src/HOL/UNITY/Lift_prog.thy
author wenzelm
Tue, 21 Feb 2012 17:09:17 +0100
changeset 47448 e5438c5797ae
parent 39535 d7728f65b353
child 47782 6d2a2f0e904e
permissions -rw-r--r--
tuned proofs;
     1 (*  Title:      HOL/UNITY/Lift_prog.thy
     2     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     3     Copyright   1999  University of Cambridge
     4 
     5 lift_prog, etc: replication of components and arrays of processes. 
     6 *)
     7 
     8 header{*Replication of Components*}
     9 
    10 theory Lift_prog imports Rename begin
    11 
    12 definition insert_map :: "[nat, 'b, nat=>'b] => (nat=>'b)" where
    13     "insert_map i z f k == if k<i then f k
    14                            else if k=i then z
    15                            else f(k - 1)"
    16 
    17 definition delete_map :: "[nat, nat=>'b] => (nat=>'b)" where
    18     "delete_map i g k == if k<i then g k else g (Suc k)"
    19 
    20 definition lift_map :: "[nat, 'b * ((nat=>'b) * 'c)] => (nat=>'b) * 'c" where
    21     "lift_map i == %(s,(f,uu)). (insert_map i s f, uu)"
    22 
    23 definition drop_map :: "[nat, (nat=>'b) * 'c] => 'b * ((nat=>'b) * 'c)" where
    24     "drop_map i == %(g, uu). (g i, (delete_map i g, uu))"
    25 
    26 definition lift_set :: "[nat, ('b * ((nat=>'b) * 'c)) set] => ((nat=>'b) * 'c) set" where
    27     "lift_set i A == lift_map i ` A"
    28 
    29 definition lift :: "[nat, ('b * ((nat=>'b) * 'c)) program] => ((nat=>'b) * 'c) program" where
    30     "lift i == rename (lift_map i)"
    31 
    32   (*simplifies the expression of specifications*)
    33 definition sub :: "['a, 'a=>'b] => 'b" where
    34     "sub == %i f. f i"
    35 
    36 
    37 declare insert_map_def [simp] delete_map_def [simp]
    38 
    39 lemma insert_map_inverse: "delete_map i (insert_map i x f) = f"
    40 by (rule ext, simp)
    41 
    42 lemma insert_map_delete_map_eq: "(insert_map i x (delete_map i g)) = g(i:=x)"
    43 apply (rule ext)
    44 apply (auto split add: nat_diff_split)
    45 done
    46 
    47 subsection{*Injectiveness proof*}
    48 
    49 lemma insert_map_inject1: "(insert_map i x f) = (insert_map i y g) ==> x=y"
    50 by (drule_tac x = i in fun_cong, simp)
    51 
    52 lemma insert_map_inject2: "(insert_map i x f) = (insert_map i y g) ==> f=g"
    53 apply (drule_tac f = "delete_map i" in arg_cong)
    54 apply (simp add: insert_map_inverse)
    55 done
    56 
    57 lemma insert_map_inject':
    58      "(insert_map i x f) = (insert_map i y g) ==> x=y & f=g"
    59 by (blast dest: insert_map_inject1 insert_map_inject2)
    60 
    61 lemmas insert_map_inject = insert_map_inject' [THEN conjE, elim!]
