642 
   643 syntax (latex output)
   644   "_INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>(00\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
   645   "_INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>(00\<^bsub>_\<in>_\<^esub>)/ _)" [0, 0, 10] 10)
   646 
   647 translations
   648   "INT x y. B"  == "INT x. INT y. B"
   649   "INT x. B"    == "CONST INTER CONST UNIV (%x. B)"
   650   "INT x. B"    == "INT x:CONST UNIV. B"
   651   "INT x:A. B"  == "CONST INTER A (%x. B)"
   652 
   653 print_translation {*
   654   [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax INTER} @{syntax_const "_INTER"}]
   655 *} -- {* to avoid eta-contraction of body *}
   656 
   657 lemma INTER_eq_Inter_image:
   658   "(\<Inter>x\<in>A. B x) = \<Inter>(B`A)"
   659   by (fact INF_def)
   660   
   661 lemma Inter_def:
   662   "\<Inter>S = (\<Inter>x\<in>S. x)"
   663   by (simp add: INTER_eq_Inter_image image_def)
   664 
   665 lemma INTER_def:
   666   "(\<Inter>x\<in>A. B x) = {y. \<forall>x\<in>A. y \<in> B x}"
   667   by (auto simp add: INTER_eq_Inter_image Inter_eq)
   668 
   669 lemma Inter_image_eq [simp]:
   670   "\<Inter>(B`A) = (\<Inter>x\<in>A. B x)"
   671   by (rule sym) (fact INF_def)
   672 
   673 lemma INT_iff [simp]: "b \<in> (\<Inter>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. b \<in> B x)"
   674   by (unfold INTER_def) blast
   675 
   676 lemma INT_I [intro!]: "(\<And>x. x \<in> A \<Longrightarrow> b \<in> B x) \<Longrightarrow> b \<in> (\<Inter>x\<in>A. B x)"
   677   by (unfold INTER_def) blast
   678 
   679 lemma INT_D [elim, Pure.elim]: "b \<in> (\<Inter>x\<in>A. B x) \<Longrightarrow> a \<in> A \<Longrightarrow> b \<in> B a"
   680   by auto
   681 
   682 lemma INT_E [elim]: "b \<in> (\<Inter>x\<in>A. B x) \<Longrightarrow> (b \<in> B a \<Longrightarrow> R) \<Longrightarrow> (a \<notin> A \<Longrightarrow> R) \<Longrightarrow> R"
   683   -- {* "Classical" elimination -- by the Excluded Middle on @{prop "a\<in>A"}. *}
   684   by (unfold INTER_def) blast
   685 
   686 lemma INT_cong [cong]:
   687   "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> (\<Inter>x\<in>A. C x) = (\<Inter>x\<in>B. D x)"
   688   by (fact INF_cong)
   689 
   690 lemma Collect_ball_eq: "{x. \<forall>y\<in>A. P x y} = (\<Inter>y\<in>A. {x. P x y})"
   691   by blast
   692 
   693 lemma Collect_all_eq: "{x. \<forall>y. P x y} = (\<Inter>y. {x. P x y})"
   694   by blast
   695 
   696 lemma INT_lower: "a \<in> A \<Longrightarrow> (\<Inter>x\<in>A. B x) \<subseteq> B a"
   697   by (fact INF_leI)
   698 
   699 lemma INT_greatest: "(\<And>x. x \<in> A \<Longrightarrow> C \<subseteq> B x) \<Longrightarrow> C \<subseteq> (\<Inter>x\<in>A. B x)"
   700   by (fact le_INF_I)
   701 
   702 lemma INT_empty [simp]: "(\<Inter>x\<in>{}. B x) = UNIV"
   703   by (fact INF_empty)
   704 
   705 lemma INT_absorb: "k \<in> I \<Longrightarrow> A k \<inter> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. A i)"
   706   by (fact INF_absorb)
   707 
   708 lemma INT_subset_iff: "B \<subseteq> (\<Inter>i\<in>I. A i) \<longleftrightarrow> (\<forall>i\<in>I. B \<subseteq> A i)"
   709   by (fact le_INF_iff)
   710 
   711 lemma INT_insert [simp]: "(\<Inter>x \<in> insert a A. B x) = B a \<inter> INTER A B"
   712   by (fact INF_insert)
