src/HOL/HOL.thy
author haftmann
Mon, 08 Oct 2007 08:04:28 +0200
changeset 24901 d3cbf79769b9
parent 24844 98c006a30218
child 25062 af5ef0d4d655
permissions -rw-r--r--
added first version of user-space type system for class target
     1 (*  Title:      HOL/HOL.thy
     2     ID:         $Id$
     3     Author:     Tobias Nipkow, Markus Wenzel, and Larry Paulson
     4 *)
     5 
     6 header {* The basis of Higher-Order Logic *}
     7 
     8 theory HOL
     9 imports CPure
    10 uses
    11   ("hologic.ML")
    12   "~~/src/Tools/IsaPlanner/zipper.ML"
    13   "~~/src/Tools/IsaPlanner/isand.ML"
    14   "~~/src/Tools/IsaPlanner/rw_tools.ML"
    15   "~~/src/Tools/IsaPlanner/rw_inst.ML"
    16   "~~/src/Provers/project_rule.ML"
    17   "~~/src/Provers/hypsubst.ML"
    18   "~~/src/Provers/splitter.ML"
    19   "~~/src/Provers/classical.ML"
    20   "~~/src/Provers/blast.ML"
    21   "~~/src/Provers/clasimp.ML"
    22   "~~/src/Provers/eqsubst.ML"
    23   "~~/src/Provers/quantifier1.ML"
    24   ("simpdata.ML")
    25   "~~/src/Tools/induct.ML"
    26   "~~/src/Tools/code/code_name.ML"
    27   "~~/src/Tools/code/code_funcgr.ML"
    28   "~~/src/Tools/code/code_thingol.ML"
    29   "~~/src/Tools/code/code_target.ML"
    30   "~~/src/Tools/code/code_package.ML"
    31   "~~/src/Tools/nbe.ML"
    32 begin
    33 
    34 subsection {* Primitive logic *}
    35 
    36 subsubsection {* Core syntax *}
    37 
    38 classes type
    39 defaultsort type
    40 
    41 global
    42 
    43 typedecl bool
    44 
    45 arities
    46   bool :: type
    47   "fun" :: (type, type) type
    48 
    49 judgment
    50   Trueprop      :: "bool => prop"                   ("(_)" 5)
    51 
    52 consts
    53   Not           :: "bool => bool"                   ("~ _" [40] 40)
    54   True          :: bool
    55   False         :: bool
    56   arbitrary     :: 'a
    57 
    58   The           :: "('a => bool) => 'a"
    59   All           :: "('a => bool) => bool"           (binder "ALL " 10)
    60   Ex            :: "('a => bool) => bool"           (binder "EX " 10)
    61   Ex1           :: "('a => bool) => bool"           (binder "EX! " 10)
    62   Let           :: "['a, 'a => 'b] => 'b"
    63 
    64   "op ="        :: "['a, 'a] => bool"               (infixl "=" 50)
    65   "op &"        :: "[bool, bool] => bool"           (infixr "&" 35)
    66   "op |"        :: "[bool, bool] => bool"           (infixr "|" 30)
    67   "op -->"      :: "[bool, bool] => bool"           (infixr "-->" 25)
    68 
    69 local
    70 
    71 consts
    72   If            :: "[bool, 'a, 'a] => 'a"           ("(if (_)/ then (_)/ else (_))" 10)
    73 
    74 
    75 subsubsection {* Additional concrete syntax *}
    76 
    77 notation (output)
    78   "op ="  (infix "=" 50)
    79 
    80 abbreviation
    81   not_equal :: "['a, 'a] => bool"  (infixl "~=" 50) where
    82   "x ~= y == ~ (x = y)"
    83 
    84 notation (output)
    85   not_equal  (infix "~=" 50)
    86 
    87 notation (xsymbols)
    88   Not  ("\<not> _" [40] 40) and
    89   "op &"  (infixr "\<and>" 35) and
    90   "op |"  (infixr "\<or>" 30) and
    91   "op -->"  (infixr "\<longrightarrow>" 25) and
    92   not_equal  (infix "\<noteq>" 50)
    93 
    94 notation (HTML output)
    95   Not  ("\<not> _" [40] 40) and
    96   "op &"  (infixr "\<and>" 35) and
    97   "op |"  (infixr "\<or>" 30) and
    98   not_equal  (infix "\<noteq>" 50)
    99 
   100 abbreviation (iff)
   101   iff :: "[bool, bool] => bool"  (infixr "<->" 25) where
   102   "A <-> B == A = B"
   103 
   104 notation (xsymbols)
   105   iff  (infixr "\<longleftrightarrow>" 25)
   106 
   107 
   108 nonterminals
   109   letbinds  letbind
   110   case_syn  cases_syn
   111 
   112 syntax
   113   "_The"        :: "[pttrn, bool] => 'a"                 ("(3THE _./ _)" [0, 10] 10)
   114 
   115   "_bind"       :: "[pttrn, 'a] => letbind"              ("(2_ =/ _)" 10)
   116   ""            :: "letbind => letbinds"                 ("_")
   117   "_binds"      :: "[letbind, letbinds] => letbinds"     ("_;/ _")
   118   "_Let"        :: "[letbinds, 'a] => 'a"                ("(let (_)/ in (_))" 10)
   119 
   120   "_case_syntax":: "['a, cases_syn] => 'b"               ("(case _ of/ _)" 10)
   121   "_case1"      :: "['a, 'b] => case_syn"                ("(2_ =>/ _)" 10)
   122   ""            :: "case_syn => cases_syn"               ("_")
   123   "_case2"      :: "[case_syn, cases_syn] => cases_syn"  ("_/ | _")
   124 
   125 translations
   126   "THE x. P"              == "The (%x. P)"
   127   "_Let (_binds b bs) e"  == "_Let b (_Let bs e)"
   128   "let x = a in e"        == "Let a (%x. e)"
   129 
   130 print_translation {*
   131 (* To avoid eta-contraction of body: *)
   132 [("The", fn [Abs abs] =>
   133      let val (x,t) = atomic_abs_tr' abs
   134      in Syntax.const "_The" $ x $ t end)]
   135 *}
   136 
   137 syntax (xsymbols)
   138   "_case1"      :: "['a, 'b] => case_syn"                ("(2_ \<Rightarrow>/ _)" 10)
   139 
   140 notation (xsymbols)
   141   All  (binder "\<forall>" 10) and
   142   Ex  (binder "\<exists>" 10) and
   143   Ex1  (binder "\<exists>!" 10)
   144 
   145 notation (HTML output)
   146   All  (binder "\<forall>" 10) and
   147   Ex  (binder "\<exists>" 10) and
   148   Ex1  (binder "\<exists>!" 10)
   149 
   150 notation (HOL)
   151   All  (binder "! " 10) and
   152   Ex  (binder "? " 10) and
   153   Ex1  (binder "?! " 10)
   154 
   155 
   156 subsubsection {* Axioms and basic definitions *}
   157 
   158 axioms
   159   eq_reflection:  "(x=y) ==> (x==y)"
   160 
   161   refl:           "t = (t::'a)"
   162 
   163   ext:            "(!!x::'a. (f x ::'b) = g x) ==> (%x. f x) = (%x. g x)"
   164     -- {*Extensionality is built into the meta-logic, and this rule expresses
   165          a related property.  It is an eta-expanded version of the traditional
   166          rule, and similar to the ABS rule of HOL*}
   167 
   168   the_eq_trivial: "(THE x. x = a) = (a::'a)"
   169 
   170   impI:           "(P ==> Q) ==> P-->Q"
   171   mp:             "[| P-->Q;  P |] ==> Q"
   172 
   173 
   174 defs
   175   True_def:     "True      == ((%x::bool. x) = (%x. x))"
   176   All_def:      "All(P)    == (P = (%x. True))"
   177   Ex_def:       "Ex(P)     == !Q. (!x. P x --> Q) --> Q"
   178   False_def:    "False     == (!P. P)"
   179   not_def:      "~ P       == P-->False"
   180   and_def:      "P & Q     == !R. (P-->Q-->R) --> R"
   181   or_def:       "P | Q     == !R. (P-->R) --> (Q-->R) --> R"
   182   Ex1_def:      "Ex1(P)    == ? x. P(x) & (! y. P(y) --> y=x)"
   183 
   184 axioms
   185   iff:          "(P-->Q) --> (Q-->P) --> (P=Q)"
   186   True_or_False:  "(P=True) | (P=False)"
   187 
   188 defs
   189   Let_def:      "Let s f == f(s)"
   190   if_def:       "If P x y == THE z::'a. (P=True --> z=x) & (P=False --> z=y)"
   191 
   192 finalconsts
   193   "op ="
   194   "op -->"
   195   The
   196   arbitrary
   197 
   198 axiomatization
   199   undefined :: 'a
   200 
   201 axiomatization where
   202   undefined_fun: "undefined x = undefined"
   203 
   204 
   205 subsubsection {* Generic classes and algebraic operations *}
   206 
   207 class default = type +
   208   fixes default :: 'a
   209 
   210 class zero = type + 
   211   fixes zero :: 'a  ("\<^loc>0")
   212 
