src/HOL/HOL.thy
author haftmann
Wed, 05 Dec 2007 14:15:45 +0100
changeset 25534 d0b74fdd6067
parent 25494 b2484a7912ac
child 25741 2d102ddaca8b
permissions -rw-r--r--
simplified infrastructure for code generator operational equality
     1 (*  Title:      HOL/HOL.thy
     2     ID:         $Id$
     3     Author:     Tobias Nipkow, Markus Wenzel, and Larry Paulson
     4 *)
     5 
     6 header {* The basis of Higher-Order Logic *}
     7 
     8 theory HOL
     9 imports CPure
    10 uses
    11   ("hologic.ML")
    12   "~~/src/Tools/IsaPlanner/zipper.ML"
    13   "~~/src/Tools/IsaPlanner/isand.ML"
    14   "~~/src/Tools/IsaPlanner/rw_tools.ML"
    15   "~~/src/Tools/IsaPlanner/rw_inst.ML"
    16   "~~/src/Provers/project_rule.ML"
    17   "~~/src/Provers/hypsubst.ML"
    18   "~~/src/Provers/splitter.ML"
    19   "~~/src/Provers/classical.ML"
    20   "~~/src/Provers/blast.ML"
    21   "~~/src/Provers/clasimp.ML"
    22   "~~/src/Provers/eqsubst.ML"
    23   "~~/src/Provers/quantifier1.ML"
    24   ("simpdata.ML")
    25   "~~/src/Tools/induct.ML"
    26   "~~/src/Tools/code/code_name.ML"
    27   "~~/src/Tools/code/code_funcgr.ML"
    28   "~~/src/Tools/code/code_thingol.ML"
    29   "~~/src/Tools/code/code_target.ML"
    30   "~~/src/Tools/code/code_package.ML"
    31   "~~/src/Tools/nbe.ML"
    32 begin
    33 
    34 subsection {* Primitive logic *}
    35 
    36 subsubsection {* Core syntax *}
    37 
    38 classes type
    39 defaultsort type
    40 setup {* ObjectLogic.add_base_sort @{sort type} *}
    41 
    42 arities
    43   "fun" :: (type, type) type
    44   itself :: (type) type
    45 
    46 global
    47 
    48 typedecl bool
    49 
    50 judgment
    51   Trueprop      :: "bool => prop"                   ("(_)" 5)
    52 
    53 consts
    54   Not           :: "bool => bool"                   ("~ _" [40] 40)
    55   True          :: bool
    56   False         :: bool
    57   arbitrary     :: 'a
    58 
    59   The           :: "('a => bool) => 'a"
    60   All           :: "('a => bool) => bool"           (binder "ALL " 10)
    61   Ex            :: "('a => bool) => bool"           (binder "EX " 10)
    62   Ex1           :: "('a => bool) => bool"           (binder "EX! " 10)
    63   Let           :: "['a, 'a => 'b] => 'b"
    64 
    65   "op ="        :: "['a, 'a] => bool"               (infixl "=" 50)
    66   "op &"        :: "[bool, bool] => bool"           (infixr "&" 35)
    67   "op |"        :: "[bool, bool] => bool"           (infixr "|" 30)
    68   "op -->"      :: "[bool, bool] => bool"           (infixr "-->" 25)
    69 
    70 local
    71 
    72 consts
    73   If            :: "[bool, 'a, 'a] => 'a"           ("(if (_)/ then (_)/ else (_))" 10)
    74 
    75 
    76 subsubsection {* Additional concrete syntax *}
    77 
    78 notation (output)
    79   "op ="  (infix "=" 50)
    80 
    81 abbreviation
    82   not_equal :: "['a, 'a] => bool"  (infixl "~=" 50) where
    83   "x ~= y == ~ (x = y)"
    84 
    85 notation (output)
    86   not_equal  (infix "~=" 50)
    87 
    88 notation (xsymbols)
    89   Not  ("\<not> _" [40] 40) and
    90   "op &"  (infixr "\<and>" 35) and
    91   "op |"  (infixr "\<or>" 30) and
    92   "op -->"  (infixr "\<longrightarrow>" 25) and
    93   not_equal  (infix "\<noteq>" 50)
    94 
    95 notation (HTML output)
    96   Not  ("\<not> _" [40] 40) and
    97   "op &"  (infixr "\<and>" 35) and
    98   "op |"  (infixr "\<or>" 30) and
    99   not_equal  (infix "\<noteq>" 50)
   100 
   101 abbreviation (iff)
   102   iff :: "[bool, bool] => bool"  (infixr "<->" 25) where
   103   "A <-> B == A = B"
   104 
   105 notation (xsymbols)
   106   iff  (infixr "\<longleftrightarrow>" 25)
   107 
   108 
   109 nonterminals
   110   letbinds  letbind
   111   case_syn  cases_syn
   112 
   113 syntax
   114   "_The"        :: "[pttrn, bool] => 'a"                 ("(3THE _./ _)" [0, 10] 10)
   115 
   116   "_bind"       :: "[pttrn, 'a] => letbind"              ("(2_ =/ _)" 10)
   117   ""            :: "letbind => letbinds"                 ("_")
   118   "_binds"      :: "[letbind, letbinds] => letbinds"     ("_;/ _")
   119   "_Let"        :: "[letbinds, 'a] => 'a"                ("(let (_)/ in (_))" 10)
   120 
   121   "_case_syntax":: "['a, cases_syn] => 'b"               ("(case _ of/ _)" 10)
   122   "_case1"      :: "['a, 'b] => case_syn"                ("(2_ =>/ _)" 10)
   123   ""            :: "case_syn => cases_syn"               ("_")
   124   "_case2"      :: "[case_syn, cases_syn] => cases_syn"  ("_/ | _")
   125 
   126 translations
   127   "THE x. P"              == "The (%x. P)"
   128   "_Let (_binds b bs) e"  == "_Let b (_Let bs e)"
   129   "let x = a in e"        == "Let a (%x. e)"
   130 
   131 print_translation {*
   132 (* To avoid eta-contraction of body: *)
   133 [("The", fn [Abs abs] =>
   134      let val (x,t) = atomic_abs_tr' abs
   135      in Syntax.const "_The" $ x $ t end)]
   136 *}
   137 
   138 syntax (xsymbols)
   139   "_case1"      :: "['a, 'b] => case_syn"                ("(2_ \<Rightarrow>/ _)" 10)
   140 
   141 notation (xsymbols)
   142   All  (binder "\<forall>" 10) and
   143   Ex  (binder "\<exists>" 10) and
   144   Ex1  (binder "\<exists>!" 10)
   145 
   146 notation (HTML output)
   147   All  (binder "\<forall>" 10) and
   148   Ex  (binder "\<exists>" 10) and
   149   Ex1  (binder "\<exists>!" 10)
   150 
   151 notation (HOL)
   152   All  (binder "! " 10) and
   153   Ex  (binder "? " 10) and
   154   Ex1  (binder "?! " 10)
   155 
   156 
   157 subsubsection {* Axioms and basic definitions *}
   158 
   159 axioms
   160   eq_reflection:  "(x=y) ==> (x==y)"
   161 
   162   refl:           "t = (t::'a)"
   163 
   164   ext:            "(!!x::'a. (f x ::'b) = g x) ==> (%x. f x) = (%x. g x)"
   165     -- {*Extensionality is built into the meta-logic, and this rule expresses
   166          a related property.  It is an eta-expanded version of the traditional
   167          rule, and similar to the ABS rule of HOL*}
   168 
   169   the_eq_trivial: "(THE x. x = a) = (a::'a)"
   170 
   171   impI:           "(P ==> Q) ==> P-->Q"
   172   mp:             "[| P-->Q;  P |] ==> Q"
   173 
   174 
   175 defs
   176   True_def:     "True      == ((%x::bool. x) = (%x. x))"
   177   All_def:      "All(P)    == (P = (%x. True))"
   178   Ex_def:       "Ex(P)     == !Q. (!x. P x --> Q) --> Q"
   179   False_def:    "False     == (!P. P)"
   180   not_def:      "~ P       == P-->False"
   181   and_def:      "P & Q     == !R. (P-->Q-->R) --> R"
   182   or_def:       "P | Q     == !R. (P-->R) --> (Q-->R) --> R"
   183   Ex1_def:      "Ex1(P)    == ? x. P(x) & (! y. P(y) --> y=x)"
   184 
   185 axioms
   186   iff:          "(P-->Q) --> (Q-->P) --> (P=Q)"
   187   True_or_False:  "(P=True) | (P=False)"
   188 
   189 defs
   190   Let_def:      "Let s f == f(s)"
   191   if_def:       "If P x y == THE z::'a. (P=True --> z=x) & (P=False --> z=y)"
   192 
   193 finalconsts
   194   "op ="
   195   "op -->"
   196   The
   197   arbitrary
   198 