    62 
    63 (*The general case: we don't assume i=i'*)
    64 lemma lift_map_eq_iff [iff]: 
    65      "(lift_map i (s,(f,uu)) = lift_map i' (s',(f',uu')))  
    66       = (uu = uu' & insert_map i s f = insert_map i' s' f')"
    67 by (unfold lift_map_def, auto)
    68 
    69 (*The !!s allows the automatic splitting of the bound variable*)
    70 lemma drop_map_lift_map_eq [simp]: "!!s. drop_map i (lift_map i s) = s"
    71 apply (unfold lift_map_def drop_map_def)
    72 apply (force intro: insert_map_inverse)
    73 done
    74 
    75 lemma inj_lift_map: "inj (lift_map i)"
    76 apply (unfold lift_map_def)
    77 apply (rule inj_onI, auto)
    78 done
    79 
    80 subsection{*Surjectiveness proof*}
    81 
    82 lemma lift_map_drop_map_eq [simp]: "!!s. lift_map i (drop_map i s) = s"
    83 apply (unfold lift_map_def drop_map_def)
    84 apply (force simp add: insert_map_delete_map_eq)
    85 done
    86 
    87 lemma drop_map_inject [dest!]: "(drop_map i s) = (drop_map i s') ==> s=s'"
    88 by (drule_tac f = "lift_map i" in arg_cong, simp)
    89 
    90 lemma surj_lift_map: "surj (lift_map i)"
    91 apply (rule surjI)
    92 apply (rule lift_map_drop_map_eq)
    93 done
    94 
    95 lemma bij_lift_map [iff]: "bij (lift_map i)"
    96 by (simp add: bij_def inj_lift_map surj_lift_map)
    97 
    98 lemma inv_lift_map_eq [simp]: "inv (lift_map i) = drop_map i"
    99 by (rule inv_equality, auto)
   100 
   101 lemma inv_drop_map_eq [simp]: "inv (drop_map i) = lift_map i"
   102 by (rule inv_equality, auto)
   103 
   104 lemma bij_drop_map [iff]: "bij (drop_map i)"
   105 by (simp del: inv_lift_map_eq add: inv_lift_map_eq [symmetric] bij_imp_bij_inv)
   106 
   107 (*sub's main property!*)
   108 lemma sub_apply [simp]: "sub i f = f i"
   109 by (simp add: sub_def)
   110 
   111 lemma all_total_lift: "all_total F ==> all_total (lift i F)"
   112 by (simp add: lift_def rename_def Extend.all_total_extend)
   113 
   114 lemma insert_map_upd_same: "(insert_map i t f)(i := s) = insert_map i s f"
   115 by (rule ext, auto)
   116 
   117 lemma insert_map_upd:
   118      "(insert_map j t f)(i := s) =  
   119       (if i=j then insert_map i s f  
   120        else if i<j then insert_map j t (f(i:=s))  
   121        else insert_map j t (f(i - Suc 0 := s)))"
   122 apply (rule ext) 
   123 apply (simp split add: nat_diff_split)
   124  txt{*This simplification is VERY slow*}
   125 done
   126 
   127 lemma insert_map_eq_diff:
   128      "[| insert_map i s f = insert_map j t g;  i\<noteq>j |]  
   129       ==> \<exists>g'. insert_map i s' f = insert_map j t g'"
   130 apply (subst insert_map_upd_same [symmetric])
   131 apply (erule ssubst)
   132 apply (simp only: insert_map_upd if_False split: split_if, blast)
   133 done
   134 
   135 lemma lift_map_eq_diff: 
   136      "[| lift_map i (s,(f,uu)) = lift_map j (t,(g,vv));  i\<noteq>j |]  
   137       ==> \<exists>g'. lift_map i (s',(f,uu)) = lift_map j (t,(g',vv))"
   138 apply (unfold lift_map_def, auto)
   139 apply (blast dest: insert_map_eq_diff)
   140 done
   141 
   142 
   143 subsection{*The Operator @{term lift_set}*}
   144 
   145 lemma lift_set_empty [simp]: "lift_set i {} = {}"
   146 by (unfold lift_set_def, auto)
   147 
   148 lemma lift_set_iff: "(lift_map i x \<in> lift_set i A) = (x \<in> A)"
   149 apply (unfold lift_set_def)
   150 apply (rule inj_lift_map [THEN inj_image_mem_iff])
   151 done
   152 
   153 (*Do we really need both this one and its predecessor?*)
   154 lemma lift_set_iff2 [iff]:
   155      "((f,uu) \<in> lift_set i A) = ((f i, (delete_map i f, uu)) \<in> A)"
   156 by (simp add: lift_set_def mem_rename_set_iff drop_map_def)
   157 
   158 
   159 lemma lift_set_mono: "A \<subseteq> B ==> lift_set i A \<subseteq> lift_set i B"
   160 apply (unfold lift_set_def)
   161 apply (erule image_mono)
   162 done
   163 
   164 lemma lift_set_Un_distrib: "lift_set i (A \<union> B) = lift_set i A \<union> lift_set i B"
   165 by (simp add: lift_set_def image_Un)
   166 