   213 class one = type +
   214   fixes one  :: 'a  ("\<^loc>1")
   215 
   216 hide (open) const zero one
   217 
   218 class plus = type +
   219   fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "\<^loc>+" 65)
   220 
   221 class minus = type +
   222   fixes uminus :: "'a \<Rightarrow> 'a" 
   223     and minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "\<^loc>-" 65)
   224 
   225 class times = type +
   226   fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "\<^loc>*" 70)
   227 
   228 class inverse = type +
   229   fixes inverse :: "'a \<Rightarrow> 'a"
   230     and divide :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "\<^loc>'/" 70)
   231 
   232 class abs = type +
   233   fixes abs :: "'a \<Rightarrow> 'a"
   234 
   235 class sgn = type +
   236   fixes sgn :: "'a \<Rightarrow> 'a"
   237 
   238 notation
   239   uminus  ("- _" [81] 80)
   240 
   241 notation (xsymbols)
   242   abs  ("\<bar>_\<bar>")
   243 notation (HTML output)
   244   abs  ("\<bar>_\<bar>")
   245 
   246 class ord = type +
   247   fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
   248     and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
   249 begin
   250 
   251 notation
   252   less_eq  ("op \<^loc><=") and
   253   less_eq  ("(_/ \<^loc><= _)" [51, 51] 50) and
   254   less  ("op \<^loc><") and
   255   less  ("(_/ \<^loc>< _)"  [51, 51] 50)
   256   
   257 notation (xsymbols)
   258   less_eq  ("op \<^loc>\<le>") and
   259   less_eq  ("(_/ \<^loc>\<le> _)"  [51, 51] 50)
   260 
   261 notation (HTML output)
   262   less_eq  ("op \<^loc>\<le>") and
   263   less_eq  ("(_/ \<^loc>\<le> _)"  [51, 51] 50)
   264 
   265 abbreviation (input)
   266   greater_eq  (infix "\<^loc>>=" 50) where
   267   "x \<^loc>>= y \<equiv> y \<^loc><= x"
   268 
   269 notation (input)
   270   greater_eq  (infix "\<^loc>\<ge>" 50)
   271 
   272 abbreviation (input)
   273   greater  (infix "\<^loc>>" 50) where
   274   "x \<^loc>> y \<equiv> y \<^loc>< x"
   275 
   276 definition
   277   Least :: "('a \<Rightarrow> bool) \<Rightarrow> 'a" (binder "\<^loc>LEAST " 10)
   278 where
   279   "Least P == (THE x. P x \<and> (\<forall>y. P y \<longrightarrow> x \<^loc>\<le> y))"
   280 
   281 end
   282 
   283 notation
   284   less_eq  ("op <=") and
   285   less_eq  ("(_/ <= _)" [51, 51] 50) and
   286   less  ("op <") and
   287   less  ("(_/ < _)"  [51, 51] 50)
   288   
   289 notation (xsymbols)
   290   less_eq  ("op \<le>") and
   291   less_eq  ("(_/ \<le> _)"  [51, 51] 50)
   292 
   293 notation (HTML output)
   294   less_eq  ("op \<le>") and
   295   less_eq  ("(_/ \<le> _)"  [51, 51] 50)
   296 
   297 notation (input)
   298   greater_eq  (infix "\<ge>" 50)
   299 
   300 syntax
   301   "_index1"  :: index    ("\<^sub>1")
   302 translations
   303   (index) "\<^sub>1" => (index) "\<^bsub>\<struct>\<^esub>"
   304 
   305 typed_print_translation {*
   306 let
   307   fun tr' c = (c, fn show_sorts => fn T => fn ts =>
   308     if T = dummyT orelse not (! show_types) andalso can Term.dest_Type T then raise Match
   309     else Syntax.const Syntax.constrainC $ Syntax.const c $ Syntax.term_of_typ show_sorts T);
   310 in map tr' [@{const_syntax HOL.one}, @{const_syntax HOL.zero}] end;
   311 *} -- {* show types that are presumably too general *}
   312 
   313 
   314 subsection {* Fundamental rules *}
   315 
   316 subsubsection {* Equality *}
   317 
   318 text {* Thanks to Stephan Merz *}
   319 lemma subst:
   320   assumes eq: "s = t" and p: "P s"
   321   shows "P t"
   322 proof -
   323   from eq have meta: "s \<equiv> t"
   324     by (rule eq_reflection)
   325   from p show ?thesis
   326     by (unfold meta)
   327 qed
   328 
   329 lemma sym: "s = t ==> t = s"
   330   by (erule subst) (rule refl)
   331 
   332 lemma ssubst: "t = s ==> P s ==> P t"
   333   by (drule sym) (erule subst)
   334 
   335 lemma trans: "[| r=s; s=t |] ==> r=t"
   336   by (erule subst)
   337 
   338 lemma meta_eq_to_obj_eq: 
   339   assumes meq: "A == B"
   340   shows "A = B"
   341   by (unfold meq) (rule refl)
   342 
   343 text {* Useful with @{text erule} for proving equalities from known equalities. *}
   344      (* a = b
   345         |   |
   346         c = d   *)
   347 lemma box_equals: "[| a=b;  a=c;  b=d |] ==> c=d"
   348 apply (rule trans)
   349 apply (rule trans)
   350 apply (rule sym)
   351 apply assumption+
   352 done
   353 
   354 text {* For calculational reasoning: *}
   355 
   356 lemma forw_subst: "a = b ==> P b ==> P a"
   357   by (rule ssubst)
   358 
   359 lemma back_subst: "P a ==> a = b ==> P b"
   360   by (rule subst)
   361 
   362 
   363 subsubsection {*Congruence rules for application*}
   364 
   365 (*similar to AP_THM in Gordon's HOL*)
   366 lemma fun_cong: "(f::'a=>'b) = g ==> f(x)=g(x)"
   367 apply (erule subst)
   368 apply (rule refl)
   369 done
   370 
   371 (*similar to AP_TERM in Gordon's HOL and FOL's subst_context*)
   372 lemma arg_cong: "x=y ==> f(x)=f(y)"
   373 apply (erule subst)
   374 apply (rule refl)
   375 done
   376 
   377 lemma arg_cong2: "\<lbrakk> a = b; c = d \<rbrakk> \<Longrightarrow> f a c = f b d"
   378 apply (erule ssubst)+
   379 apply (rule refl)
   380 done
   381 
   382 lemma cong: "[| f = g; (x::'a) = y |] ==> f(x) = g(y)"
   383 apply (erule subst)+
   384 apply (rule refl)
   385 done
   386 
   387 
   388 subsubsection {*Equality of booleans -- iff*}
   389 
   390 lemma iffI: assumes "P ==> Q" and "Q ==> P" shows "P=Q"
   391   by (iprover intro: iff [THEN mp, THEN mp] impI assms)
   392 
   393 lemma iffD2: "[| P=Q; Q |] ==> P"
   394   by (erule ssubst)
   395 
   396 lemma rev_iffD2: "[| Q; P=Q |] ==> P"
   397   by (erule iffD2)
   398 
   399 lemma iffD1: "Q = P \<Longrightarrow> Q \<Longrightarrow> P"
   400   by (drule sym) (rule iffD2)
   401 
   402 lemma rev_iffD1: "Q \<Longrightarrow> Q = P \<Longrightarrow> P"
   403   by (drule sym) (rule rev_iffD2)
   404 
   405 lemma iffE:
   406   assumes major: "P=Q"
   407     and minor: "[| P --> Q; Q --> P |] ==> R"
   408   shows R
   409   by (iprover intro: minor impI major [THEN iffD2] major [THEN iffD1])
   410 
   411 
   412 subsubsection {*True*}
   413 
   414 lemma TrueI: "True"
   415   unfolding True_def by (rule refl)
   416 
   417 lemma eqTrueI: "P ==> P = True"
   418   by (iprover intro: iffI TrueI)
   419 
   420 lemma eqTrueE: "P = True ==> P"
   421   by (erule iffD2) (rule TrueI)
   422 
   423 
   424 subsubsection {*Universal quantifier*}
   425 
   426 lemma allI: assumes "!!x::'a. P(x)" shows "ALL x. P(x)"
   427   unfolding All_def by (iprover intro: ext eqTrueI assms)
   428 
   429 lemma spec: "ALL x::'a. P(x) ==> P(x)"
   430 apply (unfold All_def)
   431 apply (rule eqTrueE)
   432 apply (erule fun_cong)
   433 done
   434 
   435 lemma allE:
   436   assumes major: "ALL x. P(x)"
   437     and minor: "P(x) ==> R"
   438   shows R
   439   by (iprover intro: minor major [THEN spec])
   440 
   441 lemma all_dupE:
   442   assumes major: "ALL x. P(x)"
   443     and minor: "[| P(x); ALL x. P(x) |] ==> R"
   444   shows R
   445   by (iprover intro: minor major major [THEN spec])
   446 
   447 
   448 subsubsection {* False *}
   449 
   450 text {*
   451   Depends upon @{text spec}; it is impossible to do propositional
   452   logic before quantifiers!
