src/HOL/Library/Formal_Power_Series.thy
author hoelzl
Tue, 05 Nov 2013 09:45:02 +0100
changeset 55715 c4159fe6fa46
parent 55682 b1d955791529
child 55825 f3090621446e
permissions -rw-r--r--
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
     1 (*  Title:      HOL/Library/Formal_Power_Series.thy
     2     Author:     Amine Chaieb, University of Cambridge
     3 *)
     4 
     5 header{* A formalization of formal power series *}
     6 
     7 theory Formal_Power_Series
     8 imports Binomial
     9 begin
    10 
    11 
    12 subsection {* The type of formal power series*}
    13 
    14 typedef 'a fps = "{f :: nat \<Rightarrow> 'a. True}"
    15   morphisms fps_nth Abs_fps
    16   by simp
    17 
    18 notation fps_nth (infixl "$" 75)
    19 
    20 lemma expand_fps_eq: "p = q \<longleftrightarrow> (\<forall>n. p $ n = q $ n)"
    21   by (simp add: fps_nth_inject [symmetric] fun_eq_iff)
    22 
    23 lemma fps_ext: "(\<And>n. p $ n = q $ n) \<Longrightarrow> p = q"
    24   by (simp add: expand_fps_eq)
    25 
    26 lemma fps_nth_Abs_fps [simp]: "Abs_fps f $ n = f n"
    27   by (simp add: Abs_fps_inverse)
    28 
    29 text{* Definition of the basic elements 0 and 1 and the basic operations of addition,
    30   negation and multiplication *}
    31 
    32 instantiation fps :: (zero) zero
    33 begin
    34 
    35 definition fps_zero_def:
    36   "0 = Abs_fps (\<lambda>n. 0)"
    37 
    38 instance ..
    39 end
    40 
    41 lemma fps_zero_nth [simp]: "0 $ n = 0"
    42   unfolding fps_zero_def by simp
    43 
    44 instantiation fps :: ("{one, zero}") one
    45 begin
    46 
    47 definition fps_one_def:
    48   "1 = Abs_fps (\<lambda>n. if n = 0 then 1 else 0)"
    49 
    50 instance ..
    51 end
    52 
    53 lemma fps_one_nth [simp]: "1 $ n = (if n = 0 then 1 else 0)"
    54   unfolding fps_one_def by simp
    55 
    56 instantiation fps :: (plus)  plus
    57 begin
    58 
    59 definition fps_plus_def:
    60   "op + = (\<lambda>f g. Abs_fps (\<lambda>n. f $ n + g $ n))"
    61 
    62 instance ..
    63 end
    64 
    65 lemma fps_add_nth [simp]: "(f + g) $ n = f $ n + g $ n"
    66   unfolding fps_plus_def by simp
    67 
    68 instantiation fps :: (minus) minus
    69 begin
    70 
    71 definition fps_minus_def:
    72   "op - = (\<lambda>f g. Abs_fps (\<lambda>n. f $ n - g $ n))"
    73 
    74 instance ..
    75 end
    76 
    77 lemma fps_sub_nth [simp]: "(f - g) $ n = f $ n - g $ n"
    78   unfolding fps_minus_def by simp
    79 
    80 instantiation fps :: (uminus) uminus
    81 begin
    82 
    83 definition fps_uminus_def:
    84   "uminus = (\<lambda>f. Abs_fps (\<lambda>n. - (f $ n)))"
    85 
    86 instance ..
    87 end
    88 
    89 lemma fps_neg_nth [simp]: "(- f) $ n = - (f $ n)"
    90   unfolding fps_uminus_def by simp
    91 
    92 instantiation fps :: ("{comm_monoid_add, times}")  times
    93 begin
    94 
    95 definition fps_times_def:
    96   "op * = (\<lambda>f g. Abs_fps (\<lambda>n. \<Sum>i=0..n. f $ i * g $ (n - i)))"
    97 
    98 instance ..
    99 end
   100 
   101 lemma fps_mult_nth: "(f * g) $ n = (\<Sum>i=0..n. f$i * g$(n - i))"
   102   unfolding fps_times_def by simp
   103 
   104 declare atLeastAtMost_iff [presburger]
   105 declare Bex_def [presburger]
   106 declare Ball_def [presburger]
   107 
   108 lemma mult_delta_left:
   109   fixes x y :: "'a::mult_zero"
   110   shows "(if b then x else 0) * y = (if b then x * y else 0)"
   111   by simp
   112 
   113 lemma mult_delta_right:
   114   fixes x y :: "'a::mult_zero"
   115   shows "x * (if b then y else 0) = (if b then x * y else 0)"
   116   by simp
   117 
   118 lemma cond_value_iff: "f (if b then x else y) = (if b then f x else f y)"
   119   by auto
   120 
   121 lemma cond_application_beta: "(if b then f else g) x = (if b then f x else g x)"
   122   by auto
   123 
   124 subsection{* Formal power series form a commutative ring with unity, if the range of sequences
   125   they represent is a commutative ring with unity*}
   126 
   127 instance fps :: (semigroup_add) semigroup_add
   128 proof
   129   fix a b c :: "'a fps"
   130   show "a + b + c = a + (b + c)"
   131     by (simp add: fps_ext add_assoc)
   132 qed
   133 
   134 instance fps :: (ab_semigroup_add) ab_semigroup_add
   135 proof
   136   fix a b :: "'a fps"
   137   show "a + b = b + a"
   138     by (simp add: fps_ext add_commute)
   139 qed
   140 
   141 lemma fps_mult_assoc_lemma:
   142   fixes k :: nat
   143     and f :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 'a::comm_monoid_add"
   144   shows "(\<Sum>j=0..k. \<Sum>i=0..j. f i (j - i) (n - j)) =
   145          (\<Sum>j=0..k. \<Sum>i=0..k - j. f j i (n - j - i))"
   146   by (induct k) (simp_all add: Suc_diff_le setsum_addf add_assoc)
   147 
   148 instance fps :: (semiring_0) semigroup_mult
   149 proof
   150   fix a b c :: "'a fps"
   151   show "(a * b) * c = a * (b * c)"
   152   proof (rule fps_ext)
   153     fix n :: nat
   154     have "(\<Sum>j=0..n. \<Sum>i=0..j. a$i * b$(j - i) * c$(n - j)) =
   155           (\<Sum>j=0..n. \<Sum>i=0..n - j. a$j * b$i * c$(n - j - i))"
   156       by (rule fps_mult_assoc_lemma)
   157     then show "((a * b) * c) $ n = (a * (b * c)) $ n"
   158       by (simp add: fps_mult_nth setsum_right_distrib setsum_left_distrib mult_assoc)
   159   qed
   160 qed
   161 
   162 lemma fps_mult_commute_lemma:
   163   fixes n :: nat
   164     and f :: "nat \<Rightarrow> nat \<Rightarrow> 'a::comm_monoid_add"
   165   shows "(\<Sum>i=0..n. f i (n - i)) = (\<Sum>i=0..n. f (n - i) i)"
   166 proof (rule setsum_reindex_cong)
   167   show "inj_on (\<lambda>i. n - i) {0..n}"
   168     by (rule inj_onI) simp
   169   show "{0..n} = (\<lambda>i. n - i) ` {0..n}"
   170     apply auto
   171     apply (rule_tac x = "n - x" in image_eqI)
   172     apply simp_all
   173     done
   174 next
   175   fix i
   176   assume "i \<in> {0..n}"
   177   then have "n - (n - i) = i" by simp
   178   then show "f (n - i) i = f (n - i) (n - (n - i))" by simp
   179 qed
   180 
   181 instance fps :: (comm_semiring_0) ab_semigroup_mult
   182 proof
   183   fix a b :: "'a fps"
   184   show "a * b = b * a"
   185   proof (rule fps_ext)
   186     fix n :: nat
   187     have "(\<Sum>i=0..n. a$i * b$(n - i)) = (\<Sum>i=0..n. a$(n - i) * b$i)"
   188       by (rule fps_mult_commute_lemma)
   189     then show "(a * b) $ n = (b * a) $ n"
   190       by (simp add: fps_mult_nth mult_commute)
   191   qed
   192 qed
   193 
   194 instance fps :: (monoid_add) monoid_add
   195 proof
   196   fix a :: "'a fps"
   197   show "0 + a = a" by (simp add: fps_ext)
   198   show "a + 0 = a" by (simp add: fps_ext)
   199 qed
   200 
   201 instance fps :: (comm_monoid_add) comm_monoid_add
   202 proof
   203   fix a :: "'a fps"
   204   show "0 + a = a" by (simp add: fps_ext)
   205 qed
   206 
   207 instance fps :: (semiring_1) monoid_mult
   208 proof
   209   fix a :: "'a fps"
   210   show "1 * a = a" by (simp add: fps_ext fps_mult_nth mult_delta_left setsum_delta)
   211   show "a * 1 = a" by (simp add: fps_ext fps_mult_nth mult_delta_right setsum_delta')
   212 qed
   213 
   214 instance fps :: (cancel_semigroup_add) cancel_semigroup_add
   215 proof
   216   fix a b c :: "'a fps"
   217   { assume "a + b = a + c" then show "b = c" by (simp add: expand_fps_eq) }
   218   { assume "b + a = c + a" then show "b = c" by (simp add: expand_fps_eq) }
   219 qed
   220 
   221 instance fps :: (cancel_ab_semigroup_add) cancel_ab_semigroup_add
   222 proof
   223   fix a b c :: "'a fps"
   224   assume "a + b = a + c"
   225   then show "b = c" by (simp add: expand_fps_eq)
   226 qed
   227 
   228 instance fps :: (cancel_comm_monoid_add) cancel_comm_monoid_add ..
   229 
   230 instance fps :: (group_add) group_add
   231 proof
   232   fix a b :: "'a fps"
   233   show "- a + a = 0" by (simp add: fps_ext)
   234   show "a + - b = a - b" by (simp add: fps_ext)
   235 qed
   236 
   237 instance fps :: (ab_group_add) ab_group_add
   238 proof
   239   fix a b :: "'a fps"
   240   show "- a + a = 0" by (simp add: fps_ext)
   241   show "a - b = a + - b" by (simp add: fps_ext)
   242 qed
   243 
   244 instance fps :: (zero_neq_one) zero_neq_one
   245   by default (simp add: expand_fps_eq)
   246 
   247 instance fps :: (semiring_0) semiring
   248 proof
   249   fix a b c :: "'a fps"
   250   show "(a + b) * c = a * c + b * c"
   251     by (simp add: expand_fps_eq fps_mult_nth distrib_right setsum_addf)
   252   show "a * (b + c) = a * b + a * c"
   253     by (simp add: expand_fps_eq fps_mult_nth distrib_left setsum_addf)
   254 qed
   255 
   256 instance fps :: (semiring_0) semiring_0
   257 proof
   258   fix a :: "'a fps"
   259   show "0 * a = 0" by (simp add: fps_ext fps_mult_nth)
   260   show "a * 0 = 0" by (simp add: fps_ext fps_mult_nth)
   261 qed
   262 
   263 instance fps :: (semiring_0_cancel) semiring_0_cancel ..
   264 
   265 subsection {* Selection of the nth power of the implicit variable in the infinite sum*}
   266 
   267 lemma fps_nonzero_nth: "f \<noteq> 0 \<longleftrightarrow> (\<exists> n. f $n \<noteq> 0)"
   268   by (simp add: expand_fps_eq)
   269 
   270 lemma fps_nonzero_nth_minimal: "f \<noteq> 0 \<longleftrightarrow> (\<exists>n. f $ n \<noteq> 0 \<and> (\<forall>m < n. f $ m = 0))"
   271 proof
   272   let ?n = "LEAST n. f $ n \<noteq> 0"
   273   assume "f \<noteq> 0"
   274   then have "\<exists>n. f $ n \<noteq> 0"
   275     by (simp add: fps_nonzero_nth)
   276   then have "f $ ?n \<noteq> 0"
   277     by (rule LeastI_ex)
   278   moreover have "\<forall>m<?n. f $ m = 0"
   279     by (auto dest: not_less_Least)
   280   ultimately have "f $ ?n \<noteq> 0 \<and> (\<forall>m<?n. f $ m = 0)" ..
   281   then show "\<exists>n. f $ n \<noteq> 0 \<and> (\<forall>m<n. f $ m = 0)" ..
   282 next
   283   assume "\<exists>n. f $ n \<noteq> 0 \<and> (\<forall>m<n. f $ m = 0)"
   284   then show "f \<noteq> 0" by (auto simp add: expand_fps_eq)
   285 qed
   286 
   287 lemma fps_eq_iff: "f = g \<longleftrightarrow> (\<forall>n. f $ n = g $n)"
   288   by (rule expand_fps_eq)
   289 
   290 lemma fps_setsum_nth: "setsum f S $ n = setsum (\<lambda>k. (f k) $ n) S"
   291 proof (cases "finite S")
   292   case True
   293   then show ?thesis by (induct set: finite) auto
   294 next
   295   case False
   296   then show ?thesis by simp
   297 qed
   298 
   299 subsection{* Injection of the basic ring elements and multiplication by scalars *}
   300 
   301 definition "fps_const c = Abs_fps (\<lambda>n. if n = 0 then c else 0)"
   302 
   303 lemma fps_nth_fps_const [simp]: "fps_const c $ n = (if n = 0 then c else 0)"
   304   unfolding fps_const_def by simp
   305 
   306 lemma fps_const_0_eq_0 [simp]: "fps_const 0 = 0"
   307   by (simp add: fps_ext)
   308 
   309 lemma fps_const_1_eq_1 [simp]: "fps_const 1 = 1"
   310   by (simp add: fps_ext)
   311 
   312 lemma fps_const_neg [simp]: "- (fps_const (c::'a::ring)) = fps_const (- c)"
   313   by (simp add: fps_ext)
   314 
   315 lemma fps_const_add [simp]: "fps_const (c::'a\<Colon>monoid_add) + fps_const d = fps_const (c + d)"
   316   by (simp add: fps_ext)
   317 
   318 lemma fps_const_sub [simp]: "fps_const (c::'a\<Colon>group_add) - fps_const d = fps_const (c - d)"
   319   by (simp add: fps_ext)
   320 
   321 lemma fps_const_mult[simp]: "fps_const (c::'a\<Colon>ring) * fps_const d = fps_const (c * d)"
   322   by (simp add: fps_eq_iff fps_mult_nth setsum_0')
   323 
   324 lemma fps_const_add_left: "fps_const (c::'a\<Colon>monoid_add) + f =
   325     Abs_fps (\<lambda>n. if n = 0 then c + f$0 else f$n)"
   326   by (simp add: fps_ext)
   327 
   328 lemma fps_const_add_right: "f + fps_const (c::'a\<Colon>monoid_add) =
   329     Abs_fps (\<lambda>n. if n = 0 then f$0 + c else f$n)"
   330   by (simp add: fps_ext)
   331 
   332 lemma fps_const_mult_left: "fps_const (c::'a\<Colon>semiring_0) * f = Abs_fps (\<lambda>n. c * f$n)"
   333   unfolding fps_eq_iff fps_mult_nth
   334   by (simp add: fps_const_def mult_delta_left setsum_delta)
   335 
   336 lemma fps_const_mult_right: "f * fps_const (c::'a\<Colon>semiring_0) = Abs_fps (\<lambda>n. f$n * c)"
   337   unfolding fps_eq_iff fps_mult_nth
   338   by (simp add: fps_const_def mult_delta_right setsum_delta')
   339 
   340 lemma fps_mult_left_const_nth [simp]: "(fps_const (c::'a::semiring_1) * f)$n = c* f$n"
   341   by (simp add: fps_mult_nth mult_delta_left setsum_delta)
   342 
   343 lemma fps_mult_right_const_nth [simp]: "(f * fps_const (c::'a::semiring_1))$n = f$n * c"
   344   by (simp add: fps_mult_nth mult_delta_right setsum_delta')
   345 
   346 subsection {* Formal power series form an integral domain*}
   347 
   348 instance fps :: (ring) ring ..