   199 axiomatization
   200   undefined :: 'a
   201 
   202 axiomatization where
   203   undefined_fun: "undefined x = undefined"
   204 
   205 
   206 subsubsection {* Generic classes and algebraic operations *}
   207 
   208 class default = type +
   209   fixes default :: 'a
   210 
   211 class zero = type + 
   212   fixes zero :: 'a  ("0")
   213 
   214 class one = type +
   215   fixes one  :: 'a  ("1")
   216 
   217 hide (open) const zero one
   218 
   219 class plus = type +
   220   fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "+" 65)
   221 
   222 class minus = type +
   223   fixes uminus :: "'a \<Rightarrow> 'a"  ("- _" [81] 80)
   224     and minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "-" 65)
   225 
   226 class times = type +
   227   fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "*" 70)
   228 
   229 class inverse = type +
   230   fixes inverse :: "'a \<Rightarrow> 'a"
   231     and divide :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "'/" 70)
   232 
   233 class abs = type +
   234   fixes abs :: "'a \<Rightarrow> 'a"
   235 begin
   236 
   237 notation (xsymbols)
   238   abs  ("\<bar>_\<bar>")
   239 
   240 notation (HTML output)
   241   abs  ("\<bar>_\<bar>")
   242 
   243 end
   244 
   245 class sgn = type +
   246   fixes sgn :: "'a \<Rightarrow> 'a"
   247 
   248 class ord = type +
   249   fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
   250     and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
   251 begin
   252 
   253 notation
   254   less_eq  ("op <=") and
   255   less_eq  ("(_/ <= _)" [51, 51] 50) and
   256   less  ("op <") and
   257   less  ("(_/ < _)"  [51, 51] 50)
   258   
   259 notation (xsymbols)
   260   less_eq  ("op \<le>") and
   261   less_eq  ("(_/ \<le> _)"  [51, 51] 50)
   262 
   263 notation (HTML output)
   264   less_eq  ("op \<le>") and
   265   less_eq  ("(_/ \<le> _)"  [51, 51] 50)
   266 
   267 abbreviation (input)
   268   greater_eq  (infix ">=" 50) where
   269   "x >= y \<equiv> y <= x"
   270 
   271 notation (input)
   272   greater_eq  (infix "\<ge>" 50)
   273 
   274 abbreviation (input)
   275   greater  (infix ">" 50) where
   276   "x > y \<equiv> y < x"
   277 
   278 definition
   279   Least :: "('a \<Rightarrow> bool) \<Rightarrow> 'a" (binder "LEAST " 10) where
   280   "Least P == (THE x. P x \<and> (\<forall>y. P y \<longrightarrow> less_eq x y))"
   281 
   282 end
   283 
   284 syntax
   285   "_index1"  :: index    ("\<^sub>1")
   286 translations
   287   (index) "\<^sub>1" => (index) "\<^bsub>\<struct>\<^esub>"
   288 
   289 typed_print_translation {*
   290 let
   291   fun tr' c = (c, fn show_sorts => fn T => fn ts =>
   292     if T = dummyT orelse not (! show_types) andalso can Term.dest_Type T then raise Match
   293     else Syntax.const Syntax.constrainC $ Syntax.const c $ Syntax.term_of_typ show_sorts T);
   294 in map tr' [@{const_syntax HOL.one}, @{const_syntax HOL.zero}] end;
   295 *} -- {* show types that are presumably too general *}
   296 
   297 
   298 subsection {* Fundamental rules *}
   299 
   300 subsubsection {* Equality *}
   301 
   302 text {* Thanks to Stephan Merz *}
   303 lemma subst:
   304   assumes eq: "s = t" and p: "P s"
   305   shows "P t"
   306 proof -
   307   from eq have meta: "s \<equiv> t"
   308     by (rule eq_reflection)
   309   from p show ?thesis
   310     by (unfold meta)
   311 qed
   312 
   313 lemma sym: "s = t ==> t = s"
   314   by (erule subst) (rule refl)
   315 
   316 lemma ssubst: "t = s ==> P s ==> P t"
   317   by (drule sym) (erule subst)
   318 
   319 lemma trans: "[| r=s; s=t |] ==> r=t"
   320   by (erule subst)
   321 
   322 lemma meta_eq_to_obj_eq: 
   323   assumes meq: "A == B"
   324   shows "A = B"
   325   by (unfold meq) (rule refl)
   326 
   327 text {* Useful with @{text erule} for proving equalities from known equalities. *}
   328      (* a = b
   329         |   |
   330         c = d   *)
   331 lemma box_equals: "[| a=b;  a=c;  b=d |] ==> c=d"
   332 apply (rule trans)
   333 apply (rule trans)
   334 apply (rule sym)
   335 apply assumption+
   336 done
   337 
   338 text {* For calculational reasoning: *}
   339 
   340 lemma forw_subst: "a = b ==> P b ==> P a"
   341   by (rule ssubst)
   342 
   343 lemma back_subst: "P a ==> a = b ==> P b"
   344   by (rule subst)
   345 
   346 
   347 subsubsection {*Congruence rules for application*}
   348 
   349 (*similar to AP_THM in Gordon's HOL*)
   350 lemma fun_cong: "(f::'a=>'b) = g ==> f(x)=g(x)"
   351 apply (erule subst)
   352 apply (rule refl)
   353 done
   354 
   355 (*similar to AP_TERM in Gordon's HOL and FOL's subst_context*)
   356 lemma arg_cong: "x=y ==> f(x)=f(y)"
   357 apply (erule subst)
   358 apply (rule refl)
   359 done
   360 
   361 lemma arg_cong2: "\<lbrakk> a = b; c = d \<rbrakk> \<Longrightarrow> f a c = f b d"
   362 apply (erule ssubst)+
   363 apply (rule refl)
   364 done
   365 
   366 lemma cong: "[| f = g; (x::'a) = y |] ==> f(x) = g(y)"
   367 apply (erule subst)+
   368 apply (rule refl)
   369 done
   370 
   371 
   372 subsubsection {*Equality of booleans -- iff*}
   373 
   374 lemma iffI: assumes "P ==> Q" and "Q ==> P" shows "P=Q"
   375   by (iprover intro: iff [THEN mp, THEN mp] impI assms)
   376 
   377 lemma iffD2: "[| P=Q; Q |] ==> P"
   378   by (erule ssubst)
   379 
   380 lemma rev_iffD2: "[| Q; P=Q |] ==> P"
   381   by (erule iffD2)
   382 
   383 lemma iffD1: "Q = P \<Longrightarrow> Q \<Longrightarrow> P"
   384   by (drule sym) (rule iffD2)
   385 
   386 lemma rev_iffD1: "Q \<Longrightarrow> Q = P \<Longrightarrow> P"
   387   by (drule sym) (rule rev_iffD2)
   388 
   389 lemma iffE:
   390   assumes major: "P=Q"
   391     and minor: "[| P --> Q; Q --> P |] ==> R"
   392   shows R
   393   by (iprover intro: minor impI major [THEN iffD2] major [THEN iffD1])
   394 
   395 
   396 subsubsection {*True*}
   397 
   398 lemma TrueI: "True"
   399   unfolding True_def by (rule refl)
   400 
   401 lemma eqTrueI: "P ==> P = True"
   402   by (iprover intro: iffI TrueI)
   403 
   404 lemma eqTrueE: "P = True ==> P"
   405   by (erule iffD2) (rule TrueI)
   406 
   407 
   408 subsubsection {*Universal quantifier*}
   409 
   410 lemma allI: assumes "!!x::'a. P(x)" shows "ALL x. P(x)"
   411   unfolding All_def by (iprover intro: ext eqTrueI assms)
   412 
   413 lemma spec: "ALL x::'a. P(x) ==> P(x)"
   414 apply (unfold All_def)
   415 apply (rule eqTrueE)
   416 apply (erule fun_cong)
   417 done
   418 
   419 lemma allE:
   420   assumes major: "ALL x. P(x)"
   421     and minor: "P(x) ==> R"
   422   shows R
   423   by (iprover intro: minor major [THEN spec])
   424 
   425 lemma all_dupE:
   426   assumes major: "ALL x. P(x)"
   427     and minor: "[| P(x); ALL x. P(x) |] ==> R"
   428   shows R
   429   by (iprover intro: minor major major [THEN spec])
   430 
   431 
   432 subsubsection {* False *}
   433 
   434 text {*
   435   Depends upon @{text spec}; it is impossible to do propositional
   436   logic before quantifiers!