   713 
   714 lemma INT_Un: "(\<Inter>i \<in> A \<union> B. M i) = (\<Inter>i \<in> A. M i) \<inter> (\<Inter>i\<in>B. M i)"
   715   by (fact INF_union)
   716 
   717 lemma INT_insert_distrib:
   718   "u \<in> A \<Longrightarrow> (\<Inter>x\<in>A. insert a (B x)) = insert a (\<Inter>x\<in>A. B x)"
   719   by blast
   720 
   721 lemma INT_constant [simp]: "(\<Inter>y\<in>A. c) = (if A = {} then UNIV else c)"
   722   by (fact INF_constant)
   723 
   724 lemma INT_eq: "(\<Inter>x\<in>A. B x) = \<Inter>({Y. \<exists>x\<in>A. Y = B x})"
   725   -- {* Look: it has an \emph{existential} quantifier *}
   726   by (fact INF_eq)
   727 
   728 lemma INTER_UNIV_conv [simp]:
   729  "(UNIV = (\<Inter>x\<in>A. B x)) = (\<forall>x\<in>A. B x = UNIV)"
   730  "((\<Inter>x\<in>A. B x) = UNIV) = (\<forall>x\<in>A. B x = UNIV)"
   731   by (fact INF_top_conv)+
   732 
   733 lemma INT_bool_eq: "(\<Inter>b. A b) = A True \<inter> A False"
   734   by (fact INF_UNIV_bool_expand)
   735 
   736 lemma INT_anti_mono:
   737   "A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<subseteq> g x) \<Longrightarrow> (\<Inter>x\<in>B. f x) \<subseteq> (\<Inter>x\<in>A. g x)"
   738   -- {* The last inclusion is POSITIVE! *}
   739   by (fact INF_superset_mono)
   740 
   741 lemma Pow_INT_eq: "Pow (\<Inter>x\<in>A. B x) = (\<Inter>x\<in>A. Pow (B x))"
   742   by blast
   743 
   744 lemma vimage_INT: "f -` (\<Inter>x\<in>A. B x) = (\<Inter>x\<in>A. f -` B x)"
   745   by blast
   746 
   747 
   748 subsection {* Union *}
   749 
   750 abbreviation Union :: "'a set set \<Rightarrow> 'a set" where
   751   "Union S \<equiv> \<Squnion>S"
   752 
   753 notation (xsymbols)
   754   Union  ("\<Union>_" [90] 90)
   755 
   756 lemma Union_eq:
   757   "\<Union>A = {x. \<exists>B \<in> A. x \<in> B}"
   758 proof (rule set_eqI)
   759   fix x
   760   have "(\<exists>Q\<in>{P. \<exists>B\<in>A. P \<longleftrightarrow> x \<in> B}. Q) \<longleftrightarrow> (\<exists>B\<in>A. x \<in> B)"
   761     by auto
   762   then show "x \<in> \<Union>A \<longleftrightarrow> x \<in> {x. \<exists>B\<in>A. x \<in> B}"
   763     by (simp add: Sup_fun_def Sup_bool_def) (simp add: mem_def)
   764 qed
   765 
   766 lemma Union_iff [simp, no_atp]:
   767   "A \<in> \<Union>C \<longleftrightarrow> (\<exists>X\<in>C. A\<in>X)"
   768   by (unfold Union_eq) blast
   769 
   770 lemma UnionI [intro]:
   771   "X \<in> C \<Longrightarrow> A \<in> X \<Longrightarrow> A \<in> \<Union>C"
   772   -- {* The order of the premises presupposes that @{term C} is rigid;
   773     @{term A} may be flexible. *}
   774   by auto
   775 
   776 lemma UnionE [elim!]:
   777   "A \<in> \<Union>C \<Longrightarrow> (\<And>X. A \<in> X \<Longrightarrow> X \<in> C \<Longrightarrow> R) \<Longrightarrow> R"
   778   by auto
   779 
   780 lemma Union_upper: "B \<in> A \<Longrightarrow> B \<subseteq> \<Union>A"
   781   by (fact Sup_upper)
   782 
   783 lemma Union_least: "(\<And>X. X \<in> A \<Longrightarrow> X \<subseteq> C) \<Longrightarrow> \<Union>A \<subseteq> C"
   784   by (fact Sup_least)
   785 
   786 lemma Un_eq_Union: "A \<union> B = \<Union>{A, B}"
   787   by blast
   788 
   789 lemma Union_empty [simp]: "\<Union>{} = {}"
   790   by (fact Sup_empty)
   791 
   792 lemma Union_UNIV [simp]: "\<Union>UNIV = UNIV"