   453 *}
   454 
   455 lemma FalseE: "False ==> P"
   456   apply (unfold False_def)
   457   apply (erule spec)
   458   done
   459 
   460 lemma False_neq_True: "False = True ==> P"
   461   by (erule eqTrueE [THEN FalseE])
   462 
   463 
   464 subsubsection {* Negation *}
   465 
   466 lemma notI:
   467   assumes "P ==> False"
   468   shows "~P"
   469   apply (unfold not_def)
   470   apply (iprover intro: impI assms)
   471   done
   472 
   473 lemma False_not_True: "False ~= True"
   474   apply (rule notI)
   475   apply (erule False_neq_True)
   476   done
   477 
   478 lemma True_not_False: "True ~= False"
   479   apply (rule notI)
   480   apply (drule sym)
   481   apply (erule False_neq_True)
   482   done
   483 
   484 lemma notE: "[| ~P;  P |] ==> R"
   485   apply (unfold not_def)
   486   apply (erule mp [THEN FalseE])
   487   apply assumption
   488   done
   489 
   490 lemma notI2: "(P \<Longrightarrow> \<not> Pa) \<Longrightarrow> (P \<Longrightarrow> Pa) \<Longrightarrow> \<not> P"
   491   by (erule notE [THEN notI]) (erule meta_mp)
   492 
   493 
   494 subsubsection {*Implication*}
   495 
   496 lemma impE:
   497   assumes "P-->Q" "P" "Q ==> R"
   498   shows "R"
   499 by (iprover intro: assms mp)
   500 
   501 (* Reduces Q to P-->Q, allowing substitution in P. *)
   502 lemma rev_mp: "[| P;  P --> Q |] ==> Q"
   503 by (iprover intro: mp)
   504 
   505 lemma contrapos_nn:
   506   assumes major: "~Q"
   507       and minor: "P==>Q"
   508   shows "~P"
   509 by (iprover intro: notI minor major [THEN notE])
   510 
   511 (*not used at all, but we already have the other 3 combinations *)
   512 lemma contrapos_pn:
   513   assumes major: "Q"
   514       and minor: "P ==> ~Q"
   515   shows "~P"
   516 by (iprover intro: notI minor major notE)
   517 
   518 lemma not_sym: "t ~= s ==> s ~= t"
   519   by (erule contrapos_nn) (erule sym)
   520 
   521 lemma eq_neq_eq_imp_neq: "[| x = a ; a ~= b; b = y |] ==> x ~= y"
   522   by (erule subst, erule ssubst, assumption)
   523 
   524 (*still used in HOLCF*)
   525 lemma rev_contrapos:
   526   assumes pq: "P ==> Q"
   527       and nq: "~Q"
   528   shows "~P"
   529 apply (rule nq [THEN contrapos_nn])
   530 apply (erule pq)
   531 done
   532 
   533 subsubsection {*Existential quantifier*}
   534 
   535 lemma exI: "P x ==> EX x::'a. P x"
   536 apply (unfold Ex_def)
   537 apply (iprover intro: allI allE impI mp)
   538 done
   539 
   540 lemma exE:
   541   assumes major: "EX x::'a. P(x)"
   542       and minor: "!!x. P(x) ==> Q"
   543   shows "Q"
   544 apply (rule major [unfolded Ex_def, THEN spec, THEN mp])
   545 apply (iprover intro: impI [THEN allI] minor)
   546 done
   547 
   548 
   549 subsubsection {*Conjunction*}
   550 
   551 lemma conjI: "[| P; Q |] ==> P&Q"
   552 apply (unfold and_def)
   553 apply (iprover intro: impI [THEN allI] mp)
   554 done
   555 
   556 lemma conjunct1: "[| P & Q |] ==> P"
   557 apply (unfold and_def)
   558 apply (iprover intro: impI dest: spec mp)
   559 done
   560 
   561 lemma conjunct2: "[| P & Q |] ==> Q"
   562 apply (unfold and_def)
   563 apply (iprover intro: impI dest: spec mp)
   564 done
   565 
   566 lemma conjE:
   567   assumes major: "P&Q"
   568       and minor: "[| P; Q |] ==> R"
   569   shows "R"
   570 apply (rule minor)
   571 apply (rule major [THEN conjunct1])
   572 apply (rule major [THEN conjunct2])
   573 done
   574 
   575 lemma context_conjI:
   576   assumes "P" "P ==> Q" shows "P & Q"
   577 by (iprover intro: conjI assms)
   578 
   579 
   580 subsubsection {*Disjunction*}
   581 
   582 lemma disjI1: "P ==> P|Q"
   583 apply (unfold or_def)
   584 apply (iprover intro: allI impI mp)
   585 done
   586 
   587 lemma disjI2: "Q ==> P|Q"
   588 apply (unfold or_def)
   589 apply (iprover intro: allI impI mp)
   590 done
   591 
   592 lemma disjE:
   593   assumes major: "P|Q"
   594       and minorP: "P ==> R"
   595       and minorQ: "Q ==> R"
   596   shows "R"
   597 by (iprover intro: minorP minorQ impI
   598                  major [unfolded or_def, THEN spec, THEN mp, THEN mp])
   599 
   600 
   601 subsubsection {*Classical logic*}
   602 
   603 lemma classical:
   604   assumes prem: "~P ==> P"
   605   shows "P"
   606 apply (rule True_or_False [THEN disjE, THEN eqTrueE])
   607 apply assumption
   608 apply (rule notI [THEN prem, THEN eqTrueI])
   609 apply (erule subst)
   610 apply assumption
   611 done
   612 
   613 lemmas ccontr = FalseE [THEN classical, standard]
   614 
   615 (*notE with premises exchanged; it discharges ~R so that it can be used to
   616   make elimination rules*)
   617 lemma rev_notE:
   618   assumes premp: "P"
   619       and premnot: "~R ==> ~P"
   620   shows "R"
   621 apply (rule ccontr)
   622 apply (erule notE [OF premnot premp])
   623 done
   624 
   625 (*Double negation law*)
   626 lemma notnotD: "~~P ==> P"
   627 apply (rule classical)
   628 apply (erule notE)
   629 apply assumption
   630 done
   631 
   632 lemma contrapos_pp:
   633   assumes p1: "Q"
   634       and p2: "~P ==> ~Q"
   635   shows "P"
   636 by (iprover intro: classical p1 p2 notE)
   637 
   638 
   639 subsubsection {*Unique existence*}
   640 
   641 lemma ex1I:
   642   assumes "P a" "!!x. P(x) ==> x=a"
   643   shows "EX! x. P(x)"
   644 by (unfold Ex1_def, iprover intro: assms exI conjI allI impI)
   645 
   646 text{*Sometimes easier to use: the premises have no shared variables.  Safe!*}
   647 lemma ex_ex1I:
   648   assumes ex_prem: "EX x. P(x)"
   649       and eq: "!!x y. [| P(x); P(y) |] ==> x=y"
   650   shows "EX! x. P(x)"
   651 by (iprover intro: ex_prem [THEN exE] ex1I eq)
   652 
   653 lemma ex1E:
   654   assumes major: "EX! x. P(x)"
   655       and minor: "!!x. [| P(x);  ALL y. P(y) --> y=x |] ==> R"
   656   shows "R"
   657 apply (rule major [unfolded Ex1_def, THEN exE])
   658 apply (erule conjE)
   659 apply (iprover intro: minor)
   660 done
   661 
   662 lemma ex1_implies_ex: "EX! x. P x ==> EX x. P x"
   663 apply (erule ex1E)
   664 apply (rule exI)
   665 apply assumption
   666 done
   667 
   668 
   669 subsubsection {*THE: definite description operator*}
   670 
   671 lemma the_equality:
   672   assumes prema: "P a"
   673       and premx: "!!x. P x ==> x=a"
   674   shows "(THE x. P x) = a"
   675 apply (rule trans [OF _ the_eq_trivial])
   676 apply (rule_tac f = "The" in arg_cong)
   677 apply (rule ext)
   678 apply (rule iffI)
   679  apply (erule premx)
   680 apply (erule ssubst, rule prema)
   681 done
   682 
   683 lemma theI:
   684   assumes "P a" and "!!x. P x ==> x=a"
   685   shows "P (THE x. P x)"
   686 by (iprover intro: assms the_equality [THEN ssubst])
   687 
   688 lemma theI': "EX! x. P x ==> P (THE x. P x)"
   689 apply (erule ex1E)
   690 apply (erule theI)
   691 apply (erule allE)
   692 apply (erule mp)
   693 apply assumption
   694 done
   695 
   696 (*Easier to apply than theI: only one occurrence of P*)
   697 lemma theI2:
   698   assumes "P a" "!!x. P x ==> x=a" "!!x. P x ==> Q x"
   699   shows "Q (THE x. P x)"
   700 by (iprover intro: assms theI)
   701 
   702 lemma the1I2: assumes "EX! x. P x" "\<And>x. P x \<Longrightarrow> Q x" shows "Q (THE x. P x)"
   703 by(iprover intro:assms(2) theI2[where P=P and Q=Q] ex1E[OF assms(1)]
   704            elim:allE impE)
   705 
   706 lemma the1_equality [elim?]: "[| EX!x. P x; P a |] ==> (THE x. P x) = a"
   707 apply (rule the_equality)
   708 apply  assumption
   709 apply (erule ex1E)
   710 apply (erule all_dupE)
   711 apply (drule mp)
   712 apply  assumption
   713 apply (erule ssubst)
   714 apply (erule allE)
   715 apply (erule mp)
   716 apply assumption
   717 done
   718 
   719 lemma the_sym_eq_trivial: "(THE y. x=y) = x"
   720 apply (rule the_equality)
   721 apply (rule refl)
   722 apply (erule sym)
   723 done
   724 
   725 
   726 subsubsection {*Classical intro rules for disjunction and existential quantifiers*}
   727 
   728 lemma disjCI:
   729   assumes "~Q ==> P" shows "P|Q"
   730 apply (rule classical)
   731 apply (iprover intro: assms disjI1 disjI2 notI elim: notE)
   732 done
   733 
   734 lemma excluded_middle: "~P | P"
   735 by (iprover intro: disjCI)
   736 
   737 text {*
   738   case distinction as a natural deduction rule.