   349 
   350 instance fps :: (ring_1) ring_1
   351   by (intro_classes, auto simp add: distrib_right)
   352 
   353 instance fps :: (comm_ring_1) comm_ring_1
   354   by (intro_classes, auto simp add: distrib_right)
   355 
   356 instance fps :: (ring_no_zero_divisors) ring_no_zero_divisors
   357 proof
   358   fix a b :: "'a fps"
   359   assume a0: "a \<noteq> 0" and b0: "b \<noteq> 0"
   360   then obtain i j where i: "a$i\<noteq>0" "\<forall>k<i. a$k=0"
   361     and j: "b$j \<noteq>0" "\<forall>k<j. b$k =0" unfolding fps_nonzero_nth_minimal
   362     by blast+
   363   have "(a * b) $ (i+j) = (\<Sum>k=0..i+j. a$k * b$(i+j-k))"
   364     by (rule fps_mult_nth)
   365   also have "\<dots> = (a$i * b$(i+j-i)) + (\<Sum>k\<in>{0..i+j}-{i}. a$k * b$(i+j-k))"
   366     by (rule setsum_diff1') simp_all
   367   also have "(\<Sum>k\<in>{0..i+j}-{i}. a$k * b$(i+j-k)) = 0"
   368     proof (rule setsum_0' [rule_format])
   369       fix k assume "k \<in> {0..i+j} - {i}"
   370       then have "k < i \<or> i+j-k < j" by auto
   371       then show "a$k * b$(i+j-k) = 0" using i j by auto
   372     qed
   373   also have "a$i * b$(i+j-i) + 0 = a$i * b$j" by simp
   374   also have "a$i * b$j \<noteq> 0" using i j by simp
   375   finally have "(a*b) $ (i+j) \<noteq> 0" .
   376   then show "a*b \<noteq> 0" unfolding fps_nonzero_nth by blast
   377 qed
   378 
   379 instance fps :: (ring_1_no_zero_divisors) ring_1_no_zero_divisors ..
   380 
   381 instance fps :: (idom) idom ..
   382 
   383 lemma numeral_fps_const: "numeral k = fps_const (numeral k)"
   384   by (induct k) (simp_all only: numeral.simps fps_const_1_eq_1
   385     fps_const_add [symmetric])
   386 
   387 lemma neg_numeral_fps_const: "neg_numeral k = fps_const (neg_numeral k)"
   388   by (simp only: neg_numeral_def numeral_fps_const fps_const_neg)
   389 
   390 subsection{* The eXtractor series X*}
   391 
   392 lemma minus_one_power_iff: "(- (1::'a :: {comm_ring_1})) ^ n = (if even n then 1 else - 1)"
   393   by (induct n) auto
   394 
   395 definition "X = Abs_fps (\<lambda>n. if n = 1 then 1 else 0)"
   396 
   397 lemma X_mult_nth [simp]:
   398   "(X * (f :: ('a::semiring_1) fps)) $n = (if n = 0 then 0 else f $ (n - 1))"
   399 proof (cases "n = 0")
   400   case False
   401   have "(X * f) $n = (\<Sum>i = 0..n. X $ i * f $ (n - i))"
   402     by (simp add: fps_mult_nth)
   403   also have "\<dots> = f $ (n - 1)"
   404     using False by (simp add: X_def mult_delta_left setsum_delta)
   405   finally show ?thesis using False by simp
   406 next
   407   case True
   408   then show ?thesis by (simp add: fps_mult_nth X_def)
   409 qed
   410 
   411 lemma X_mult_right_nth[simp]:
   412     "((f :: ('a::comm_semiring_1) fps) * X) $n = (if n = 0 then 0 else f $ (n - 1))"
   413   by (metis X_mult_nth mult_commute)
   414 
   415 lemma X_power_iff: "X^k = Abs_fps (\<lambda>n. if n = k then (1::'a::comm_ring_1) else 0)"
   416 proof (induct k)
   417   case 0
   418   thus ?case by (simp add: X_def fps_eq_iff)
   419 next
   420   case (Suc k)
   421   {
   422     fix m
   423     have "(X^Suc k) $ m = (if m = 0 then (0::'a) else (X^k) $ (m - 1))"
   424       by (simp del: One_nat_def)
   425     then have "(X^Suc k) $ m = (if m = Suc k then (1::'a) else 0)"
   426       using Suc.hyps by (auto cong del: if_weak_cong)
   427   }
   428   then show ?case by (simp add: fps_eq_iff)
   429 qed
   430 
   431 lemma X_power_mult_nth:
   432     "(X^k * (f :: ('a::comm_ring_1) fps)) $n = (if n < k then 0 else f $ (n - k))"
   433   apply (induct k arbitrary: n)
   434   apply simp
   435   unfolding power_Suc mult_assoc
   436   apply (case_tac n)
   437   apply auto
   438   done
   439 
   440 lemma X_power_mult_right_nth:
   441     "((f :: ('a::comm_ring_1) fps) * X^k) $n = (if n < k then 0 else f $ (n - k))"
   442   by (metis X_power_mult_nth mult_commute)
   443 
   444 
   445 subsection{* Formal Power series form a metric space *}
   446 
   447 definition (in dist) "ball x r = {y. dist y x < r}"
   448 
   449 instantiation fps :: (comm_ring_1) dist
   450 begin
   451 
   452 definition
   453   dist_fps_def: "dist (a::'a fps) b =
   454     (if (\<exists>n. a$n \<noteq> b$n) then inverse (2 ^ (LEAST n. a$n \<noteq> b$n)) else 0)"
   455 
   456 lemma dist_fps_ge0: "dist (a::'a fps) b \<ge> 0"
   457   by (simp add: dist_fps_def)
   458 
   459 lemma dist_fps_sym: "dist (a::'a fps) b = dist b a"
   460   apply (auto simp add: dist_fps_def)
   461   apply (rule cong[OF refl, where x="(\<lambda>n\<Colon>nat. a $ n \<noteq> b $ n)"])
   462   apply (rule ext)
   463   apply auto
   464   done
   465 
   466 instance ..
   467 
   468 end
   469 
   470 instantiation fps :: (comm_ring_1) metric_space
   471 begin
   472 
   473 definition open_fps_def: "open (S :: 'a fps set) = (\<forall>a \<in> S. \<exists>r. r >0 \<and> ball a r \<subseteq> S)"
   474 
   475 instance
   476 proof
   477   fix S :: "'a fps set"
   478   show "open S = (\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S)"
   479     by (auto simp add: open_fps_def ball_def subset_eq)
   480 next
   481   {
   482     fix a b :: "'a fps"
   483     {
   484       assume "a = b"
   485       then have "\<not> (\<exists>n. a $ n \<noteq> b $ n)" by simp
   486       then have "dist a b = 0" by (simp add: dist_fps_def)
   487     }
   488     moreover
   489     {
   490       assume d: "dist a b = 0"
   491       then have "\<forall>n. a$n = b$n"
   492         by - (rule ccontr, simp add: dist_fps_def)
   493       then have "a = b" by (simp add: fps_eq_iff)
   494     }
   495     ultimately show "dist a b =0 \<longleftrightarrow> a = b" by blast
   496   }
   497   note th = this
   498   from th have th'[simp]: "\<And>a::'a fps. dist a a = 0" by simp
   499   fix a b c :: "'a fps"
   500   {
   501     assume "a = b"
   502     then have "dist a b = 0" unfolding th .
   503     then have "dist a b \<le> dist a c + dist b c"
   504       using dist_fps_ge0 [of a c] dist_fps_ge0 [of b c] by simp
   505   }
   506   moreover
   507   {
   508     assume "c = a \<or> c = b"
   509     then have "dist a b \<le> dist a c + dist b c"
   510       by (cases "c = a") (simp_all add: th dist_fps_sym)
   511   }
   512   moreover
   513   {
   514     assume ab: "a \<noteq> b" and ac: "a \<noteq> c" and bc: "b \<noteq> c"
   515     def n \<equiv> "\<lambda>a b::'a fps. LEAST n. a$n \<noteq> b$n"
   516     then have n': "\<And>m a b. m < n a b \<Longrightarrow> a$m = b$m"
   517       by (auto dest: not_less_Least)
   518 
   519     from ab ac bc
   520     have dab: "dist a b = inverse (2 ^ n a b)"
   521       and dac: "dist a c = inverse (2 ^ n a c)"
   522       and dbc: "dist b c = inverse (2 ^ n b c)"
   523       by (simp_all add: dist_fps_def n_def fps_eq_iff)
   524     from ab ac bc have nz: "dist a b \<noteq> 0" "dist a c \<noteq> 0" "dist b c \<noteq> 0"
   525       unfolding th by simp_all
   526     from nz have pos: "dist a b > 0" "dist a c > 0" "dist b c > 0"
   527       using dist_fps_ge0[of a b] dist_fps_ge0[of a c] dist_fps_ge0[of b c]
   528       by auto
   529     have th1: "\<And>n. (2::real)^n >0" by auto
   530     {
   531       assume h: "dist a b > dist a c + dist b c"
   532       then have gt: "dist a b > dist a c" "dist a b > dist b c"
   533         using pos by auto
   534       from gt have gtn: "n a b < n b c" "n a b < n a c"
   535         unfolding dab dbc dac by (auto simp add: th1)
   536       from n'[OF gtn(2)] n'(1)[OF gtn(1)]
   537       have "a $ n a b = b $ n a b" by simp
   538       moreover have "a $ n a b \<noteq> b $ n a b"
   539          unfolding n_def by (rule LeastI_ex) (insert ab, simp add: fps_eq_iff)
   540       ultimately have False by contradiction
   541     }
   542     then have "dist a b \<le> dist a c + dist b c"
   543       by (auto simp add: not_le[symmetric])
   544   }
   545   ultimately show "dist a b \<le> dist a c + dist b c" by blast
   546 qed
   547 
   548 end
   549 
   550 text{* The infinite sums and justification of the notation in textbooks*}
   551 
   552 lemma reals_power_lt_ex:
   553   assumes xp: "x > 0" and y1: "(y::real) > 1"
   554   shows "\<exists>k>0. (1/y)^k < x"
   555 proof -
   556   have yp: "y > 0" using y1 by simp
   557   from reals_Archimedean2[of "max 0 (- log y x) + 1"]
   558   obtain k::nat where k: "real k > max 0 (- log y x) + 1" by blast
   559   from k have kp: "k > 0" by simp
   560   from k have "real k > - log y x" by simp
   561   then have "ln y * real k > - ln x" unfolding log_def
   562     using ln_gt_zero_iff[OF yp] y1
   563     by (simp add: minus_divide_left field_simps del:minus_divide_left[symmetric])
   564   then have "ln y * real k + ln x > 0" by simp
   565   then have "exp (real k * ln y + ln x) > exp 0"
   566     by (simp add: mult_ac)
   567   then have "y ^ k * x > 1"
   568     unfolding exp_zero exp_add exp_real_of_nat_mult exp_ln [OF xp] exp_ln [OF yp]
   569     by simp
   570   then have "x > (1 / y)^k" using yp
   571     by (simp add: field_simps nonzero_power_divide)
   572   then show ?thesis using kp by blast
   573 qed
   574 
   575 lemma X_nth[simp]: "X$n = (if n = 1 then 1 else 0)" by (simp add: X_def)
   576 
   577 lemma X_power_nth[simp]: "(X^k) $n = (if n = k then 1 else (0::'a::comm_ring_1))"
   578   by (simp add: X_power_iff)
   579 
   580 
   581 lemma fps_sum_rep_nth: "(setsum (%i. fps_const(a$i)*X^i) {0..m})$n =
   582     (if n \<le> m then a$n else (0::'a::comm_ring_1))"
   583   apply (auto simp add: fps_setsum_nth cond_value_iff cong del: if_weak_cong)
   584   apply (simp add: setsum_delta')
   585   done
   586 
   587 lemma fps_notation: "(%n. setsum (%i. fps_const(a$i) * X^i) {0..n}) ----> a"
   588   (is "?s ----> a")
   589 proof -
   590   {
   591     fix r:: real
   592     assume rp: "r > 0"
   593     have th0: "(2::real) > 1" by simp
   594     from reals_power_lt_ex[OF rp th0]
   595     obtain n0 where n0: "(1/2)^n0 < r" "n0 > 0" by blast
   596     {
   597       fix n::nat
   598       assume nn0: "n \<ge> n0"
   599       then have thnn0: "(1/2)^n <= (1/2 :: real)^n0"
   600         by (auto intro: power_decreasing)
   601       {
   602         assume "?s n = a"
   603         then have "dist (?s n) a < r"
   604           unfolding dist_eq_0_iff[of "?s n" a, symmetric]
   605           using rp by (simp del: dist_eq_0_iff)
   606       }
   607       moreover
   608       {
   609         assume neq: "?s n \<noteq> a"
   610         def k \<equiv> "LEAST i. ?s n $ i \<noteq> a $ i"
   611         from neq have dth: "dist (?s n) a = (1/2)^k"
   612           by (auto simp add: dist_fps_def inverse_eq_divide power_divide k_def fps_eq_iff)
   613 
   614         from neq have kn: "k > n"
   615           by (auto simp: fps_sum_rep_nth not_le k_def fps_eq_iff split: split_if_asm intro: LeastI2_ex)
   616         then have "dist (?s n) a < (1/2)^n" unfolding dth
   617           by (auto intro: power_strict_decreasing)
   618         also have "\<dots> <= (1/2)^n0" using nn0
   619           by (auto intro: power_decreasing)
   620         also have "\<dots> < r" using n0 by simp
   621         finally have "dist (?s n) a < r" .
   622       }
   623       ultimately have "dist (?s n) a < r" by blast
   624     }
   625     then have "\<exists>n0. \<forall> n \<ge> n0. dist (?s n) a < r " by blast
   626   }
   627   then show ?thesis unfolding LIMSEQ_def by blast
   628 qed
   629 
   630 subsection{* Inverses of formal power series *}
   631 
   632 declare setsum_cong[fundef_cong]
   633 
   634 instantiation fps :: ("{comm_monoid_add, inverse, times, uminus}") inverse
   635 begin
   636 
   637 fun natfun_inverse:: "'a fps \<Rightarrow> nat \<Rightarrow> 'a"
   638 where
   639   "natfun_inverse f 0 = inverse (f$0)"
   640 | "natfun_inverse f n = - inverse (f$0) * setsum (\<lambda>i. f$i * natfun_inverse f (n - i)) {1..n}"
   641 
   642 definition
   643   fps_inverse_def: "inverse f = (if f $ 0 = 0 then 0 else Abs_fps (natfun_inverse f))"
   644 
   645 definition
   646   fps_divide_def: "divide = (\<lambda>(f::'a fps) g. f * inverse g)"
   647 
   648 instance ..
   649 
   650 end
   651 
   652 lemma fps_inverse_zero [simp]:
   653   "inverse (0 :: 'a::{comm_monoid_add,inverse, times, uminus} fps) = 0"
   654   by (simp add: fps_ext fps_inverse_def)
   655 
   656 lemma fps_inverse_one [simp]: "inverse (1 :: 'a::{division_ring,zero_neq_one} fps) = 1"
   657   apply (auto simp add: expand_fps_eq fps_inverse_def)
   658   apply (case_tac n)
   659   apply auto
   660   done
   661 
   662 lemma inverse_mult_eq_1 [intro]:
   663   assumes f0: "f$0 \<noteq> (0::'a::field)"
   664   shows "inverse f * f = 1"
   665 proof -
   666   have c: "inverse f * f = f * inverse f" by (simp add: mult_commute)
   667   from f0 have ifn: "\<And>n. inverse f $ n = natfun_inverse f n"
   668     by (simp add: fps_inverse_def)
   669   from f0 have th0: "(inverse f * f) $ 0 = 1"
   670     by (simp add: fps_mult_nth fps_inverse_def)
   671   {
   672     fix n :: nat
   673     assume np: "n > 0"
   674     from np have eq: "{0..n} = {0} \<union> {1 .. n}" by auto
   675     have d: "{0} \<inter> {1 .. n} = {}" by auto
   676     from f0 np have th0: "- (inverse f $ n) =
   677       (setsum (\<lambda>i. f$i * natfun_inverse f (n - i)) {1..n}) / (f$0)"
   678       by (cases n) (simp_all add: divide_inverse fps_inverse_def)
   679     from th0[symmetric, unfolded nonzero_divide_eq_eq[OF f0]]
   680     have th1: "setsum (\<lambda>i. f$i * natfun_inverse f (n - i)) {1..n} = - (f$0) * (inverse f)$n"
   681       by (simp add: field_simps)
   682     have "(f * inverse f) $ n = (\<Sum>i = 0..n. f $i * natfun_inverse f (n - i))"
   683       unfolding fps_mult_nth ifn ..