   167 lemma lift_set_Diff_distrib: "lift_set i (A-B) = lift_set i A - lift_set i B"
   168 apply (unfold lift_set_def)
   169 apply (rule inj_lift_map [THEN image_set_diff])
   170 done
   171 
   172 
   173 subsection{*The Lattice Operations*}
   174 
   175 lemma bij_lift [iff]: "bij (lift i)"
   176 by (simp add: lift_def)
   177 
   178 lemma lift_SKIP [simp]: "lift i SKIP = SKIP"
   179 by (simp add: lift_def)
   180 
   181 lemma lift_Join [simp]: "lift i (F Join G) = lift i F Join lift i G"
   182 by (simp add: lift_def)
   183 
   184 lemma lift_JN [simp]: "lift j (JOIN I F) = (\<Squnion>i \<in> I. lift j (F i))"
   185 by (simp add: lift_def)
   186 
   187 subsection{*Safety: constrains, stable, invariant*}
   188 
   189 lemma lift_constrains: 
   190      "(lift i F \<in> (lift_set i A) co (lift_set i B)) = (F \<in> A co B)"
   191 by (simp add: lift_def lift_set_def rename_constrains)
   192 
   193 lemma lift_stable: 
   194      "(lift i F \<in> stable (lift_set i A)) = (F \<in> stable A)"
   195 by (simp add: lift_def lift_set_def rename_stable)
   196 
   197 lemma lift_invariant: 
   198      "(lift i F \<in> invariant (lift_set i A)) = (F \<in> invariant A)"
   199 by (simp add: lift_def lift_set_def rename_invariant)
   200 
   201 lemma lift_Constrains: 
   202      "(lift i F \<in> (lift_set i A) Co (lift_set i B)) = (F \<in> A Co B)"
   203 by (simp add: lift_def lift_set_def rename_Constrains)
   204 
   205 lemma lift_Stable: 
   206      "(lift i F \<in> Stable (lift_set i A)) = (F \<in> Stable A)"
   207 by (simp add: lift_def lift_set_def rename_Stable)
   208 
   209 lemma lift_Always: 
   210      "(lift i F \<in> Always (lift_set i A)) = (F \<in> Always A)"
   211 by (simp add: lift_def lift_set_def rename_Always)
   212 
   213 subsection{*Progress: transient, ensures*}
   214 
   215 lemma lift_transient: 
   216      "(lift i F \<in> transient (lift_set i A)) = (F \<in> transient A)"
   217 by (simp add: lift_def lift_set_def rename_transient)
   218 
   219 lemma lift_ensures: 
   220      "(lift i F \<in> (lift_set i A) ensures (lift_set i B)) =  
   221       (F \<in> A ensures B)"
   222 by (simp add: lift_def lift_set_def rename_ensures)
   223 
   224 lemma lift_leadsTo: 
   225      "(lift i F \<in> (lift_set i A) leadsTo (lift_set i B)) =  
   226       (F \<in> A leadsTo B)"
   227 by (simp add: lift_def lift_set_def rename_leadsTo)
   228 
   229 lemma lift_LeadsTo: 
   230      "(lift i F \<in> (lift_set i A) LeadsTo (lift_set i B)) =   
   231       (F \<in> A LeadsTo B)"
   232 by (simp add: lift_def lift_set_def rename_LeadsTo)
   233 
   234 
   235 (** guarantees **)
   236 
   237 lemma lift_lift_guarantees_eq: 
   238      "(lift i F \<in> (lift i ` X) guarantees (lift i ` Y)) =  
   239       (F \<in> X guarantees Y)"
   240 apply (unfold lift_def)
   241 apply (subst bij_lift_map [THEN rename_rename_guarantees_eq, symmetric])
   242 apply (simp add: o_def)
   243 done
   244 
   245 lemma lift_guarantees_eq_lift_inv:
   246      "(lift i F \<in> X guarantees Y) =  
   247       (F \<in> (rename (drop_map i) ` X) guarantees (rename (drop_map i) ` Y))"
   248 by (simp add: bij_lift_map [THEN rename_guarantees_eq_rename_inv] lift_def)
   249 
   250 
   251 (*To preserve snd means that the second component is there just to allow
   252   guarantees properties to be stated.  Converse fails, for lift i F can 
   253   change function components other than i*)
   254 lemma lift_preserves_snd_I: "F \<in> preserves snd ==> lift i F \<in> preserves snd"
   255 apply (drule_tac w1=snd in subset_preserves_o [THEN subsetD])
   256 apply (simp add: lift_def rename_preserves)
   257 apply (simp add: lift_map_def o_def split_def)
   258 done
   259 
   260 lemma delete_map_eqE':
   261      "(delete_map i g) = (delete_map i g') ==> \<exists>x. g = g'(i:=x)"
   262 apply (drule_tac f = "insert_map i (g i) " in arg_cong)
   263 apply (simp add: insert_map_delete_map_eq)
   264 apply (erule exI)
   265 done
   266 
   267 lemmas delete_map_eqE = delete_map_eqE' [THEN exE, elim!]
