doc-src/isac/jrocnik/calulations.tex
author Walther Neuper <neuper@ist.tugraz.at>
Fri, 22 Jul 2011 12:10:13 +0200
branchdecompose-isar
changeset 42164 dc2fe21d2183
parent 42162 e9cb13460b88
child 42163 3bf084f80641
permissions -rwxr-xr-x
meeting 110722
     1 \documentclass[a4paper]{scrartcl}
     2 \usepackage[top=2cm, bottom=2.5cm, left=3cm, right=2cm, footskip=1cm]{geometry}
     3 \usepackage{endnotes}
     4 \usepackage[german]{babel}
     5 \usepackage[T1]{fontenc}
     6 \usepackage[latin1]{inputenc}
     7 
     8 \setlength{\parindent}{0ex}
     9 
    10 \begin{document}
    11 \title{SPSC Specific Problems for ISAC}
    12 \subtitle{Solutions}
    13 \author{Walther Neuper, Jan Rocnik}
    14 \maketitle
    15 
    16 \section*{Fourier Transformation}
    17 \subsection*{Problem\endnote{Problem submitted by Bernhard Geiger. Originally fragment of the exam to \emph{Signaltransformationen VO} from 04.03.2011. Translated from German.}}
    18 \textbf{(a)} Determine the fourier transform for the given rectangular impulse:
    19 
    20 \begin{center}
    21 $x(t)= \left\{
    22      \begin{array}{lr}
    23        1 & -1\leq t\geq1\\
    24        0 & else
    25      \end{array}
    26    \right.$
    27 \end{center}
    28 
    29 \textbf{(b)} Now consider the given delayed impulse, determine its fourie transformation and calculate phase and magnitude:
    30 
    31 \begin{center}
    32 $x(t)= \left\{
    33      \begin{array}{lr}
    34        1 & -1\leq t\geq1\\
    35        0 & else
    36      \end{array}
    37    \right.$
    38 \end{center}
    39 
    40 \subsection*{Solution}
    41 \begin{tabbing}
    42 000\=\kill
    43 01 \> ${\cal F}\;(x(t-2)) =$\\
    44       \`${\cal F}\;(x(t-T)) = e^{-j\cdot\omega\cdot T}\cdot X\;j\cdot\omega$\\
    45 02 \> $e^{-j\cdot\omega\cdot 2}\cdot X\;(j\cdot\omega)$\\
    46       \`definition $X\;(j\cdot\omega)$\\
    47 03 \> $e^{-j\cdot\omega\cdot 2}\cdot \int_{-\infty}^\infty x\;t\;\cdot e^{-j\cdot\omega\cdot t} d t$\\
    48       \` $x\;t = 1\;{\it for}\;\{x.\;-1\leq t\;\land\;t\leq 1\}\;{\it and}\;x\;t=0\;{\it otherwise}$\\
    49 04 \> $e^{-j\cdot\omega\cdot 2}\cdot \int_{-1}^1 1\cdot e^{-j\cdot\omega\cdot t} d t$\\
    50       \` $\int_a^b f\;t\;dt = \int f\;t\;dt\;|_a^b$\\
    51 05 \> $e^{-j\cdot\omega\cdot 2}\cdot \int 1\cdot e^{-j\cdot\omega\cdot t} d t\;|_{-1}^1$\\
    52       %\` $\int e^{a\cdot t} = \frac{1}{a}\cdot e^{a\cdot t}$\\
    53        \` pbl: integration in $\cal C$\\
    54 06 \> $e^{-j\cdot\omega\cdot 2}\cdot (\frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot t} \;|_{-1}^1)$\\
    55       \` $f\;t\;|_a^b = f\;b-f\;a$\\
    56 07 \> $e^{-j\cdot\omega\cdot 2}\cdot (\frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot 1} -  \frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot -1})$\\
    57 \vdots\` pbl: simplification+factorization in $\cal C$\\
    58 08 \> $e^{-j\cdot\omega\cdot 2}\cdot \frac{1}{-j\cdot\omega}\cdot(e^{j\cdot\omega} - e^{-j\cdot\omega})$\\
    59       \` trick~!\\
    60 09 \> $e^{-j\cdot\omega\cdot 2}\cdot \frac{1}{\omega}\cdot(\frac{-e^{j\cdot\omega} + e^{-j\cdot\omega}}{j})$\\
    61       \` table\\
    62 10 \> $e^{-j\cdot\omega\cdot 2}\cdot 2\cdot\frac{\sin\;\omega}{\omega}$
    63 \end{tabbing}
    64 
    65 \section*{Convolution}
    66 \subsection*{Problem\endnote{Problem submitted by Bernhard Geiger. Originally part of the SPSC Problem Class 2, Summer term 2008}}