   684     also have "\<dots> = f$0 * natfun_inverse f n + (\<Sum>i = 1..n. f$i * natfun_inverse f (n-i))"
   685       by (simp add: eq)
   686     also have "\<dots> = 0" unfolding th1 ifn by simp
   687     finally have "(inverse f * f)$n = 0" unfolding c .
   688   }
   689   with th0 show ?thesis by (simp add: fps_eq_iff)
   690 qed
   691 
   692 lemma fps_inverse_0_iff[simp]: "(inverse f)$0 = (0::'a::division_ring) \<longleftrightarrow> f$0 = 0"
   693   by (simp add: fps_inverse_def nonzero_imp_inverse_nonzero)
   694 
   695 lemma fps_inverse_eq_0_iff[simp]: "inverse f = (0:: ('a::field) fps) \<longleftrightarrow> f $0 = 0"
   696 proof -
   697   {
   698     assume "f$0 = 0"
   699     then have "inverse f = 0" by (simp add: fps_inverse_def)
   700   }
   701   moreover
   702   {
   703     assume h: "inverse f = 0" and c: "f $0 \<noteq> 0"
   704     from inverse_mult_eq_1[OF c] h have False by simp
   705   }
   706   ultimately show ?thesis by blast
   707 qed
   708 
   709 lemma fps_inverse_idempotent[intro]:
   710   assumes f0: "f$0 \<noteq> (0::'a::field)"
   711   shows "inverse (inverse f) = f"
   712 proof -
   713   from f0 have if0: "inverse f $ 0 \<noteq> 0" by simp
   714   from inverse_mult_eq_1[OF f0] inverse_mult_eq_1[OF if0]
   715   have "inverse f * f = inverse f * inverse (inverse f)"
   716     by (simp add: mult_ac)
   717   then show ?thesis using f0 unfolding mult_cancel_left by simp
   718 qed
   719 
   720 lemma fps_inverse_unique:
   721   assumes f0: "f$0 \<noteq> (0::'a::field)"
   722     and fg: "f*g = 1"
   723   shows "inverse f = g"
   724 proof -
   725   from inverse_mult_eq_1[OF f0] fg
   726   have th0: "inverse f * f = g * f" by (simp add: mult_ac)
   727   then show ?thesis using f0  unfolding mult_cancel_right
   728     by (auto simp add: expand_fps_eq)
   729 qed
   730 
   731 lemma fps_inverse_gp: "inverse (Abs_fps(\<lambda>n. (1::'a::field)))
   732     = Abs_fps (\<lambda>n. if n= 0 then 1 else if n=1 then - 1 else 0)"
   733   apply (rule fps_inverse_unique)
   734   apply simp
   735   apply (simp add: fps_eq_iff fps_mult_nth)
   736 proof clarsimp
   737   fix n :: nat
   738   assume n: "n > 0"
   739   let ?f = "\<lambda>i. if n = i then (1\<Colon>'a) else if n - i = 1 then - 1 else 0"
   740   let ?g = "\<lambda>i. if i = n then 1 else if i=n - 1 then - 1 else 0"
   741   let ?h = "\<lambda>i. if i=n - 1 then - 1 else 0"
   742   have th1: "setsum ?f {0..n} = setsum ?g {0..n}"
   743     by (rule setsum_cong2) auto
   744   have th2: "setsum ?g {0..n - 1} = setsum ?h {0..n - 1}"
   745     using n apply - by (rule setsum_cong2) auto
   746   have eq: "{0 .. n} = {0.. n - 1} \<union> {n}" by auto
   747   from n have d: "{0.. n - 1} \<inter> {n} = {}" by auto
   748   have f: "finite {0.. n - 1}" "finite {n}" by auto
   749   show "setsum ?f {0..n} = 0"
   750     unfolding th1
   751     apply (simp add: setsum_Un_disjoint[OF f d, unfolded eq[symmetric]] del: One_nat_def)
   752     unfolding th2
   753     apply (simp add: setsum_delta)
   754     done
   755 qed
   756 
   757 subsection{* Formal Derivatives, and the MacLaurin theorem around 0*}
   758 
   759 definition "fps_deriv f = Abs_fps (\<lambda>n. of_nat (n + 1) * f $ (n + 1))"
   760 
   761 lemma fps_deriv_nth[simp]: "fps_deriv f $ n = of_nat (n +1) * f $ (n+1)"
   762   by (simp add: fps_deriv_def)
   763 
   764 lemma fps_deriv_linear[simp]:
   765   "fps_deriv (fps_const (a::'a::comm_semiring_1) * f + fps_const b * g) =
   766     fps_const a * fps_deriv f + fps_const b * fps_deriv g"
   767   unfolding fps_eq_iff fps_add_nth  fps_const_mult_left fps_deriv_nth by (simp add: field_simps)
   768 
   769 lemma fps_deriv_mult[simp]:
   770   fixes f :: "('a :: comm_ring_1) fps"
   771   shows "fps_deriv (f * g) = f * fps_deriv g + fps_deriv f * g"
   772 proof -
   773   let ?D = "fps_deriv"
   774   { fix n::nat
   775     let ?Zn = "{0 ..n}"
   776     let ?Zn1 = "{0 .. n + 1}"
   777     let ?f = "\<lambda>i. i + 1"
   778     have fi: "inj_on ?f {0..n}" by (simp add: inj_on_def)
   779     have eq: "{1.. n+1} = ?f ` {0..n}" by auto
   780     let ?g = "\<lambda>i. of_nat (i+1) * g $ (i+1) * f $ (n - i) +
   781         of_nat (i+1)* f $ (i+1) * g $ (n - i)"
   782     let ?h = "\<lambda>i. of_nat i * g $ i * f $ ((n+1) - i) +
   783         of_nat i* f $ i * g $ ((n + 1) - i)"
   784     {
   785       fix k
   786       assume k: "k \<in> {0..n}"
   787       have "?h (k + 1) = ?g k" using k by auto
   788     }
   789     note th0 = this
   790     have eq': "{0..n +1}- {1 .. n+1} = {0}" by auto
   791     have s0: "setsum (\<lambda>i. of_nat i * f $ i * g $ (n + 1 - i)) ?Zn1 =
   792       setsum (\<lambda>i. of_nat (n + 1 - i) * f $ (n + 1 - i) * g $ i) ?Zn1"
   793       apply (rule setsum_reindex_cong[where f="\<lambda>i. n + 1 - i"])
   794       apply (simp add: inj_on_def Ball_def)
   795       apply presburger
   796       apply (rule set_eqI)
   797       apply (presburger add: image_iff)
   798       apply simp
   799       done
   800     have s1: "setsum (\<lambda>i. f $ i * g $ (n + 1 - i)) ?Zn1 =
   801       setsum (\<lambda>i. f $ (n + 1 - i) * g $ i) ?Zn1"
   802       apply (rule setsum_reindex_cong[where f="\<lambda>i. n + 1 - i"])
   803       apply (simp add: inj_on_def Ball_def)
   804       apply presburger
   805       apply (rule set_eqI)
   806       apply (presburger add: image_iff)
   807       apply simp
   808       done
   809     have "(f * ?D g + ?D f * g)$n = (?D g * f + ?D f * g)$n"
   810       by (simp only: mult_commute)
   811     also have "\<dots> = (\<Sum>i = 0..n. ?g i)"
   812       by (simp add: fps_mult_nth setsum_addf[symmetric])
   813     also have "\<dots> = setsum ?h {1..n+1}"
   814       using th0 setsum_reindex_cong[OF fi eq, of "?g" "?h"] by auto
   815     also have "\<dots> = setsum ?h {0..n+1}"
   816       apply (rule setsum_mono_zero_left)
   817       apply simp
   818       apply (simp add: subset_eq)
   819       unfolding eq'
   820       apply simp
   821       done
   822     also have "\<dots> = (fps_deriv (f * g)) $ n"
   823       apply (simp only: fps_deriv_nth fps_mult_nth setsum_addf)
   824       unfolding s0 s1
   825       unfolding setsum_addf[symmetric] setsum_right_distrib
   826       apply (rule setsum_cong2)
   827       apply (auto simp add: of_nat_diff field_simps)
   828       done
   829     finally have "(f * ?D g + ?D f * g) $ n = ?D (f*g) $ n" .
   830   }
   831   then show ?thesis unfolding fps_eq_iff by auto
   832 qed
   833 
   834 lemma fps_deriv_X[simp]: "fps_deriv X = 1"
   835   by (simp add: fps_deriv_def X_def fps_eq_iff)
   836 
   837 lemma fps_deriv_neg[simp]: "fps_deriv (- (f:: ('a:: comm_ring_1) fps)) = - (fps_deriv f)"
   838   by (simp add: fps_eq_iff fps_deriv_def)
   839 
   840 lemma fps_deriv_add[simp]: "fps_deriv ((f:: ('a::comm_ring_1) fps) + g) = fps_deriv f + fps_deriv g"
   841   using fps_deriv_linear[of 1 f 1 g] by simp
   842 
   843 lemma fps_deriv_sub[simp]: "fps_deriv ((f:: ('a::comm_ring_1) fps) - g) = fps_deriv f - fps_deriv g"
   844   using fps_deriv_add [of f "- g"] by simp
   845 
   846 lemma fps_deriv_const[simp]: "fps_deriv (fps_const c) = 0"
   847   by (simp add: fps_ext fps_deriv_def fps_const_def)
   848 
   849 lemma fps_deriv_mult_const_left[simp]:
   850     "fps_deriv (fps_const (c::'a::comm_ring_1) * f) = fps_const c * fps_deriv f"
   851   by simp
   852 
   853 lemma fps_deriv_0[simp]: "fps_deriv 0 = 0"
   854   by (simp add: fps_deriv_def fps_eq_iff)
   855 
   856 lemma fps_deriv_1[simp]: "fps_deriv 1 = 0"
   857   by (simp add: fps_deriv_def fps_eq_iff )
   858 
   859 lemma fps_deriv_mult_const_right[simp]:
   860     "fps_deriv (f * fps_const (c::'a::comm_ring_1)) = fps_deriv f * fps_const c"
   861   by simp
   862 
   863 lemma fps_deriv_setsum:
   864   "fps_deriv (setsum f S) = setsum (\<lambda>i. fps_deriv (f i :: ('a::comm_ring_1) fps)) S"
   865 proof (cases "finite S")
   866   case False
   867   then show ?thesis by simp
   868 next
   869   case True
   870   show ?thesis by (induct rule: finite_induct [OF True]) simp_all
   871 qed
   872 
   873 lemma fps_deriv_eq_0_iff [simp]:
   874   "fps_deriv f = 0 \<longleftrightarrow> (f = fps_const (f$0 :: 'a::{idom,semiring_char_0}))"
   875 proof -
   876   {
   877     assume "f = fps_const (f$0)"
   878     then have "fps_deriv f = fps_deriv (fps_const (f$0))" by simp
   879     then have "fps_deriv f = 0" by simp
   880   }
   881   moreover
   882   {
   883     assume z: "fps_deriv f = 0"
   884     then have "\<forall>n. (fps_deriv f)$n = 0" by simp
   885     then have "\<forall>n. f$(n+1) = 0" by (simp del: of_nat_Suc of_nat_add One_nat_def)
   886     then have "f = fps_const (f$0)"
   887       apply (clarsimp simp add: fps_eq_iff fps_const_def)
   888       apply (erule_tac x="n - 1" in allE)
   889       apply simp
   890       done
   891   }
   892   ultimately show ?thesis by blast
   893 qed
   894 
   895 lemma fps_deriv_eq_iff:
   896   fixes f:: "('a::{idom,semiring_char_0}) fps"
   897   shows "fps_deriv f = fps_deriv g \<longleftrightarrow> (f = fps_const(f$0 - g$0) + g)"
   898 proof -
   899   have "fps_deriv f = fps_deriv g \<longleftrightarrow> fps_deriv (f - g) = 0"
   900     by simp
   901   also have "\<dots> \<longleftrightarrow> f - g = fps_const ((f-g)$0)"
   902     unfolding fps_deriv_eq_0_iff ..
   903   finally show ?thesis by (simp add: field_simps)
   904 qed
   905 
   906 lemma fps_deriv_eq_iff_ex:
   907   "(fps_deriv f = fps_deriv g) \<longleftrightarrow> (\<exists>(c::'a::{idom,semiring_char_0}). f = fps_const c + g)"
   908   by (auto simp: fps_deriv_eq_iff)
   909 
   910 
   911 fun fps_nth_deriv :: "nat \<Rightarrow> ('a::semiring_1) fps \<Rightarrow> 'a fps"
   912 where
   913   "fps_nth_deriv 0 f = f"
   914 | "fps_nth_deriv (Suc n) f = fps_nth_deriv n (fps_deriv f)"
   915 
   916 lemma fps_nth_deriv_commute: "fps_nth_deriv (Suc n) f = fps_deriv (fps_nth_deriv n f)"
   917   by (induct n arbitrary: f) auto
   918 
   919 lemma fps_nth_deriv_linear[simp]:
   920   "fps_nth_deriv n (fps_const (a::'a::comm_semiring_1) * f + fps_const b * g) =
   921     fps_const a * fps_nth_deriv n f + fps_const b * fps_nth_deriv n g"
   922   by (induct n arbitrary: f g) (auto simp add: fps_nth_deriv_commute)
   923 
   924 lemma fps_nth_deriv_neg[simp]:
   925   "fps_nth_deriv n (- (f:: ('a:: comm_ring_1) fps)) = - (fps_nth_deriv n f)"
   926   by (induct n arbitrary: f) simp_all
   927 
   928 lemma fps_nth_deriv_add[simp]:
   929   "fps_nth_deriv n ((f:: ('a::comm_ring_1) fps) + g) = fps_nth_deriv n f + fps_nth_deriv n g"
   930   using fps_nth_deriv_linear[of n 1 f 1 g] by simp
   931 
   932 lemma fps_nth_deriv_sub[simp]:
   933   "fps_nth_deriv n ((f:: ('a::comm_ring_1) fps) - g) = fps_nth_deriv n f - fps_nth_deriv n g"
   934   using fps_nth_deriv_add [of n f "- g"] by simp
   935 
   936 lemma fps_nth_deriv_0[simp]: "fps_nth_deriv n 0 = 0"
   937   by (induct n) simp_all
   938 
   939 lemma fps_nth_deriv_1[simp]: "fps_nth_deriv n 1 = (if n = 0 then 1 else 0)"
   940   by (induct n) simp_all
   941 
   942 lemma fps_nth_deriv_const[simp]:
   943   "fps_nth_deriv n (fps_const c) = (if n = 0 then fps_const c else 0)"
   944   by (cases n) simp_all
   945 
   946 lemma fps_nth_deriv_mult_const_left[simp]:
   947   "fps_nth_deriv n (fps_const (c::'a::comm_ring_1) * f) = fps_const c * fps_nth_deriv n f"
   948   using fps_nth_deriv_linear[of n "c" f 0 0 ] by simp
   949 
   950 lemma fps_nth_deriv_mult_const_right[simp]:
   951   "fps_nth_deriv n (f * fps_const (c::'a::comm_ring_1)) = fps_nth_deriv n f * fps_const c"
   952   using fps_nth_deriv_linear[of n "c" f 0 0] by (simp add: mult_commute)
   953 
   954 lemma fps_nth_deriv_setsum:
   955   "fps_nth_deriv n (setsum f S) = setsum (\<lambda>i. fps_nth_deriv n (f i :: ('a::comm_ring_1) fps)) S"
   956 proof (cases "finite S")
   957   case True
   958   show ?thesis by (induct rule: finite_induct [OF True]) simp_all
   959 next
   960   case False
   961   then show ?thesis by simp
   962 qed
   963 
   964 lemma fps_deriv_maclauren_0:
   965   "(fps_nth_deriv k (f:: ('a::comm_semiring_1) fps)) $ 0 = of_nat (fact k) * f$(k)"
   966   by (induct k arbitrary: f) (auto simp add: field_simps of_nat_mult)
   967 
   968 subsection {* Powers*}
   969 
   970 lemma fps_power_zeroth_eq_one: "a$0 =1 \<Longrightarrow> a^n $ 0 = (1::'a::semiring_1)"
   971   by (induct n) (auto simp add: expand_fps_eq fps_mult_nth)
   972 
   973 lemma fps_power_first_eq: "(a:: 'a::comm_ring_1 fps)$0 =1 \<Longrightarrow> a^n $ 1 = of_nat n * a$1"
   974 proof (induct n)
   975   case 0
   976   then show ?case by simp
   977 next
   978   case (Suc n)
   979   note h = Suc.hyps[OF `a$0 = 1`]
   980   show ?case unfolding power_Suc fps_mult_nth
   981     using h `a$0 = 1` fps_power_zeroth_eq_one[OF `a$0=1`]
   982     by (simp add: field_simps)
   983 qed
   984 
   985 lemma startsby_one_power:"a $ 0 = (1::'a::comm_ring_1) \<Longrightarrow> a^n $ 0 = 1"
   986   by (induct n) (auto simp add: fps_mult_nth)
   987 
   988 lemma startsby_zero_power:"a $0 = (0::'a::comm_ring_1) \<Longrightarrow> n > 0 \<Longrightarrow> a^n $0 = 0"
   989   by (induct n) (auto simp add: fps_mult_nth)
   990 
   991 lemma startsby_power:"a $0 = (v::'a::{comm_ring_1}) \<Longrightarrow> a^n $0 = v^n"
   992   by (induct n) (auto simp add: fps_mult_nth)
   993 
   994 lemma startsby_zero_power_iff[simp]: "a^n $0 = (0::'a::{idom}) \<longleftrightarrow> (n \<noteq> 0 \<and> a$0 = 0)"
   995   apply (rule iffI)
   996   apply (induct n)
   997   apply (auto simp add: fps_mult_nth)
   998   apply (rule startsby_zero_power, simp_all)
   999   done
  1000 
  1001 lemma startsby_zero_power_prefix:
  1002   assumes a0: "a $0 = (0::'a::idom)"
  1003   shows "\<forall>n < k. a ^ k $ n = 0"
  1004   using a0
  1005 proof(induct k rule: nat_less_induct)
  1006   fix k
  1007   assume H: "\<forall>m<k. a $0 =  0 \<longrightarrow> (\<forall>n<m. a ^ m $ n = 0)" and a0: "a $0 = (0\<Colon>'a)"
  1008   let ?ths = "\<forall>m<k. a ^ k $ m = 0"
  1009   { assume "k = 0" then have ?ths by simp }
  1010   moreover
  1011   {
  1012     fix l
  1013     assume k: "k = Suc l"
  1014     {
  1015       fix m
  1016       assume mk: "m < k"
  1017       {
  1018         assume "m = 0"
  1019         then have "a^k $ m = 0"
  1020           using startsby_zero_power[of a k] k a0 by simp
  1021       }
  1022       moreover
  1023       {
  1024         assume m0: "m \<noteq> 0"
  1025         have "a ^k $ m = (a^l * a) $m" by (simp add: k mult_commute)
  1026         also have "\<dots> = (\<Sum>i = 0..m. a ^ l $ i * a $ (m - i))" by (simp add: fps_mult_nth)
  1027         also have "\<dots> = 0"
  1028           apply (rule setsum_0')
  1029           apply auto
  1030           apply (case_tac "x = m")
  1031           using a0 apply simp
  1032           apply (rule H[rule_format])
  1033           using a0 k mk apply auto
  1034           done
  1035         finally have "a^k $ m = 0" .