   793   by (fact Sup_UNIV)
   794 
   795 lemma Union_insert [simp]: "\<Union>insert a B = a \<union> \<Union>B"
   796   by (fact Sup_insert)
   797 
   798 lemma Union_Un_distrib [simp]: "\<Union>(A \<union> B) = \<Union>A \<union> \<Union>B"
   799   by (fact Sup_union_distrib)
   800 
   801 lemma Union_Int_subset: "\<Union>(A \<inter> B) \<subseteq> \<Union>A \<inter> \<Union>B"
   802   by (fact Sup_inter_less_eq)
   803 
   804 lemma Union_empty_conv [simp,no_atp]: "(\<Union>A = {}) \<longleftrightarrow> (\<forall>x\<in>A. x = {})"
   805   by (fact Sup_bot_conv)
   806 
   807 lemma empty_Union_conv [simp,no_atp]: "({} = \<Union>A) \<longleftrightarrow> (\<forall>x\<in>A. x = {})"
   808   by (fact Sup_bot_conv)
   809 
   810 lemma Union_disjoint: "(\<Union>C \<inter> A = {}) \<longleftrightarrow> (\<forall>B\<in>C. B \<inter> A = {})" -- "FIXME generalize"
   811   by blast
   812 
   813 lemma subset_Pow_Union: "A \<subseteq> Pow (\<Union>A)"
   814   by blast
   815 
   816 lemma Union_Pow_eq [simp]: "\<Union>(Pow A) = A"
   817   by blast
   818 
   819 lemma Union_mono: "A \<subseteq> B \<Longrightarrow> \<Union>A \<subseteq> \<Union>B"
   820   by (fact Sup_subset_mono)
   821 
   822 
   823 subsection {* Unions of families *}
   824 
   825 abbreviation UNION :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where
   826   "UNION \<equiv> SUPR"
   827 
   828 text {*
   829   Note: must use name @{const UNION} here instead of @{text UN}
   830   to allow the following syntax coexist with the plain constant name.
   831 *}
   832 
   833 syntax
   834   "_UNION1"     :: "pttrns => 'b set => 'b set"           ("(3UN _./ _)" [0, 10] 10)
   835   "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3UN _:_./ _)" [0, 0, 10] 10)
   836 
   837 syntax (xsymbols)
   838   "_UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>_./ _)" [0, 10] 10)
   839   "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>_\<in>_./ _)" [0, 0, 10] 10)
   840 
   841 syntax (latex output)
   842   "_UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>(00\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
   843   "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>(00\<^bsub>_\<in>_\<^esub>)/ _)" [0, 0, 10] 10)
   844 
   845 translations
   846   "UN x y. B"   == "UN x. UN y. B"
   847   "UN x. B"     == "CONST UNION CONST UNIV (%x. B)"
   848   "UN x. B"     == "UN x:CONST UNIV. B"
   849   "UN x:A. B"   == "CONST UNION A (%x. B)"
   850 
   851 text {*
   852   Note the difference between ordinary xsymbol syntax of indexed
   853   unions and intersections (e.g.\ @{text"\<Union>a\<^isub>1\<in>A\<^isub>1. B"})
   854   and their \LaTeX\ rendition: @{term"\<Union>a\<^isub>1\<in>A\<^isub>1. B"}. The
   855   former does not make the index expression a subscript of the
   856   union/intersection symbol because this leads to problems with nested
   857   subscripts in Proof General.
   858 *}
   859 
   860 print_translation {*
   861   [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax UNION} @{syntax_const "_UNION"}]
   862 *} -- {* to avoid eta-contraction of body *}
   863 
   864 lemma UNION_eq_Union_image:
   865   "(\<Union>x\<in>A. B x) = \<Union>(B ` A)"
   866   by (fact SUP_def)
   867 
   868 lemma Union_def:
