src/HOL/Tools/meson.ML
author paulson
Fri, 02 Mar 2007 12:35:20 +0100
changeset 22381 cb145d434284
parent 22360 26ead7ed4f4b
child 22515 f4061faa5fda
permissions -rw-r--r--
The first-order test now tests for the obscure case of a polymorphic constant like 1 being
used with a function type.
     1 (*  Title:      HOL/Tools/meson.ML
     2     ID:         $Id$
     3     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     4     Copyright   1992  University of Cambridge
     5 
     6 The MESON resolution proof procedure for HOL.
     7 
     8 When making clauses, avoids using the rewriter -- instead uses RS recursively
     9 
    10 NEED TO SORT LITERALS BY # OF VARS, USING ==>I/E.  ELIMINATES NEED FOR
    11 FUNCTION nodups -- if done to goal clauses too!
    12 *)
    13 
    14 signature BASIC_MESON =
    15 sig
    16   val size_of_subgoals	: thm -> int
    17   val make_cnf		: thm list -> thm -> thm list
    18   val finish_cnf	: thm list -> thm list
    19   val make_nnf		: thm -> thm
    20   val make_nnf1		: thm -> thm
    21   val skolemize		: thm -> thm
    22   val make_clauses	: thm list -> thm list
    23   val make_horns	: thm list -> thm list
    24   val best_prolog_tac	: (thm -> int) -> thm list -> tactic
    25   val depth_prolog_tac	: thm list -> tactic
    26   val gocls		: thm list -> thm list
    27   val skolemize_prems_tac	: thm list -> int -> tactic
    28   val MESON		: (thm list -> tactic) -> int -> tactic
    29   val best_meson_tac	: (thm -> int) -> int -> tactic
    30   val safe_best_meson_tac	: int -> tactic
    31   val depth_meson_tac	: int -> tactic
    32   val prolog_step_tac'	: thm list -> int -> tactic
    33   val iter_deepen_prolog_tac	: thm list -> tactic
    34   val iter_deepen_meson_tac	: thm list -> int -> tactic
    35   val meson_tac		: int -> tactic
    36   val negate_head	: thm -> thm
    37   val select_literal	: int -> thm -> thm
    38   val skolemize_tac	: int -> tactic
    39 end
    40 
    41 
    42 structure Meson =
    43 struct
    44 
    45 val not_conjD = thm "meson_not_conjD";
    46 val not_disjD = thm "meson_not_disjD";
    47 val not_notD = thm "meson_not_notD";
    48 val not_allD = thm "meson_not_allD";
    49 val not_exD = thm "meson_not_exD";
    50 val imp_to_disjD = thm "meson_imp_to_disjD";
    51 val not_impD = thm "meson_not_impD";
    52 val iff_to_disjD = thm "meson_iff_to_disjD";
    53 val not_iffD = thm "meson_not_iffD";
    54 val conj_exD1 = thm "meson_conj_exD1";
    55 val conj_exD2 = thm "meson_conj_exD2";
    56 val disj_exD = thm "meson_disj_exD";
    57 val disj_exD1 = thm "meson_disj_exD1";
    58 val disj_exD2 = thm "meson_disj_exD2";
    59 val disj_assoc = thm "meson_disj_assoc";
    60 val disj_comm = thm "meson_disj_comm";
    61 val disj_FalseD1 = thm "meson_disj_FalseD1";
    62 val disj_FalseD2 = thm "meson_disj_FalseD2";
    63 
    64 val depth_limit = ref 2000;
    65 
    66 (**** Operators for forward proof ****)
    67 
    68 
    69 (** First-order Resolution **)
    70 
    71 fun typ_pair_of (ix, (sort,ty)) = (TVar (ix,sort), ty);
    72 fun term_pair_of (ix, (ty,t)) = (Var (ix,ty), t);
    73 
    74 val Envir.Envir {asol = tenv0, iTs = tyenv0, ...} = Envir.empty 0
    75 
    76 (*FIXME: currently does not "rename variables apart"*)
    77 fun first_order_resolve thA thB =
    78   let val thy = theory_of_thm thA
    79       val tmA = concl_of thA
    80       fun match pat = Pattern.first_order_match thy (pat,tmA) (tyenv0,tenv0)
    81       val Const("==>",_) $ tmB $ _ = prop_of thB
    82       val (tyenv,tenv) = match tmB
    83       val ct_pairs = map (pairself (cterm_of thy) o term_pair_of) (Vartab.dest tenv)
    84   in  thA RS (cterm_instantiate ct_pairs thB)  end
    85   handle _ => raise THM ("first_order_resolve", 0, [thA,thB]);
    86 
    87 (*raises exception if no rules apply -- unlike RL*)
    88 fun tryres (th, rls) = 
    89   let fun tryall [] = raise THM("tryres", 0, th::rls)