  1036       }
  1037       ultimately have "a^k $ m = 0" by blast
  1038     }
  1039     then have ?ths by blast
  1040   }
  1041   ultimately show ?ths by (cases k) auto
  1042 qed
  1043 
  1044 lemma startsby_zero_setsum_depends:
  1045   assumes a0: "a $0 = (0::'a::idom)" and kn: "n \<ge> k"
  1046   shows "setsum (\<lambda>i. (a ^ i)$k) {0 .. n} = setsum (\<lambda>i. (a ^ i)$k) {0 .. k}"
  1047   apply (rule setsum_mono_zero_right)
  1048   using kn apply auto
  1049   apply (rule startsby_zero_power_prefix[rule_format, OF a0])
  1050   apply arith
  1051   done
  1052 
  1053 lemma startsby_zero_power_nth_same:
  1054   assumes a0: "a$0 = (0::'a::{idom})"
  1055   shows "a^n $ n = (a$1) ^ n"
  1056 proof (induct n)
  1057   case 0
  1058   then show ?case by simp
  1059 next
  1060   case (Suc n)
  1061   have "a ^ Suc n $ (Suc n) = (a^n * a)$(Suc n)" by (simp add: field_simps)
  1062   also have "\<dots> = setsum (\<lambda>i. a^n$i * a $ (Suc n - i)) {0.. Suc n}"
  1063     by (simp add: fps_mult_nth)
  1064   also have "\<dots> = setsum (\<lambda>i. a^n$i * a $ (Suc n - i)) {n .. Suc n}"
  1065     apply (rule setsum_mono_zero_right)
  1066     apply simp
  1067     apply clarsimp
  1068     apply clarsimp
  1069     apply (rule startsby_zero_power_prefix[rule_format, OF a0])
  1070     apply arith
  1071     done
  1072   also have "\<dots> = a^n $ n * a$1" using a0 by simp
  1073   finally show ?case using Suc.hyps by simp
  1074 qed
  1075 
  1076 lemma fps_inverse_power:
  1077   fixes a :: "('a::{field}) fps"
  1078   shows "inverse (a^n) = inverse a ^ n"
  1079 proof -
  1080   {
  1081     assume a0: "a$0 = 0"
  1082     then have eq: "inverse a = 0" by (simp add: fps_inverse_def)
  1083     { assume "n = 0" hence ?thesis by simp }
  1084     moreover
  1085     {
  1086       assume n: "n > 0"
  1087       from startsby_zero_power[OF a0 n] eq a0 n have ?thesis
  1088         by (simp add: fps_inverse_def)
  1089     }
  1090     ultimately have ?thesis by blast
  1091   }
  1092   moreover
  1093   {
  1094     assume a0: "a$0 \<noteq> 0"
  1095     have ?thesis
  1096       apply (rule fps_inverse_unique)
  1097       apply (simp add: a0)
  1098       unfolding power_mult_distrib[symmetric]
  1099       apply (rule ssubst[where t = "a * inverse a" and s= 1])
  1100       apply simp_all
  1101       apply (subst mult_commute)
  1102       apply (rule inverse_mult_eq_1[OF a0])
  1103       done
  1104   }
  1105   ultimately show ?thesis by blast
  1106 qed
  1107 
  1108 lemma fps_deriv_power:
  1109     "fps_deriv (a ^ n) = fps_const (of_nat n :: 'a:: comm_ring_1) * fps_deriv a * a ^ (n - 1)"
  1110   apply (induct n)
  1111   apply (auto simp add: field_simps fps_const_add[symmetric] simp del: fps_const_add)
  1112   apply (case_tac n)
  1113   apply (auto simp add: field_simps)
  1114   done
  1115 
  1116 lemma fps_inverse_deriv:
  1117   fixes a:: "('a :: field) fps"
  1118   assumes a0: "a$0 \<noteq> 0"
  1119   shows "fps_deriv (inverse a) = - fps_deriv a * (inverse a)\<^sup>2"
  1120 proof-
  1121   from inverse_mult_eq_1[OF a0]
  1122   have "fps_deriv (inverse a * a) = 0" by simp
  1123   hence "inverse a * fps_deriv a + fps_deriv (inverse a) * a = 0" by simp
  1124   hence "inverse a * (inverse a * fps_deriv a + fps_deriv (inverse a) * a) = 0"  by simp
  1125   with inverse_mult_eq_1[OF a0]
  1126   have "(inverse a)\<^sup>2 * fps_deriv a + fps_deriv (inverse a) = 0"
  1127     unfolding power2_eq_square
  1128     apply (simp add: field_simps)
  1129     apply (simp add: mult_assoc[symmetric])
  1130     done
  1131   then have "(inverse a)\<^sup>2 * fps_deriv a + fps_deriv (inverse a) - fps_deriv a * (inverse a)\<^sup>2 =
  1132       0 - fps_deriv a * (inverse a)\<^sup>2"
  1133     by simp
  1134   then show "fps_deriv (inverse a) = - fps_deriv a * (inverse a)\<^sup>2"
  1135     by (simp add: field_simps)
  1136 qed
  1137 
  1138 lemma fps_inverse_mult:
  1139   fixes a::"('a :: field) fps"
  1140   shows "inverse (a * b) = inverse a * inverse b"
  1141 proof -
  1142   {
  1143     assume a0: "a$0 = 0" hence ab0: "(a*b)$0 = 0" by (simp add: fps_mult_nth)
  1144     from a0 ab0 have th: "inverse a = 0" "inverse (a*b) = 0" by simp_all
  1145     have ?thesis unfolding th by simp
  1146   }
  1147   moreover
  1148   {
  1149     assume b0: "b$0 = 0" hence ab0: "(a*b)$0 = 0" by (simp add: fps_mult_nth)
  1150     from b0 ab0 have th: "inverse b = 0" "inverse (a*b) = 0" by simp_all
  1151     have ?thesis unfolding th by simp
  1152   }
  1153   moreover
  1154   {
  1155     assume a0: "a$0 \<noteq> 0" and b0: "b$0 \<noteq> 0"
  1156     from a0 b0 have ab0:"(a*b) $ 0 \<noteq> 0" by (simp  add: fps_mult_nth)
  1157     from inverse_mult_eq_1[OF ab0]
  1158     have "inverse (a*b) * (a*b) * inverse a * inverse b = 1 * inverse a * inverse b" by simp
  1159     then have "inverse (a*b) * (inverse a * a) * (inverse b * b) = inverse a * inverse b"
  1160       by (simp add: field_simps)
  1161     then have ?thesis using inverse_mult_eq_1[OF a0] inverse_mult_eq_1[OF b0] by simp
  1162   }
  1163   ultimately show ?thesis by blast
  1164 qed
  1165 
  1166 lemma fps_inverse_deriv':
  1167   fixes a:: "('a :: field) fps"
  1168   assumes a0: "a$0 \<noteq> 0"
  1169   shows "fps_deriv (inverse a) = - fps_deriv a / a\<^sup>2"
  1170   using fps_inverse_deriv[OF a0]
  1171   unfolding power2_eq_square fps_divide_def fps_inverse_mult
  1172   by simp
  1173 
  1174 lemma inverse_mult_eq_1':
  1175   assumes f0: "f$0 \<noteq> (0::'a::field)"
  1176   shows "f * inverse f= 1"
  1177   by (metis mult_commute inverse_mult_eq_1 f0)
  1178 
  1179 lemma fps_divide_deriv:
  1180   fixes a:: "('a :: field) fps"
  1181   assumes a0: "b$0 \<noteq> 0"
  1182   shows "fps_deriv (a / b) = (fps_deriv a * b - a * fps_deriv b) / b\<^sup>2"
  1183   using fps_inverse_deriv[OF a0]
  1184   by (simp add: fps_divide_def field_simps
  1185     power2_eq_square fps_inverse_mult inverse_mult_eq_1'[OF a0])
  1186 
  1187 
  1188 lemma fps_inverse_gp': "inverse (Abs_fps(\<lambda>n. (1::'a::field))) = 1 - X"
  1189   by (simp add: fps_inverse_gp fps_eq_iff X_def)
  1190 
  1191 lemma fps_nth_deriv_X[simp]: "fps_nth_deriv n X = (if n = 0 then X else if n=1 then 1 else 0)"
  1192   by (cases n) simp_all
  1193 
  1194 
  1195 lemma fps_inverse_X_plus1:
  1196   "inverse (1 + X) = Abs_fps (\<lambda>n. (- (1::'a::{field})) ^ n)" (is "_ = ?r")
  1197 proof-
  1198   have eq: "(1 + X) * ?r = 1"
  1199     unfolding minus_one_power_iff
  1200     by (auto simp add: field_simps fps_eq_iff)
  1201   show ?thesis by (auto simp add: eq intro: fps_inverse_unique simp del: minus_one)
  1202 qed
  1203 
  1204 
  1205 subsection{* Integration *}
  1206 
  1207 definition fps_integral :: "'a::field_char_0 fps \<Rightarrow> 'a \<Rightarrow> 'a fps"
  1208   where "fps_integral a a0 = Abs_fps (\<lambda>n. if n = 0 then a0 else (a$(n - 1) / of_nat n))"
  1209 
  1210 lemma fps_deriv_fps_integral: "fps_deriv (fps_integral a a0) = a"
  1211   unfolding fps_integral_def fps_deriv_def
  1212   by (simp add: fps_eq_iff del: of_nat_Suc)
  1213 
  1214 lemma fps_integral_linear:
  1215   "fps_integral (fps_const a * f + fps_const b * g) (a*a0 + b*b0) =
  1216     fps_const a * fps_integral f a0 + fps_const b * fps_integral g b0"
  1217   (is "?l = ?r")
  1218 proof -
  1219   have "fps_deriv ?l = fps_deriv ?r" by (simp add: fps_deriv_fps_integral)
  1220   moreover have "?l$0 = ?r$0" by (simp add: fps_integral_def)
  1221   ultimately show ?thesis
  1222     unfolding fps_deriv_eq_iff by auto
  1223 qed
  1224 
  1225 
  1226 subsection {* Composition of FPSs *}
  1227 
  1228 definition fps_compose :: "('a::semiring_1) fps \<Rightarrow> 'a fps \<Rightarrow> 'a fps" (infixl "oo" 55) where
  1229   fps_compose_def: "a oo b = Abs_fps (\<lambda>n. setsum (\<lambda>i. a$i * (b^i$n)) {0..n})"
  1230 
  1231 lemma fps_compose_nth: "(a oo b)$n = setsum (\<lambda>i. a$i * (b^i$n)) {0..n}"
  1232   by (simp add: fps_compose_def)
  1233 
  1234 lemma fps_compose_X[simp]: "a oo X = (a :: ('a :: comm_ring_1) fps)"
  1235   by (simp add: fps_ext fps_compose_def mult_delta_right setsum_delta')
  1236 
  1237 lemma fps_const_compose[simp]:
  1238   "fps_const (a::'a::{comm_ring_1}) oo b = fps_const (a)"
  1239   by (simp add: fps_eq_iff fps_compose_nth mult_delta_left setsum_delta)
  1240 
  1241 lemma numeral_compose[simp]: "(numeral k::('a::{comm_ring_1}) fps) oo b = numeral k"
  1242   unfolding numeral_fps_const by simp
  1243 
  1244 lemma neg_numeral_compose[simp]: "(neg_numeral k::('a::{comm_ring_1}) fps) oo b = neg_numeral k"
  1245   unfolding neg_numeral_fps_const by simp
  1246 
  1247 lemma X_fps_compose_startby0[simp]: "a$0 = 0 \<Longrightarrow> X oo a = (a :: ('a :: comm_ring_1) fps)"
  1248   by (simp add: fps_eq_iff fps_compose_def mult_delta_left setsum_delta not_le)
  1249 
  1250 
  1251 subsection {* Rules from Herbert Wilf's Generatingfunctionology*}
  1252 
  1253 subsubsection {* Rule 1 *}
  1254   (* {a_{n+k}}_0^infty Corresponds to (f - setsum (\<lambda>i. a_i * x^i))/x^h, for h>0*)
  1255 
  1256 lemma fps_power_mult_eq_shift:
  1257   "X^Suc k * Abs_fps (\<lambda>n. a (n + Suc k)) =
  1258     Abs_fps a - setsum (\<lambda>i. fps_const (a i :: 'a:: comm_ring_1) * X^i) {0 .. k}"
  1259   (is "?lhs = ?rhs")
  1260 proof -
  1261   { fix n:: nat
  1262     have "?lhs $ n = (if n < Suc k then 0 else a n)"
  1263       unfolding X_power_mult_nth by auto
  1264     also have "\<dots> = ?rhs $ n"
  1265     proof (induct k)
  1266       case 0
  1267       thus ?case by (simp add: fps_setsum_nth)
  1268     next
  1269       case (Suc k)
  1270       note th = Suc.hyps[symmetric]
  1271       have "(Abs_fps a - setsum (\<lambda>i. fps_const (a i :: 'a) * X^i) {0 .. Suc k})$n =
  1272         (Abs_fps a - setsum (\<lambda>i. fps_const (a i :: 'a) * X^i) {0 .. k} -
  1273           fps_const (a (Suc k)) * X^ Suc k) $ n"
  1274         by (simp add: field_simps)
  1275       also have "\<dots> = (if n < Suc k then 0 else a n) - (fps_const (a (Suc k)) * X^ Suc k)$n"
  1276         using th unfolding fps_sub_nth by simp
  1277       also have "\<dots> = (if n < Suc (Suc k) then 0 else a n)"
  1278         unfolding X_power_mult_right_nth
  1279         apply (auto simp add: not_less fps_const_def)
  1280         apply (rule cong[of a a, OF refl])
  1281         apply arith
  1282         done
  1283       finally show ?case by simp
  1284     qed
  1285     finally have "?lhs $ n = ?rhs $ n" .