   437 *}
   438 
   439 lemma FalseE: "False ==> P"
   440   apply (unfold False_def)
   441   apply (erule spec)
   442   done
   443 
   444 lemma False_neq_True: "False = True ==> P"
   445   by (erule eqTrueE [THEN FalseE])
   446 
   447 
   448 subsubsection {* Negation *}
   449 
   450 lemma notI:
   451   assumes "P ==> False"
   452   shows "~P"
   453   apply (unfold not_def)
   454   apply (iprover intro: impI assms)
   455   done
   456 
   457 lemma False_not_True: "False ~= True"
   458   apply (rule notI)
   459   apply (erule False_neq_True)
   460   done
   461 
   462 lemma True_not_False: "True ~= False"
   463   apply (rule notI)
   464   apply (drule sym)
   465   apply (erule False_neq_True)
   466   done
   467 
   468 lemma notE: "[| ~P;  P |] ==> R"
   469   apply (unfold not_def)
   470   apply (erule mp [THEN FalseE])
   471   apply assumption
   472   done
   473 
   474 lemma notI2: "(P \<Longrightarrow> \<not> Pa) \<Longrightarrow> (P \<Longrightarrow> Pa) \<Longrightarrow> \<not> P"
   475   by (erule notE [THEN notI]) (erule meta_mp)
   476 
   477 
   478 subsubsection {*Implication*}
   479 
   480 lemma impE:
   481   assumes "P-->Q" "P" "Q ==> R"
   482   shows "R"
   483 by (iprover intro: assms mp)
   484 
   485 (* Reduces Q to P-->Q, allowing substitution in P. *)
   486 lemma rev_mp: "[| P;  P --> Q |] ==> Q"
   487 by (iprover intro: mp)
   488 
   489 lemma contrapos_nn:
   490   assumes major: "~Q"
   491       and minor: "P==>Q"
   492   shows "~P"
   493 by (iprover intro: notI minor major [THEN notE])
   494 
   495 (*not used at all, but we already have the other 3 combinations *)
   496 lemma contrapos_pn:
   497   assumes major: "Q"
   498       and minor: "P ==> ~Q"
   499   shows "~P"
   500 by (iprover intro: notI minor major notE)
   501 
   502 lemma not_sym: "t ~= s ==> s ~= t"
   503   by (erule contrapos_nn) (erule sym)
   504 
   505 lemma eq_neq_eq_imp_neq: "[| x = a ; a ~= b; b = y |] ==> x ~= y"
   506   by (erule subst, erule ssubst, assumption)
   507 
   508 (*still used in HOLCF*)
   509 lemma rev_contrapos:
   510   assumes pq: "P ==> Q"
   511       and nq: "~Q"
   512   shows "~P"
   513 apply (rule nq [THEN contrapos_nn])
   514 apply (erule pq)
   515 done
   516 
   517 subsubsection {*Existential quantifier*}
   518 
   519 lemma exI: "P x ==> EX x::'a. P x"
   520 apply (unfold Ex_def)
   521 apply (iprover intro: allI allE impI mp)
   522 done
   523 
   524 lemma exE:
   525   assumes major: "EX x::'a. P(x)"
   526       and minor: "!!x. P(x) ==> Q"
   527   shows "Q"
   528 apply (rule major [unfolded Ex_def, THEN spec, THEN mp])
   529 apply (iprover intro: impI [THEN allI] minor)
   530 done
   531 
   532 
   533 subsubsection {*Conjunction*}
   534 
   535 lemma conjI: "[| P; Q |] ==> P&Q"
   536 apply (unfold and_def)
   537 apply (iprover intro: impI [THEN allI] mp)
   538 done
   539 
   540 lemma conjunct1: "[| P & Q |] ==> P"
   541 apply (unfold and_def)
   542 apply (iprover intro: impI dest: spec mp)
   543 done
   544 
   545 lemma conjunct2: "[| P & Q |] ==> Q"
   546 apply (unfold and_def)
   547 apply (iprover intro: impI dest: spec mp)
   548 done
   549 
   550 lemma conjE:
   551   assumes major: "P&Q"
   552       and minor: "[| P; Q |] ==> R"
   553   shows "R"
   554 apply (rule minor)
   555 apply (rule major [THEN conjunct1])
   556 apply (rule major [THEN conjunct2])
   557 done
   558 
   559 lemma context_conjI:
   560   assumes "P" "P ==> Q" shows "P & Q"
   561 by (iprover intro: conjI assms)
   562 
   563 
   564 subsubsection {*Disjunction*}
   565 
   566 lemma disjI1: "P ==> P|Q"
   567 apply (unfold or_def)
   568 apply (iprover intro: allI impI mp)
   569 done
   570 
   571 lemma disjI2: "Q ==> P|Q"
   572 apply (unfold or_def)
   573 apply (iprover intro: allI impI mp)
   574 done
   575 
   576 lemma disjE:
   577   assumes major: "P|Q"
   578       and minorP: "P ==> R"
   579       and minorQ: "Q ==> R"
   580   shows "R"
   581 by (iprover intro: minorP minorQ impI
   582                  major [unfolded or_def, THEN spec, THEN mp, THEN mp])
   583 
   584 
   585 subsubsection {*Classical logic*}
   586 
   587 lemma classical:
   588   assumes prem: "~P ==> P"
   589   shows "P"
   590 apply (rule True_or_False [THEN disjE, THEN eqTrueE])
   591 apply assumption
   592 apply (rule notI [THEN prem, THEN eqTrueI])
   593 apply (erule subst)
   594 apply assumption
   595 done
   596 
   597 lemmas ccontr = FalseE [THEN classical, standard]
   598 
   599 (*notE with premises exchanged; it discharges ~R so that it can be used to
   600   make elimination rules*)
   601 lemma rev_notE:
   602   assumes premp: "P"
   603       and premnot: "~R ==> ~P"
   604   shows "R"
   605 apply (rule ccontr)
   606 apply (erule notE [OF premnot premp])
   607 done
   608 
   609 (*Double negation law*)
   610 lemma notnotD: "~~P ==> P"
   611 apply (rule classical)
   612 apply (erule notE)
   613 apply assumption
   614 done
   615 
   616 lemma contrapos_pp:
   617   assumes p1: "Q"
   618       and p2: "~P ==> ~Q"
   619   shows "P"
   620 by (iprover intro: classical p1 p2 notE)
   621 
   622 
   623 subsubsection {*Unique existence*}
   624 
   625 lemma ex1I:
   626   assumes "P a" "!!x. P(x) ==> x=a"
   627   shows "EX! x. P(x)"
   628 by (unfold Ex1_def, iprover intro: assms exI conjI allI impI)
   629 
   630 text{*Sometimes easier to use: the premises have no shared variables.  Safe!*}
   631 lemma ex_ex1I:
   632   assumes ex_prem: "EX x. P(x)"
   633       and eq: "!!x y. [| P(x); P(y) |] ==> x=y"
   634   shows "EX! x. P(x)"
   635 by (iprover intro: ex_prem [THEN exE] ex1I eq)
   636 
   637 lemma ex1E:
   638   assumes major: "EX! x. P(x)"
   639       and minor: "!!x. [| P(x);  ALL y. P(y) --> y=x |] ==> R"
   640   shows "R"
   641 apply (rule major [unfolded Ex1_def, THEN exE])
   642 apply (erule conjE)
   643 apply (iprover intro: minor)
   644 done
   645 
   646 lemma ex1_implies_ex: "EX! x. P x ==> EX x. P x"
   647 apply (erule ex1E)
   648 apply (rule exI)
   649 apply assumption
   650 done
   651 
   652 
   653 subsubsection {*THE: definite description operator*}
   654 
   655 lemma the_equality:
   656   assumes prema: "P a"
   657       and premx: "!!x. P x ==> x=a"
   658   shows "(THE x. P x) = a"
   659 apply (rule trans [OF _ the_eq_trivial])
   660 apply (rule_tac f = "The" in arg_cong)
   661 apply (rule ext)
   662 apply (rule iffI)
   663  apply (erule premx)
   664 apply (erule ssubst, rule prema)
   665 done
   666 
   667 lemma theI:
   668   assumes "P a" and "!!x. P x ==> x=a"
   669   shows "P (THE x. P x)"
   670 by (iprover intro: assms the_equality [THEN ssubst])
   671 
   672 lemma theI': "EX! x. P x ==> P (THE x. P x)"
   673 apply (erule ex1E)
   674 apply (erule theI)
   675 apply (erule allE)
   676 apply (erule mp)
   677 apply assumption
   678 done
   679 
   680 (*Easier to apply than theI: only one occurrence of P*)
   681 lemma theI2:
   682   assumes "P a" "!!x. P x ==> x=a" "!!x. P x ==> Q x"
   683   shows "Q (THE x. P x)"
   684 by (iprover intro: assms theI)
   685 
   686 lemma the1I2: assumes "EX! x. P x" "\<And>x. P x \<Longrightarrow> Q x" shows "Q (THE x. P x)"
   687 by(iprover intro:assms(2) theI2[where P=P and Q=Q] ex1E[OF assms(1)]
   688            elim:allE impE)
   689 
   690 lemma the1_equality [elim?]: "[| EX!x. P x; P a |] ==> (THE x. P x) = a"
   691 apply (rule the_equality)
   692 apply  assumption
   693 apply (erule ex1E)
   694 apply (erule all_dupE)
   695 apply (drule mp)
   696 apply  assumption
   697 apply (erule ssubst)
   698 apply (erule allE)
   699 apply (erule mp)
   700 apply assumption
   701 done
   702 
   703 lemma the_sym_eq_trivial: "(THE y. x=y) = x"
   704 apply (rule the_equality)
   705 apply (rule refl)
   706 apply (erule sym)
   707 done
   708 
   709 
   710 subsubsection {*Classical intro rules for disjunction and existential quantifiers*}
   711 
   712 lemma disjCI:
   713   assumes "~Q ==> P" shows "P|Q"
   714 apply (rule classical)
   715 apply (iprover intro: assms disjI1 disjI2 notI elim: notE)
   716 done
   717 
   718 lemma excluded_middle: "~P | P"
   719 by (iprover intro: disjCI)
   720 
   721 text {*
   722   case distinction as a natural deduction rule.