   739   Note that @{term "~P"} is the second case, not the first
   740 *}
   741 lemma case_split_thm:
   742   assumes prem1: "P ==> Q"
   743       and prem2: "~P ==> Q"
   744   shows "Q"
   745 apply (rule excluded_middle [THEN disjE])
   746 apply (erule prem2)
   747 apply (erule prem1)
   748 done
   749 lemmas case_split = case_split_thm [case_names True False]
   750 
   751 (*Classical implies (-->) elimination. *)
   752 lemma impCE:
   753   assumes major: "P-->Q"
   754       and minor: "~P ==> R" "Q ==> R"
   755   shows "R"
   756 apply (rule excluded_middle [of P, THEN disjE])
   757 apply (iprover intro: minor major [THEN mp])+
   758 done
   759 
   760 (*This version of --> elimination works on Q before P.  It works best for
   761   those cases in which P holds "almost everywhere".  Can't install as
   762   default: would break old proofs.*)
   763 lemma impCE':
   764   assumes major: "P-->Q"
   765       and minor: "Q ==> R" "~P ==> R"
   766   shows "R"
   767 apply (rule excluded_middle [of P, THEN disjE])
   768 apply (iprover intro: minor major [THEN mp])+
   769 done
   770 
   771 (*Classical <-> elimination. *)
   772 lemma iffCE:
   773   assumes major: "P=Q"
   774       and minor: "[| P; Q |] ==> R"  "[| ~P; ~Q |] ==> R"
   775   shows "R"
   776 apply (rule major [THEN iffE])
   777 apply (iprover intro: minor elim: impCE notE)
   778 done
   779 
   780 lemma exCI:
   781   assumes "ALL x. ~P(x) ==> P(a)"
   782   shows "EX x. P(x)"
   783 apply (rule ccontr)
   784 apply (iprover intro: assms exI allI notI notE [of "\<exists>x. P x"])
   785 done
   786 
   787 
   788 subsubsection {* Intuitionistic Reasoning *}
   789 
   790 lemma impE':
   791   assumes 1: "P --> Q"
   792     and 2: "Q ==> R"
   793     and 3: "P --> Q ==> P"
   794   shows R
   795 proof -
   796   from 3 and 1 have P .
   797   with 1 have Q by (rule impE)
   798   with 2 show R .
   799 qed
   800 
   801 lemma allE':
   802   assumes 1: "ALL x. P x"
   803     and 2: "P x ==> ALL x. P x ==> Q"
   804   shows Q
   805 proof -
   806   from 1 have "P x" by (rule spec)
   807   from this and 1 show Q by (rule 2)
   808 qed
   809 
   810 lemma notE':
   811   assumes 1: "~ P"
   812     and 2: "~ P ==> P"
   813   shows R
   814 proof -
   815   from 2 and 1 have P .
   816   with 1 show R by (rule notE)
   817 qed
   818 
   819 lemma TrueE: "True ==> P ==> P" .
   820 lemma notFalseE: "~ False ==> P ==> P" .
   821 
   822 lemmas [Pure.elim!] = disjE iffE FalseE conjE exE TrueE notFalseE
   823   and [Pure.intro!] = iffI conjI impI TrueI notI allI refl
   824   and [Pure.elim 2] = allE notE' impE'
   825   and [Pure.intro] = exI disjI2 disjI1
   826 
   827 lemmas [trans] = trans
   828   and [sym] = sym not_sym
   829   and [Pure.elim?] = iffD1 iffD2 impE
   830 
   831 use "hologic.ML"
   832 
   833 
   834 subsubsection {* Atomizing meta-level connectives *}
   835 
   836 lemma atomize_all [atomize]: "(!!x. P x) == Trueprop (ALL x. P x)"
   837 proof
   838   assume "!!x. P x"
   839   then show "ALL x. P x" ..
   840 next
   841   assume "ALL x. P x"
   842   then show "!!x. P x" by (rule allE)
   843 qed
   844 
   845 lemma atomize_imp [atomize]: "(A ==> B) == Trueprop (A --> B)"
   846 proof
   847   assume r: "A ==> B"
   848   show "A --> B" by (rule impI) (rule r)
   849 next
   850   assume "A --> B" and A
   851   then show B by (rule mp)
   852 qed
   853 
   854 lemma atomize_not: "(A ==> False) == Trueprop (~A)"
   855 proof
   856   assume r: "A ==> False"
   857   show "~A" by (rule notI) (rule r)
   858 next
   859   assume "~A" and A
   860   then show False by (rule notE)
   861 qed
   862 
   863 lemma atomize_eq [atomize]: "(x == y) == Trueprop (x = y)"
   864 proof
   865   assume "x == y"
   866   show "x = y" by (unfold `x == y`) (rule refl)
   867 next
   868   assume "x = y"
   869   then show "x == y" by (rule eq_reflection)
   870 qed
   871 
   872 lemma atomize_conj [atomize]:
   873   includes meta_conjunction_syntax
   874   shows "(A && B) == Trueprop (A & B)"
   875 proof
   876   assume conj: "A && B"
   877   show "A & B"
   878   proof (rule conjI)
   879     from conj show A by (rule conjunctionD1)
   880     from conj show B by (rule conjunctionD2)
   881   qed
   882 next
   883   assume conj: "A & B"
   884   show "A && B"
   885   proof -
   886     from conj show A ..
   887     from conj show B ..
   888   qed
   889 qed
   890 
   891 lemmas [symmetric, rulify] = atomize_all atomize_imp
   892   and [symmetric, defn] = atomize_all atomize_imp atomize_eq
   893 
   894 
   895 subsection {* Package setup *}
   896 
   897 subsubsection {* Classical Reasoner setup *}
   898 
   899 lemma thin_refl:
   900   "\<And>X. \<lbrakk> x=x; PROP W \<rbrakk> \<Longrightarrow> PROP W" .
   901 
   902 ML {*
   903 structure Hypsubst = HypsubstFun(
   904 struct
   905   structure Simplifier = Simplifier
   906   val dest_eq = HOLogic.dest_eq
   907   val dest_Trueprop = HOLogic.dest_Trueprop
   908   val dest_imp = HOLogic.dest_imp
   909   val eq_reflection = @{thm HOL.eq_reflection}
   910   val rev_eq_reflection = @{thm HOL.meta_eq_to_obj_eq}
   911   val imp_intr = @{thm HOL.impI}
   912   val rev_mp = @{thm HOL.rev_mp}
   913   val subst = @{thm HOL.subst}
   914   val sym = @{thm HOL.sym}
   915   val thin_refl = @{thm thin_refl};
   916 end);
   917 open Hypsubst;
   918 
   919 structure Classical = ClassicalFun(
   920 struct
   921   val mp = @{thm HOL.mp}
   922   val not_elim = @{thm HOL.notE}
   923   val classical = @{thm HOL.classical}
   924   val sizef = Drule.size_of_thm
   925   val hyp_subst_tacs = [Hypsubst.hyp_subst_tac]
   926 end);
   927 
   928 structure BasicClassical: BASIC_CLASSICAL = Classical; 
   929 open BasicClassical;
   930 
   931 ML_Context.value_antiq "claset"
   932   (Scan.succeed ("claset", "Classical.local_claset_of (ML_Context.the_local_context ())"));
   933 
   934 structure ResAtpset = NamedThmsFun(val name = "atp" val description = "ATP rules");
   935 
   936 structure ResBlacklist = NamedThmsFun(val name = "noatp" val description = "Theorems blacklisted for ATP");
   937 *}
   938 
   939 (*ResBlacklist holds theorems blacklisted to sledgehammer. 
   940   These theorems typically produce clauses that are prolific (match too many equality or
   941   membership literals) and relate to seldom-used facts. Some duplicate other rules.*)
   942 
   943 setup {*
   944 let
   945   (*prevent substitution on bool*)
   946   fun hyp_subst_tac' i thm = if i <= Thm.nprems_of thm andalso
   947     Term.exists_Const (fn ("op =", Type (_, [T, _])) => T <> Type ("bool", []) | _ => false)
   948       (nth (Thm.prems_of thm) (i - 1)) then Hypsubst.hyp_subst_tac i thm else no_tac thm;
   949 in
   950   Hypsubst.hypsubst_setup
   951   #> ContextRules.addSWrapper (fn tac => hyp_subst_tac' ORELSE' tac)
   952   #> Classical.setup
   953   #> ResAtpset.setup
   954   #> ResBlacklist.setup
   955 end
   956 *}
   957 
   958 declare iffI [intro!]
   959   and notI [intro!]
   960   and impI [intro!]
   961   and disjCI [intro!]
   962   and conjI [intro!]
   963   and TrueI [intro!]
   964   and refl [intro!]
   965 
   966 declare iffCE [elim!]
   967   and FalseE [elim!]
   968   and impCE [elim!]
   969   and disjE [elim!]
   970   and conjE [elim!]
   971   and conjE [elim!]
   972 
   973 declare ex_ex1I [intro!]
   974   and allI [intro!]
   975   and the_equality [intro]
   976   and exI [intro]
   977 
   978 declare exE [elim!]