   869   "\<Union>S = (\<Union>x\<in>S. x)"
   870   by (simp add: UNION_eq_Union_image image_def)
   871 
   872 lemma UNION_def [no_atp]:
   873   "(\<Union>x\<in>A. B x) = {y. \<exists>x\<in>A. y \<in> B x}"
   874   by (auto simp add: UNION_eq_Union_image Union_eq)
   875   
   876 lemma Union_image_eq [simp]:
   877   "\<Union>(B ` A) = (\<Union>x\<in>A. B x)"
   878   by (rule sym) (fact UNION_eq_Union_image)
   879   
   880 lemma UN_iff [simp]: "(b \<in> (\<Union>x\<in>A. B x)) = (\<exists>x\<in>A. b \<in> B x)"
   881   by (unfold UNION_def) blast
   882 
   883 lemma UN_I [intro]: "a \<in> A \<Longrightarrow> b \<in> B a \<Longrightarrow> b \<in> (\<Union>x\<in>A. B x)"
   884   -- {* The order of the premises presupposes that @{term A} is rigid;
   885     @{term b} may be flexible. *}
   886   by auto
   887 
   888 lemma UN_E [elim!]: "b \<in> (\<Union>x\<in>A. B x) \<Longrightarrow> (\<And>x. x\<in>A \<Longrightarrow> b \<in> B x \<Longrightarrow> R) \<Longrightarrow> R"
   889   by (unfold UNION_def) blast
   890 
   891 lemma UN_cong [cong]:
   892   "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> (\<Union>x\<in>A. C x) = (\<Union>x\<in>B. D x)"
   893   by (fact SUP_cong)
   894 
   895 lemma strong_UN_cong:
   896   "A = B \<Longrightarrow> (\<And>x. x \<in> B =simp=> C x = D x) \<Longrightarrow> (\<Union>x\<in>A. C x) = (\<Union>x\<in>B. D x)"
   897   by (unfold simp_implies_def) (fact UN_cong)
   898 
   899 lemma image_eq_UN: "f ` A = (\<Union>x\<in>A. {f x})"
   900   by blast
   901 
   902 lemma UN_upper: "a \<in> A \<Longrightarrow> B a \<subseteq> (\<Union>x\<in>A. B x)"
   903   by (fact le_SUP_I)
   904 
   905 lemma UN_least: "(\<And>x. x \<in> A \<Longrightarrow> B x \<subseteq> C) \<Longrightarrow> (\<Union>x\<in>A. B x) \<subseteq> C"
   906   by (fact SUP_leI)
   907 
   908 lemma Collect_bex_eq [no_atp]: "{x. \<exists>y\<in>A. P x y} = (\<Union>y\<in>A. {x. P x y})"
   909   by blast
   910 
   911 lemma UN_insert_distrib: "u \<in> A \<Longrightarrow> (\<Union>x\<in>A. insert a (B x)) = insert a (\<Union>x\<in>A. B x)"
   912   by blast
   913 
   914 lemma UN_empty [simp, no_atp]: "(\<Union>x\<in>{}. B x) = {}"
   915   by (fact SUP_empty)
   916 
   917 lemma UN_empty2 [simp]: "(\<Union>x\<in>A. {}) = {}"
   918   by (fact SUP_bot)
   919 
   920 lemma UN_singleton [simp]: "(\<Union>x\<in>A. {x}) = A"
   921   by blast
   922 
   923 lemma UN_absorb: "k \<in> I \<Longrightarrow> A k \<union> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. A i)"
   924   by (fact SUP_absorb)
   925 
   926 lemma UN_insert [simp]: "(\<Union>x\<in>insert a A. B x) = B a \<union> UNION A B"
   927   by (fact SUP_insert)
   928 
   929 lemma UN_Un[simp]: "(\<Union>i \<in> A \<union> B. M i) = (\<Union>i\<in>A. M i) \<union> (\<Union>i\<in>B. M i)"
   930   by (fact SUP_union)
   931 
   932 lemma UN_UN_flatten: "(\<Union>x \<in> (\<Union>y\<in>A. B y). C x) = (\<Union>y\<in>A. \<Union>x\<in>B y. C x)" -- "FIXME generalize"
   933   by blast
   934 
   935 lemma UN_subset_iff: "((\<Union>i\<in>I. A i) \<subseteq> B) = (\<forall>i\<in>I. A i \<subseteq> B)"
   936   by (fact SUP_le_iff)
   937 
   938 lemma UN_constant [simp]: "(\<Union>y\<in>A. c) = (if A = {} then {} else c)"
   939   by (fact SUP_constant)
   940 