   723   Note that @{term "~P"} is the second case, not the first
   724 *}
   725 lemma case_split_thm:
   726   assumes prem1: "P ==> Q"
   727       and prem2: "~P ==> Q"
   728   shows "Q"
   729 apply (rule excluded_middle [THEN disjE])
   730 apply (erule prem2)
   731 apply (erule prem1)
   732 done
   733 lemmas case_split = case_split_thm [case_names True False]
   734 
   735 (*Classical implies (-->) elimination. *)
   736 lemma impCE:
   737   assumes major: "P-->Q"
   738       and minor: "~P ==> R" "Q ==> R"
   739   shows "R"
   740 apply (rule excluded_middle [of P, THEN disjE])
   741 apply (iprover intro: minor major [THEN mp])+
   742 done
   743 
   744 (*This version of --> elimination works on Q before P.  It works best for
   745   those cases in which P holds "almost everywhere".  Can't install as
   746   default: would break old proofs.*)
   747 lemma impCE':
   748   assumes major: "P-->Q"
   749       and minor: "Q ==> R" "~P ==> R"
   750   shows "R"
   751 apply (rule excluded_middle [of P, THEN disjE])
   752 apply (iprover intro: minor major [THEN mp])+
   753 done
   754 
   755 (*Classical <-> elimination. *)
   756 lemma iffCE:
   757   assumes major: "P=Q"
   758       and minor: "[| P; Q |] ==> R"  "[| ~P; ~Q |] ==> R"
   759   shows "R"
   760 apply (rule major [THEN iffE])
   761 apply (iprover intro: minor elim: impCE notE)
   762 done
   763 
   764 lemma exCI:
   765   assumes "ALL x. ~P(x) ==> P(a)"
   766   shows "EX x. P(x)"
   767 apply (rule ccontr)
   768 apply (iprover intro: assms exI allI notI notE [of "\<exists>x. P x"])
   769 done
   770 
   771 
   772 subsubsection {* Intuitionistic Reasoning *}
   773 
   774 lemma impE':
   775   assumes 1: "P --> Q"
   776     and 2: "Q ==> R"
   777     and 3: "P --> Q ==> P"
   778   shows R
   779 proof -
   780   from 3 and 1 have P .
   781   with 1 have Q by (rule impE)
   782   with 2 show R .
   783 qed
   784 
   785 lemma allE':
   786   assumes 1: "ALL x. P x"
   787     and 2: "P x ==> ALL x. P x ==> Q"
   788   shows Q
   789 proof -
   790   from 1 have "P x" by (rule spec)
   791   from this and 1 show Q by (rule 2)
   792 qed
   793 
   794 lemma notE':
   795   assumes 1: "~ P"
   796     and 2: "~ P ==> P"
   797   shows R
   798 proof -
   799   from 2 and 1 have P .
   800   with 1 show R by (rule notE)
   801 qed
   802 
   803 lemma TrueE: "True ==> P ==> P" .
   804 lemma notFalseE: "~ False ==> P ==> P" .
   805 
   806 lemmas [Pure.elim!] = disjE iffE FalseE conjE exE TrueE notFalseE
   807   and [Pure.intro!] = iffI conjI impI TrueI notI allI refl
   808   and [Pure.elim 2] = allE notE' impE'
   809   and [Pure.intro] = exI disjI2 disjI1
   810 
   811 lemmas [trans] = trans
   812   and [sym] = sym not_sym
   813   and [Pure.elim?] = iffD1 iffD2 impE
   814 
   815 use "hologic.ML"
   816 
   817 
   818 subsubsection {* Atomizing meta-level connectives *}
   819 
   820 lemma atomize_all [atomize]: "(!!x. P x) == Trueprop (ALL x. P x)"
   821 proof
   822   assume "!!x. P x"
   823   then show "ALL x. P x" ..
   824 next
   825   assume "ALL x. P x"
   826   then show "!!x. P x" by (rule allE)
   827 qed
   828 
   829 lemma atomize_imp [atomize]: "(A ==> B) == Trueprop (A --> B)"
   830 proof
   831   assume r: "A ==> B"
   832   show "A --> B" by (rule impI) (rule r)
   833 next
   834   assume "A --> B" and A
   835   then show B by (rule mp)
   836 qed
   837 
   838 lemma atomize_not: "(A ==> False) == Trueprop (~A)"
   839 proof
   840   assume r: "A ==> False"
   841   show "~A" by (rule notI) (rule r)
   842 next
   843   assume "~A" and A
   844   then show False by (rule notE)
   845 qed
   846 
   847 lemma atomize_eq [atomize]: "(x == y) == Trueprop (x = y)"
   848 proof
   849   assume "x == y"
   850   show "x = y" by (unfold `x == y`) (rule refl)
   851 next
   852   assume "x = y"
   853   then show "x == y" by (rule eq_reflection)
   854 qed
   855 
   856 lemma atomize_conj [atomize]:
   857   includes meta_conjunction_syntax
   858   shows "(A && B) == Trueprop (A & B)"
   859 proof
   860   assume conj: "A && B"
   861   show "A & B"
   862   proof (rule conjI)
   863     from conj show A by (rule conjunctionD1)
   864     from conj show B by (rule conjunctionD2)
   865   qed
   866 next
   867   assume conj: "A & B"
   868   show "A && B"
   869   proof -
   870     from conj show A ..
   871     from conj show B ..
   872   qed
   873 qed
   874 
   875 lemmas [symmetric, rulify] = atomize_all atomize_imp
   876   and [symmetric, defn] = atomize_all atomize_imp atomize_eq
   877 
   878 
   879 subsection {* Package setup *}
   880 
   881 subsubsection {* Classical Reasoner setup *}
   882 
   883 lemma thin_refl:
   884   "\<And>X. \<lbrakk> x=x; PROP W \<rbrakk> \<Longrightarrow> PROP W" .
   885 
   886 ML {*
   887 structure Hypsubst = HypsubstFun(
   888 struct
   889   structure Simplifier = Simplifier
   890   val dest_eq = HOLogic.dest_eq
   891   val dest_Trueprop = HOLogic.dest_Trueprop
   892   val dest_imp = HOLogic.dest_imp
   893   val eq_reflection = @{thm HOL.eq_reflection}
   894   val rev_eq_reflection = @{thm HOL.meta_eq_to_obj_eq}
   895   val imp_intr = @{thm HOL.impI}
   896   val rev_mp = @{thm HOL.rev_mp}
   897   val subst = @{thm HOL.subst}
   898   val sym = @{thm HOL.sym}
   899   val thin_refl = @{thm thin_refl};
   900 end);
   901 open Hypsubst;
   902 
   903 structure Classical = ClassicalFun(
   904 struct
   905   val mp = @{thm HOL.mp}
   906   val not_elim = @{thm HOL.notE}
   907   val classical = @{thm HOL.classical}
   908   val sizef = Drule.size_of_thm
   909   val hyp_subst_tacs = [Hypsubst.hyp_subst_tac]
   910 end);
   911 
   912 structure BasicClassical: BASIC_CLASSICAL = Classical; 
   913 open BasicClassical;
   914 
   915 ML_Context.value_antiq "claset"
   916   (Scan.succeed ("claset", "Classical.local_claset_of (ML_Context.the_local_context ())"));
   917 
   918 structure ResAtpset = NamedThmsFun(val name = "atp" val description = "ATP rules");
   919 
   920 structure ResBlacklist = NamedThmsFun(val name = "noatp" val description = "Theorems blacklisted for ATP");
   921 *}
   922 
   923 text {*ResBlacklist holds theorems blacklisted to sledgehammer. 
   924   These theorems typically produce clauses that are prolific (match too many equality or
   925   membership literals) and relate to seldom-used facts. Some duplicate other rules.*}
   926 
   927 setup {*
   928 let
   929   (*prevent substitution on bool*)
   930   fun hyp_subst_tac' i thm = if i <= Thm.nprems_of thm andalso
   931     Term.exists_Const (fn ("op =", Type (_, [T, _])) => T <> Type ("bool", []) | _ => false)
   932       (nth (Thm.prems_of thm) (i - 1)) then Hypsubst.hyp_subst_tac i thm else no_tac thm;
   933 in
   934   Hypsubst.hypsubst_setup
   935   #> ContextRules.addSWrapper (fn tac => hyp_subst_tac' ORELSE' tac)
   936   #> Classical.setup
   937   #> ResAtpset.setup
   938   #> ResBlacklist.setup
   939 end
   940 *}
   941 
   942 declare iffI [intro!]
   943   and notI [intro!]
   944   and impI [intro!]
   945   and disjCI [intro!]
   946   and conjI [intro!]
   947   and TrueI [intro!]
   948   and refl [intro!]
   949 
   950 declare iffCE [elim!]
   951   and FalseE [elim!]
   952   and impCE [elim!]
   953   and disjE [elim!]
   954   and conjE [elim!]
   955   and conjE [elim!]
   956 
   957 declare ex_ex1I [intro!]
   958   and allI [intro!]
   959   and the_equality [intro]
   960   and exI [intro]
   961 
   962 declare exE [elim!]
   963   allE [elim]
   964 
   965 ML {* val HOL_cs = @{claset} *}
   966 
   967 lemma contrapos_np: "~ Q ==> (~ P ==> Q) ==> P"
   968   apply (erule swap)
   969   apply (erule (1) meta_mp)
   970   done
   971 
   972 declare ex_ex1I [rule del, intro! 2]
   973   and ex1I [intro]
   974 
   975 lemmas [intro?] = ext
   976   and [elim?] = ex1_implies_ex
   977 
   978 (*Better then ex1E for classical reasoner: needs no quantifier duplication!*)
   979 lemma alt_ex1E [elim!]:
   980   assumes major: "\<exists>!x. P x"
   981       and prem: "\<And>x. \<lbrakk> P x; \<forall>y y'. P y \<and> P y' \<longrightarrow> y = y' \<rbrakk> \<Longrightarrow> R"
   982   shows R
   983 apply (rule ex1E [OF major])
   984 apply (rule prem)
   985 apply (tactic {* ares_tac @{thms allI} 1 *})+
   986 apply (tactic {* etac (Classical.dup_elim @{thm allE}) 1 *})
   987 apply iprover
   988 done
   989 
   990 ML {*
   991 structure Blast = BlastFun
   992 (
   993   type claset = Classical.claset
   994   val equality_name = @{const_name "op ="}
   995   val not_name = @{const_name Not}
   996   val notE = @{thm HOL.notE}
   997   val ccontr = @{thm HOL.ccontr}
   998   val contr_tac = Classical.contr_tac
   999   val dup_intr = Classical.dup_intr
  1000   val hyp_subst_tac = Hypsubst.blast_hyp_subst_tac
  1001   val claset = Classical.claset
  1002   val rep_cs = Classical.rep_cs
  1003   val cla_modifiers = Classical.cla_modifiers
  1004   val cla_meth' = Classical.cla_meth'
  1005 );
  1006 val Blast_tac = Blast.Blast_tac;
  1007 val blast_tac = Blast.blast_tac;
  1008 *}
  1009 
  1010 setup Blast.setup
  1011 
  1012 
  1013 subsubsection {* Simplifier *}
  1014 
  1015 lemma eta_contract_eq: "(%s. f s) = f" ..