    90         | tryall (rl::rls) = (th RS rl handle THM _ => tryall rls)
    91   in  tryall rls  end;
    92   
    93 (*Permits forward proof from rules that discharge assumptions. The supplied proof state st,
    94   e.g. from conj_forward, should have the form
    95     "[| P' ==> ?P; Q' ==> ?Q |] ==> ?P & ?Q"
    96   and the effect should be to instantiate ?P and ?Q with normalized versions of P' and Q'.*)
    97 fun forward_res nf st =
    98   let fun forward_tacf [prem] = rtac (nf prem) 1
    99         | forward_tacf prems = 
   100             error ("Bad proof state in forward_res, please inform lcp@cl.cam.ac.uk:\n" ^
   101                    string_of_thm st ^
   102                    "\nPremises:\n" ^
   103                    cat_lines (map string_of_thm prems))
   104   in
   105     case Seq.pull (ALLGOALS (METAHYPS forward_tacf) st)
   106     of SOME(th,_) => th
   107      | NONE => raise THM("forward_res", 0, [st])
   108   end;
   109 
   110 (*Are any of the logical connectives in "bs" present in the term?*)
   111 fun has_conns bs =
   112   let fun has (Const(a,_)) = false
   113         | has (Const("Trueprop",_) $ p) = has p
   114         | has (Const("Not",_) $ p) = has p
   115         | has (Const("op |",_) $ p $ q) = member (op =) bs "op |" orelse has p orelse has q
   116         | has (Const("op &",_) $ p $ q) = member (op =) bs "op &" orelse has p orelse has q
   117         | has (Const("All",_) $ Abs(_,_,p)) = member (op =) bs "All" orelse has p
   118         | has (Const("Ex",_) $ Abs(_,_,p)) = member (op =) bs "Ex" orelse has p
   119 	| has _ = false
   120   in  has  end;
   121   
   122 
   123 (**** Clause handling ****)
   124 
   125 fun literals (Const("Trueprop",_) $ P) = literals P
   126   | literals (Const("op |",_) $ P $ Q) = literals P @ literals Q
   127   | literals (Const("Not",_) $ P) = [(false,P)]
   128   | literals P = [(true,P)];
   129 
   130 (*number of literals in a term*)
   131 val nliterals = length o literals;
   132 
   133 
   134 (*** Tautology Checking ***)
   135 
   136 fun signed_lits_aux (Const ("op |", _) $ P $ Q) (poslits, neglits) = 
   137       signed_lits_aux Q (signed_lits_aux P (poslits, neglits))
   138   | signed_lits_aux (Const("Not",_) $ P) (poslits, neglits) = (poslits, P::neglits)
   139   | signed_lits_aux P (poslits, neglits) = (P::poslits, neglits);
   140   
   141 fun signed_lits th = signed_lits_aux (HOLogic.dest_Trueprop (concl_of th)) ([],[]);
   142 
   143 (*Literals like X=X are tautologous*)
   144 fun taut_poslit (Const("op =",_) $ t $ u) = t aconv u
   145   | taut_poslit (Const("True",_)) = true
   146   | taut_poslit _ = false;
   147 
   148 fun is_taut th =
   149   let val (poslits,neglits) = signed_lits th
   150   in  exists taut_poslit poslits
   151       orelse
   152       exists (member (op aconv) neglits) (HOLogic.false_const :: poslits)
   153   end
   154   handle TERM _ => false;	(*probably dest_Trueprop on a weird theorem*)		      
   155 
   156 
   157 (*** To remove trivial negated equality literals from clauses ***)
   158 
   159 (*They are typically functional reflexivity axioms and are the converses of
   160   injectivity equivalences*)
   161   
   162 val not_refl_disj_D = thm"meson_not_refl_disj_D";
   163 
   164 (*Is either term a Var that does not properly occur in the other term?*)
   165 fun eliminable (t as Var _, u) = t aconv u orelse not (Logic.occs(t,u))
   166   | eliminable (u, t as Var _) = t aconv u orelse not (Logic.occs(t,u))
   167   | eliminable _ = false;
   168 
   169 fun refl_clause_aux 0 th = th
   170   | refl_clause_aux n th =
   171        case HOLogic.dest_Trueprop (concl_of th) of
   172 	  (Const ("op |", _) $ (Const ("op |", _) $ _ $ _) $ _) => 
   173             refl_clause_aux n (th RS disj_assoc)    (*isolate an atom as first disjunct*)
   174 	| (Const ("op |", _) $ (Const("Not",_) $ (Const("op =",_) $ t $ u)) $ _) => 
   175 	    if eliminable(t,u) 