   941 lemma UN_eq: "(\<Union>x\<in>A. B x) = \<Union>({Y. \<exists>x\<in>A. Y = B x})"
   942   by (fact SUP_eq)
   943 
   944 lemma image_Union: "f ` \<Union>S = (\<Union>x\<in>S. f ` x)" -- "FIXME generalize"
   945   by blast
   946 
   947 lemma UNION_empty_conv[simp]:
   948   "{} = (\<Union>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = {})"
   949   "(\<Union>x\<in>A. B x) = {} \<longleftrightarrow> (\<forall>x\<in>A. B x = {})"
   950   by (fact SUP_bot_conv)+
   951 
   952 lemma Collect_ex_eq [no_atp]: "{x. \<exists>y. P x y} = (\<Union>y. {x. P x y})"
   953   by blast
   954 
   955 lemma ball_UN: "(\<forall>z \<in> UNION A B. P z) \<longleftrightarrow> (\<forall>x\<in>A. \<forall>z \<in> B x. P z)"
   956   by blast
   957 
   958 lemma bex_UN: "(\<exists>z \<in> UNION A B. P z) \<longleftrightarrow> (\<exists>x\<in>A. \<exists>z\<in>B x. P z)"
   959   by blast
   960 
   961 lemma Un_eq_UN: "A \<union> B = (\<Union>b. if b then A else B)"
   962   by (auto simp add: split_if_mem2)
   963 
   964 lemma UN_bool_eq: "(\<Union>b. A b) = (A True \<union> A False)"
   965   by (fact SUP_UNIV_bool_expand)
   966 
   967 lemma UN_Pow_subset: "(\<Union>x\<in>A. Pow (B x)) \<subseteq> Pow (\<Union>x\<in>A. B x)"
   968   by blast
   969 
   970 lemma UN_mono:
   971   "A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<subseteq> g x) \<Longrightarrow>
   972     (\<Union>x\<in>A. f x) \<subseteq> (\<Union>x\<in>B. g x)"
   973   by (fact SUP_subset_mono)
   974 
   975 lemma vimage_Union: "f -` (\<Union>A) = (\<Union>X\<in>A. f -` X)"
   976   by blast
   977 
   978 lemma vimage_UN: "f -` (\<Union>x\<in>A. B x) = (\<Union>x\<in>A. f -` B x)"
   979   by blast
   980 
   981 lemma vimage_eq_UN: "f -` B = (\<Union>y\<in>B. f -` {y})"
   982   -- {* NOT suitable for rewriting *}
   983   by blast
   984 
   985 lemma image_UN: "f ` UNION A B = (\<Union>x\<in>A. f ` B x)"
   986   by blast
   987 
   988 
   989 subsection {* Distributive laws *}
   990 
   991 lemma Int_Union: "A \<inter> \<Union>B = (\<Union>C\<in>B. A \<inter> C)"
   992   by blast
   993 
   994 lemma Int_Union2: "\<Union>B \<inter> A = (\<Union>C\<in>B. C \<inter> A)"
   995   by blast
   996 
   997 lemma Un_Union_image: "(\<Union>x\<in>C. A x \<union> B x) = \<Union>(A ` C) \<union> \<Union>(B ` C)"
   998   -- {* Devlin, Fundamentals of Contemporary Set Theory, page 12, exercise 5: *}
   999   -- {* Union of a family of unions *}
  1000   by blast
  1001 
  1002 lemma UN_Un_distrib: "(\<Union>i\<in>I. A i \<union> B i) = (\<Union>i\<in>I. A i) \<union> (\<Union>i\<in>I. B i)"
  1003   -- {* Equivalent version *}
  1004   by blast
  1005 
  1006 lemma Un_Inter: "A \<union> \<Inter>B = (\<Inter>C\<in>B. A \<union> C)"
  1007   by blast
  1008 
  1009 lemma Int_Inter_image: "(\<Inter>x\<in>C. A x \<inter> B x) = \<Inter>(A ` C) \<inter> \<Inter>(B ` C)"
  1010   by blast
  1011 
  1012 lemma INT_Int_distrib: "(\<Inter>i\<in>I. A i \<inter> B i) = (\<Inter>i\<in>I. A i) \<inter> (\<Inter>i\<in>I. B i)"
  1013   -- {* Equivalent version *}
  1014   by blast
  1015 
  1016 lemma Int_UN_distrib: "B \<inter> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. B \<inter> A i)"
  1017   -- {* Halmos, Naive Set Theory, page 35. *}
  1018   by blast
  1019 