  1016 
  1017 lemma simp_thms:
  1018   shows not_not: "(~ ~ P) = P"
  1019   and Not_eq_iff: "((~P) = (~Q)) = (P = Q)"
  1020   and
  1021     "(P ~= Q) = (P = (~Q))"
  1022     "(P | ~P) = True"    "(~P | P) = True"
  1023     "(x = x) = True"
  1024   and not_True_eq_False: "(\<not> True) = False"
  1025   and not_False_eq_True: "(\<not> False) = True"
  1026   and
  1027     "(~P) ~= P"  "P ~= (~P)"
  1028     "(True=P) = P"
  1029   and eq_True: "(P = True) = P"
  1030   and "(False=P) = (~P)"
  1031   and eq_False: "(P = False) = (\<not> P)"
  1032   and
  1033     "(True --> P) = P"  "(False --> P) = True"
  1034     "(P --> True) = True"  "(P --> P) = True"
  1035     "(P --> False) = (~P)"  "(P --> ~P) = (~P)"
  1036     "(P & True) = P"  "(True & P) = P"
  1037     "(P & False) = False"  "(False & P) = False"
  1038     "(P & P) = P"  "(P & (P & Q)) = (P & Q)"
  1039     "(P & ~P) = False"    "(~P & P) = False"
  1040     "(P | True) = True"  "(True | P) = True"
  1041     "(P | False) = P"  "(False | P) = P"
  1042     "(P | P) = P"  "(P | (P | Q)) = (P | Q)" and
  1043     "(ALL x. P) = P"  "(EX x. P) = P"  "EX x. x=t"  "EX x. t=x"
  1044     -- {* needed for the one-point-rule quantifier simplification procs *}
  1045     -- {* essential for termination!! *} and
  1046     "!!P. (EX x. x=t & P(x)) = P(t)"
  1047     "!!P. (EX x. t=x & P(x)) = P(t)"
  1048     "!!P. (ALL x. x=t --> P(x)) = P(t)"
  1049     "!!P. (ALL x. t=x --> P(x)) = P(t)"
  1050   by (blast, blast, blast, blast, blast, iprover+)
  1051 
  1052 lemma disj_absorb: "(A | A) = A"
  1053   by blast
  1054 
  1055 lemma disj_left_absorb: "(A | (A | B)) = (A | B)"
  1056   by blast
  1057 
  1058 lemma conj_absorb: "(A & A) = A"
  1059   by blast
  1060 
  1061 lemma conj_left_absorb: "(A & (A & B)) = (A & B)"
  1062   by blast
  1063 
  1064 lemma eq_ac:
  1065   shows eq_commute: "(a=b) = (b=a)"
  1066     and eq_left_commute: "(P=(Q=R)) = (Q=(P=R))"
  1067     and eq_assoc: "((P=Q)=R) = (P=(Q=R))" by (iprover, blast+)
  1068 lemma neq_commute: "(a~=b) = (b~=a)" by iprover
  1069 
  1070 lemma conj_comms:
  1071   shows conj_commute: "(P&Q) = (Q&P)"
  1072     and conj_left_commute: "(P&(Q&R)) = (Q&(P&R))" by iprover+
  1073 lemma conj_assoc: "((P&Q)&R) = (P&(Q&R))" by iprover
  1074 
  1075 lemmas conj_ac = conj_commute conj_left_commute conj_assoc
  1076 
  1077 lemma disj_comms:
  1078   shows disj_commute: "(P|Q) = (Q|P)"
  1079     and disj_left_commute: "(P|(Q|R)) = (Q|(P|R))" by iprover+
  1080 lemma disj_assoc: "((P|Q)|R) = (P|(Q|R))" by iprover
  1081 
  1082 lemmas disj_ac = disj_commute disj_left_commute disj_assoc
  1083 
  1084 lemma conj_disj_distribL: "(P&(Q|R)) = (P&Q | P&R)" by iprover
  1085 lemma conj_disj_distribR: "((P|Q)&R) = (P&R | Q&R)" by iprover
  1086 
  1087 lemma disj_conj_distribL: "(P|(Q&R)) = ((P|Q) & (P|R))" by iprover
  1088 lemma disj_conj_distribR: "((P&Q)|R) = ((P|R) & (Q|R))" by iprover
  1089 
  1090 lemma imp_conjR: "(P --> (Q&R)) = ((P-->Q) & (P-->R))" by iprover
  1091 lemma imp_conjL: "((P&Q) -->R)  = (P --> (Q --> R))" by iprover
  1092 lemma imp_disjL: "((P|Q) --> R) = ((P-->R)&(Q-->R))" by iprover
  1093 
  1094 text {* These two are specialized, but @{text imp_disj_not1} is useful in @{text "Auth/Yahalom"}. *}
  1095 lemma imp_disj_not1: "(P --> Q | R) = (~Q --> P --> R)" by blast
  1096 lemma imp_disj_not2: "(P --> Q | R) = (~R --> P --> Q)" by blast
  1097 
  1098 lemma imp_disj1: "((P-->Q)|R) = (P--> Q|R)" by blast
  1099 lemma imp_disj2: "(Q|(P-->R)) = (P--> Q|R)" by blast
  1100 
  1101 lemma imp_cong: "(P = P') ==> (P' ==> (Q = Q')) ==> ((P --> Q) = (P' --> Q'))"
  1102   by iprover
  1103 
  1104 lemma de_Morgan_disj: "(~(P | Q)) = (~P & ~Q)" by iprover
  1105 lemma de_Morgan_conj: "(~(P & Q)) = (~P | ~Q)" by blast
  1106 lemma not_imp: "(~(P --> Q)) = (P & ~Q)" by blast
  1107 lemma not_iff: "(P~=Q) = (P = (~Q))" by blast
  1108 lemma disj_not1: "(~P | Q) = (P --> Q)" by blast
  1109 lemma disj_not2: "(P | ~Q) = (Q --> P)"  -- {* changes orientation :-( *}
  1110   by blast
  1111 lemma imp_conv_disj: "(P --> Q) = ((~P) | Q)" by blast
  1112 
  1113 lemma iff_conv_conj_imp: "(P = Q) = ((P --> Q) & (Q --> P))" by iprover
  1114 
  1115 
  1116 lemma cases_simp: "((P --> Q) & (~P --> Q)) = Q"
  1117   -- {* Avoids duplication of subgoals after @{text split_if}, when the true and false *}
  1118   -- {* cases boil down to the same thing. *}
  1119   by blast
  1120 
  1121 lemma not_all: "(~ (! x. P(x))) = (? x.~P(x))" by blast
  1122 lemma imp_all: "((! x. P x) --> Q) = (? x. P x --> Q)" by blast
  1123 lemma not_ex: "(~ (? x. P(x))) = (! x.~P(x))" by iprover
  1124 lemma imp_ex: "((? x. P x) --> Q) = (! x. P x --> Q)" by iprover
  1125 lemma all_not_ex: "(ALL x. P x) = (~ (EX x. ~ P x ))" by blast
  1126 
  1127 declare All_def [noatp]
  1128 
  1129 lemma ex_disj_distrib: "(? x. P(x) | Q(x)) = ((? x. P(x)) | (? x. Q(x)))" by iprover
  1130 lemma all_conj_distrib: "(!x. P(x) & Q(x)) = ((! x. P(x)) & (! x. Q(x)))" by iprover
  1131 
  1132 text {*
  1133   \medskip The @{text "&"} congruence rule: not included by default!