   176 	    then refl_clause_aux (n-1) (th RS not_refl_disj_D)  (*Var inequation: delete*)
   177 	    else refl_clause_aux (n-1) (th RS disj_comm)  (*not between Vars: ignore*)
   178 	| (Const ("op |", _) $ _ $ _) => refl_clause_aux n (th RS disj_comm)
   179 	| _ => (*not a disjunction*) th;
   180 
   181 fun notequal_lits_count (Const ("op |", _) $ P $ Q) = 
   182       notequal_lits_count P + notequal_lits_count Q
   183   | notequal_lits_count (Const("Not",_) $ (Const("op =",_) $ _ $ _)) = 1
   184   | notequal_lits_count _ = 0;
   185 
   186 (*Simplify a clause by applying reflexivity to its negated equality literals*)
   187 fun refl_clause th = 
   188   let val neqs = notequal_lits_count (HOLogic.dest_Trueprop (concl_of th))
   189   in  zero_var_indexes (refl_clause_aux neqs th)  end
   190   handle TERM _ => th;	(*probably dest_Trueprop on a weird theorem*)		      
   191 
   192 
   193 (*** The basic CNF transformation ***)
   194 
   195 val max_clauses = ref 40;
   196 
   197 fun sum x y = if x < !max_clauses andalso y < !max_clauses then x+y else !max_clauses;
   198 fun prod x y = if x < !max_clauses andalso y < !max_clauses then x*y else !max_clauses;
   199 
   200 (*Estimate the number of clauses in order to detect infeasible theorems*)
   201 fun signed_nclauses b (Const("Trueprop",_) $ t) = signed_nclauses b t
   202   | signed_nclauses b (Const("Not",_) $ t) = signed_nclauses (not b) t
   203   | signed_nclauses b (Const("op &",_) $ t $ u) = 
   204       if b then sum (signed_nclauses b t) (signed_nclauses b u)
   205            else prod (signed_nclauses b t) (signed_nclauses b u)
   206   | signed_nclauses b (Const("op |",_) $ t $ u) = 
   207       if b then prod (signed_nclauses b t) (signed_nclauses b u)
   208            else sum (signed_nclauses b t) (signed_nclauses b u)
   209   | signed_nclauses b (Const("op -->",_) $ t $ u) = 
   210       if b then prod (signed_nclauses (not b) t) (signed_nclauses b u)
   211            else sum (signed_nclauses (not b) t) (signed_nclauses b u)
   212   | signed_nclauses b (Const("op =", Type ("fun", [T, _])) $ t $ u) = 
   213       if T = HOLogic.boolT then (*Boolean equality is if-and-only-if*)
   214 	  if b then sum (prod (signed_nclauses (not b) t) (signed_nclauses b u))
   215 			(prod (signed_nclauses (not b) u) (signed_nclauses b t))
   216 	       else sum (prod (signed_nclauses b t) (signed_nclauses b u))
   217 			(prod (signed_nclauses (not b) t) (signed_nclauses (not b) u))
   218       else 1 
   219   | signed_nclauses b (Const("Ex", _) $ Abs (_,_,t)) = signed_nclauses b t
   220   | signed_nclauses b (Const("All",_) $ Abs (_,_,t)) = signed_nclauses b t
   221   | signed_nclauses _ _ = 1; (* literal *)
   222 
   223 val nclauses = signed_nclauses true;
   224 
   225 fun too_many_clauses t = nclauses t >= !max_clauses;
   226 
   227 (*Replaces universally quantified variables by FREE variables -- because
   228   assumptions may not contain scheme variables.  Later, call "generalize". *)
   229 fun freeze_spec th =
   230   let val newname = gensym "mes_"
   231       val spec' = read_instantiate [("x", newname)] spec
   232   in  th RS spec'  end;
   233 
   234 (*Used with METAHYPS below. There is one assumption, which gets bound to prem
   235   and then normalized via function nf. The normal form is given to resolve_tac,
   236   presumably to instantiate a Boolean variable.*)
   237 fun resop nf [prem] = resolve_tac (nf prem) 1;
   238 
   239 (*Any need to extend this list with 
   240   "HOL.type_class","Code_Generator.eq_class","ProtoPure.term"?*)
   241 val has_meta_conn = 
   242     exists_Const (fn (c,_) => c mem_string ["==", "==>", "all", "prop"]);
   243 
   244 fun apply_skolem_ths (th, rls) = 
   245   let fun tryall [] = raise THM("apply_skolem_ths", 0, th::rls)
   246         | tryall (rl::rls) = (first_order_resolve th rl handle THM _ => tryall rls)
   247   in  tryall rls  end;
   248   
   249 (*Conjunctive normal form, adding clauses from th in front of ths (for foldr).