  1020 lemma Un_INT_distrib: "B \<union> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. B \<union> A i)"
  1021   by blast
  1022 
  1023 lemma Int_UN_distrib2: "(\<Union>i\<in>I. A i) \<inter> (\<Union>j\<in>J. B j) = (\<Union>i\<in>I. \<Union>j\<in>J. A i \<inter> B j)"
  1024   by blast
  1025 
  1026 lemma Un_INT_distrib2: "(\<Inter>i\<in>I. A i) \<union> (\<Inter>j\<in>J. B j) = (\<Inter>i\<in>I. \<Inter>j\<in>J. A i \<union> B j)"
  1027   by blast
  1028 
  1029 
  1030 subsection {* Complement *}
  1031 
  1032 lemma Compl_INT [simp]: "- (\<Inter>x\<in>A. B x) = (\<Union>x\<in>A. -B x)"
  1033   by (fact uminus_INF)
  1034 
  1035 lemma Compl_UN [simp]: "- (\<Union>x\<in>A. B x) = (\<Inter>x\<in>A. -B x)"
  1036   by (fact uminus_SUP)
  1037 
  1038 
  1039 subsection {* Miniscoping and maxiscoping *}
  1040 
  1041 text {* \medskip Miniscoping: pushing in quantifiers and big Unions
  1042            and Intersections. *}
  1043 
  1044 lemma UN_simps [simp]:
  1045   "\<And>a B C. (\<Union>x\<in>C. insert a (B x)) = (if C={} then {} else insert a (\<Union>x\<in>C. B x))"
  1046   "\<And>A B C. (\<Union>x\<in>C. A x \<union>  B) = ((if C={} then {} else (\<Union>x\<in>C. A x) \<union> B))"
  1047   "\<And>A B C. (\<Union>x\<in>C. A \<union> B x) = ((if C={} then {} else A \<union> (\<Union>x\<in>C. B x)))"
  1048   "\<And>A B C. (\<Union>x\<in>C. A x \<inter> B) = ((\<Union>x\<in>C. A x) \<inter>B)"
  1049   "\<And>A B C. (\<Union>x\<in>C. A \<inter> B x) = (A \<inter>(\<Union>x\<in>C. B x))"
  1050   "\<And>A B C. (\<Union>x\<in>C. A x - B) = ((\<Union>x\<in>C. A x) - B)"
  1051   "\<And>A B C. (\<Union>x\<in>C. A - B x) = (A - (\<Inter>x\<in>C. B x))"
  1052   "\<And>A B. (\<Union>x\<in>\<Union>A. B x) = (\<Union>y\<in>A. \<Union>x\<in>y. B x)"
  1053   "\<And>A B C. (\<Union>z\<in>UNION A B. C z) = (\<Union>x\<in>A. \<Union>z\<in>B x. C z)"
  1054   "\<And>A B f. (\<Union>x\<in>f`A. B x) = (\<Union>a\<in>A. B (f a))"
  1055   by auto
  1056 
  1057 lemma INT_simps [simp]:
  1058   "\<And>A B C. (\<Inter>x\<in>C. A x \<inter> B) = (if C={} then UNIV else (\<Inter>x\<in>C. A x) \<inter>B)"
  1059   "\<And>A B C. (\<Inter>x\<in>C. A \<inter> B x) = (if C={} then UNIV else A \<inter>(\<Inter>x\<in>C. B x))"
  1060   "\<And>A B C. (\<Inter>x\<in>C. A x - B) = (if C={} then UNIV else (\<Inter>x\<in>C. A x) - B)"
  1061   "\<And>A B C. (\<Inter>x\<in>C. A - B x) = (if C={} then UNIV else A - (\<Union>x\<in>C. B x))"
  1062   "\<And>a B C. (\<Inter>x\<in>C. insert a (B x)) = insert a (\<Inter>x\<in>C. B x)"
  1063   "\<And>A B C. (\<Inter>x\<in>C. A x \<union> B) = ((\<Inter>x\<in>C. A x) \<union> B)"
  1064   "\<And>A B C. (\<Inter>x\<in>C. A \<union> B x) = (A \<union> (\<Inter>x\<in>C. B x))"
  1065   "\<And>A B. (\<Inter>x\<in>\<Union>A. B x) = (\<Inter>y\<in>A. \<Inter>x\<in>y. B x)"
  1066   "\<And>A B C. (\<Inter>z\<in>UNION A B. C z) = (\<Inter>x\<in>A. \<Inter>z\<in>B x. C z)"
  1067   "\<And>A B f. (\<Inter>x\<in>f`A. B x) = (\<Inter>a\<in>A. B (f a))"
  1068   by auto
  1069 
  1070 lemma ball_simps [simp,no_atp]:
  1071   "\<And>A P Q. (\<forall>x\<in>A. P x \<or> Q) \<longleftrightarrow> ((\<forall>x\<in>A. P x) \<or> Q)"
  1072   "\<And>A P Q. (\<forall>x\<in>A. P \<or> Q x) \<longleftrightarrow> (P \<or> (\<forall>x\<in>A. Q x))"