  1286   }
  1287   then show ?thesis by (simp add: fps_eq_iff)
  1288 qed
  1289 
  1290 
  1291 subsubsection {* Rule 2*}
  1292 
  1293   (* We can not reach the form of Wilf, but still near to it using rewrite rules*)
  1294   (* If f reprents {a_n} and P is a polynomial, then
  1295         P(xD) f represents {P(n) a_n}*)
  1296 
  1297 definition "XD = op * X o fps_deriv"
  1298 
  1299 lemma XD_add[simp]:"XD (a + b) = XD a + XD (b :: ('a::comm_ring_1) fps)"
  1300   by (simp add: XD_def field_simps)
  1301 
  1302 lemma XD_mult_const[simp]:"XD (fps_const (c::'a::comm_ring_1) * a) = fps_const c * XD a"
  1303   by (simp add: XD_def field_simps)
  1304 
  1305 lemma XD_linear[simp]: "XD (fps_const c * a + fps_const d * b) =
  1306     fps_const c * XD a + fps_const d * XD (b :: ('a::comm_ring_1) fps)"
  1307   by simp
  1308 
  1309 lemma XDN_linear:
  1310   "(XD ^^ n) (fps_const c * a + fps_const d * b) =
  1311     fps_const c * (XD ^^ n) a + fps_const d * (XD ^^ n) (b :: ('a::comm_ring_1) fps)"
  1312   by (induct n) simp_all
  1313 
  1314 lemma fps_mult_X_deriv_shift: "X* fps_deriv a = Abs_fps (\<lambda>n. of_nat n* a$n)"
  1315   by (simp add: fps_eq_iff)
  1316 
  1317 
  1318 lemma fps_mult_XD_shift:
  1319   "(XD ^^ k) (a:: ('a::{comm_ring_1}) fps) = Abs_fps (\<lambda>n. (of_nat n ^ k) * a$n)"
  1320   by (induct k arbitrary: a) (simp_all add: XD_def fps_eq_iff field_simps del: One_nat_def)
  1321 
  1322 
  1323 subsubsection{* Rule 3 is trivial and is given by @{text fps_times_def}*}
  1324 
  1325 subsubsection{* Rule 5 --- summation and "division" by (1 - X)*}
  1326 
  1327 lemma fps_divide_X_minus1_setsum_lemma:
  1328   "a = ((1::('a::comm_ring_1) fps) - X) * Abs_fps (\<lambda>n. setsum (\<lambda>i. a $ i) {0..n})"
  1329 proof -
  1330   let ?X = "X::('a::comm_ring_1) fps"
  1331   let ?sa = "Abs_fps (\<lambda>n. setsum (\<lambda>i. a $ i) {0..n})"
  1332   have th0: "\<And>i. (1 - (X::'a fps)) $ i = (if i = 0 then 1 else if i = 1 then - 1 else 0)"
  1333     by simp
  1334   {
  1335     fix n:: nat
  1336     {
  1337       assume "n=0"
  1338       hence "a$n = ((1 - ?X) * ?sa) $ n"
  1339         by (simp add: fps_mult_nth)
  1340     }
  1341     moreover
  1342     {
  1343       assume n0: "n \<noteq> 0"
  1344       then have u: "{0} \<union> ({1} \<union> {2..n}) = {0..n}" "{1}\<union>{2..n} = {1..n}"
  1345         "{0..n - 1}\<union>{n} = {0..n}"
  1346         by (auto simp: set_eq_iff)
  1347       have d: "{0} \<inter> ({1} \<union> {2..n}) = {}" "{1} \<inter> {2..n} = {}"
  1348         "{0..n - 1}\<inter>{n} ={}" using n0 by simp_all
  1349       have f: "finite {0}" "finite {1}" "finite {2 .. n}"
  1350         "finite {0 .. n - 1}" "finite {n}" by simp_all
  1351       have "((1 - ?X) * ?sa) $ n = setsum (\<lambda>i. (1 - ?X)$ i * ?sa $ (n - i)) {0 .. n}"
  1352         by (simp add: fps_mult_nth)
  1353       also have "\<dots> = a$n"
  1354         unfolding th0
  1355         unfolding setsum_Un_disjoint[OF f(1) finite_UnI[OF f(2,3)] d(1), unfolded u(1)]
  1356         unfolding setsum_Un_disjoint[OF f(2) f(3) d(2)]
  1357         apply (simp)
  1358         unfolding setsum_Un_disjoint[OF f(4,5) d(3), unfolded u(3)]
  1359         apply simp
  1360         done
  1361       finally have "a$n = ((1 - ?X) * ?sa) $ n" by simp
  1362     }
  1363     ultimately have "a$n = ((1 - ?X) * ?sa) $ n" by blast
  1364   }
  1365   then show ?thesis unfolding fps_eq_iff by blast
  1366 qed
  1367 
  1368 lemma fps_divide_X_minus1_setsum:
  1369   "a /((1::('a::field) fps) - X) = Abs_fps (\<lambda>n. setsum (\<lambda>i. a $ i) {0..n})"
  1370 proof -
  1371   let ?X = "1 - (X::('a::field) fps)"
  1372   have th0: "?X $ 0 \<noteq> 0" by simp
  1373   have "a /?X = ?X *  Abs_fps (\<lambda>n\<Colon>nat. setsum (op $ a) {0..n}) * inverse ?X"
  1374     using fps_divide_X_minus1_setsum_lemma[of a, symmetric] th0
  1375     by (simp add: fps_divide_def mult_assoc)
  1376   also have "\<dots> = (inverse ?X * ?X) * Abs_fps (\<lambda>n\<Colon>nat. setsum (op $ a) {0..n}) "
  1377     by (simp add: mult_ac)
  1378   finally show ?thesis by (simp add: inverse_mult_eq_1[OF th0])
  1379 qed
  1380 
  1381 
  1382 subsubsection{* Rule 4 in its more general form: generalizes Rule 3 for an arbitrary
  1383   finite product of FPS, also the relvant instance of powers of a FPS*}
  1384 
  1385 definition "natpermute n k = {l :: nat list. length l = k \<and> listsum l = n}"
  1386 
  1387 lemma natlist_trivial_1: "natpermute n 1 = {[n]}"
  1388   apply (auto simp add: natpermute_def)
  1389   apply (case_tac x)
  1390   apply auto
  1391   done
  1392 
  1393 lemma append_natpermute_less_eq:
  1394   assumes h: "xs@ys \<in> natpermute n k"
  1395   shows "listsum xs \<le> n" and "listsum ys \<le> n"
  1396 proof -
  1397   from h have "listsum (xs @ ys) = n" by (simp add: natpermute_def)
  1398   hence "listsum xs + listsum ys = n" by simp
  1399   then show "listsum xs \<le> n" and "listsum ys \<le> n" by simp_all
  1400 qed
  1401 
  1402 lemma natpermute_split:
  1403   assumes mn: "h \<le> k"
  1404   shows "natpermute n k =
  1405     (\<Union>m \<in>{0..n}. {l1 @ l2 |l1 l2. l1 \<in> natpermute m h \<and> l2 \<in> natpermute (n - m) (k - h)})"
  1406   (is "?L = ?R" is "?L = (\<Union>m \<in>{0..n}. ?S m)")
  1407 proof -
  1408   {
  1409     fix l
  1410     assume l: "l \<in> ?R"
  1411     from l obtain m xs ys where h: "m \<in> {0..n}"
  1412       and xs: "xs \<in> natpermute m h"
  1413       and ys: "ys \<in> natpermute (n - m) (k - h)"
  1414       and leq: "l = xs@ys" by blast
  1415     from xs have xs': "listsum xs = m"
  1416       by (simp add: natpermute_def)
  1417     from ys have ys': "listsum ys = n - m"
  1418       by (simp add: natpermute_def)
  1419     have "l \<in> ?L" using leq xs ys h
  1420       apply (clarsimp simp add: natpermute_def)
  1421       unfolding xs' ys'
  1422       using mn xs ys
  1423       unfolding natpermute_def
  1424       apply simp
  1425       done
  1426   }
  1427   moreover
  1428   {
  1429     fix l
  1430     assume l: "l \<in> natpermute n k"
  1431     let ?xs = "take h l"
  1432     let ?ys = "drop h l"
  1433     let ?m = "listsum ?xs"
  1434     from l have ls: "listsum (?xs @ ?ys) = n"
  1435       by (simp add: natpermute_def)
  1436     have xs: "?xs \<in> natpermute ?m h" using l mn
  1437       by (simp add: natpermute_def)
  1438     have l_take_drop: "listsum l = listsum (take h l @ drop h l)"
  1439       by simp
  1440     then have ys: "?ys \<in> natpermute (n - ?m) (k - h)"
  1441       using l mn ls by (auto simp add: natpermute_def simp del: append_take_drop_id)
  1442     from ls have m: "?m \<in> {0..n}"
  1443       by (simp add: l_take_drop del: append_take_drop_id)
  1444     from xs ys ls have "l \<in> ?R"
  1445       apply auto
  1446       apply (rule bexI [where x = "?m"])
  1447       apply (rule exI [where x = "?xs"])
  1448       apply (rule exI [where x = "?ys"])
  1449       using ls l
  1450       apply (auto simp add: natpermute_def l_take_drop simp del: append_take_drop_id)
  1451       apply simp
  1452       done
  1453   }
  1454   ultimately show ?thesis by blast
  1455 qed
  1456 
  1457 lemma natpermute_0: "natpermute n 0 = (if n = 0 then {[]} else {})"
  1458   by (auto simp add: natpermute_def)
  1459 
  1460 lemma natpermute_0'[simp]: "natpermute 0 k = (if k = 0 then {[]} else {replicate k 0})"
  1461   apply (auto simp add: set_replicate_conv_if natpermute_def)
  1462   apply (rule nth_equalityI)
  1463   apply simp_all
  1464   done
  1465 
  1466 lemma natpermute_finite: "finite (natpermute n k)"
  1467 proof (induct k arbitrary: n)
  1468   case 0
  1469   then show ?case
  1470     apply (subst natpermute_split[of 0 0, simplified])
  1471     apply (simp add: natpermute_0)
  1472     done
  1473 next
  1474   case (Suc k)
  1475   then show ?case unfolding natpermute_split [of k "Suc k", simplified]
  1476     apply -
  1477     apply (rule finite_UN_I)
  1478     apply simp
  1479     unfolding One_nat_def[symmetric] natlist_trivial_1
  1480     apply simp
  1481     done
  1482 qed
  1483 
  1484 lemma natpermute_contain_maximal:
  1485   "{xs \<in> natpermute n (k+1). n \<in> set xs} = UNION {0 .. k} (\<lambda>i. {(replicate (k+1) 0) [i:=n]})"
  1486   (is "?A = ?B")
  1487 proof -
  1488   {
  1489     fix xs
  1490     assume H: "xs \<in> natpermute n (k+1)" and n: "n \<in> set xs"
  1491     from n obtain i where i: "i \<in> {0.. k}" "xs!i = n" using H
  1492       unfolding in_set_conv_nth by (auto simp add: less_Suc_eq_le natpermute_def)
  1493     have eqs: "({0..k} - {i}) \<union> {i} = {0..k}"
  1494       using i by auto
  1495     have f: "finite({0..k} - {i})" "finite {i}"
  1496       by auto
  1497     have d: "({0..k} - {i}) \<inter> {i} = {}"
  1498       using i by auto
  1499     from H have "n = setsum (nth xs) {0..k}"
  1500       apply (simp add: natpermute_def)
  1501       apply (auto simp add: atLeastLessThanSuc_atLeastAtMost listsum_setsum_nth)
  1502       done
  1503     also have "\<dots> = n + setsum (nth xs) ({0..k} - {i})"
  1504       unfolding setsum_Un_disjoint[OF f d, unfolded eqs] using i by simp
  1505     finally have zxs: "\<forall> j\<in> {0..k} - {i}. xs!j = 0"
  1506       by auto
  1507     from H have xsl: "length xs = k+1"
  1508       by (simp add: natpermute_def)
  1509     from i have i': "i < length (replicate (k+1) 0)"   "i < k+1"
  1510       unfolding length_replicate by presburger+
  1511     have "xs = replicate (k+1) 0 [i := n]"
  1512       apply (rule nth_equalityI)
  1513       unfolding xsl length_list_update length_replicate
  1514       apply simp
  1515       apply clarify
  1516       unfolding nth_list_update[OF i'(1)]
  1517       using i zxs
  1518       apply (case_tac "ia = i")
  1519       apply (auto simp del: replicate.simps)
  1520       done
  1521     then have "xs \<in> ?B" using i by blast
  1522   }
  1523   moreover
  1524   {
  1525     fix i
  1526     assume i: "i \<in> {0..k}"
  1527     let ?xs = "replicate (k+1) 0 [i:=n]"
  1528     have nxs: "n \<in> set ?xs"
  1529       apply (rule set_update_memI)
  1530       using i apply simp
  1531       done
  1532     have xsl: "length ?xs = k+1"
  1533       by (simp only: length_replicate length_list_update)
  1534     have "listsum ?xs = setsum (nth ?xs) {0..<k+1}"
  1535       unfolding listsum_setsum_nth xsl ..
  1536     also have "\<dots> = setsum (\<lambda>j. if j = i then n else 0) {0..< k+1}"
  1537       by (rule setsum_cong2) (simp del: replicate.simps)
  1538     also have "\<dots> = n" using i by (simp add: setsum_delta)
  1539     finally have "?xs \<in> natpermute n (k+1)"
  1540       using xsl unfolding natpermute_def mem_Collect_eq by blast
  1541     then have "?xs \<in> ?A"
  1542       using nxs  by blast
  1543   }
  1544   ultimately show ?thesis by auto
  1545 qed
  1546 
  1547     (* The general form *)
  1548 lemma fps_setprod_nth:
  1549   fixes m :: nat
  1550     and a :: "nat \<Rightarrow> ('a::comm_ring_1) fps"
  1551   shows "(setprod a {0 .. m})$n =
  1552     setsum (\<lambda>v. setprod (\<lambda>j. (a j) $ (v!j)) {0..m}) (natpermute n (m+1))"
  1553   (is "?P m n")
  1554 proof (induct m arbitrary: n rule: nat_less_induct)
  1555   fix m n assume H: "\<forall>m' < m. \<forall>n. ?P m' n"
  1556   show "?P m n"
  1557   proof (cases m)
  1558     case 0
  1559     then show ?thesis
  1560       apply simp
  1561       unfolding natlist_trivial_1[where n = n, unfolded One_nat_def]
  1562       apply simp
  1563       done
  1564   next
  1565     case (Suc k)
  1566     then have km: "k < m" by arith
  1567     have u0: "{0 .. k} \<union> {m} = {0..m}"
  1568       using Suc apply (simp add: set_eq_iff)
  1569       apply presburger
  1570       done
  1571     have f0: "finite {0 .. k}" "finite {m}" by auto
  1572     have d0: "{0 .. k} \<inter> {m} = {}" using Suc by auto
  1573     have "(setprod a {0 .. m}) $ n = (setprod a {0 .. k} * a m) $ n"
  1574       unfolding setprod_Un_disjoint[OF f0 d0, unfolded u0] by simp
  1575     also have "\<dots> = (\<Sum>i = 0..n. (\<Sum>v\<in>natpermute i (k + 1). \<Prod>j\<in>{0..k}. a j $ v ! j) * a m $ (n - i))"
  1576       unfolding fps_mult_nth H[rule_format, OF km] ..