    67 Consider the two discrete-time, linear and time-invariant (LTI) systems with the following impulse response:
    68 
    69 \begin{center}
    70 $h_1[n]=\left(\frac{3}{5}\right)^n\cdot u[n]$\\
    71 $h_1[n]=\left(-\frac{2}{3}\right)^n\cdot u[n]$
    72 \end{center}
    73 
    74 The two systems are cascaded seriell. Derive the impulse respinse of the overall system $h_c[n]$.
    75 \subsection*{Solution}
    76 
    77 \begin{tabbing}
    78 000\=\kill
    79 01 \> $h_c[n]=h_1[n]*h_2[n]$\\
    80 02 \> $h_c[n]=\left(\left(\frac{3}{5}\right)^n\cdot u[n]\right)*\left(\left(-\frac{2}{3}\right)^n\cdot u[n]\right)$\\
    81 \`Definition: $a^n\cdot u[n]\,*\,b^n\cdot u[n]=\sum\limits_{k=-\infty}^{\infty}{a^k\cdot u[k]\cdot b^{n-k}\cdot u[n-k]}$\\
    82 03 \> $h_c[n]=\sum\limits_{k=-\infty}^{\infty}{\left(\frac{3}{5}\right)^k\cdot u[n]\,\cdot \,\left(-\frac{2}{3}\right)^{n-k}\cdot u[n-k]}$\\
    83 \`$u[n]= \left\{
    84      \begin{array}{lr}
    85        1 & for\ n>=0\\
    86        0 & else
    87      \end{array}
    88    \right.$\\
    89 03 \> $h_c[n]=\sum\limits_{k=0}^{\infty}{\left(\frac{3}{5}\right)^k\cdot \left(-\frac{2}{3}\right)^{n-k}}$\\
    90 04 \> $h_c[n]=\sum\limits_{k=0}^{\infty}{\left(\frac{3}{5}\right)^k\cdot \left(-\frac{2}{3}\right)^{n}\cdot \left(-\frac{2}{3}\right)^{-k}}$\\
    91 05 \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot\sum\limits_{k=0}^{\infty}{\left(\frac{3}{5}\right)^k\cdot \left(-\frac{2}{3}\right)^{-k}}$\\
    92 06 \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot\sum\limits_{k=0}^{\infty}{\left(\frac{3}{5}\right)^k\cdot \left(-\frac{3}{2}\right)^{k}}$\\
    93 07 \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot\sum\limits_{k=0}^{\infty}{\left(-\frac{9}{10}\right)^{k}}$\\
    94 \`Solving the sum... now u[n] again\\
    95 08 \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot\frac{1-\left(-\frac{9}{10}\right)^{n+1}}{1-\left(-\frac{9}{10}\right)}\cdot u[n]$\\
    96 09 \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot\frac{1-\left(-\frac{9}{10}\right)^{n}\cdot\left(-\frac{9}{10}\right)}{1-\left(-\frac{9}{10}\right)}\cdot u[n]$\\
    97 10 \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot\frac{1-\left(-\frac{9}{10}\right)^{n}\cdot\left(-\frac{9}{10}\right)}{\left(\frac{19}{10}\right)}\cdot u[n]$\\
    98 11 \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot \left(1-\left(-\frac{9}{10}\right)^{n}\cdot\left(-\frac{9}{10}\right)\right)\cdot\left(\frac{10}{19}\right)\cdot u[n]$\\
    99 12 \> $\left(\frac{10}{19}\cdot\left(-\frac{2}{3}\right)^n+\frac{9}{19}\cdot\left(\frac{3}{5}\right)^n\right)\cdot u[n]$\\
   100 \end{tabbing}
   101 
   102 \section*{$\cal Z$-Transformation}
   103 \subsection*{Problem\endnote{Problem submitted by Bernhard Geiger. Originally part of the signal processing problem class 5, summer term 2008.}}
   104 Determine the inverse $\cal{z}$ transform of the following expression. Hint: applay the partial fraction expansion.
   105 
   106 \begin{center}
   107 $X(z)=\frac{3}{z-\frac{1}{4}-\frac{1}{8}z^{-1}},\ \ x[n]$ is absolute summable
   108 \end{center}
   109 
   110 \theendnotes
   111 \end{document}