  1134   May slow rewrite proofs down by as much as 50\% *}
  1135 
  1136 lemma conj_cong:
  1137     "(P = P') ==> (P' ==> (Q = Q')) ==> ((P & Q) = (P' & Q'))"
  1138   by iprover
  1139 
  1140 lemma rev_conj_cong:
  1141     "(Q = Q') ==> (Q' ==> (P = P')) ==> ((P & Q) = (P' & Q'))"
  1142   by iprover
  1143 
  1144 text {* The @{text "|"} congruence rule: not included by default! *}
  1145 
  1146 lemma disj_cong:
  1147     "(P = P') ==> (~P' ==> (Q = Q')) ==> ((P | Q) = (P' | Q'))"
  1148   by blast
  1149 
  1150 
  1151 text {* \medskip if-then-else rules *}
  1152 
  1153 lemma if_True: "(if True then x else y) = x"
  1154   by (unfold if_def) blast
  1155 
  1156 lemma if_False: "(if False then x else y) = y"
  1157   by (unfold if_def) blast
  1158 
  1159 lemma if_P: "P ==> (if P then x else y) = x"
  1160   by (unfold if_def) blast
  1161 
  1162 lemma if_not_P: "~P ==> (if P then x else y) = y"
  1163   by (unfold if_def) blast
  1164 
  1165 lemma split_if: "P (if Q then x else y) = ((Q --> P(x)) & (~Q --> P(y)))"
  1166   apply (rule case_split [of Q])
  1167    apply (simplesubst if_P)
  1168     prefer 3 apply (simplesubst if_not_P, blast+)
  1169   done
  1170 
  1171 lemma split_if_asm: "P (if Q then x else y) = (~((Q & ~P x) | (~Q & ~P y)))"
  1172 by (simplesubst split_if, blast)
  1173 
  1174 lemmas if_splits [noatp] = split_if split_if_asm
  1175 
  1176 lemma if_cancel: "(if c then x else x) = x"
  1177 by (simplesubst split_if, blast)
  1178 
  1179 lemma if_eq_cancel: "(if x = y then y else x) = x"
  1180 by (simplesubst split_if, blast)
  1181 
  1182 lemma if_bool_eq_conj: "(if P then Q else R) = ((P-->Q) & (~P-->R))"
  1183   -- {* This form is useful for expanding @{text "if"}s on the RIGHT of the @{text "==>"} symbol. *}
  1184   by (rule split_if)
  1185 
  1186 lemma if_bool_eq_disj: "(if P then Q else R) = ((P&Q) | (~P&R))"
  1187   -- {* And this form is useful for expanding @{text "if"}s on the LEFT. *}
  1188   apply (simplesubst split_if, blast)
  1189   done
  1190 
  1191 lemma Eq_TrueI: "P ==> P == True" by (unfold atomize_eq) iprover
  1192 lemma Eq_FalseI: "~P ==> P == False" by (unfold atomize_eq) iprover
  1193 
  1194 text {* \medskip let rules for simproc *}
  1195 
  1196 lemma Let_folded: "f x \<equiv> g x \<Longrightarrow>  Let x f \<equiv> Let x g"
  1197   by (unfold Let_def)
  1198 
  1199 lemma Let_unfold: "f x \<equiv> g \<Longrightarrow>  Let x f \<equiv> g"
  1200   by (unfold Let_def)
  1201 
  1202 text {*
  1203   The following copy of the implication operator is useful for
  1204   fine-tuning congruence rules.  It instructs the simplifier to simplify
  1205   its premise.
  1206 *}
  1207 
  1208 constdefs
  1209   simp_implies :: "[prop, prop] => prop"  (infixr "=simp=>" 1)
  1210   "simp_implies \<equiv> op ==>"
  1211 
  1212 lemma simp_impliesI:
  1213   assumes PQ: "(PROP P \<Longrightarrow> PROP Q)"
  1214   shows "PROP P =simp=> PROP Q"
  1215   apply (unfold simp_implies_def)
  1216   apply (rule PQ)
  1217   apply assumption
  1218   done
  1219 
  1220 lemma simp_impliesE:
  1221   assumes PQ: "PROP P =simp=> PROP Q"
  1222   and P: "PROP P"
  1223   and QR: "PROP Q \<Longrightarrow> PROP R"
  1224   shows "PROP R"
  1225   apply (rule QR)
  1226   apply (rule PQ [unfolded simp_implies_def])
  1227   apply (rule P)
  1228   done
  1229 
  1230 lemma simp_implies_cong:
  1231   assumes PP' :"PROP P == PROP P'"
  1232   and P'QQ': "PROP P' ==> (PROP Q == PROP Q')"
  1233   shows "(PROP P =simp=> PROP Q) == (PROP P' =simp=> PROP Q')"
  1234 proof (unfold simp_implies_def, rule equal_intr_rule)
  1235   assume PQ: "PROP P \<Longrightarrow> PROP Q"
  1236   and P': "PROP P'"
  1237   from PP' [symmetric] and P' have "PROP P"
  1238     by (rule equal_elim_rule1)
  1239   then have "PROP Q" by (rule PQ)
  1240   with P'QQ' [OF P'] show "PROP Q'" by (rule equal_elim_rule1)
  1241 next
  1242   assume P'Q': "PROP P' \<Longrightarrow> PROP Q'"
  1243   and P: "PROP P"
  1244   from PP' and P have P': "PROP P'" by (rule equal_elim_rule1)
  1245   then have "PROP Q'" by (rule P'Q')
  1246   with P'QQ' [OF P', symmetric] show "PROP Q"
  1247     by (rule equal_elim_rule1)
  1248 qed
  1249 
  1250 lemma uncurry:
  1251   assumes "P \<longrightarrow> Q \<longrightarrow> R"
  1252   shows "P \<and> Q \<longrightarrow> R"
  1253   using assms by blast
  1254 
  1255 lemma iff_allI:
  1256   assumes "\<And>x. P x = Q x"
  1257   shows "(\<forall>x. P x) = (\<forall>x. Q x)"
  1258   using assms by blast
  1259 
  1260 lemma iff_exI:
  1261   assumes "\<And>x. P x = Q x"
  1262   shows "(\<exists>x. P x) = (\<exists>x. Q x)"
  1263   using assms by blast
  1264 
  1265 lemma all_comm:
  1266   "(\<forall>x y. P x y) = (\<forall>y x. P x y)"
  1267   by blast
  1268 
  1269 lemma ex_comm:
  1270   "(\<exists>x y. P x y) = (\<exists>y x. P x y)"
  1271   by blast
  1272 
  1273 use "simpdata.ML"
  1274 ML {* open Simpdata *}
  1275 
  1276 setup {*
  1277   Simplifier.method_setup Splitter.split_modifiers
  1278   #> (fn thy => (change_simpset_of thy (fn _ => Simpdata.simpset_simprocs); thy))
  1279   #> Splitter.setup
  1280   #> Clasimp.setup
  1281   #> EqSubst.setup
  1282 *}
  1283 
  1284 text {* Simproc for proving @{text "(y = x) == False"} from premise @{text "~(x = y)"}: *}
  1285 
  1286 simproc_setup neq ("x = y") = {* fn _ =>
  1287 let
  1288   val neq_to_EQ_False = @{thm not_sym} RS @{thm Eq_FalseI};
  1289   fun is_neq eq lhs rhs thm =
  1290     (case Thm.prop_of thm of
  1291       _ $ (Not $ (eq' $ l' $ r')) =>
  1292         Not = HOLogic.Not andalso eq' = eq andalso
  1293         r' aconv lhs andalso l' aconv rhs
  1294     | _ => false);
  1295   fun proc ss ct =
  1296     (case Thm.term_of ct of
  1297       eq $ lhs $ rhs =>
  1298         (case find_first (is_neq eq lhs rhs) (Simplifier.prems_of_ss ss) of
  1299           SOME thm => SOME (thm RS neq_to_EQ_False)
  1300         | NONE => NONE)
  1301      | _ => NONE);
  1302 in proc end;
  1303 *}
  1304 
  1305 simproc_setup let_simp ("Let x f") = {*
  1306 let
  1307   val (f_Let_unfold, x_Let_unfold) =
  1308     let val [(_$(f$x)$_)] = prems_of @{thm Let_unfold}
  1309     in (cterm_of @{theory} f, cterm_of @{theory} x) end
  1310   val (f_Let_folded, x_Let_folded) =
  1311     let val [(_$(f$x)$_)] = prems_of @{thm Let_folded}
  1312     in (cterm_of @{theory} f, cterm_of @{theory} x) end;
  1313   val g_Let_folded =
  1314     let val [(_$_$(g$_))] = prems_of @{thm Let_folded} in cterm_of @{theory} g end;
  1315 
  1316   fun proc _ ss ct =
  1317     let
  1318       val ctxt = Simplifier.the_context ss;
  1319       val thy = ProofContext.theory_of ctxt;
  1320       val t = Thm.term_of ct;
  1321       val ([t'], ctxt') = Variable.import_terms false [t] ctxt;
  1322     in Option.map (hd o Variable.export ctxt' ctxt o single)
  1323       (case t' of Const ("Let",_) $ x $ f => (* x and f are already in normal form *)
  1324         if is_Free x orelse is_Bound x orelse is_Const x
  1325         then SOME @{thm Let_def}
  1326         else
  1327           let
  1328             val n = case f of (Abs (x,_,_)) => x | _ => "x";
  1329             val cx = cterm_of thy x;
  1330             val {T=xT,...} = rep_cterm cx;
  1331             val cf = cterm_of thy f;
  1332             val fx_g = Simplifier.rewrite ss (Thm.capply cf cx);
  1333             val (_$_$g) = prop_of fx_g;
  1334             val g' = abstract_over (x,g);
  1335           in (if (g aconv g')
  1336                then
  1337                   let
  1338                     val rl =
  1339                       cterm_instantiate [(f_Let_unfold,cf),(x_Let_unfold,cx)] @{thm Let_unfold};
  1340                   in SOME (rl OF [fx_g]) end
  1341                else if Term.betapply (f,x) aconv g then NONE (*avoid identity conversion*)
  1342                else let
  1343                      val abs_g'= Abs (n,xT,g');
  1344                      val g'x = abs_g'$x;
  1345                      val g_g'x = symmetric (beta_conversion false (cterm_of thy g'x));
  1346                      val rl = cterm_instantiate
  1347                                [(f_Let_folded,cterm_of thy f),(x_Let_folded,cx),
  1348                                 (g_Let_folded,cterm_of thy abs_g')]
  1349                                @{thm Let_folded};
  1350                    in SOME (rl OF [transitive fx_g g_g'x])
  1351                    end)
  1352           end
  1353       | _ => NONE)
  1354     end
  1355 in proc end *}
  1356 
  1357 
  1358 lemma True_implies_equals: "(True \<Longrightarrow> PROP P) \<equiv> PROP P"
  1359 proof
  1360   assume "True \<Longrightarrow> PROP P"
  1361   from this [OF TrueI] show "PROP P" .