   250   Strips universal quantifiers and breaks up conjunctions.
   251   Eliminates existential quantifiers using skoths: Skolemization theorems.*)
   252 fun cnf skoths (th,ths) =
   253   let fun cnf_aux (th,ths) =
   254   	if not (can HOLogic.dest_Trueprop (prop_of th)) then ths (*meta-level: ignore*)
   255         else if not (has_conns ["All","Ex","op &"] (prop_of th))  
   256 	then th::ths (*no work to do, terminate*)
   257 	else case head_of (HOLogic.dest_Trueprop (concl_of th)) of
   258 	    Const ("op &", _) => (*conjunction*)
   259 		cnf_aux (th RS conjunct1, cnf_aux (th RS conjunct2, ths))
   260 	  | Const ("All", _) => (*universal quantifier*)
   261 	        cnf_aux (freeze_spec th,  ths)
   262 	  | Const ("Ex", _) => 
   263 	      (*existential quantifier: Insert Skolem functions*)
   264 	      cnf_aux (apply_skolem_ths (th,skoths), ths)
   265 	  | Const ("op |", _) => (*disjunction*)
   266 	      let val tac =
   267 		  (METAHYPS (resop cnf_nil) 1) THEN
   268 		   (fn st' => st' |> METAHYPS (resop cnf_nil) 1)
   269 	      in  Seq.list_of (tac (th RS disj_forward)) @ ths  end 
   270 	  | _ => (*no work to do*) th::ths 
   271       and cnf_nil th = cnf_aux (th,[])
   272   in 
   273     if too_many_clauses (concl_of th) 
   274     then (Output.debug (fn () => ("cnf is ignoring: " ^ string_of_thm th)); ths)
   275     else cnf_aux (th,ths)
   276   end;
   277 
   278 (*Convert all suitable free variables to schematic variables, 
   279   but don't discharge assumptions.*)
   280 fun generalize th = Thm.varifyT (forall_elim_vars 0 (forall_intr_frees th));
   281 
   282 fun make_cnf skoths th = cnf skoths (th, []);
   283 
   284 (*Generalization, removal of redundant equalities, removal of tautologies.*)
   285 fun finish_cnf ths = filter (not o is_taut) (map (refl_clause o generalize) ths);
   286 
   287 
   288 (**** Removal of duplicate literals ****)
   289 
   290 (*Forward proof, passing extra assumptions as theorems to the tactic*)
   291 fun forward_res2 nf hyps st =
   292   case Seq.pull
   293 	(REPEAT
   294 	 (METAHYPS (fn major::minors => rtac (nf (minors@hyps) major) 1) 1)
   295 	 st)
   296   of SOME(th,_) => th
   297    | NONE => raise THM("forward_res2", 0, [st]);
   298 
   299 (*Remove duplicates in P|Q by assuming ~P in Q
   300   rls (initially []) accumulates assumptions of the form P==>False*)
   301 fun nodups_aux rls th = nodups_aux rls (th RS disj_assoc)
   302     handle THM _ => tryres(th,rls)
   303     handle THM _ => tryres(forward_res2 nodups_aux rls (th RS disj_forward2),
   304 			   [disj_FalseD1, disj_FalseD2, asm_rl])
   305     handle THM _ => th;
   306 
   307 (*Remove duplicate literals, if there are any*)
   308 fun nodups th =
   309   if has_duplicates (op =) (literals (prop_of th))
   310     then nodups_aux [] th
   311     else th;
   312 
   313 
   314 (**** Generation of contrapositives ****)
   315 
   316 fun is_left (Const ("Trueprop", _) $ 
   317                (Const ("op |", _) $ (Const ("op |", _) $ _ $ _) $ _)) = true
   318   | is_left _ = false;
   319                
   320 (*Associate disjuctions to right -- make leftmost disjunct a LITERAL*)