  1577     also have "\<dots> = (\<Sum>v\<in>natpermute n (m + 1). \<Prod>j\<in>{0..m}. a j $ v ! j)"
  1578       apply (simp add: Suc)
  1579       unfolding natpermute_split[of m "m + 1", simplified, of n,
  1580         unfolded natlist_trivial_1[unfolded One_nat_def] Suc]
  1581       apply (subst setsum_UN_disjoint)
  1582       apply simp
  1583       apply simp
  1584       unfolding image_Collect[symmetric]
  1585       apply clarsimp
  1586       apply (rule finite_imageI)
  1587       apply (rule natpermute_finite)
  1588       apply (clarsimp simp add: set_eq_iff)
  1589       apply auto
  1590       apply (rule setsum_cong2)
  1591       unfolding setsum_left_distrib
  1592       apply (rule sym)
  1593       apply (rule_tac f="\<lambda>xs. xs @[n - x]" in  setsum_reindex_cong)
  1594       apply (simp add: inj_on_def)
  1595       apply auto
  1596       unfolding setprod_Un_disjoint[OF f0 d0, unfolded u0, unfolded Suc]
  1597       apply (clarsimp simp add: natpermute_def nth_append)
  1598       done
  1599     finally show ?thesis .
  1600   qed
  1601 qed
  1602 
  1603 text{* The special form for powers *}
  1604 lemma fps_power_nth_Suc:
  1605   fixes m :: nat
  1606     and a :: "('a::comm_ring_1) fps"
  1607   shows "(a ^ Suc m)$n = setsum (\<lambda>v. setprod (\<lambda>j. a $ (v!j)) {0..m}) (natpermute n (m+1))"
  1608 proof -
  1609   have th0: "a^Suc m = setprod (\<lambda>i. a) {0..m}" by (simp add: setprod_constant)
  1610   show ?thesis unfolding th0 fps_setprod_nth ..
  1611 qed
  1612 
  1613 lemma fps_power_nth:
  1614   fixes m :: nat and a :: "('a::comm_ring_1) fps"
  1615   shows "(a ^m)$n =
  1616     (if m=0 then 1$n else setsum (\<lambda>v. setprod (\<lambda>j. a $ (v!j)) {0..m - 1}) (natpermute n m))"
  1617   by (cases m) (simp_all add: fps_power_nth_Suc del: power_Suc)
  1618 
  1619 lemma fps_nth_power_0:
  1620   fixes m :: nat and a :: "('a::{comm_ring_1}) fps"
  1621   shows "(a ^m)$0 = (a$0) ^ m"
  1622 proof (cases m)
  1623   case 0
  1624   then show ?thesis by simp
  1625 next
  1626   case (Suc n)
  1627   then have c: "m = card {0..n}" by simp
  1628   have "(a ^m)$0 = setprod (\<lambda>i. a$0) {0..n}"
  1629     by (simp add: Suc fps_power_nth del: replicate.simps power_Suc)
  1630   also have "\<dots> = (a$0) ^ m"
  1631    unfolding c by (rule setprod_constant) simp
  1632  finally show ?thesis .
  1633 qed
  1634 
  1635 lemma fps_compose_inj_right:
  1636   assumes a0: "a$0 = (0::'a::{idom})"
  1637     and a1: "a$1 \<noteq> 0"
  1638   shows "(b oo a = c oo a) \<longleftrightarrow> b = c" (is "?lhs \<longleftrightarrow>?rhs")
  1639 proof
  1640   assume ?rhs
  1641   then show "?lhs" by simp
  1642 next
  1643   assume h: ?lhs
  1644   {
  1645     fix n
  1646     have "b$n = c$n"
  1647     proof (induct n rule: nat_less_induct)
  1648       fix n
  1649       assume H: "\<forall>m<n. b$m = c$m"
  1650       {
  1651         assume n0: "n=0"
  1652         from h have "(b oo a)$n = (c oo a)$n" by simp
  1653         hence "b$n = c$n" using n0 by (simp add: fps_compose_nth)
  1654       }
  1655       moreover
  1656       {
  1657         fix n1 assume n1: "n = Suc n1"
  1658         have f: "finite {0 .. n1}" "finite {n}" by simp_all
  1659         have eq: "{0 .. n1} \<union> {n} = {0 .. n}" using n1 by auto
  1660         have d: "{0 .. n1} \<inter> {n} = {}" using n1 by auto
  1661         have seq: "(\<Sum>i = 0..n1. b $ i * a ^ i $ n) = (\<Sum>i = 0..n1. c $ i * a ^ i $ n)"
  1662           apply (rule setsum_cong2)
  1663           using H n1
  1664           apply auto
  1665           done
  1666         have th0: "(b oo a) $n = (\<Sum>i = 0..n1. c $ i * a ^ i $ n) + b$n * (a$1)^n"
  1667           unfolding fps_compose_nth setsum_Un_disjoint[OF f d, unfolded eq] seq
  1668           using startsby_zero_power_nth_same[OF a0]
  1669           by simp
  1670         have th1: "(c oo a) $n = (\<Sum>i = 0..n1. c $ i * a ^ i $ n) + c$n * (a$1)^n"
  1671           unfolding fps_compose_nth setsum_Un_disjoint[OF f d, unfolded eq]
  1672           using startsby_zero_power_nth_same[OF a0]
  1673           by simp
  1674         from h[unfolded fps_eq_iff, rule_format, of n] th0 th1 a1
  1675         have "b$n = c$n" by auto
  1676       }
  1677       ultimately show "b$n = c$n" by (cases n) auto
  1678     qed}
  1679   then show ?rhs by (simp add: fps_eq_iff)
  1680 qed
  1681 
  1682 
  1683 subsection {* Radicals *}
  1684 
  1685 declare setprod_cong [fundef_cong]
  1686 
  1687 function radical :: "(nat \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> ('a::{field}) fps \<Rightarrow> nat \<Rightarrow> 'a"
  1688 where
  1689   "radical r 0 a 0 = 1"
  1690 | "radical r 0 a (Suc n) = 0"
  1691 | "radical r (Suc k) a 0 = r (Suc k) (a$0)"
  1692 | "radical r (Suc k) a (Suc n) =
  1693     (a$ Suc n - setsum (\<lambda>xs. setprod (\<lambda>j. radical r (Suc k) a (xs ! j)) {0..k})
  1694       {xs. xs \<in> natpermute (Suc n) (Suc k) \<and> Suc n \<notin> set xs}) /
  1695     (of_nat (Suc k) * (radical r (Suc k) a 0)^k)"
  1696   by pat_completeness auto
  1697 
  1698 termination radical
  1699 proof
  1700   let ?R = "measure (\<lambda>(r, k, a, n). n)"
  1701   {
  1702     show "wf ?R" by auto
  1703   next
  1704     fix r k a n xs i
  1705     assume xs: "xs \<in> {xs \<in> natpermute (Suc n) (Suc k). Suc n \<notin> set xs}" and i: "i \<in> {0..k}"
  1706     {
  1707       assume c: "Suc n \<le> xs ! i"
  1708       from xs i have "xs !i \<noteq> Suc n"
  1709         by (auto simp add: in_set_conv_nth natpermute_def)
  1710       with c have c': "Suc n < xs!i" by arith
  1711       have fths: "finite {0 ..< i}" "finite {i}" "finite {i+1..<Suc k}"
  1712         by simp_all
  1713       have d: "{0 ..< i} \<inter> ({i} \<union> {i+1 ..< Suc k}) = {}" "{i} \<inter> {i+1..< Suc k} = {}"
  1714         by auto
  1715       have eqs: "{0..<Suc k} = {0 ..< i} \<union> ({i} \<union> {i+1 ..< Suc k})"
  1716         using i by auto
  1717       from xs have "Suc n = listsum xs"
  1718         by (simp add: natpermute_def)
  1719       also have "\<dots> = setsum (nth xs) {0..<Suc k}" using xs
  1720         by (simp add: natpermute_def listsum_setsum_nth)
  1721       also have "\<dots> = xs!i + setsum (nth xs) {0..<i} + setsum (nth xs) {i+1..<Suc k}"
  1722         unfolding eqs  setsum_Un_disjoint[OF fths(1) finite_UnI[OF fths(2,3)] d(1)]
  1723         unfolding setsum_Un_disjoint[OF fths(2) fths(3) d(2)]
  1724         by simp
  1725       finally have False using c' by simp
  1726     }
  1727     then show "((r, Suc k, a, xs!i), r, Suc k, a, Suc n) \<in> ?R"
  1728       apply auto
  1729       apply (metis not_less)
  1730       done
  1731   next
  1732     fix r k a n
  1733     show "((r, Suc k, a, 0), r, Suc k, a, Suc n) \<in> ?R" by simp
  1734   }
  1735 qed
  1736 
  1737 definition "fps_radical r n a = Abs_fps (radical r n a)"
  1738 
  1739 lemma fps_radical0[simp]: "fps_radical r 0 a = 1"
  1740   apply (auto simp add: fps_eq_iff fps_radical_def)
  1741   apply (case_tac n)
  1742   apply auto
  1743   done
  1744 
  1745 lemma fps_radical_nth_0[simp]: "fps_radical r n a $ 0 = (if n=0 then 1 else r n (a$0))"
  1746   by (cases n) (simp_all add: fps_radical_def)
  1747 
  1748 lemma fps_radical_power_nth[simp]:
  1749   assumes r: "(r k (a$0)) ^ k = a$0"
  1750   shows "fps_radical r k a ^ k $ 0 = (if k = 0 then 1 else a$0)"
  1751 proof (cases k)
  1752   case 0
  1753   then show ?thesis by simp
  1754 next
  1755   case (Suc h)
  1756   have eq1: "fps_radical r k a ^ k $ 0 = (\<Prod>j\<in>{0..h}. fps_radical r k a $ (replicate k 0) ! j)"
  1757     unfolding fps_power_nth Suc by simp
  1758   also have "\<dots> = (\<Prod>j\<in>{0..h}. r k (a$0))"
  1759     apply (rule setprod_cong)
  1760     apply simp
  1761     using Suc
  1762     apply (subgoal_tac "replicate k (0::nat) ! x = 0")
  1763     apply (auto intro: nth_replicate simp del: replicate.simps)
  1764     done
  1765   also have "\<dots> = a$0" using r Suc by (simp add: setprod_constant)
  1766   finally show ?thesis using Suc by simp
  1767 qed
  1768 
  1769 lemma natpermute_max_card:
  1770   assumes n0: "n\<noteq>0"
  1771   shows "card {xs \<in> natpermute n (k+1). n \<in> set xs} = k + 1"
  1772   unfolding natpermute_contain_maximal
  1773 proof -
  1774   let ?A= "\<lambda>i. {replicate (k + 1) 0[i := n]}"
  1775   let ?K = "{0 ..k}"
  1776   have fK: "finite ?K" by simp
  1777   have fAK: "\<forall>i\<in>?K. finite (?A i)" by auto
  1778   have d: "\<forall>i\<in> ?K. \<forall>j\<in> ?K. i \<noteq> j \<longrightarrow>
  1779     {replicate (k + 1) 0[i := n]} \<inter> {replicate (k + 1) 0[j := n]} = {}"
  1780   proof clarify
  1781     fix i j
  1782     assume i: "i \<in> ?K" and j: "j\<in> ?K" and ij: "i\<noteq>j"
  1783     {
  1784       assume eq: "replicate (k+1) 0 [i:=n] = replicate (k+1) 0 [j:= n]"
  1785       have "(replicate (k+1) 0 [i:=n] ! i) = n"
  1786         using i by (simp del: replicate.simps)
  1787       moreover
  1788       have "(replicate (k+1) 0 [j:=n] ! i) = 0"
  1789         using i ij by (simp del: replicate.simps)
  1790       ultimately have False
  1791         using eq n0 by (simp del: replicate.simps)
  1792     }
  1793     then show "{replicate (k + 1) 0[i := n]} \<inter> {replicate (k + 1) 0[j := n]} = {}"
  1794       by auto
  1795   qed
  1796   from card_UN_disjoint[OF fK fAK d] show "card (\<Union>i\<in>{0..k}. {replicate (k + 1) 0[i := n]}) = k+1"
  1797     by simp
  1798 qed
  1799 
  1800 lemma power_radical:
  1801   fixes a:: "'a::field_char_0 fps"
  1802   assumes a0: "a$0 \<noteq> 0"
  1803   shows "(r (Suc k) (a$0)) ^ Suc k = a$0 \<longleftrightarrow> (fps_radical r (Suc k) a) ^ (Suc k) = a"
  1804 proof-
  1805   let ?r = "fps_radical r (Suc k) a"
  1806   {
  1807     assume r0: "(r (Suc k) (a$0)) ^ Suc k = a$0"
  1808     from a0 r0 have r00: "r (Suc k) (a$0) \<noteq> 0" by auto
  1809     {
  1810       fix z
  1811       have "?r ^ Suc k $ z = a$z"
  1812       proof (induct z rule: nat_less_induct)
  1813         fix n
  1814         assume H: "\<forall>m<n. ?r ^ Suc k $ m = a$m"
  1815         {
  1816           assume "n = 0"
  1817           hence "?r ^ Suc k $ n = a $n"
  1818             using fps_radical_power_nth[of r "Suc k" a, OF r0] by simp
  1819         }
  1820         moreover
  1821         {
  1822           fix n1 assume n1: "n = Suc n1"
  1823           have nz: "n \<noteq> 0" using n1 by arith
  1824           let ?Pnk = "natpermute n (k + 1)"
  1825           let ?Pnkn = "{xs \<in> ?Pnk. n \<in> set xs}"
  1826           let ?Pnknn = "{xs \<in> ?Pnk. n \<notin> set xs}"
  1827           have eq: "?Pnkn \<union> ?Pnknn = ?Pnk" by blast
  1828           have d: "?Pnkn \<inter> ?Pnknn = {}" by blast
  1829           have f: "finite ?Pnkn" "finite ?Pnknn"
  1830             using finite_Un[of ?Pnkn ?Pnknn, unfolded eq]
  1831             by (metis natpermute_finite)+
  1832           let ?f = "\<lambda>v. \<Prod>j\<in>{0..k}. ?r $ v ! j"
  1833           have "setsum ?f ?Pnkn = setsum (\<lambda>v. ?r $ n * r (Suc k) (a $ 0) ^ k) ?Pnkn"
  1834           proof (rule setsum_cong2)
  1835             fix v assume v: "v \<in> {xs \<in> natpermute n (k + 1). n \<in> set xs}"
  1836             let ?ths = "(\<Prod>j\<in>{0..k}. fps_radical r (Suc k) a $ v ! j) =
  1837               fps_radical r (Suc k) a $ n * r (Suc k) (a $ 0) ^ k"
  1838             from v obtain i where i: "i \<in> {0..k}" "v = replicate (k+1) 0 [i:= n]"
  1839               unfolding natpermute_contain_maximal by auto
  1840             have "(\<Prod>j\<in>{0..k}. fps_radical r (Suc k) a $ v ! j) =
  1841                 (\<Prod>j\<in>{0..k}. if j = i then fps_radical r (Suc k) a $ n else r (Suc k) (a$0))"
  1842               apply (rule setprod_cong, simp)
  1843               using i r0
  1844               apply (simp del: replicate.simps)
  1845               done
  1846             also have "\<dots> = (fps_radical r (Suc k) a $ n) * r (Suc k) (a$0) ^ k"
  1847               using i r0 by (simp add: setprod_gen_delta)
  1848             finally show ?ths .
  1849           qed
  1850           then have "setsum ?f ?Pnkn = of_nat (k+1) * ?r $ n * r (Suc k) (a $ 0) ^ k"
  1851             by (simp add: natpermute_max_card[OF nz, simplified])
  1852           also have "\<dots> = a$n - setsum ?f ?Pnknn"
  1853             unfolding n1 using r00 a0 by (simp add: field_simps fps_radical_def del: of_nat_Suc)
  1854           finally have fn: "setsum ?f ?Pnkn = a$n - setsum ?f ?Pnknn" .
  1855           have "(?r ^ Suc k)$n = setsum ?f ?Pnkn + setsum ?f ?Pnknn"
  1856             unfolding fps_power_nth_Suc setsum_Un_disjoint[OF f d, unfolded eq] ..