  1073   "\<And>A P Q. (\<forall>x\<in>A. P \<longrightarrow> Q x) \<longleftrightarrow> (P \<longrightarrow> (\<forall>x\<in>A. Q x))"
  1074   "\<And>A P Q. (\<forall>x\<in>A. P x \<longrightarrow> Q) \<longleftrightarrow> ((\<exists>x\<in>A. P x) \<longrightarrow> Q)"
  1075   "\<And>P. (\<forall>x\<in>{}. P x) \<longleftrightarrow> True"
  1076   "\<And>P. (\<forall>x\<in>UNIV. P x) \<longleftrightarrow> (\<forall>x. P x)"
  1077   "\<And>a B P. (\<forall>x\<in>insert a B. P x) \<longleftrightarrow> (P a \<and> (\<forall>x\<in>B. P x))"
  1078   "\<And>A P. (\<forall>x\<in>\<Union>A. P x) \<longleftrightarrow> (\<forall>y\<in>A. \<forall>x\<in>y. P x)"
  1079   "\<And>A B P. (\<forall>x\<in> UNION A B. P x) = (\<forall>a\<in>A. \<forall>x\<in> B a. P x)"
  1080   "\<And>P Q. (\<forall>x\<in>Collect Q. P x) \<longleftrightarrow> (\<forall>x. Q x \<longrightarrow> P x)"
  1081   "\<And>A P f. (\<forall>x\<in>f`A. P x) \<longleftrightarrow> (\<forall>x\<in>A. P (f x))"
  1082   "\<And>A P. (\<not> (\<forall>x\<in>A. P x)) \<longleftrightarrow> (\<exists>x\<in>A. \<not> P x)"
  1083   by auto
  1084 
  1085 lemma bex_simps [simp,no_atp]:
  1086   "\<And>A P Q. (\<exists>x\<in>A. P x \<and> Q) \<longleftrightarrow> ((\<exists>x\<in>A. P x) \<and> Q)"
  1087   "\<And>A P Q. (\<exists>x\<in>A. P \<and> Q x) \<longleftrightarrow> (P \<and> (\<exists>x\<in>A. Q x))"
  1088   "\<And>P. (\<exists>x\<in>{}. P x) \<longleftrightarrow> False"
  1089   "\<And>P. (\<exists>x\<in>UNIV. P x) \<longleftrightarrow> (\<exists>x. P x)"
  1090   "\<And>a B P. (\<exists>x\<in>insert a B. P x) \<longleftrightarrow> (P a | (\<exists>x\<in>B. P x))"
  1091   "\<And>A P. (\<exists>x\<in>\<Union>A. P x) \<longleftrightarrow> (\<exists>y\<in>A. \<exists>x\<in>y. P x)"
  1092   "\<And>A B P. (\<exists>x\<in>UNION A B. P x) \<longleftrightarrow> (\<exists>a\<in>A. \<exists>x\<in>B a. P x)"
  1093   "\<And>P Q. (\<exists>x\<in>Collect Q. P x) \<longleftrightarrow> (\<exists>x. Q x \<and> P x)"
  1094   "\<And>A P f. (\<exists>x\<in>f`A. P x) \<longleftrightarrow> (\<exists>x\<in>A. P (f x))"
  1095   "\<And>A P. (\<not>(\<exists>x\<in>A. P x)) \<longleftrightarrow> (\<forall>x\<in>A. \<not> P x)"
  1096   by auto
  1097 
  1098 lemma (in complete_linorder) INF_eq_bot_iff:
  1099   fixes f :: "'b \<Rightarrow> 'a"
  1100   shows "(\<Sqinter>i\<in>A. f i) = \<bottom> \<longleftrightarrow> (\<forall>x>\<bottom>. \<exists>i\<in>A. f i < x)"
  1101   unfolding INF_def Inf_eq_bot_iff by auto
  1102 
  1103 lemma (in complete_linorder) SUP_eq_top_iff:
  1104   fixes f :: "'b \<Rightarrow> 'a"
  1105   shows "(\<Squnion>i\<in>A. f i) = \<top> \<longleftrightarrow> (\<forall>x<\<top>. \<exists>i\<in>A. x < f i)"
  1106   unfolding SUP_def Sup_eq_top_iff by auto
  1107 
  1108 
  1109 text {* \medskip Maxiscoping: pulling out big Unions and Intersections. *}
  1110 
  1111 lemma UN_extend_simps:
  1112   "\<And>a B C. insert a (\<Union>x\<in>C. B x) = (if C={} then {a} else (\<Union>x\<in>C. insert a (B x)))"
  1113   "\<And>A B C. (\<Union>x\<in>C. A x) \<union>  B  = (if C={} then B else (\<Union>x\<in>C. A x \<union>  B))"
  1114   "\<And>A B C. A \<union> (\<Union>x\<in>C. B x) = (if C={} then A else (\<Union>x\<in>C. A \<union> B x))"
  1115   "\<And>A B C. ((\<Union>x\<in>C. A x) \<inter> B) = (\<Union>x\<in>C. A x \<inter> B)"