   268 
   269 lemma delete_map_neq_apply:
   270      "[| delete_map j g = delete_map j g';  i\<noteq>j |] ==> g i = g' i"
   271 by force
   272 
   273 (*A set of the form (A <*> UNIV) ignores the second (dummy) state component*)
   274 
   275 lemma vimage_o_fst_eq [simp]: "(f o fst) -` A = (f-`A) <*> UNIV"
   276 by auto
   277 
   278 lemma vimage_sub_eq_lift_set [simp]:
   279      "(sub i -`A) <*> UNIV = lift_set i (A <*> UNIV)"
   280 by auto
   281 
   282 lemma mem_lift_act_iff [iff]: 
   283      "((s,s') \<in> extend_act (%(x,u::unit). lift_map i x) act) =  
   284       ((drop_map i s, drop_map i s') \<in> act)"
   285 apply (unfold extend_act_def, auto)
   286 apply (rule bexI, auto)
   287 done
   288 
   289 lemma preserves_snd_lift_stable:
   290      "[| F \<in> preserves snd;  i\<noteq>j |]  
   291       ==> lift j F \<in> stable (lift_set i (A <*> UNIV))"
   292 apply (auto simp add: lift_def lift_set_def stable_def constrains_def 
   293                       rename_def extend_def mem_rename_set_iff)
   294 apply (auto dest!: preserves_imp_eq simp add: lift_map_def drop_map_def)
   295 apply (drule_tac x = i in fun_cong, auto)
   296 done
   297 
   298 (*If i\<noteq>j then lift j F  does nothing to lift_set i, and the 
   299   premise ensures A \<subseteq> B.*)
   300 lemma constrains_imp_lift_constrains:
   301     "[| F i \<in> (A <*> UNIV) co (B <*> UNIV);   
   302         F j \<in> preserves snd |]   
   303      ==> lift j (F j) \<in> (lift_set i (A <*> UNIV)) co (lift_set i (B <*> UNIV))"
   304 apply (case_tac "i=j")
   305 apply (simp add: lift_def lift_set_def rename_constrains)
   306 apply (erule preserves_snd_lift_stable[THEN stableD, THEN constrains_weaken_R],
   307        assumption)
   308 apply (erule constrains_imp_subset [THEN lift_set_mono])
   309 done
   310 
   311 (*USELESS??*)
   312 lemma lift_map_image_Times:
   313      "lift_map i ` (A <*> UNIV) =  
   314       (\<Union>s \<in> A. \<Union>f. {insert_map i s f}) <*> UNIV"
   315 apply (auto intro!: bexI image_eqI simp add: lift_map_def)
   316 apply (rule split_conv [symmetric])
   317 done
   318 
   319 lemma lift_preserves_eq:
   320      "(lift i F \<in> preserves v) = (F \<in> preserves (v o lift_map i))"
   321 by (simp add: lift_def rename_preserves)
   322 
   323 (*A useful rewrite.  If o, sub have been rewritten out already then can also
   324   use it as   rewrite_rule [sub_def, o_def] lift_preserves_sub*)
   325 lemma lift_preserves_sub:
   326      "F \<in> preserves snd  
   327       ==> lift i F \<in> preserves (v o sub j o fst) =  
   328           (if i=j then F \<in> preserves (v o fst) else True)"
   329 apply (drule subset_preserves_o [THEN subsetD])
   330 apply (simp add: lift_preserves_eq o_def)
   331 apply (auto cong del: if_weak_cong 
   332        simp add: lift_map_def eq_commute split_def o_def)
   333 done
   334 
   335 
   336 subsection{*Lemmas to Handle Function Composition (o) More Consistently*}
   337 
   338 (*Lets us prove one version of a theorem and store others*)
   339 lemma o_equiv_assoc: "f o g = h ==> f' o f o g = f' o h"
   340 by (simp add: fun_eq_iff o_def)
   341 