  1857           also have "\<dots> = a$n" unfolding fn by simp
  1858           finally have "?r ^ Suc k $ n = a $n" .
  1859         }
  1860         ultimately  show "?r ^ Suc k $ n = a $n" by (cases n) auto
  1861       qed
  1862     }
  1863     then have ?thesis using r0 by (simp add: fps_eq_iff)
  1864   }
  1865   moreover
  1866   {
  1867     assume h: "(fps_radical r (Suc k) a) ^ (Suc k) = a"
  1868     hence "((fps_radical r (Suc k) a) ^ (Suc k))$0 = a$0" by simp
  1869     then have "(r (Suc k) (a$0)) ^ Suc k = a$0"
  1870       unfolding fps_power_nth_Suc
  1871       by (simp add: setprod_constant del: replicate.simps)
  1872   }
  1873   ultimately show ?thesis by blast
  1874 qed
  1875 
  1876 (*
  1877 lemma power_radical:
  1878   fixes a:: "'a::field_char_0 fps"
  1879   assumes r0: "(r (Suc k) (a$0)) ^ Suc k = a$0" and a0: "a$0 \<noteq> 0"
  1880   shows "(fps_radical r (Suc k) a) ^ (Suc k) = a"
  1881 proof-
  1882   let ?r = "fps_radical r (Suc k) a"
  1883   from a0 r0 have r00: "r (Suc k) (a$0) \<noteq> 0" by auto
  1884   {fix z have "?r ^ Suc k $ z = a$z"
  1885     proof(induct z rule: nat_less_induct)
  1886       fix n assume H: "\<forall>m<n. ?r ^ Suc k $ m = a$m"
  1887       {assume "n = 0" hence "?r ^ Suc k $ n = a $n"
  1888           using fps_radical_power_nth[of r "Suc k" a, OF r0] by simp}
  1889       moreover
  1890       {fix n1 assume n1: "n = Suc n1"
  1891         have fK: "finite {0..k}" by simp
  1892         have nz: "n \<noteq> 0" using n1 by arith
  1893         let ?Pnk = "natpermute n (k + 1)"
  1894         let ?Pnkn = "{xs \<in> ?Pnk. n \<in> set xs}"
  1895         let ?Pnknn = "{xs \<in> ?Pnk. n \<notin> set xs}"
  1896         have eq: "?Pnkn \<union> ?Pnknn = ?Pnk" by blast
  1897         have d: "?Pnkn \<inter> ?Pnknn = {}" by blast
  1898         have f: "finite ?Pnkn" "finite ?Pnknn"
  1899           using finite_Un[of ?Pnkn ?Pnknn, unfolded eq]
  1900           by (metis natpermute_finite)+
  1901         let ?f = "\<lambda>v. \<Prod>j\<in>{0..k}. ?r $ v ! j"
  1902         have "setsum ?f ?Pnkn = setsum (\<lambda>v. ?r $ n * r (Suc k) (a $ 0) ^ k) ?Pnkn"
  1903         proof(rule setsum_cong2)
  1904           fix v assume v: "v \<in> {xs \<in> natpermute n (k + 1). n \<in> set xs}"
  1905           let ?ths = "(\<Prod>j\<in>{0..k}. fps_radical r (Suc k) a $ v ! j) = fps_radical r (Suc k) a $ n * r (Suc k) (a $ 0) ^ k"
  1906           from v obtain i where i: "i \<in> {0..k}" "v = replicate (k+1) 0 [i:= n]"
  1907             unfolding natpermute_contain_maximal by auto
  1908           have "(\<Prod>j\<in>{0..k}. fps_radical r (Suc k) a $ v ! j) = (\<Prod>j\<in>{0..k}. if j = i then fps_radical r (Suc k) a $ n else r (Suc k) (a$0))"
  1909             apply (rule setprod_cong, simp)
  1910             using i r0 by (simp del: replicate.simps)
  1911           also have "\<dots> = (fps_radical r (Suc k) a $ n) * r (Suc k) (a$0) ^ k"
  1912             unfolding setprod_gen_delta[OF fK] using i r0 by simp
  1913           finally show ?ths .
  1914         qed
  1915         then have "setsum ?f ?Pnkn = of_nat (k+1) * ?r $ n * r (Suc k) (a $ 0) ^ k"
  1916           by (simp add: natpermute_max_card[OF nz, simplified])
  1917         also have "\<dots> = a$n - setsum ?f ?Pnknn"
  1918           unfolding n1 using r00 a0 by (simp add: field_simps fps_radical_def del: of_nat_Suc )
  1919         finally have fn: "setsum ?f ?Pnkn = a$n - setsum ?f ?Pnknn" .
  1920         have "(?r ^ Suc k)$n = setsum ?f ?Pnkn + setsum ?f ?Pnknn"
  1921           unfolding fps_power_nth_Suc setsum_Un_disjoint[OF f d, unfolded eq] ..
  1922         also have "\<dots> = a$n" unfolding fn by simp
  1923         finally have "?r ^ Suc k $ n = a $n" .}
  1924       ultimately  show "?r ^ Suc k $ n = a $n" by (cases n, auto)
  1925   qed }
  1926   then show ?thesis by (simp add: fps_eq_iff)
  1927 qed
  1928 
  1929 *)
  1930 lemma eq_divide_imp':
  1931   assumes c0: "(c::'a::field) ~= 0"
  1932     and eq: "a * c = b"
  1933   shows "a = b / c"
  1934 proof -
  1935   from eq have "a * c * inverse c = b * inverse c"
  1936     by simp
  1937   hence "a * (inverse c * c) = b/c"
  1938     by (simp only: field_simps divide_inverse)
  1939   then show "a = b/c"
  1940     unfolding  field_inverse[OF c0] by simp
  1941 qed
  1942 
  1943 lemma radical_unique:
  1944   assumes r0: "(r (Suc k) (b$0)) ^ Suc k = b$0"
  1945     and a0: "r (Suc k) (b$0 ::'a::field_char_0) = a$0"
  1946     and b0: "b$0 \<noteq> 0"
  1947   shows "a^(Suc k) = b \<longleftrightarrow> a = fps_radical r (Suc k) b"
  1948 proof -
  1949   let ?r = "fps_radical r (Suc k) b"
  1950   have r00: "r (Suc k) (b$0) \<noteq> 0" using b0 r0 by auto
  1951   {
  1952     assume H: "a = ?r"
  1953     from H have "a^Suc k = b"
  1954       using power_radical[OF b0, of r k, unfolded r0] by simp
  1955   }
  1956   moreover
  1957   {
  1958     assume H: "a^Suc k = b"
  1959     have ceq: "card {0..k} = Suc k" by simp
  1960     from a0 have a0r0: "a$0 = ?r$0" by simp
  1961     {
  1962       fix n
  1963       have "a $ n = ?r $ n"
  1964       proof (induct n rule: nat_less_induct)
  1965         fix n
  1966         assume h: "\<forall>m<n. a$m = ?r $m"
  1967         {
  1968           assume "n = 0"
  1969           hence "a$n = ?r $n" using a0 by simp
  1970         }
  1971         moreover
  1972         {
  1973           fix n1
  1974           assume n1: "n = Suc n1"
  1975           have fK: "finite {0..k}" by simp
  1976         have nz: "n \<noteq> 0" using n1 by arith
  1977         let ?Pnk = "natpermute n (Suc k)"
  1978         let ?Pnkn = "{xs \<in> ?Pnk. n \<in> set xs}"
  1979         let ?Pnknn = "{xs \<in> ?Pnk. n \<notin> set xs}"
  1980         have eq: "?Pnkn \<union> ?Pnknn = ?Pnk" by blast
  1981         have d: "?Pnkn \<inter> ?Pnknn = {}" by blast
  1982         have f: "finite ?Pnkn" "finite ?Pnknn"
  1983           using finite_Un[of ?Pnkn ?Pnknn, unfolded eq]
  1984           by (metis natpermute_finite)+
  1985         let ?f = "\<lambda>v. \<Prod>j\<in>{0..k}. ?r $ v ! j"
  1986         let ?g = "\<lambda>v. \<Prod>j\<in>{0..k}. a $ v ! j"
  1987         have "setsum ?g ?Pnkn = setsum (\<lambda>v. a $ n * (?r$0)^k) ?Pnkn"
  1988         proof (rule setsum_cong2)
  1989           fix v
  1990           assume v: "v \<in> {xs \<in> natpermute n (Suc k). n \<in> set xs}"
  1991           let ?ths = "(\<Prod>j\<in>{0..k}. a $ v ! j) = a $ n * (?r$0)^k"
  1992           from v obtain i where i: "i \<in> {0..k}" "v = replicate (k+1) 0 [i:= n]"
  1993             unfolding Suc_eq_plus1 natpermute_contain_maximal
  1994             by (auto simp del: replicate.simps)
  1995           have "(\<Prod>j\<in>{0..k}. a $ v ! j) = (\<Prod>j\<in>{0..k}. if j = i then a $ n else r (Suc k) (b$0))"
  1996             apply (rule setprod_cong, simp)
  1997             using i a0 apply (simp del: replicate.simps)
  1998             done
  1999           also have "\<dots> = a $ n * (?r $ 0)^k"
  2000             using i by (simp add: setprod_gen_delta)
  2001           finally show ?ths .
  2002         qed
  2003         then have th0: "setsum ?g ?Pnkn = of_nat (k+1) * a $ n * (?r $ 0)^k"
  2004           by (simp add: natpermute_max_card[OF nz, simplified])
  2005         have th1: "setsum ?g ?Pnknn = setsum ?f ?Pnknn"
  2006         proof (rule setsum_cong2, rule setprod_cong, simp)
  2007           fix xs i
  2008           assume xs: "xs \<in> ?Pnknn" and i: "i \<in> {0..k}"
  2009           {
  2010             assume c: "n \<le> xs ! i"
  2011             from xs i have "xs !i \<noteq> n"
  2012               by (auto simp add: in_set_conv_nth natpermute_def)
  2013             with c have c': "n < xs!i" by arith
  2014             have fths: "finite {0 ..< i}" "finite {i}" "finite {i+1..<Suc k}"
  2015               by simp_all
  2016             have d: "{0 ..< i} \<inter> ({i} \<union> {i+1 ..< Suc k}) = {}" "{i} \<inter> {i+1..< Suc k} = {}"
  2017               by auto
  2018             have eqs: "{0..<Suc k} = {0 ..< i} \<union> ({i} \<union> {i+1 ..< Suc k})"
  2019               using i by auto
  2020             from xs have "n = listsum xs"
  2021               by (simp add: natpermute_def)
  2022             also have "\<dots> = setsum (nth xs) {0..<Suc k}"
  2023               using xs by (simp add: natpermute_def listsum_setsum_nth)
  2024             also have "\<dots> = xs!i + setsum (nth xs) {0..<i} + setsum (nth xs) {i+1..<Suc k}"
  2025               unfolding eqs  setsum_Un_disjoint[OF fths(1) finite_UnI[OF fths(2,3)] d(1)]
  2026               unfolding setsum_Un_disjoint[OF fths(2) fths(3) d(2)]
  2027               by simp
  2028             finally have False using c' by simp
  2029           }
  2030           then have thn: "xs!i < n" by presburger
  2031           from h[rule_format, OF thn] show "a$(xs !i) = ?r$(xs!i)" .
  2032         qed
  2033         have th00: "\<And>(x::'a). of_nat (Suc k) * (x * inverse (of_nat (Suc k))) = x"
  2034           by (simp add: field_simps del: of_nat_Suc)
  2035         from H have "b$n = a^Suc k $ n"
  2036           by (simp add: fps_eq_iff)
  2037         also have "a ^ Suc k$n = setsum ?g ?Pnkn + setsum ?g ?Pnknn"
  2038           unfolding fps_power_nth_Suc
  2039           using setsum_Un_disjoint[OF f d, unfolded Suc_eq_plus1[symmetric],
  2040             unfolded eq, of ?g] by simp
  2041         also have "\<dots> = of_nat (k+1) * a $ n * (?r $ 0)^k + setsum ?f ?Pnknn"
  2042           unfolding th0 th1 ..