   321 fun assoc_right th = 
   322   if is_left (prop_of th) then assoc_right (th RS disj_assoc)
   323   else th;
   324 
   325 (*Must check for negative literal first!*)
   326 val clause_rules = [disj_assoc, make_neg_rule, make_pos_rule];
   327 
   328 (*For ordinary resolution. *)
   329 val resolution_clause_rules = [disj_assoc, make_neg_rule', make_pos_rule'];
   330 
   331 (*Create a goal or support clause, conclusing False*)
   332 fun make_goal th =   (*Must check for negative literal first!*)
   333     make_goal (tryres(th, clause_rules))
   334   handle THM _ => tryres(th, [make_neg_goal, make_pos_goal]);
   335 
   336 (*Sort clauses by number of literals*)
   337 fun fewerlits(th1,th2) = nliterals(prop_of th1) < nliterals(prop_of th2);
   338 
   339 fun sort_clauses ths = sort (make_ord fewerlits) ths;
   340 
   341 (*True if the given type contains bool anywhere*)
   342 fun has_bool (Type("bool",_)) = true
   343   | has_bool (Type(_, Ts)) = exists has_bool Ts
   344   | has_bool _ = false;
   345   
   346 (*Is the string the name of a connective? Really only | and Not can remain, 
   347   since this code expects to be called on a clause form.*)  
   348 val is_conn = member (op =)
   349     ["Trueprop", "op &", "op |", "op -->", "Not", 
   350      "All", "Ex", "Ball", "Bex"];
   351 
   352 (*True if the term contains a function--not a logical connective--where the type 
   353   of any argument contains bool.*)
   354 val has_bool_arg_const = 
   355     exists_Const
   356       (fn (c,T) => not(is_conn c) andalso exists (has_bool) (binder_types T));
   357 
   358 (*A higher-order instance of a first-order constant? Example is the definition of 
   359   HOL.one, 1, at a function type in theory SetsAndFunctions.*)
   360 fun higher_inst_const thy (c,T) = 
   361   case binder_types T of
   362       [] => false (*not a function type, OK*)
   363     | Ts => length (binder_types (Sign.the_const_type thy c)) <> length Ts;
   364 
   365 (*Raises an exception if any Vars in the theorem mention type bool. 
   366   Also rejects functions whose arguments are Booleans or other functions.*)
   367 fun is_fol_term thy t =
   368     Term.is_first_order ["all","All","Ex"] t andalso
   369     not (exists (has_bool o fastype_of) (term_vars t)  orelse
   370 	 has_bool_arg_const t  orelse  
   371 	 exists_Const (higher_inst_const thy) t orelse
   372 	 has_meta_conn t);
   373 
   374 fun rigid t = not (is_Var (head_of t));
   375 
   376 fun ok4horn (Const ("Trueprop",_) $ (Const ("op |", _) $ t $ _)) = rigid t
   377   | ok4horn (Const ("Trueprop",_) $ t) = rigid t
   378   | ok4horn _ = false;
   379 
   380 (*Create a meta-level Horn clause*)
   381 fun make_horn crules th = 
   382   if ok4horn (concl_of th) 
   383   then make_horn crules (tryres(th,crules)) handle THM _ => th
   384   else th;
   385 
   386 (*Generate Horn clauses for all contrapositives of a clause. The input, th,
   387   is a HOL disjunction.*)
   388 fun add_contras crules (th,hcs) =
   389   let fun rots (0,th) = hcs
   390 	| rots (k,th) = zero_var_indexes (make_horn crules th) ::