   979   allE [elim]
   980 
   981 ML {* val HOL_cs = @{claset} *}
   982 
   983 lemma contrapos_np: "~ Q ==> (~ P ==> Q) ==> P"
   984   apply (erule swap)
   985   apply (erule (1) meta_mp)
   986   done
   987 
   988 declare ex_ex1I [rule del, intro! 2]
   989   and ex1I [intro]
   990 
   991 lemmas [intro?] = ext
   992   and [elim?] = ex1_implies_ex
   993 
   994 (*Better then ex1E for classical reasoner: needs no quantifier duplication!*)
   995 lemma alt_ex1E [elim!]:
   996   assumes major: "\<exists>!x. P x"
   997       and prem: "\<And>x. \<lbrakk> P x; \<forall>y y'. P y \<and> P y' \<longrightarrow> y = y' \<rbrakk> \<Longrightarrow> R"
   998   shows R
   999 apply (rule ex1E [OF major])
  1000 apply (rule prem)
  1001 apply (tactic {* ares_tac @{thms allI} 1 *})+
  1002 apply (tactic {* etac (Classical.dup_elim @{thm allE}) 1 *})
  1003 apply iprover
  1004 done
  1005 
  1006 ML {*
  1007 structure Blast = BlastFun(
  1008 struct
  1009   type claset = Classical.claset
  1010   val equality_name = @{const_name "op ="}
  1011   val not_name = @{const_name Not}
  1012   val notE = @{thm HOL.notE}
  1013   val ccontr = @{thm HOL.ccontr}
  1014   val contr_tac = Classical.contr_tac
  1015   val dup_intr = Classical.dup_intr
  1016   val hyp_subst_tac = Hypsubst.blast_hyp_subst_tac
  1017   val claset = Classical.claset
  1018   val rep_cs = Classical.rep_cs
  1019   val cla_modifiers = Classical.cla_modifiers
  1020   val cla_meth' = Classical.cla_meth'
  1021 end);
  1022 val Blast_tac = Blast.Blast_tac;
  1023 val blast_tac = Blast.blast_tac;
  1024 *}
  1025 
  1026 setup Blast.setup
  1027 
  1028 
  1029 subsubsection {* Simplifier *}
  1030 
  1031 lemma eta_contract_eq: "(%s. f s) = f" ..
  1032 
  1033 lemma simp_thms:
  1034   shows not_not: "(~ ~ P) = P"
  1035   and Not_eq_iff: "((~P) = (~Q)) = (P = Q)"
  1036   and
  1037     "(P ~= Q) = (P = (~Q))"
  1038     "(P | ~P) = True"    "(~P | P) = True"
  1039     "(x = x) = True"
  1040   and not_True_eq_False: "(\<not> True) = False"
  1041   and not_False_eq_True: "(\<not> False) = True"
  1042   and
  1043     "(~P) ~= P"  "P ~= (~P)"
  1044     "(True=P) = P"
  1045   and eq_True: "(P = True) = P"
  1046   and "(False=P) = (~P)"
  1047   and eq_False: "(P = False) = (\<not> P)"
  1048   and
  1049     "(True --> P) = P"  "(False --> P) = True"
  1050     "(P --> True) = True"  "(P --> P) = True"
  1051     "(P --> False) = (~P)"  "(P --> ~P) = (~P)"
  1052     "(P & True) = P"  "(True & P) = P"
  1053     "(P & False) = False"  "(False & P) = False"
  1054     "(P & P) = P"  "(P & (P & Q)) = (P & Q)"
  1055     "(P & ~P) = False"    "(~P & P) = False"
  1056     "(P | True) = True"  "(True | P) = True"
  1057     "(P | False) = P"  "(False | P) = P"
  1058     "(P | P) = P"  "(P | (P | Q)) = (P | Q)" and
  1059     "(ALL x. P) = P"  "(EX x. P) = P"  "EX x. x=t"  "EX x. t=x"
  1060     -- {* needed for the one-point-rule quantifier simplification procs *}
  1061     -- {* essential for termination!! *} and
  1062     "!!P. (EX x. x=t & P(x)) = P(t)"
  1063     "!!P. (EX x. t=x & P(x)) = P(t)"
  1064     "!!P. (ALL x. x=t --> P(x)) = P(t)"
  1065     "!!P. (ALL x. t=x --> P(x)) = P(t)"
  1066   by (blast, blast, blast, blast, blast, iprover+)
  1067 
  1068 lemma disj_absorb: "(A | A) = A"
  1069   by blast
  1070 
  1071 lemma disj_left_absorb: "(A | (A | B)) = (A | B)"
  1072   by blast
  1073 
  1074 lemma conj_absorb: "(A & A) = A"
  1075   by blast
  1076 
  1077 lemma conj_left_absorb: "(A & (A & B)) = (A & B)"
  1078   by blast
  1079 
  1080 lemma eq_ac:
  1081   shows eq_commute: "(a=b) = (b=a)"
  1082     and eq_left_commute: "(P=(Q=R)) = (Q=(P=R))"
  1083     and eq_assoc: "((P=Q)=R) = (P=(Q=R))" by (iprover, blast+)
  1084 lemma neq_commute: "(a~=b) = (b~=a)" by iprover
  1085 
  1086 lemma conj_comms:
  1087   shows conj_commute: "(P&Q) = (Q&P)"
  1088     and conj_left_commute: "(P&(Q&R)) = (Q&(P&R))" by iprover+
  1089 lemma conj_assoc: "((P&Q)&R) = (P&(Q&R))" by iprover
  1090 
  1091 lemmas conj_ac = conj_commute conj_left_commute conj_assoc
  1092 
  1093 lemma disj_comms:
  1094   shows disj_commute: "(P|Q) = (Q|P)"
  1095     and disj_left_commute: "(P|(Q|R)) = (Q|(P|R))" by iprover+
  1096 lemma disj_assoc: "((P|Q)|R) = (P|(Q|R))" by iprover
  1097 
  1098 lemmas disj_ac = disj_commute disj_left_commute disj_assoc
  1099 
  1100 lemma conj_disj_distribL: "(P&(Q|R)) = (P&Q | P&R)" by iprover
  1101 lemma conj_disj_distribR: "((P|Q)&R) = (P&R | Q&R)" by iprover
  1102 
  1103 lemma disj_conj_distribL: "(P|(Q&R)) = ((P|Q) & (P|R))" by iprover
  1104 lemma disj_conj_distribR: "((P&Q)|R) = ((P|R) & (Q|R))" by iprover
  1105 
  1106 lemma imp_conjR: "(P --> (Q&R)) = ((P-->Q) & (P-->R))" by iprover
  1107 lemma imp_conjL: "((P&Q) -->R)  = (P --> (Q --> R))" by iprover
  1108 lemma imp_disjL: "((P|Q) --> R) = ((P-->R)&(Q-->R))" by iprover
  1109 
  1110 text {* These two are specialized, but @{text imp_disj_not1} is useful in @{text "Auth/Yahalom"}. *}
  1111 lemma imp_disj_not1: "(P --> Q | R) = (~Q --> P --> R)" by blast
  1112 lemma imp_disj_not2: "(P --> Q | R) = (~R --> P --> Q)" by blast
  1113 
  1114 lemma imp_disj1: "((P-->Q)|R) = (P--> Q|R)" by blast
  1115 lemma imp_disj2: "(Q|(P-->R)) = (P--> Q|R)" by blast
  1116 
  1117 lemma imp_cong: "(P = P') ==> (P' ==> (Q = Q')) ==> ((P --> Q) = (P' --> Q'))"
  1118   by iprover
  1119 
  1120 lemma de_Morgan_disj: "(~(P | Q)) = (~P & ~Q)" by iprover
  1121 lemma de_Morgan_conj: "(~(P & Q)) = (~P | ~Q)" by blast
  1122 lemma not_imp: "(~(P --> Q)) = (P & ~Q)" by blast
  1123 lemma not_iff: "(P~=Q) = (P = (~Q))" by blast
  1124 lemma disj_not1: "(~P | Q) = (P --> Q)" by blast
  1125 lemma disj_not2: "(P | ~Q) = (Q --> P)"  -- {* changes orientation :-( *}
  1126   by blast
  1127 lemma imp_conv_disj: "(P --> Q) = ((~P) | Q)" by blast
  1128 
  1129 lemma iff_conv_conj_imp: "(P = Q) = ((P --> Q) & (Q --> P))" by iprover
  1130 
  1131 
  1132 lemma cases_simp: "((P --> Q) & (~P --> Q)) = Q"
  1133   -- {* Avoids duplication of subgoals after @{text split_if}, when the true and false *}
  1134   -- {* cases boil down to the same thing. *}
  1135   by blast
  1136 
  1137 lemma not_all: "(~ (! x. P(x))) = (? x.~P(x))" by blast
  1138 lemma imp_all: "((! x. P x) --> Q) = (? x. P x --> Q)" by blast
  1139 lemma not_ex: "(~ (? x. P(x))) = (! x.~P(x))" by iprover
  1140 lemma imp_ex: "((? x. P x) --> Q) = (! x. P x --> Q)" by iprover
  1141 lemma all_not_ex: "(ALL x. P x) = (~ (EX x. ~ P x ))" by blast
  1142 
  1143 declare All_def [noatp]
  1144 
  1145 lemma ex_disj_distrib: "(? x. P(x) | Q(x)) = ((? x. P(x)) | (? x. Q(x)))" by iprover
  1146 lemma all_conj_distrib: "(!x. P(x) & Q(x)) = ((! x. P(x)) & (! x. Q(x)))" by iprover
  1147 
  1148 text {*
  1149   \medskip The @{text "&"} congruence rule: not included by default!