   342 lemma o_equiv_apply: "f o g = h ==> \<forall>x. f(g x) = h x"
   343 by (simp add: fun_eq_iff o_def)
   344 
   345 lemma fst_o_lift_map: "sub i o fst o lift_map i = fst"
   346 apply (rule ext)
   347 apply (auto simp add: o_def lift_map_def sub_def)
   348 done
   349 
   350 lemma snd_o_lift_map: "snd o lift_map i = snd o snd"
   351 apply (rule ext)
   352 apply (auto simp add: o_def lift_map_def)
   353 done
   354 
   355 
   356 subsection{*More lemmas about extend and project*}
   357 
   358 text{*They could be moved to theory Extend or Project*}
   359 
   360 lemma extend_act_extend_act:
   361      "extend_act h' (extend_act h act) =  
   362       extend_act (%(x,(y,y')). h'(h(x,y),y')) act"
   363 apply (auto elim!: rev_bexI simp add: extend_act_def, blast) 
   364 done
   365 
   366 lemma project_act_project_act:
   367      "project_act h (project_act h' act) =  
   368       project_act (%(x,(y,y')). h'(h(x,y),y')) act"
   369 by (auto elim!: rev_bexI simp add: project_act_def)
   370 
   371 lemma project_act_extend_act:
   372      "project_act h (extend_act h' act) =  
   373         {(x,x'). \<exists>s s' y y' z. (s,s') \<in> act &  
   374                  h(x,y) = h'(s,z) & h(x',y') = h'(s',z)}"
   375 by (simp add: extend_act_def project_act_def, blast)
   376 
   377 
   378 subsection{*OK and "lift"*}
   379 
   380 lemma act_in_UNION_preserves_fst:
   381      "act \<subseteq> {(x,x'). fst x = fst x'} ==> act \<in> UNION (preserves fst) Acts"
   382 apply (rule_tac a = "mk_program (UNIV,{act},UNIV) " in UN_I)
   383 apply (auto simp add: preserves_def stable_def constrains_def)
   384 done
   385 
   386 lemma UNION_OK_lift_I:
   387      "[| \<forall>i \<in> I. F i \<in> preserves snd;   
   388          \<forall>i \<in> I. UNION (preserves fst) Acts \<subseteq> AllowedActs (F i) |]  
   389       ==> OK I (%i. lift i (F i))"
   390 apply (auto simp add: OK_def lift_def rename_def Extend.Acts_extend)
   391 apply (simp add: Extend.AllowedActs_extend project_act_extend_act)
   392 apply (rename_tac "act")
   393 apply (subgoal_tac
   394        "{(x, x'). \<exists>s f u s' f' u'. 
   395                     ((s, f, u), s', f', u') \<in> act & 
   396                     lift_map j x = lift_map i (s, f, u) & 
   397                     lift_map j x' = lift_map i (s', f', u') } 
   398                 \<subseteq> { (x,x') . fst x = fst x'}")
   399 apply (blast intro: act_in_UNION_preserves_fst, clarify)
   400 apply (drule_tac x = j in fun_cong)+
   401 apply (drule_tac x = i in bspec, assumption)
   402 apply (frule preserves_imp_eq, auto)
   403 done
   404 
   405 lemma OK_lift_I:
   406      "[| \<forall>i \<in> I. F i \<in> preserves snd;   
   407          \<forall>i \<in> I. preserves fst \<subseteq> Allowed (F i) |]  
   408       ==> OK I (%i. lift i (F i))"
   409 by (simp add: safety_prop_AllowedActs_iff_Allowed UNION_OK_lift_I)
   410 
   411 lemma Allowed_lift [simp]: "Allowed (lift i F) = lift i ` (Allowed F)"
   412 by (simp add: lift_def)
   413 
   414 lemma lift_image_preserves:
   415      "lift i ` preserves v = preserves (v o drop_map i)"
   416 by (simp add: rename_image_preserves lift_def)
   417 
   418 end