   391 			rots(k-1, assoc_right (th RS disj_comm))
   392   in case nliterals(prop_of th) of
   393 	1 => th::hcs
   394       | n => rots(n, assoc_right th)
   395   end;
   396 
   397 (*Use "theorem naming" to label the clauses*)
   398 fun name_thms label =
   399     let fun name1 (th, (k,ths)) =
   400 	  (k-1, PureThy.put_name_hint (label ^ string_of_int k) th :: ths)
   401     in  fn ths => #2 (foldr name1 (length ths, []) ths)  end;
   402 
   403 (*Is the given disjunction an all-negative support clause?*)
   404 fun is_negative th = forall (not o #1) (literals (prop_of th));
   405 
   406 val neg_clauses = List.filter is_negative;
   407 
   408 
   409 (***** MESON PROOF PROCEDURE *****)
   410 
   411 fun rhyps (Const("==>",_) $ (Const("Trueprop",_) $ A) $ phi,
   412 	   As) = rhyps(phi, A::As)
   413   | rhyps (_, As) = As;
   414 
   415 (** Detecting repeated assumptions in a subgoal **)
   416 
   417 (*The stringtree detects repeated assumptions.*)
   418 fun ins_term (net,t) = Net.insert_term (op aconv) (t,t) net;
   419 
   420 (*detects repetitions in a list of terms*)
   421 fun has_reps [] = false
   422   | has_reps [_] = false
   423   | has_reps [t,u] = (t aconv u)
   424   | has_reps ts = (Library.foldl ins_term (Net.empty, ts);  false)
   425 		  handle Net.INSERT => true;
   426 
   427 (*Like TRYALL eq_assume_tac, but avoids expensive THEN calls*)
   428 fun TRYING_eq_assume_tac 0 st = Seq.single st
   429   | TRYING_eq_assume_tac i st =
   430        TRYING_eq_assume_tac (i-1) (eq_assumption i st)
   431        handle THM _ => TRYING_eq_assume_tac (i-1) st;
   432 
   433 fun TRYALL_eq_assume_tac st = TRYING_eq_assume_tac (nprems_of st) st;
   434 
   435 (*Loop checking: FAIL if trying to prove the same thing twice
   436   -- if *ANY* subgoal has repeated literals*)
   437 fun check_tac st =
   438   if exists (fn prem => has_reps (rhyps(prem,[]))) (prems_of st)
   439   then  Seq.empty  else  Seq.single st;
   440 
   441 
   442 (* net_resolve_tac actually made it slower... *)
   443 fun prolog_step_tac horns i =
   444     (assume_tac i APPEND resolve_tac horns i) THEN check_tac THEN
   445     TRYALL_eq_assume_tac;
   446 
   447 (*Sums the sizes of the subgoals, ignoring hypotheses (ancestors)*)
   448 fun addconcl(prem,sz) = size_of_term(Logic.strip_assums_concl prem) + sz
   449 
   450 fun size_of_subgoals st = foldr addconcl 0 (prems_of st);
   451 
   452 
   453 (*Negation Normal Form*)
   454 val nnf_rls = [imp_to_disjD, iff_to_disjD, not_conjD, not_disjD,
   455                not_impD, not_iffD, not_allD, not_exD, not_notD];
   456 
   457 fun ok4nnf (Const ("Trueprop",_) $ (Const ("Not", _) $ t)) = rigid t
   458   | ok4nnf (Const ("Trueprop",_) $ t) = rigid t
   459   | ok4nnf _ = false;
   460 
   461 fun make_nnf1 th = 
   462   if ok4nnf (concl_of th) 
   463   then make_nnf1 (tryres(th, nnf_rls))
   464     handle THM _ =>
   465         forward_res make_nnf1
   466            (tryres(th, [conj_forward,disj_forward,all_forward,ex_forward]))
   467     handle THM _ => th
   468   else th;
   469 
   470 (*The simplification removes defined quantifiers and occurrences of True and False. 