  1150   May slow rewrite proofs down by as much as 50\% *}
  1151 
  1152 lemma conj_cong:
  1153     "(P = P') ==> (P' ==> (Q = Q')) ==> ((P & Q) = (P' & Q'))"
  1154   by iprover
  1155 
  1156 lemma rev_conj_cong:
  1157     "(Q = Q') ==> (Q' ==> (P = P')) ==> ((P & Q) = (P' & Q'))"
  1158   by iprover
  1159 
  1160 text {* The @{text "|"} congruence rule: not included by default! *}
  1161 
  1162 lemma disj_cong:
  1163     "(P = P') ==> (~P' ==> (Q = Q')) ==> ((P | Q) = (P' | Q'))"
  1164   by blast
  1165 
  1166 
  1167 text {* \medskip if-then-else rules *}
  1168 
  1169 lemma if_True: "(if True then x else y) = x"
  1170   by (unfold if_def) blast
  1171 
  1172 lemma if_False: "(if False then x else y) = y"
  1173   by (unfold if_def) blast
  1174 
  1175 lemma if_P: "P ==> (if P then x else y) = x"
  1176   by (unfold if_def) blast
  1177 
  1178 lemma if_not_P: "~P ==> (if P then x else y) = y"
  1179   by (unfold if_def) blast
  1180 
  1181 lemma split_if: "P (if Q then x else y) = ((Q --> P(x)) & (~Q --> P(y)))"
  1182   apply (rule case_split [of Q])
  1183    apply (simplesubst if_P)
  1184     prefer 3 apply (simplesubst if_not_P, blast+)
  1185   done
  1186 
  1187 lemma split_if_asm: "P (if Q then x else y) = (~((Q & ~P x) | (~Q & ~P y)))"
  1188 by (simplesubst split_if, blast)
  1189 
  1190 lemmas if_splits [noatp] = split_if split_if_asm
  1191 
  1192 lemma if_cancel: "(if c then x else x) = x"
  1193 by (simplesubst split_if, blast)
  1194 
  1195 lemma if_eq_cancel: "(if x = y then y else x) = x"
  1196 by (simplesubst split_if, blast)
  1197 
  1198 lemma if_bool_eq_conj: "(if P then Q else R) = ((P-->Q) & (~P-->R))"
  1199   -- {* This form is useful for expanding @{text "if"}s on the RIGHT of the @{text "==>"} symbol. *}
  1200   by (rule split_if)
  1201 
  1202 lemma if_bool_eq_disj: "(if P then Q else R) = ((P&Q) | (~P&R))"
  1203   -- {* And this form is useful for expanding @{text "if"}s on the LEFT. *}
  1204   apply (simplesubst split_if, blast)
  1205   done
  1206 
  1207 lemma Eq_TrueI: "P ==> P == True" by (unfold atomize_eq) iprover
  1208 lemma Eq_FalseI: "~P ==> P == False" by (unfold atomize_eq) iprover
  1209 
  1210 text {* \medskip let rules for simproc *}
  1211 
  1212 lemma Let_folded: "f x \<equiv> g x \<Longrightarrow>  Let x f \<equiv> Let x g"
  1213   by (unfold Let_def)
  1214 
  1215 lemma Let_unfold: "f x \<equiv> g \<Longrightarrow>  Let x f \<equiv> g"
  1216   by (unfold Let_def)
  1217 
  1218 text {*
  1219   The following copy of the implication operator is useful for
  1220   fine-tuning congruence rules.  It instructs the simplifier to simplify
  1221   its premise.
  1222 *}
  1223 
  1224 constdefs
  1225   simp_implies :: "[prop, prop] => prop"  (infixr "=simp=>" 1)
  1226   "simp_implies \<equiv> op ==>"
  1227 
  1228 lemma simp_impliesI:
  1229   assumes PQ: "(PROP P \<Longrightarrow> PROP Q)"
  1230   shows "PROP P =simp=> PROP Q"
  1231   apply (unfold simp_implies_def)
  1232   apply (rule PQ)
  1233   apply assumption
  1234   done
  1235 
  1236 lemma simp_impliesE:
  1237   assumes PQ:"PROP P =simp=> PROP Q"
  1238   and P: "PROP P"
  1239   and QR: "PROP Q \<Longrightarrow> PROP R"
  1240   shows "PROP R"
  1241   apply (rule QR)
  1242   apply (rule PQ [unfolded simp_implies_def])
  1243   apply (rule P)
  1244   done
  1245 
  1246 lemma simp_implies_cong:
  1247   assumes PP' :"PROP P == PROP P'"
  1248   and P'QQ': "PROP P' ==> (PROP Q == PROP Q')"
  1249   shows "(PROP P =simp=> PROP Q) == (PROP P' =simp=> PROP Q')"
  1250 proof (unfold simp_implies_def, rule equal_intr_rule)
  1251   assume PQ: "PROP P \<Longrightarrow> PROP Q"
  1252   and P': "PROP P'"
  1253   from PP' [symmetric] and P' have "PROP P"
  1254     by (rule equal_elim_rule1)
  1255   then have "PROP Q" by (rule PQ)
  1256   with P'QQ' [OF P'] show "PROP Q'" by (rule equal_elim_rule1)
  1257 next
  1258   assume P'Q': "PROP P' \<Longrightarrow> PROP Q'"
  1259   and P: "PROP P"
  1260   from PP' and P have P': "PROP P'" by (rule equal_elim_rule1)
  1261   then have "PROP Q'" by (rule P'Q')
  1262   with P'QQ' [OF P', symmetric] show "PROP Q"
  1263     by (rule equal_elim_rule1)
  1264 qed
  1265 
  1266 lemma uncurry:
  1267   assumes "P \<longrightarrow> Q \<longrightarrow> R"
  1268   shows "P \<and> Q \<longrightarrow> R"
  1269   using assms by blast
  1270 
  1271 lemma iff_allI:
  1272   assumes "\<And>x. P x = Q x"
  1273   shows "(\<forall>x. P x) = (\<forall>x. Q x)"
  1274   using assms by blast
  1275 
  1276 lemma iff_exI:
  1277   assumes "\<And>x. P x = Q x"
  1278   shows "(\<exists>x. P x) = (\<exists>x. Q x)"
  1279   using assms by blast
  1280 
  1281 lemma all_comm:
  1282   "(\<forall>x y. P x y) = (\<forall>y x. P x y)"
  1283   by blast
  1284 
  1285 lemma ex_comm:
  1286   "(\<exists>x y. P x y) = (\<exists>y x. P x y)"
  1287   by blast
  1288 
  1289 use "simpdata.ML"
  1290 ML {* open Simpdata *}
  1291 
  1292 setup {*
  1293   Simplifier.method_setup Splitter.split_modifiers
  1294   #> (fn thy => (change_simpset_of thy (fn _ => Simpdata.simpset_simprocs); thy))
  1295   #> Splitter.setup
  1296   #> Clasimp.setup
  1297   #> EqSubst.setup
  1298 *}
  1299 
  1300 text {* Simproc for proving @{text "(y = x) == False"} from premise @{text "~(x = y)"}: *}
  1301 
  1302 simproc_setup neq ("x = y") = {* fn _ =>
  1303 let
  1304   val neq_to_EQ_False = @{thm not_sym} RS @{thm Eq_FalseI};
  1305   fun is_neq eq lhs rhs thm =
  1306     (case Thm.prop_of thm of
  1307       _ $ (Not $ (eq' $ l' $ r')) =>
  1308         Not = HOLogic.Not andalso eq' = eq andalso
  1309         r' aconv lhs andalso l' aconv rhs
  1310     | _ => false);
  1311   fun proc ss ct =
  1312     (case Thm.term_of ct of
  1313       eq $ lhs $ rhs =>
  1314         (case find_first (is_neq eq lhs rhs) (Simplifier.prems_of_ss ss) of
  1315           SOME thm => SOME (thm RS neq_to_EQ_False)
  1316         | NONE => NONE)
  1317      | _ => NONE);
  1318 in proc end;
  1319 *}
  1320 
  1321 simproc_setup let_simp ("Let x f") = {*
  1322 let
  1323   val (f_Let_unfold, x_Let_unfold) =
  1324     let val [(_$(f$x)$_)] = prems_of @{thm Let_unfold}
  1325     in (cterm_of @{theory} f, cterm_of @{theory} x) end
  1326   val (f_Let_folded, x_Let_folded) =
  1327     let val [(_$(f$x)$_)] = prems_of @{thm Let_folded}
  1328     in (cterm_of @{theory} f, cterm_of @{theory} x) end;
  1329   val g_Let_folded =
  1330     let val [(_$_$(g$_))] = prems_of @{thm Let_folded} in cterm_of @{theory} g end;
  1331 
  1332   fun proc _ ss ct =
  1333     let
  1334       val ctxt = Simplifier.the_context ss;
  1335       val thy = ProofContext.theory_of ctxt;
  1336       val t = Thm.term_of ct;
  1337       val ([t'], ctxt') = Variable.import_terms false [t] ctxt;
  1338     in Option.map (hd o Variable.export ctxt' ctxt o single)
  1339       (case t' of Const ("Let",_) $ x $ f => (* x and f are already in normal form *)
  1340         if is_Free x orelse is_Bound x orelse is_Const x
  1341         then SOME @{thm Let_def}
  1342         else
  1343           let
  1344             val n = case f of (Abs (x,_,_)) => x | _ => "x";
  1345             val cx = cterm_of thy x;
  1346             val {T=xT,...} = rep_cterm cx;
  1347             val cf = cterm_of thy f;
  1348             val fx_g = Simplifier.rewrite ss (Thm.capply cf cx);
  1349             val (_$_$g) = prop_of fx_g;
  1350             val g' = abstract_over (x,g);
  1351           in (if (g aconv g')
  1352                then
  1353                   let
  1354                     val rl =
  1355                       cterm_instantiate [(f_Let_unfold,cf),(x_Let_unfold,cx)] @{thm Let_unfold};
  1356                   in SOME (rl OF [fx_g]) end
  1357                else if Term.betapply (f,x) aconv g then NONE (*avoid identity conversion*)
  1358                else let
  1359                      val abs_g'= Abs (n,xT,g');
  1360                      val g'x = abs_g'$x;
  1361                      val g_g'x = symmetric (beta_conversion false (cterm_of thy g'x));
  1362                      val rl = cterm_instantiate
  1363                                [(f_Let_folded,cterm_of thy f),(x_Let_folded,cx),
  1364                                 (g_Let_folded,cterm_of thy abs_g')]
  1365                                @{thm Let_folded};
  1366                    in SOME (rl OF [transitive fx_g g_g'x])
  1367                    end)
  1368           end
  1369       | _ => NONE)
  1370     end
  1371 in proc end *}
  1372 
  1373 
  1374 lemma True_implies_equals: "(True \<Longrightarrow> PROP P) \<equiv> PROP P"
  1375 proof
  1376   assume "True \<Longrightarrow> PROP P"
  1377   from this [OF TrueI] show "PROP P" .