  1362 next
  1363   assume "PROP P"
  1364   then show "PROP P" .
  1365 qed
  1366 
  1367 lemma ex_simps:
  1368   "!!P Q. (EX x. P x & Q)   = ((EX x. P x) & Q)"
  1369   "!!P Q. (EX x. P & Q x)   = (P & (EX x. Q x))"
  1370   "!!P Q. (EX x. P x | Q)   = ((EX x. P x) | Q)"
  1371   "!!P Q. (EX x. P | Q x)   = (P | (EX x. Q x))"
  1372   "!!P Q. (EX x. P x --> Q) = ((ALL x. P x) --> Q)"
  1373   "!!P Q. (EX x. P --> Q x) = (P --> (EX x. Q x))"
  1374   -- {* Miniscoping: pushing in existential quantifiers. *}
  1375   by (iprover | blast)+
  1376 
  1377 lemma all_simps:
  1378   "!!P Q. (ALL x. P x & Q)   = ((ALL x. P x) & Q)"
  1379   "!!P Q. (ALL x. P & Q x)   = (P & (ALL x. Q x))"
  1380   "!!P Q. (ALL x. P x | Q)   = ((ALL x. P x) | Q)"
  1381   "!!P Q. (ALL x. P | Q x)   = (P | (ALL x. Q x))"
  1382   "!!P Q. (ALL x. P x --> Q) = ((EX x. P x) --> Q)"
  1383   "!!P Q. (ALL x. P --> Q x) = (P --> (ALL x. Q x))"
  1384   -- {* Miniscoping: pushing in universal quantifiers. *}
  1385   by (iprover | blast)+
  1386 
  1387 lemmas [simp] =
  1388   triv_forall_equality (*prunes params*)
  1389   True_implies_equals  (*prune asms `True'*)
  1390   if_True
  1391   if_False
  1392   if_cancel
  1393   if_eq_cancel
  1394   imp_disjL
  1395   (*In general it seems wrong to add distributive laws by default: they
  1396     might cause exponential blow-up.  But imp_disjL has been in for a while
  1397     and cannot be removed without affecting existing proofs.  Moreover,
  1398     rewriting by "(P|Q --> R) = ((P-->R)&(Q-->R))" might be justified on the
  1399     grounds that it allows simplification of R in the two cases.*)
  1400   conj_assoc
  1401   disj_assoc
  1402   de_Morgan_conj
  1403   de_Morgan_disj
  1404   imp_disj1
  1405   imp_disj2
  1406   not_imp
  1407   disj_not1
  1408   not_all
  1409   not_ex
  1410   cases_simp
  1411   the_eq_trivial
  1412   the_sym_eq_trivial
  1413   ex_simps
  1414   all_simps
  1415   simp_thms
  1416 
  1417 lemmas [cong] = imp_cong simp_implies_cong
  1418 lemmas [split] = split_if
  1419 
  1420 ML {* val HOL_ss = @{simpset} *}
  1421 
  1422 text {* Simplifies x assuming c and y assuming ~c *}
  1423 lemma if_cong:
  1424   assumes "b = c"
  1425       and "c \<Longrightarrow> x = u"
  1426       and "\<not> c \<Longrightarrow> y = v"
  1427   shows "(if b then x else y) = (if c then u else v)"
  1428   unfolding if_def using assms by simp
  1429 
  1430 text {* Prevents simplification of x and y:
  1431   faster and allows the execution of functional programs. *}
  1432 lemma if_weak_cong [cong]:
  1433   assumes "b = c"
  1434   shows "(if b then x else y) = (if c then x else y)"
  1435   using assms by (rule arg_cong)
  1436 
  1437 text {* Prevents simplification of t: much faster *}
  1438 lemma let_weak_cong:
  1439   assumes "a = b"
  1440   shows "(let x = a in t x) = (let x = b in t x)"
  1441   using assms by (rule arg_cong)
  1442 
  1443 text {* To tidy up the result of a simproc.  Only the RHS will be simplified. *}
  1444 lemma eq_cong2:
  1445   assumes "u = u'"
  1446   shows "(t \<equiv> u) \<equiv> (t \<equiv> u')"
  1447   using assms by simp
  1448 
  1449 lemma if_distrib:
  1450   "f (if c then x else y) = (if c then f x else f y)"
  1451   by simp
  1452 
  1453 text {* This lemma restricts the effect of the rewrite rule u=v to the left-hand
  1454   side of an equality.  Used in @{text "{Integ,Real}/simproc.ML"} *}
  1455 lemma restrict_to_left:
  1456   assumes "x = y"
  1457   shows "(x = z) = (y = z)"
  1458   using assms by simp
  1459 
  1460 
  1461 subsubsection {* Generic cases and induction *}
  1462 
  1463 text {* Rule projections: *}
  1464 
  1465 ML {*
  1466 structure ProjectRule = ProjectRuleFun
  1467 (
  1468   val conjunct1 = @{thm conjunct1};
  1469   val conjunct2 = @{thm conjunct2};
  1470   val mp = @{thm mp};
  1471 )
  1472 *}
  1473 
  1474 constdefs
  1475   induct_forall where "induct_forall P == \<forall>x. P x"
  1476   induct_implies where "induct_implies A B == A \<longrightarrow> B"
  1477   induct_equal where "induct_equal x y == x = y"
  1478   induct_conj where "induct_conj A B == A \<and> B"
  1479 
  1480 lemma induct_forall_eq: "(!!x. P x) == Trueprop (induct_forall (\<lambda>x. P x))"
  1481   by (unfold atomize_all induct_forall_def)
  1482 
  1483 lemma induct_implies_eq: "(A ==> B) == Trueprop (induct_implies A B)"
  1484   by (unfold atomize_imp induct_implies_def)
  1485 
  1486 lemma induct_equal_eq: "(x == y) == Trueprop (induct_equal x y)"
  1487   by (unfold atomize_eq induct_equal_def)
  1488 
  1489 lemma induct_conj_eq:
  1490   includes meta_conjunction_syntax
  1491   shows "(A && B) == Trueprop (induct_conj A B)"
  1492   by (unfold atomize_conj induct_conj_def)
  1493 
  1494 lemmas induct_atomize = induct_forall_eq induct_implies_eq induct_equal_eq induct_conj_eq
  1495 lemmas induct_rulify [symmetric, standard] = induct_atomize
  1496 lemmas induct_rulify_fallback =
  1497   induct_forall_def induct_implies_def induct_equal_def induct_conj_def
  1498 
  1499 
  1500 lemma induct_forall_conj: "induct_forall (\<lambda>x. induct_conj (A x) (B x)) =
  1501     induct_conj (induct_forall A) (induct_forall B)"
  1502   by (unfold induct_forall_def induct_conj_def) iprover
  1503 
  1504 lemma induct_implies_conj: "induct_implies C (induct_conj A B) =
  1505     induct_conj (induct_implies C A) (induct_implies C B)"
  1506   by (unfold induct_implies_def induct_conj_def) iprover
  1507 
  1508 lemma induct_conj_curry: "(induct_conj A B ==> PROP C) == (A ==> B ==> PROP C)"
  1509 proof
  1510   assume r: "induct_conj A B ==> PROP C" and A B
  1511   show "PROP C" by (rule r) (simp add: induct_conj_def `A` `B`)
  1512 next
  1513   assume r: "A ==> B ==> PROP C" and "induct_conj A B"
  1514   show "PROP C" by (rule r) (simp_all add: `induct_conj A B` [unfolded induct_conj_def])
  1515 qed
  1516 
  1517 lemmas induct_conj = induct_forall_conj induct_implies_conj induct_conj_curry
  1518 
  1519 hide const induct_forall induct_implies induct_equal induct_conj
  1520 
  1521 text {* Method setup. *}
  1522 
  1523 ML {*
  1524   structure Induct = InductFun
  1525   (
  1526     val cases_default = @{thm case_split}
  1527     val atomize = @{thms induct_atomize}
  1528     val rulify = @{thms induct_rulify}
  1529     val rulify_fallback = @{thms induct_rulify_fallback}
  1530   );
  1531 *}
  1532 
  1533 setup Induct.setup
  1534 
  1535 
  1536 subsection {* Other simple lemmas and lemma duplicates *}
  1537 
  1538 lemma Let_0 [simp]: "Let 0 f = f 0"
  1539   unfolding Let_def ..
  1540 
  1541 lemma Let_1 [simp]: "Let 1 f = f 1"
  1542   unfolding Let_def ..