   471   nnf_ss also includes the one-point simprocs,
   472   which are needed to avoid the various one-point theorems from generating junk clauses.*)
   473 val nnf_simps =
   474      [simp_implies_def, Ex1_def, Ball_def, Bex_def, if_True, 
   475       if_False, if_cancel, if_eq_cancel, cases_simp];
   476 val nnf_extra_simps =
   477       thms"split_ifs" @ ex_simps @ all_simps @ simp_thms;
   478 
   479 val nnf_ss =
   480     HOL_basic_ss addsimps nnf_extra_simps 
   481                  addsimprocs [defALL_regroup,defEX_regroup,neq_simproc,let_simproc];
   482 
   483 fun make_nnf th = case prems_of th of
   484     [] => th |> rewrite_rule (map safe_mk_meta_eq nnf_simps)
   485 	     |> simplify nnf_ss  
   486 	     |> make_nnf1
   487   | _ => raise THM ("make_nnf: premises in argument", 0, [th]);
   488 
   489 (*Pull existential quantifiers to front. This accomplishes Skolemization for
   490   clauses that arise from a subgoal.*)
   491 fun skolemize th =
   492   if not (has_conns ["Ex"] (prop_of th)) then th
   493   else (skolemize (tryres(th, [choice, conj_exD1, conj_exD2,
   494                               disj_exD, disj_exD1, disj_exD2])))
   495     handle THM _ =>
   496         skolemize (forward_res skolemize
   497                    (tryres (th, [conj_forward, disj_forward, all_forward])))
   498     handle THM _ => forward_res skolemize (th RS ex_forward);
   499 
   500 
   501 (*Make clauses from a list of theorems, previously Skolemized and put into nnf.
   502   The resulting clauses are HOL disjunctions.*)
   503 fun make_clauses ths =
   504     (sort_clauses (map (generalize o nodups) (foldr (cnf[]) [] ths)));
   505 
   506 (*Convert a list of clauses (disjunctions) to Horn clauses (contrapositives)*)
   507 fun make_horns ths =
   508     name_thms "Horn#"
   509       (distinct Thm.eq_thm_prop (foldr (add_contras clause_rules) [] ths));
   510 
   511 (*Could simply use nprems_of, which would count remaining subgoals -- no
   512   discrimination as to their size!  With BEST_FIRST, fails for problem 41.*)
   513 
   514 fun best_prolog_tac sizef horns =
   515     BEST_FIRST (has_fewer_prems 1, sizef) (prolog_step_tac horns 1);
   516 
   517 fun depth_prolog_tac horns =
   518     DEPTH_FIRST (has_fewer_prems 1) (prolog_step_tac horns 1);
   519 
   520 (*Return all negative clauses, as possible goal clauses*)
   521 fun gocls cls = name_thms "Goal#" (map make_goal (neg_clauses cls));
   522 
   523 fun skolemize_prems_tac prems =
   524     cut_facts_tac (map (skolemize o make_nnf) prems)  THEN'
   525     REPEAT o (etac exE);
   526 
   527 (*Expand all definitions (presumably of Skolem functions) in a proof state.*)
   528 fun expand_defs_tac st =
   529   let val defs = filter (can dest_equals) (#hyps (crep_thm st))
   530   in  PRIMITIVE (LocalDefs.expand defs) st  end;
   531 
   532 (*Basis of all meson-tactics.  Supplies cltac with clauses: HOL disjunctions*)
   533 fun MESON cltac i st = 
   534   SELECT_GOAL
   535     (EVERY [rtac ccontr 1,
   536 	    METAHYPS (fn negs =>
   537 		      EVERY1 [skolemize_prems_tac negs,
   538 			      METAHYPS (cltac o make_clauses)]) 1,
   539             expand_defs_tac]) i st
   540   handle THM _ => no_tac st;	(*probably from make_meta_clause, not first-order*)		      
   541 
   542 (** Best-first search versions **)
   543 
   544 (*ths is a list of additional clauses (HOL disjunctions) to use.*)
   545 fun best_meson_tac sizef =
   546   MESON (fn cls =>
   547          THEN_BEST_FIRST (resolve_tac (gocls cls) 1)
   548                          (has_fewer_prems 1, sizef)
   549                          (prolog_step_tac (make_horns cls) 1));
   550 
   551 (*First, breaks the goal into independent units*)
   552 val safe_best_meson_tac =
   553      SELECT_GOAL (TRY Safe_tac THEN
   554                   TRYALL (best_meson_tac size_of_subgoals));
   555 
   556 (** Depth-first search version **)
   557 
   558 val depth_meson_tac =
   559      MESON (fn cls => EVERY [resolve_tac (gocls cls) 1,
   560                              depth_prolog_tac (make_horns cls)]);
   561 
   562 