  1116   "\<And>A B C. (A \<inter> (\<Union>x\<in>C. B x)) = (\<Union>x\<in>C. A \<inter> B x)"
  1117   "\<And>A B C. ((\<Union>x\<in>C. A x) - B) = (\<Union>x\<in>C. A x - B)"
  1118   "\<And>A B C. (A - (\<Inter>x\<in>C. B x)) = (\<Union>x\<in>C. A - B x)"
  1119   "\<And>A B. (\<Union>y\<in>A. \<Union>x\<in>y. B x) = (\<Union>x\<in>\<Union>A. B x)"
  1120   "\<And>A B C. (\<Union>x\<in>A. \<Union>z\<in>B x. C z) = (\<Union>z\<in>UNION A B. C z)"
  1121   "\<And>A B f. (\<Union>a\<in>A. B (f a)) = (\<Union>x\<in>f`A. B x)"
  1122   by auto
  1123 
  1124 lemma INT_extend_simps:
  1125   "\<And>A B C. (\<Inter>x\<in>C. A x) \<inter> B = (if C={} then B else (\<Inter>x\<in>C. A x \<inter> B))"
  1126   "\<And>A B C. A \<inter> (\<Inter>x\<in>C. B x) = (if C={} then A else (\<Inter>x\<in>C. A \<inter> B x))"
  1127   "\<And>A B C. (\<Inter>x\<in>C. A x) - B = (if C={} then UNIV - B else (\<Inter>x\<in>C. A x - B))"
  1128   "\<And>A B C. A - (\<Union>x\<in>C. B x) = (if C={} then A else (\<Inter>x\<in>C. A - B x))"
  1129   "\<And>a B C. insert a (\<Inter>x\<in>C. B x) = (\<Inter>x\<in>C. insert a (B x))"
  1130   "\<And>A B C. ((\<Inter>x\<in>C. A x) \<union> B) = (\<Inter>x\<in>C. A x \<union> B)"
  1131   "\<And>A B C. A \<union> (\<Inter>x\<in>C. B x) = (\<Inter>x\<in>C. A \<union> B x)"
  1132   "\<And>A B. (\<Inter>y\<in>A. \<Inter>x\<in>y. B x) = (\<Inter>x\<in>\<Union>A. B x)"
  1133   "\<And>A B C. (\<Inter>x\<in>A. \<Inter>z\<in>B x. C z) = (\<Inter>z\<in>UNION A B. C z)"
  1134   "\<And>A B f. (\<Inter>a\<in>A. B (f a)) = (\<Inter>x\<in>f`A. B x)"
  1135   by auto
  1136 
  1137 
  1138 text {* Legacy names *}
  1139 
  1140 lemmas (in complete_lattice) INFI_def = INF_def
  1141 lemmas (in complete_lattice) SUPR_def = SUP_def
  1142 lemmas (in complete_lattice) le_SUPI = le_SUP_I
  1143 lemmas (in complete_lattice) le_SUPI2 = le_SUP_I2
  1144 lemmas (in complete_lattice) le_INFI = le_INF_I
  1145 lemmas (in complete_lattice) less_INFD = less_INF_D
  1146 
  1147 lemma (in complete_lattice) INF_subset:
  1148   "B \<subseteq> A \<Longrightarrow> INFI A f \<sqsubseteq> INFI B f"
  1149   by (rule INF_superset_mono) auto
  1150 
  1151 lemmas INFI_apply = INF_apply
  1152 lemmas SUPR_apply = SUP_apply
  1153 
  1154 text {* Finally *}
  1155 
  1156 no_notation
  1157   less_eq  (infix "\<sqsubseteq>" 50) and
  1158   less (infix "\<sqsubset>" 50) and
  1159   bot ("\<bottom>") and
  1160   top ("\<top>") and
  1161   inf  (infixl "\<sqinter>" 70) and
  1162   sup  (infixl "\<squnion>" 65) and
  1163   Inf  ("\<Sqinter>_" [900] 900) and
  1164   Sup  ("\<Squnion>_" [900] 900)
  1165 
  1166 no_syntax (xsymbols)
  1167   "_INF1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Sqinter>_./ _)" [0, 10] 10)
  1168   "_INF"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sqinter>_\<in>_./ _)" [0, 0, 10] 10)
  1169   "_SUP1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Squnion>_./ _)" [0, 10] 10)
  1170   "_SUP"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Squnion>_\<in>_./ _)" [0, 0, 10] 10)
  1171 
  1172 lemmas mem_simps =
  1173   insert_iff empty_iff Un_iff Int_iff Compl_iff Diff_iff
  1174   mem_Collect_eq UN_iff Union_iff INT_iff Inter_iff
  1175   -- {* Each of these has ALREADY been added @{text "[simp]"} above. *}
  1176 
  1177 end