  1378 next
  1379   assume "PROP P"
  1380   then show "PROP P" .
  1381 qed
  1382 
  1383 lemma ex_simps:
  1384   "!!P Q. (EX x. P x & Q)   = ((EX x. P x) & Q)"
  1385   "!!P Q. (EX x. P & Q x)   = (P & (EX x. Q x))"
  1386   "!!P Q. (EX x. P x | Q)   = ((EX x. P x) | Q)"
  1387   "!!P Q. (EX x. P | Q x)   = (P | (EX x. Q x))"
  1388   "!!P Q. (EX x. P x --> Q) = ((ALL x. P x) --> Q)"
  1389   "!!P Q. (EX x. P --> Q x) = (P --> (EX x. Q x))"
  1390   -- {* Miniscoping: pushing in existential quantifiers. *}
  1391   by (iprover | blast)+
  1392 
  1393 lemma all_simps:
  1394   "!!P Q. (ALL x. P x & Q)   = ((ALL x. P x) & Q)"
  1395   "!!P Q. (ALL x. P & Q x)   = (P & (ALL x. Q x))"
  1396   "!!P Q. (ALL x. P x | Q)   = ((ALL x. P x) | Q)"
  1397   "!!P Q. (ALL x. P | Q x)   = (P | (ALL x. Q x))"
  1398   "!!P Q. (ALL x. P x --> Q) = ((EX x. P x) --> Q)"
  1399   "!!P Q. (ALL x. P --> Q x) = (P --> (ALL x. Q x))"
  1400   -- {* Miniscoping: pushing in universal quantifiers. *}
  1401   by (iprover | blast)+
  1402 
  1403 lemmas [simp] =
  1404   triv_forall_equality (*prunes params*)
  1405   True_implies_equals  (*prune asms `True'*)
  1406   if_True
  1407   if_False
  1408   if_cancel
  1409   if_eq_cancel
  1410   imp_disjL
  1411   (*In general it seems wrong to add distributive laws by default: they
  1412     might cause exponential blow-up.  But imp_disjL has been in for a while
  1413     and cannot be removed without affecting existing proofs.  Moreover,
  1414     rewriting by "(P|Q --> R) = ((P-->R)&(Q-->R))" might be justified on the
  1415     grounds that it allows simplification of R in the two cases.*)
  1416   conj_assoc
  1417   disj_assoc
  1418   de_Morgan_conj
  1419   de_Morgan_disj
  1420   imp_disj1
  1421   imp_disj2
  1422   not_imp
  1423   disj_not1
  1424   not_all
  1425   not_ex
  1426   cases_simp
  1427   the_eq_trivial
  1428   the_sym_eq_trivial
  1429   ex_simps
  1430   all_simps
  1431   simp_thms
  1432 
  1433 lemmas [cong] = imp_cong simp_implies_cong
  1434 lemmas [split] = split_if
  1435 
  1436 ML {* val HOL_ss = @{simpset} *}
  1437 
  1438 text {* Simplifies x assuming c and y assuming ~c *}
  1439 lemma if_cong:
  1440   assumes "b = c"
  1441       and "c \<Longrightarrow> x = u"
  1442       and "\<not> c \<Longrightarrow> y = v"
  1443   shows "(if b then x else y) = (if c then u else v)"
  1444   unfolding if_def using assms by simp
  1445 
  1446 text {* Prevents simplification of x and y:
  1447   faster and allows the execution of functional programs. *}
  1448 lemma if_weak_cong [cong]:
  1449   assumes "b = c"
  1450   shows "(if b then x else y) = (if c then x else y)"
  1451   using assms by (rule arg_cong)
  1452 
  1453 text {* Prevents simplification of t: much faster *}
  1454 lemma let_weak_cong:
  1455   assumes "a = b"
  1456   shows "(let x = a in t x) = (let x = b in t x)"
  1457   using assms by (rule arg_cong)
  1458 
  1459 text {* To tidy up the result of a simproc.  Only the RHS will be simplified. *}
  1460 lemma eq_cong2:
  1461   assumes "u = u'"
  1462   shows "(t \<equiv> u) \<equiv> (t \<equiv> u')"
  1463   using assms by simp
  1464 
  1465 lemma if_distrib:
  1466   "f (if c then x else y) = (if c then f x else f y)"
  1467   by simp
  1468 
  1469 text {* This lemma restricts the effect of the rewrite rule u=v to the left-hand
  1470   side of an equality.  Used in @{text "{Integ,Real}/simproc.ML"} *}
  1471 lemma restrict_to_left:
  1472   assumes "x = y"
  1473   shows "(x = z) = (y = z)"
  1474   using assms by simp
  1475 
  1476 
  1477 subsubsection {* Generic cases and induction *}
  1478 
  1479 text {* Rule projections: *}
  1480 
  1481 ML {*
  1482 structure ProjectRule = ProjectRuleFun
  1483 (struct
  1484   val conjunct1 = @{thm conjunct1};
  1485   val conjunct2 = @{thm conjunct2};
  1486   val mp = @{thm mp};
  1487 end)
  1488 *}
  1489 
  1490 constdefs
  1491   induct_forall where "induct_forall P == \<forall>x. P x"
  1492   induct_implies where "induct_implies A B == A \<longrightarrow> B"
  1493   induct_equal where "induct_equal x y == x = y"
  1494   induct_conj where "induct_conj A B == A \<and> B"
  1495 
  1496 lemma induct_forall_eq: "(!!x. P x) == Trueprop (induct_forall (\<lambda>x. P x))"
  1497   by (unfold atomize_all induct_forall_def)
  1498 
  1499 lemma induct_implies_eq: "(A ==> B) == Trueprop (induct_implies A B)"
  1500   by (unfold atomize_imp induct_implies_def)
  1501 
  1502 lemma induct_equal_eq: "(x == y) == Trueprop (induct_equal x y)"
  1503   by (unfold atomize_eq induct_equal_def)
  1504 
  1505 lemma induct_conj_eq:
  1506   includes meta_conjunction_syntax
  1507   shows "(A && B) == Trueprop (induct_conj A B)"
  1508   by (unfold atomize_conj induct_conj_def)
  1509 
  1510 lemmas induct_atomize = induct_forall_eq induct_implies_eq induct_equal_eq induct_conj_eq
  1511 lemmas induct_rulify [symmetric, standard] = induct_atomize
  1512 lemmas induct_rulify_fallback =
  1513   induct_forall_def induct_implies_def induct_equal_def induct_conj_def
  1514 
  1515 
  1516 lemma induct_forall_conj: "induct_forall (\<lambda>x. induct_conj (A x) (B x)) =
  1517     induct_conj (induct_forall A) (induct_forall B)"
  1518   by (unfold induct_forall_def induct_conj_def) iprover
  1519 
  1520 lemma induct_implies_conj: "induct_implies C (induct_conj A B) =
  1521     induct_conj (induct_implies C A) (induct_implies C B)"
  1522   by (unfold induct_implies_def induct_conj_def) iprover
  1523 
  1524 lemma induct_conj_curry: "(induct_conj A B ==> PROP C) == (A ==> B ==> PROP C)"
  1525 proof
  1526   assume r: "induct_conj A B ==> PROP C" and A B
  1527   show "PROP C" by (rule r) (simp add: induct_conj_def `A` `B`)
  1528 next
  1529   assume r: "A ==> B ==> PROP C" and "induct_conj A B"
  1530   show "PROP C" by (rule r) (simp_all add: `induct_conj A B` [unfolded induct_conj_def])
  1531 qed
  1532 
  1533 lemmas induct_conj = induct_forall_conj induct_implies_conj induct_conj_curry
  1534 
  1535 hide const induct_forall induct_implies induct_equal induct_conj
  1536 
  1537 text {* Method setup. *}
  1538 
  1539 ML {*
  1540   structure Induct = InductFun
  1541   (
  1542     val cases_default = @{thm case_split}
  1543     val atomize = @{thms induct_atomize}
  1544     val rulify = @{thms induct_rulify}
  1545     val rulify_fallback = @{thms induct_rulify_fallback}
  1546   );
  1547 *}
  1548 
  1549 setup Induct.setup
  1550 
  1551 
  1552 subsection {* Other simple lemmas and lemma duplicates *}
  1553 
  1554 lemma Let_0 [simp]: "Let 0 f = f 0"
  1555   unfolding Let_def ..
  1556 
  1557 lemma Let_1 [simp]: "Let 1 f = f 1"
  1558   unfolding Let_def ..