   563 (** Iterative deepening version **)
   564 
   565 (*This version does only one inference per call;
   566   having only one eq_assume_tac speeds it up!*)
   567 fun prolog_step_tac' horns =
   568     let val (horn0s, hornps) = (*0 subgoals vs 1 or more*)
   569             take_prefix Thm.no_prems horns
   570         val nrtac = net_resolve_tac horns
   571     in  fn i => eq_assume_tac i ORELSE
   572                 match_tac horn0s i ORELSE  (*no backtracking if unit MATCHES*)
   573                 ((assume_tac i APPEND nrtac i) THEN check_tac)
   574     end;
   575 
   576 fun iter_deepen_prolog_tac horns =
   577     ITER_DEEPEN (has_fewer_prems 1) (prolog_step_tac' horns);
   578 
   579 fun iter_deepen_meson_tac ths = MESON 
   580  (fn cls =>
   581       case (gocls (cls@ths)) of
   582 	   [] => no_tac  (*no goal clauses*)
   583 	 | goes => 
   584 	     let val horns = make_horns (cls@ths)
   585 	         val _ =
   586 	             Output.debug (fn () => ("meson method called:\n" ^ 
   587 	     	                  space_implode "\n" (map string_of_thm (cls@ths)) ^ 
   588 	     	                  "\nclauses:\n" ^ 
   589 	     	                  space_implode "\n" (map string_of_thm horns)))
   590 	     in THEN_ITER_DEEPEN (resolve_tac goes 1) (has_fewer_prems 1) (prolog_step_tac' horns)
   591 	     end
   592  );
   593 
   594 fun meson_claset_tac ths cs =
   595   SELECT_GOAL (TRY (safe_tac cs) THEN TRYALL (iter_deepen_meson_tac ths));
   596 
   597 val meson_tac = CLASET' (meson_claset_tac []);
   598 
   599 
   600 (**** Code to support ordinary resolution, rather than Model Elimination ****)
   601 
   602 (*Convert a list of clauses (disjunctions) to meta-level clauses (==>), 
   603   with no contrapositives, for ordinary resolution.*)
   604 
   605 (*Rules to convert the head literal into a negated assumption. If the head
   606   literal is already negated, then using notEfalse instead of notEfalse'
   607   prevents a double negation.*)
   608 val notEfalse = read_instantiate [("R","False")] notE;
   609 val notEfalse' = rotate_prems 1 notEfalse;
   610 
   611 fun negated_asm_of_head th = 
   612     th RS notEfalse handle THM _ => th RS notEfalse';
   613 
   614 (*Converting one clause*)
   615 fun make_meta_clause th = 
   616   negated_asm_of_head (make_horn resolution_clause_rules th);
   617   
   618 fun make_meta_clauses ths =
   619     name_thms "MClause#"
   620       (distinct Thm.eq_thm_prop (map make_meta_clause ths));
   621 
   622 (*Permute a rule's premises to move the i-th premise to the last position.*)
   623 fun make_last i th =
   624   let val n = nprems_of th 
   625   in  if 1 <= i andalso i <= n 
   626       then Thm.permute_prems (i-1) 1 th
   627       else raise THM("select_literal", i, [th])
   628   end;
   629 
   630 (*Maps a rule that ends "... ==> P ==> False" to "... ==> ~P" while suppressing
   631   double-negations.*)
   632 val negate_head = rewrite_rule [atomize_not, not_not RS eq_reflection];
   633 
   634 (*Maps the clause  [P1,...Pn]==>False to [P1,...,P(i-1),P(i+1),...Pn] ==> ~P*)
   635 fun select_literal i cl = negate_head (make_last i cl);
   636 
   637 
   638 (*Top-level Skolemization. Allows part of the conversion to clauses to be
   639   expressed as a tactic (or Isar method).  Each assumption of the selected 
   640   goal is converted to NNF and then its existential quantifiers are pulled
   641   to the front. Finally, all existential quantifiers are eliminated, 
   642   leaving !!-quantified variables. Perhaps Safe_tac should follow, but it
   643   might generate many subgoals.*)
   644 
   645 fun skolemize_tac i st = 
   646   let val ts = Logic.strip_assums_hyp (List.nth (prems_of st, i-1))
   647   in 
   648      EVERY' [METAHYPS
   649 	    (fn hyps => (cut_facts_tac (map (skolemize o make_nnf) hyps) 1
   650                          THEN REPEAT (etac exE 1))),
   651             REPEAT_DETERM_N (length ts) o (etac thin_rl)] i st
   652   end
   653   handle Subscript => Seq.empty;
   654 
   655 end;
   656 
   657 structure BasicMeson: BASIC_MESON = Meson;
   658 open BasicMeson;