  1543 
  1544 lemma ex1_eq [iff]: "EX! x. x = t" "EX! x. t = x"
  1545   by blast+
  1546 
  1547 lemma choice_eq: "(ALL x. EX! y. P x y) = (EX! f. ALL x. P x (f x))"
  1548   apply (rule iffI)
  1549   apply (rule_tac a = "%x. THE y. P x y" in ex1I)
  1550   apply (fast dest!: theI')
  1551   apply (fast intro: ext the1_equality [symmetric])
  1552   apply (erule ex1E)
  1553   apply (rule allI)
  1554   apply (rule ex1I)
  1555   apply (erule spec)
  1556   apply (erule_tac x = "%z. if z = x then y else f z" in allE)
  1557   apply (erule impE)
  1558   apply (rule allI)
  1559   apply (rule_tac P = "xa = x" in case_split_thm)
  1560   apply (drule_tac [3] x = x in fun_cong, simp_all)
  1561   done
  1562 
  1563 lemma mk_left_commute:
  1564   fixes f (infix "\<otimes>" 60)
  1565   assumes a: "\<And>x y z. (x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)" and
  1566           c: "\<And>x y. x \<otimes> y = y \<otimes> x"
  1567   shows "x \<otimes> (y \<otimes> z) = y \<otimes> (x \<otimes> z)"
  1568   by (rule trans [OF trans [OF c a] arg_cong [OF c, of "f y"]])
  1569 
  1570 lemmas eq_sym_conv = eq_commute
  1571 
  1572 lemma nnf_simps:
  1573   "(\<not>(P \<and> Q)) = (\<not> P \<or> \<not> Q)" "(\<not> (P \<or> Q)) = (\<not> P \<and> \<not>Q)" "(P \<longrightarrow> Q) = (\<not>P \<or> Q)" 
  1574   "(P = Q) = ((P \<and> Q) \<or> (\<not>P \<and> \<not> Q))" "(\<not>(P = Q)) = ((P \<and> \<not> Q) \<or> (\<not>P \<and> Q))" 
  1575   "(\<not> \<not>(P)) = P"
  1576 by blast+
  1577 
  1578 
  1579 subsection {* Basic ML bindings *}
  1580 
  1581 ML {*
  1582 val FalseE = @{thm FalseE}
  1583 val Let_def = @{thm Let_def}
  1584 val TrueI = @{thm TrueI}
  1585 val allE = @{thm allE}
  1586 val allI = @{thm allI}
  1587 val all_dupE = @{thm all_dupE}
  1588 val arg_cong = @{thm arg_cong}
  1589 val box_equals = @{thm box_equals}
  1590 val ccontr = @{thm ccontr}
  1591 val classical = @{thm classical}
  1592 val conjE = @{thm conjE}
  1593 val conjI = @{thm conjI}
  1594 val conjunct1 = @{thm conjunct1}
  1595 val conjunct2 = @{thm conjunct2}
  1596 val disjCI = @{thm disjCI}
  1597 val disjE = @{thm disjE}
  1598 val disjI1 = @{thm disjI1}
  1599 val disjI2 = @{thm disjI2}
  1600 val eq_reflection = @{thm eq_reflection}
  1601 val ex1E = @{thm ex1E}
  1602 val ex1I = @{thm ex1I}
  1603 val ex1_implies_ex = @{thm ex1_implies_ex}
  1604 val exE = @{thm exE}
  1605 val exI = @{thm exI}
  1606 val excluded_middle = @{thm excluded_middle}
  1607 val ext = @{thm ext}
  1608 val fun_cong = @{thm fun_cong}
  1609 val iffD1 = @{thm iffD1}
  1610 val iffD2 = @{thm iffD2}
  1611 val iffI = @{thm iffI}
  1612 val impE = @{thm impE}
  1613 val impI = @{thm impI}
  1614 val meta_eq_to_obj_eq = @{thm meta_eq_to_obj_eq}
  1615 val mp = @{thm mp}
  1616 val notE = @{thm notE}
  1617 val notI = @{thm notI}
  1618 val not_all = @{thm not_all}
  1619 val not_ex = @{thm not_ex}
  1620 val not_iff = @{thm not_iff}
  1621 val not_not = @{thm not_not}
  1622 val not_sym = @{thm not_sym}
  1623 val refl = @{thm refl}
  1624 val rev_mp = @{thm rev_mp}
  1625 val spec = @{thm spec}
  1626 val ssubst = @{thm ssubst}
  1627 val subst = @{thm subst}
  1628 val sym = @{thm sym}
  1629 val trans = @{thm trans}
  1630 *}
  1631 
  1632 
  1633 subsection {* Code generator basic setup -- see further @{text Code_Setup.thy} *}
  1634 
  1635 setup "CodeName.setup #> CodeTarget.setup #> Nbe.setup"
  1636 
  1637 class eq (attach "op =") = type
  1638 
  1639 lemma [code func]:
  1640   shows "False \<and> x \<longleftrightarrow> False"
  1641     and "True \<and> x \<longleftrightarrow> x"
  1642     and "x \<and> False \<longleftrightarrow> False"
  1643     and "x \<and> True \<longleftrightarrow> x" by simp_all
  1644 
  1645 lemma [code func]:
  1646   shows "False \<or> x \<longleftrightarrow> x"
  1647     and "True \<or> x \<longleftrightarrow> True"
  1648     and "x \<or> False \<longleftrightarrow> x"
  1649     and "x \<or> True \<longleftrightarrow> True" by simp_all
  1650 
  1651 lemma [code func]:
  1652   shows "\<not> True \<longleftrightarrow> False"
  1653     and "\<not> False \<longleftrightarrow> True" by (rule HOL.simp_thms)+
  1654 
  1655 code_datatype Trueprop "prop"
  1656 
  1657 code_datatype "TYPE('a\<Colon>{})"
  1658 
  1659 lemma Let_case_cert:
  1660   assumes "CASE \<equiv> (\<lambda>x. Let x f)"
  1661   shows "CASE x \<equiv> f x"
  1662   using assms by simp_all
  1663 
  1664 lemma If_case_cert:
  1665   includes meta_conjunction_syntax
  1666   assumes "CASE \<equiv> (\<lambda>b. If b f g)"
  1667   shows "(CASE True \<equiv> f) && (CASE False \<equiv> g)"
  1668   using assms by simp_all
  1669 
  1670 setup {*
  1671   Code.add_case @{thm Let_case_cert}
  1672   #> Code.add_case @{thm If_case_cert}
  1673   #> Code.add_undefined @{const_name undefined}
  1674 *}
  1675 
  1676 
  1677 subsection {* Legacy tactics and ML bindings *}
  1678 
  1679 ML {*
  1680 fun strip_tac i = REPEAT (resolve_tac [impI, allI] i);
  1681 
  1682 (* combination of (spec RS spec RS ...(j times) ... spec RS mp) *)
  1683 local
  1684   fun wrong_prem (Const ("All", _) $ (Abs (_, _, t))) = wrong_prem t
  1685     | wrong_prem (Bound _) = true
  1686     | wrong_prem _ = false;
  1687   val filter_right = filter (not o wrong_prem o HOLogic.dest_Trueprop o hd o Thm.prems_of);
  1688 in
  1689   fun smp i = funpow i (fn m => filter_right ([spec] RL m)) ([mp]);
  1690   fun smp_tac j = EVERY'[dresolve_tac (smp j), atac];
  1691 end;
  1692 
  1693 val all_conj_distrib = thm "all_conj_distrib";
  1694 val all_simps = thms "all_simps";
  1695 val atomize_not = thm "atomize_not";
  1696 val case_split = thm "case_split";
  1697 val case_split_thm = thm "case_split_thm"
  1698 val cases_simp = thm "cases_simp";
  1699 val choice_eq = thm "choice_eq"
  1700 val cong = thm "cong"
  1701 val conj_comms = thms "conj_comms";
  1702 val conj_cong = thm "conj_cong";
  1703 val de_Morgan_conj = thm "de_Morgan_conj";
  1704 val de_Morgan_disj = thm "de_Morgan_disj";
  1705 val disj_assoc = thm "disj_assoc";
  1706 val disj_comms = thms "disj_comms";
  1707 val disj_cong = thm "disj_cong";
  1708 val eq_ac = thms "eq_ac";
  1709 val eq_cong2 = thm "eq_cong2"
  1710 val Eq_FalseI = thm "Eq_FalseI";
  1711 val Eq_TrueI = thm "Eq_TrueI";
  1712 val Ex1_def = thm "Ex1_def"
  1713 val ex_disj_distrib = thm "ex_disj_distrib";
  1714 val ex_simps = thms "ex_simps";
  1715 val if_cancel = thm "if_cancel";
  1716 val if_eq_cancel = thm "if_eq_cancel";
  1717 val if_False = thm "if_False";
  1718 val iff_conv_conj_imp = thm "iff_conv_conj_imp";
  1719 val iff = thm "iff"
  1720 val if_splits = thms "if_splits";
  1721 val if_True = thm "if_True";
  1722 val if_weak_cong = thm "if_weak_cong"
  1723 val imp_all = thm "imp_all";
  1724 val imp_cong = thm "imp_cong";
  1725 val imp_conjL = thm "imp_conjL";
  1726 val imp_conjR = thm "imp_conjR";
  1727 val imp_conv_disj = thm "imp_conv_disj";
  1728 val simp_implies_def = thm "simp_implies_def";
  1729 val simp_thms = thms "simp_thms";
  1730 val split_if = thm "split_if";
  1731 val the1_equality = thm "the1_equality"
  1732 val theI = thm "theI"
  1733 val theI' = thm "theI'"
  1734 val True_implies_equals = thm "True_implies_equals";
  1735 val nnf_conv = Simplifier.rewrite (HOL_basic_ss addsimps simp_thms @ @{thms "nnf_simps"})
  1736 
  1737 *}
  1738 
  1739 end