  1559 
  1560 lemma ex1_eq [iff]: "EX! x. x = t" "EX! x. t = x"
  1561   by blast+
  1562 
  1563 lemma choice_eq: "(ALL x. EX! y. P x y) = (EX! f. ALL x. P x (f x))"
  1564   apply (rule iffI)
  1565   apply (rule_tac a = "%x. THE y. P x y" in ex1I)
  1566   apply (fast dest!: theI')
  1567   apply (fast intro: ext the1_equality [symmetric])
  1568   apply (erule ex1E)
  1569   apply (rule allI)
  1570   apply (rule ex1I)
  1571   apply (erule spec)
  1572   apply (erule_tac x = "%z. if z = x then y else f z" in allE)
  1573   apply (erule impE)
  1574   apply (rule allI)
  1575   apply (rule_tac P = "xa = x" in case_split_thm)
  1576   apply (drule_tac [3] x = x in fun_cong, simp_all)
  1577   done
  1578 
  1579 lemma mk_left_commute:
  1580   fixes f (infix "\<otimes>" 60)
  1581   assumes a: "\<And>x y z. (x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)" and
  1582           c: "\<And>x y. x \<otimes> y = y \<otimes> x"
  1583   shows "x \<otimes> (y \<otimes> z) = y \<otimes> (x \<otimes> z)"
  1584   by (rule trans [OF trans [OF c a] arg_cong [OF c, of "f y"]])
  1585 
  1586 lemmas eq_sym_conv = eq_commute
  1587 
  1588 lemma nnf_simps:
  1589   "(\<not>(P \<and> Q)) = (\<not> P \<or> \<not> Q)" "(\<not> (P \<or> Q)) = (\<not> P \<and> \<not>Q)" "(P \<longrightarrow> Q) = (\<not>P \<or> Q)" 
  1590   "(P = Q) = ((P \<and> Q) \<or> (\<not>P \<and> \<not> Q))" "(\<not>(P = Q)) = ((P \<and> \<not> Q) \<or> (\<not>P \<and> Q))" 
  1591   "(\<not> \<not>(P)) = P"
  1592 by blast+
  1593 
  1594 
  1595 subsection {* Basic ML bindings *}
  1596 
  1597 ML {*
  1598 val FalseE = @{thm FalseE}
  1599 val Let_def = @{thm Let_def}
  1600 val TrueI = @{thm TrueI}
  1601 val allE = @{thm allE}
  1602 val allI = @{thm allI}
  1603 val all_dupE = @{thm all_dupE}
  1604 val arg_cong = @{thm arg_cong}
  1605 val box_equals = @{thm box_equals}
  1606 val ccontr = @{thm ccontr}
  1607 val classical = @{thm classical}
  1608 val conjE = @{thm conjE}
  1609 val conjI = @{thm conjI}
  1610 val conjunct1 = @{thm conjunct1}
  1611 val conjunct2 = @{thm conjunct2}
  1612 val disjCI = @{thm disjCI}
  1613 val disjE = @{thm disjE}
  1614 val disjI1 = @{thm disjI1}
  1615 val disjI2 = @{thm disjI2}
  1616 val eq_reflection = @{thm eq_reflection}
  1617 val ex1E = @{thm ex1E}
  1618 val ex1I = @{thm ex1I}
  1619 val ex1_implies_ex = @{thm ex1_implies_ex}
  1620 val exE = @{thm exE}
  1621 val exI = @{thm exI}
  1622 val excluded_middle = @{thm excluded_middle}
  1623 val ext = @{thm ext}
  1624 val fun_cong = @{thm fun_cong}
  1625 val iffD1 = @{thm iffD1}
  1626 val iffD2 = @{thm iffD2}
  1627 val iffI = @{thm iffI}
  1628 val impE = @{thm impE}
  1629 val impI = @{thm impI}
  1630 val meta_eq_to_obj_eq = @{thm meta_eq_to_obj_eq}
  1631 val mp = @{thm mp}
  1632 val notE = @{thm notE}
  1633 val notI = @{thm notI}
  1634 val not_all = @{thm not_all}
  1635 val not_ex = @{thm not_ex}
  1636 val not_iff = @{thm not_iff}
  1637 val not_not = @{thm not_not}
  1638 val not_sym = @{thm not_sym}
  1639 val refl = @{thm refl}
  1640 val rev_mp = @{thm rev_mp}
  1641 val spec = @{thm spec}
  1642 val ssubst = @{thm ssubst}
  1643 val subst = @{thm subst}
  1644 val sym = @{thm sym}
  1645 val trans = @{thm trans}
  1646 *}
  1647 
  1648 
  1649 subsection {* Code generator basic setup -- see further @{text Code_Setup.thy} *}
  1650 
  1651 setup "CodeName.setup #> CodeTarget.setup #> Nbe.setup"
  1652 
  1653 class eq (attach "op =") = type
  1654 
  1655 code_datatype True False
  1656 
  1657 lemma [code func]:
  1658   shows "False \<and> x \<longleftrightarrow> False"
  1659     and "True \<and> x \<longleftrightarrow> x"
  1660     and "x \<and> False \<longleftrightarrow> False"
  1661     and "x \<and> True \<longleftrightarrow> x" by simp_all
  1662 
  1663 lemma [code func]:
  1664   shows "False \<or> x \<longleftrightarrow> x"
  1665     and "True \<or> x \<longleftrightarrow> True"
  1666     and "x \<or> False \<longleftrightarrow> x"
  1667     and "x \<or> True \<longleftrightarrow> True" by simp_all
  1668 
  1669 lemma [code func]:
  1670   shows "\<not> True \<longleftrightarrow> False"
  1671     and "\<not> False \<longleftrightarrow> True" by (rule HOL.simp_thms)+
  1672 
  1673 instance bool :: eq ..
  1674 
  1675 lemma [code func]:
  1676   shows "False = P \<longleftrightarrow> \<not> P"
  1677     and "True = P \<longleftrightarrow> P" 
  1678     and "P = False \<longleftrightarrow> \<not> P" 
  1679     and "P = True \<longleftrightarrow> P" by simp_all
  1680 
  1681 code_datatype Trueprop "prop"
  1682 
  1683 code_datatype "TYPE('a)"
  1684 
  1685 lemma Let_case_cert:
  1686   assumes "CASE \<equiv> (\<lambda>x. Let x f)"
  1687   shows "CASE x \<equiv> f x"
  1688   using assms by simp_all
  1689 
  1690 lemma If_case_cert:
  1691   includes meta_conjunction_syntax
  1692   assumes "CASE \<equiv> (\<lambda>b. If b f g)"
  1693   shows "(CASE True \<equiv> f) && (CASE False \<equiv> g)"
  1694   using assms by simp_all
  1695 
  1696 setup {*
  1697   Code.add_case @{thm Let_case_cert}
  1698   #> Code.add_case @{thm If_case_cert}
  1699   #> Code.add_undefined @{const_name undefined}
  1700 *}
  1701 
  1702 
  1703 subsection {* Legacy tactics and ML bindings *}
  1704 
  1705 ML {*
  1706 fun strip_tac i = REPEAT (resolve_tac [impI, allI] i);
  1707 
  1708 (* combination of (spec RS spec RS ...(j times) ... spec RS mp) *)
  1709 local
  1710   fun wrong_prem (Const ("All", _) $ (Abs (_, _, t))) = wrong_prem t
  1711     | wrong_prem (Bound _) = true
  1712     | wrong_prem _ = false;
  1713   val filter_right = filter (not o wrong_prem o HOLogic.dest_Trueprop o hd o Thm.prems_of);
  1714 in
  1715   fun smp i = funpow i (fn m => filter_right ([spec] RL m)) ([mp]);
  1716   fun smp_tac j = EVERY'[dresolve_tac (smp j), atac];
  1717 end;
  1718 
  1719 val all_conj_distrib = thm "all_conj_distrib";
  1720 val all_simps = thms "all_simps";
  1721 val atomize_not = thm "atomize_not";
  1722 val case_split = thm "case_split";
  1723 val case_split_thm = thm "case_split_thm"
  1724 val cases_simp = thm "cases_simp";
  1725 val choice_eq = thm "choice_eq"
  1726 val cong = thm "cong"
  1727 val conj_comms = thms "conj_comms";
  1728 val conj_cong = thm "conj_cong";
  1729 val de_Morgan_conj = thm "de_Morgan_conj";
  1730 val de_Morgan_disj = thm "de_Morgan_disj";
  1731 val disj_assoc = thm "disj_assoc";
  1732 val disj_comms = thms "disj_comms";
  1733 val disj_cong = thm "disj_cong";
  1734 val eq_ac = thms "eq_ac";
  1735 val eq_cong2 = thm "eq_cong2"
  1736 val Eq_FalseI = thm "Eq_FalseI";
  1737 val Eq_TrueI = thm "Eq_TrueI";
  1738 val Ex1_def = thm "Ex1_def"
  1739 val ex_disj_distrib = thm "ex_disj_distrib";
  1740 val ex_simps = thms "ex_simps";
  1741 val if_cancel = thm "if_cancel";
  1742 val if_eq_cancel = thm "if_eq_cancel";
  1743 val if_False = thm "if_False";
  1744 val iff_conv_conj_imp = thm "iff_conv_conj_imp";
  1745 val iff = thm "iff"
  1746 val if_splits = thms "if_splits";
  1747 val if_True = thm "if_True";
  1748 val if_weak_cong = thm "if_weak_cong"
  1749 val imp_all = thm "imp_all";
  1750 val imp_cong = thm "imp_cong";
  1751 val imp_conjL = thm "imp_conjL";
  1752 val imp_conjR = thm "imp_conjR";
  1753 val imp_conv_disj = thm "imp_conv_disj";
  1754 val simp_implies_def = thm "simp_implies_def";
  1755 val simp_thms = thms "simp_thms";
  1756 val split_if = thm "split_if";
  1757 val the1_equality = thm "the1_equality"
  1758 val theI = thm "theI"
  1759 val theI' = thm "theI'"
  1760 val True_implies_equals = thm "True_implies_equals";
  1761 val nnf_conv = Simplifier.rewrite (HOL_basic_ss addsimps simp_thms @ @{thms "nnf_simps"})
  1762 
  1763 *}
  1764 
  1765 end