  2043         finally have "of_nat (k+1) * a $ n * (?r $ 0)^k = b$n - setsum ?f ?Pnknn"
  2044           by simp
  2045         then have "a$n = (b$n - setsum ?f ?Pnknn) / (of_nat (k+1) * (?r $ 0)^k)"
  2046           apply -
  2047           apply (rule eq_divide_imp')
  2048           using r00
  2049           apply (simp del: of_nat_Suc)
  2050           apply (simp add: mult_ac)
  2051           done
  2052         then have "a$n = ?r $n"
  2053           apply (simp del: of_nat_Suc)
  2054           unfolding fps_radical_def n1
  2055           apply (simp add: field_simps n1 th00 del: of_nat_Suc)
  2056           done
  2057         }
  2058         ultimately show "a$n = ?r $ n" by (cases n) auto
  2059       qed
  2060     }
  2061     then have "a = ?r" by (simp add: fps_eq_iff)
  2062   }
  2063   ultimately show ?thesis by blast
  2064 qed
  2065 
  2066 
  2067 lemma radical_power:
  2068   assumes r0: "r (Suc k) ((a$0) ^ Suc k) = a$0"
  2069     and a0: "(a$0 ::'a::field_char_0) \<noteq> 0"
  2070   shows "(fps_radical r (Suc k) (a ^ Suc k)) = a"
  2071 proof -
  2072   let ?ak = "a^ Suc k"
  2073   have ak0: "?ak $ 0 = (a$0) ^ Suc k"
  2074     by (simp add: fps_nth_power_0 del: power_Suc)
  2075   from r0 have th0: "r (Suc k) (a ^ Suc k $ 0) ^ Suc k = a ^ Suc k $ 0"
  2076     using ak0 by auto
  2077   from r0 ak0 have th1: "r (Suc k) (a ^ Suc k $ 0) = a $ 0"
  2078     by auto
  2079   from ak0 a0 have ak00: "?ak $ 0 \<noteq>0 "
  2080     by auto
  2081   from radical_unique[of r k ?ak a, OF th0 th1 ak00] show ?thesis
  2082     by metis
  2083 qed
  2084 
  2085 lemma fps_deriv_radical:
  2086   fixes a:: "'a::field_char_0 fps"
  2087   assumes r0: "(r (Suc k) (a$0)) ^ Suc k = a$0"
  2088     and a0: "a$0 \<noteq> 0"
  2089   shows "fps_deriv (fps_radical r (Suc k) a) =
  2090     fps_deriv a / (fps_const (of_nat (Suc k)) * (fps_radical r (Suc k) a) ^ k)"
  2091 proof -
  2092   let ?r = "fps_radical r (Suc k) a"
  2093   let ?w = "(fps_const (of_nat (Suc k)) * ?r ^ k)"
  2094   from a0 r0 have r0': "r (Suc k) (a$0) \<noteq> 0"
  2095     by auto
  2096   from r0' have w0: "?w $ 0 \<noteq> 0"
  2097     by (simp del: of_nat_Suc)
  2098   note th0 = inverse_mult_eq_1[OF w0]
  2099   let ?iw = "inverse ?w"
  2100   from iffD1[OF power_radical[of a r], OF a0 r0]
  2101   have "fps_deriv (?r ^ Suc k) = fps_deriv a"
  2102     by simp
  2103   hence "fps_deriv ?r * ?w = fps_deriv a"
  2104     by (simp add: fps_deriv_power mult_ac del: power_Suc)
  2105   hence "?iw * fps_deriv ?r * ?w = ?iw * fps_deriv a"
  2106     by simp
  2107   hence "fps_deriv ?r * (?iw * ?w) = fps_deriv a / ?w"
  2108     by (simp add: fps_divide_def)
  2109   then show ?thesis unfolding th0 by simp
  2110 qed
  2111 
  2112 lemma radical_mult_distrib:
  2113   fixes a:: "'a::field_char_0 fps"
  2114   assumes k: "k > 0"
  2115     and ra0: "r k (a $ 0) ^ k = a $ 0"
  2116     and rb0: "r k (b $ 0) ^ k = b $ 0"
  2117     and a0: "a$0 \<noteq> 0"
  2118     and b0: "b$0 \<noteq> 0"
  2119   shows "r k ((a * b) $ 0) = r k (a $ 0) * r k (b $ 0) \<longleftrightarrow>
  2120     fps_radical r (k) (a*b) = fps_radical r (k) a * fps_radical r (k) (b)"
  2121 proof -
  2122   {
  2123     assume  r0': "r k ((a * b) $ 0) = r k (a $ 0) * r k (b $ 0)"
  2124     from r0' have r0: "(r (k) ((a*b)$0)) ^ k = (a*b)$0"
  2125       by (simp add: fps_mult_nth ra0 rb0 power_mult_distrib)
  2126     {
  2127       assume "k = 0"
  2128       hence ?thesis using r0' by simp
  2129     }
  2130     moreover
  2131     {
  2132       fix h assume k: "k = Suc h"
  2133       let ?ra = "fps_radical r (Suc h) a"
  2134       let ?rb = "fps_radical r (Suc h) b"
  2135       have th0: "r (Suc h) ((a * b) $ 0) = (fps_radical r (Suc h) a * fps_radical r (Suc h) b) $ 0"
  2136         using r0' k by (simp add: fps_mult_nth)
  2137       have ab0: "(a*b) $ 0 \<noteq> 0"
  2138         using a0 b0 by (simp add: fps_mult_nth)
  2139       from radical_unique[of r h "a*b" "fps_radical r (Suc h) a * fps_radical r (Suc h) b", OF r0[unfolded k] th0 ab0, symmetric]
  2140         iffD1[OF power_radical[of _ r], OF a0 ra0[unfolded k]] iffD1[OF power_radical[of _ r], OF b0 rb0[unfolded k]] k r0'
  2141       have ?thesis by (auto simp add: power_mult_distrib simp del: power_Suc)
  2142     }
  2143     ultimately have ?thesis by (cases k) auto
  2144   }
  2145   moreover
  2146   {
  2147     assume h: "fps_radical r k (a*b) = fps_radical r k a * fps_radical r k b"
  2148     hence "(fps_radical r k (a*b))$0 = (fps_radical r k a * fps_radical r k b)$0"
  2149       by simp
  2150     then have "r k ((a * b) $ 0) = r k (a $ 0) * r k (b $ 0)"
  2151       using k by (simp add: fps_mult_nth)
  2152   }
  2153   ultimately show ?thesis by blast
  2154 qed
  2155 
  2156 (*
  2157 lemma radical_mult_distrib:
  2158   fixes a:: "'a::field_char_0 fps"
  2159   assumes
  2160   ra0: "r k (a $ 0) ^ k = a $ 0"
  2161   and rb0: "r k (b $ 0) ^ k = b $ 0"
  2162   and r0': "r k ((a * b) $ 0) = r k (a $ 0) * r k (b $ 0)"
  2163   and a0: "a$0 \<noteq> 0"
  2164   and b0: "b$0 \<noteq> 0"
  2165   shows "fps_radical r (k) (a*b) = fps_radical r (k) a * fps_radical r (k) (b)"
  2166 proof-
  2167   from r0' have r0: "(r (k) ((a*b)$0)) ^ k = (a*b)$0"
  2168     by (simp add: fps_mult_nth ra0 rb0 power_mult_distrib)
  2169   {assume "k=0" hence ?thesis by simp}
  2170   moreover
  2171   {fix h assume k: "k = Suc h"
  2172   let ?ra = "fps_radical r (Suc h) a"
  2173   let ?rb = "fps_radical r (Suc h) b"
  2174   have th0: "r (Suc h) ((a * b) $ 0) = (fps_radical r (Suc h) a * fps_radical r (Suc h) b) $ 0"
  2175     using r0' k by (simp add: fps_mult_nth)
  2176   have ab0: "(a*b) $ 0 \<noteq> 0" using a0 b0 by (simp add: fps_mult_nth)
  2177   from radical_unique[of r h "a*b" "fps_radical r (Suc h) a * fps_radical r (Suc h) b", OF r0[unfolded k] th0 ab0, symmetric]
  2178     power_radical[of r, OF ra0[unfolded k] a0] power_radical[of r, OF rb0[unfolded k] b0] k
  2179   have ?thesis by (auto simp add: power_mult_distrib simp del: power_Suc)}
  2180 ultimately show ?thesis by (cases k, auto)
  2181 qed
  2182 *)
  2183 
  2184 lemma fps_divide_1[simp]: "(a:: ('a::field) fps) / 1 = a"
  2185   by (simp add: fps_divide_def)
  2186 
  2187 lemma radical_divide:
  2188   fixes a :: "'a::field_char_0 fps"
  2189   assumes kp: "k > 0"
  2190     and ra0: "(r k (a $ 0)) ^ k = a $ 0"
  2191     and rb0: "(r k (b $ 0)) ^ k = b $ 0"
  2192     and a0: "a$0 \<noteq> 0"
  2193     and b0: "b$0 \<noteq> 0"
  2194   shows "r k ((a $ 0) / (b$0)) = r k (a$0) / r k (b $ 0) \<longleftrightarrow>
  2195     fps_radical r k (a/b) = fps_radical r k a / fps_radical r k b"
  2196   (is "?lhs = ?rhs")
  2197 proof -
  2198   let ?r = "fps_radical r k"
  2199   from kp obtain h where k: "k = Suc h" by (cases k) auto
  2200   have ra0': "r k (a$0) \<noteq> 0" using a0 ra0 k by auto
  2201   have rb0': "r k (b$0) \<noteq> 0" using b0 rb0 k by auto
  2202 
  2203   {
  2204     assume ?rhs
  2205     then have "?r (a/b) $ 0 = (?r a / ?r b)$0" by simp
  2206     then have ?lhs using k a0 b0 rb0'
  2207       by (simp add: fps_divide_def fps_mult_nth fps_inverse_def divide_inverse)
  2208   }
  2209   moreover
  2210   {
  2211     assume h: ?lhs
  2212     from a0 b0 have ab0[simp]: "(a/b)$0 = a$0 / b$0"
  2213       by (simp add: fps_divide_def fps_mult_nth divide_inverse fps_inverse_def)
  2214     have th0: "r k ((a/b)$0) ^ k = (a/b)$0"
  2215       by (simp add: h nonzero_power_divide[OF rb0'] ra0 rb0)
  2216     from a0 b0 ra0' rb0' kp h
  2217     have th1: "r k ((a / b) $ 0) = (fps_radical r k a / fps_radical r k b) $ 0"
  2218       by (simp add: fps_divide_def fps_mult_nth fps_inverse_def divide_inverse)
  2219     from a0 b0 ra0' rb0' kp have ab0': "(a / b) $ 0 \<noteq> 0"
  2220       by (simp add: fps_divide_def fps_mult_nth fps_inverse_def nonzero_imp_inverse_nonzero)
  2221     note tha[simp] = iffD1[OF power_radical[where r=r and k=h], OF a0 ra0[unfolded k], unfolded k[symmetric]]
  2222     note thb[simp] = iffD1[OF power_radical[where r=r and k=h], OF b0 rb0[unfolded k], unfolded k[symmetric]]
  2223     have th2: "(?r a / ?r b)^k = a/b"
  2224       by (simp add: fps_divide_def power_mult_distrib fps_inverse_power[symmetric])
  2225     from iffD1[OF radical_unique[where r=r and a="?r a / ?r b" and b="a/b" and k=h], symmetric, unfolded k[symmetric], OF th0 th1 ab0' th2]
  2226     have ?rhs .
  2227   }
  2228   ultimately show ?thesis by blast
  2229 qed
  2230 
  2231 lemma radical_inverse:
  2232   fixes a :: "'a::field_char_0 fps"
  2233   assumes k: "k > 0"
  2234     and ra0: "r k (a $ 0) ^ k = a $ 0"
  2235     and r1: "(r k 1)^k = 1"
  2236     and a0: "a$0 \<noteq> 0"
  2237   shows "r k (inverse (a $ 0)) = r k 1 / (r k (a $ 0)) \<longleftrightarrow>
  2238     fps_radical r k (inverse a) = fps_radical r k 1 / fps_radical r k a"
  2239   using radical_divide[where k=k and r=r and a=1 and b=a, OF k ] ra0 r1 a0
  2240   by (simp add: divide_inverse fps_divide_def)
  2241 
  2242 subsection{* Derivative of composition *}
  2243 
  2244 lemma fps_compose_deriv:
  2245   fixes a:: "('a::idom) fps"
  2246   assumes b0: "b$0 = 0"
  2247   shows "fps_deriv (a oo b) = ((fps_deriv a) oo b) * (fps_deriv b)"
  2248 proof -
  2249   {
  2250     fix n
  2251     have "(fps_deriv (a oo b))$n = setsum (\<lambda>i. a $ i * (fps_deriv (b^i))$n) {0.. Suc n}"
  2252       by (simp add: fps_compose_def field_simps setsum_right_distrib del: of_nat_Suc)
  2253     also have "\<dots> = setsum (\<lambda>i. a$i * ((fps_const (of_nat i)) * (fps_deriv b * (b^(i - 1))))$n) {0.. Suc n}"
  2254       by (simp add: field_simps fps_deriv_power del: fps_mult_left_const_nth of_nat_Suc)
  2255     also have "\<dots> = setsum (\<lambda>i. of_nat i * a$i * (((b^(i - 1)) * fps_deriv b))$n) {0.. Suc n}"
  2256       unfolding fps_mult_left_const_nth  by (simp add: field_simps)
  2257     also have "\<dots> = setsum (\<lambda>i. of_nat i * a$i * (setsum (\<lambda>j. (b^ (i - 1))$j * (fps_deriv b)$(n - j)) {0..n})) {0.. Suc n}"
  2258       unfolding fps_mult_nth ..
  2259     also have "\<dots> = setsum (\<lambda>i. of_nat i * a$i * (setsum (\<lambda>j. (b^ (i - 1))$j * (fps_deriv b)$(n - j)) {0..n})) {1.. Suc n}"
  2260       apply (rule setsum_mono_zero_right)
  2261       apply (auto simp add: mult_delta_left setsum_delta not_le)
  2262       done
  2263     also have "\<dots> = setsum (\<lambda>i. of_nat (i + 1) * a$(i+1) * (setsum (\<lambda>j. (b^ i)$j * of_nat (n - j + 1) * b$(n - j + 1)) {0..n})) {0.. n}"
  2264       unfolding fps_deriv_nth
  2265       by (rule setsum_reindex_cong [where f = Suc]) (auto simp add: mult_assoc)
  2266     finally have th0: "(fps_deriv (a oo b))$n =
  2267       setsum (\<lambda>i. of_nat (i + 1) * a$(i+1) * (setsum (\<lambda>j. (b^ i)$j * of_nat (n - j + 1) * b$(n - j + 1)) {0..n})) {0.. n}" .
  2268 
  2269     have "(((fps_deriv a) oo b) * (fps_deriv b))$n = setsum (\<lambda>i. (fps_deriv b)$ (n - i) * ((fps_deriv a) oo b)$i) {0..n}"
  2270       unfolding fps_mult_nth by (simp add: mult_ac)
  2271     also have "\<dots> = setsum (\<lambda>i. setsum (\<lambda>j. of_nat (n - i +1) * b$(n - i + 1) * of_nat (j + 1) * a$(j+1) * (b^j)$i) {0..n}) {0..n}"
  2272       unfolding fps_deriv_nth fps_compose_nth setsum_right_distrib mult_assoc
  2273       apply (rule setsum_cong2)
  2274       apply (rule setsum_mono_zero_left)
  2275       apply (simp_all add: subset_eq)
  2276       apply clarify
  2277       apply (subgoal_tac "b^i$x = 0")
  2278       apply simp
  2279       apply (rule startsby_zero_power_prefix[OF b0, rule_format])
  2280       apply simp
  2281       done
  2282     also have "\<dots> = setsum (\<lambda>i. of_nat (i + 1) * a$(i+1) * (setsum (\<lambda>j. (b^ i)$j * of_nat (n - j + 1) * b$(n - j + 1)) {0..n})) {0.. n}"
  2283       unfolding setsum_right_distrib
  2284       apply (subst setsum_commute)
  2285       apply (rule setsum_cong2)+
  2286       apply simp
  2287       done
  2288     finally have "(fps_deriv (a oo b))$n = (((fps_deriv a) oo b) * (fps_deriv b)) $n"
  2289       unfolding th0 by simp
  2290   }
  2291   then show ?thesis by (simp add: fps_eq_iff)
  2292 qed
  2293 
  2294 lemma fps_mult_X_plus_1_nth:
  2295   "((1+X)*a) $n = (if n = 0 then (a$n :: 'a::comm_ring_1) else a$n + a$(n - 1))"
  2296 proof (cases n)
  2297   case 0
  2298   then show ?thesis by (simp add: fps_mult_nth )
  2299 next
  2300   case (Suc m)
  2301   have "((1+X)*a) $n = setsum (\<lambda>i. (1+X)$i * a$(n-i)) {0..n}"
  2302     by (simp add: fps_mult_nth)
  2303   also have "\<dots> = setsum (\<lambda>i. (1+X)$i * a$(n-i)) {0.. 1}"
  2304     unfolding Suc by (rule setsum_mono_zero_right) auto
  2305   also have "\<dots> = (if n = 0 then (a$n :: 'a::comm_ring_1) else a$n + a$(n - 1))"
  2306     by (simp add: Suc)
  2307   finally show ?thesis .
  2308 qed
  2309 
  2310 subsection{* Finite FPS (i.e. polynomials) and X *}
  2311 
  2312 lemma fps_poly_sum_X:
  2313   assumes z: "\<forall>i > n. a$i = (0::'a::comm_ring_1)"
  2314   shows "a = setsum (\<lambda>i. fps_const (a$i) * X^i) {0..n}" (is "a = ?r")
  2315 proof -
  2316   {
  2317     fix i
  2318     have "a$i = ?r$i"
  2319       unfolding fps_setsum_nth fps_mult_left_const_nth X_power_nth
  2320       by (simp add: mult_delta_right setsum_delta' z)
  2321   }
  2322   then show ?thesis unfolding fps_eq_iff by blast
  2323 qed
  2324 
  2325 
  2326 subsection{* Compositional inverses *}
  2327 
  2328 fun compinv :: "'a fps \<Rightarrow> nat \<Rightarrow> 'a::{field}"
  2329 where
  2330   "compinv a 0 = X$0"
  2331 | "compinv a (Suc n) =
  2332     (X$ Suc n - setsum (\<lambda>i. (compinv a i) * (a^i)$Suc n) {0 .. n}) / (a$1) ^ Suc n"
  2333 
  2334 definition "fps_inv a = Abs_fps (compinv a)"
  2335 
  2336 lemma fps_inv:
  2337   assumes a0: "a$0 = 0"
  2338     and a1: "a$1 \<noteq> 0"
  2339   shows "fps_inv a oo a = X"
  2340 proof -
  2341   let ?i = "fps_inv a oo a"
  2342   {
  2343     fix n
  2344     have "?i $n = X$n"
  2345     proof (induct n rule: nat_less_induct)
  2346       fix n
  2347       assume h: "\<forall>m<n. ?i$m = X$m"
  2348       show "?i $ n = X$n"
  2349       proof (cases n)
  2350         case 0
  2351         then show ?thesis using a0
  2352           by (simp add: fps_compose_nth fps_inv_def)
  2353       next
  2354         case (Suc n1)
  2355         have "?i $ n = setsum (\<lambda>i. (fps_inv a $ i) * (a^i)$n) {0 .. n1} + fps_inv a $ Suc n1 * (a $ 1)^ Suc n1"
  2356           by (simp add: fps_compose_nth Suc startsby_zero_power_nth_same[OF a0] del: power_Suc)
  2357         also have "\<dots> = setsum (\<lambda>i. (fps_inv a $ i) * (a^i)$n) {0 .. n1} +
  2358           (X$ Suc n1 - setsum (\<lambda>i. (fps_inv a $ i) * (a^i)$n) {0 .. n1})"
  2359           using a0 a1 Suc by (simp add: fps_inv_def)
  2360         also have "\<dots> = X$n" using Suc by simp
  2361         finally show ?thesis .
  2362       qed
  2363     qed
  2364   }
  2365   then show ?thesis by (simp add: fps_eq_iff)
  2366 qed
  2367 
  2368 
  2369 fun gcompinv :: "'a fps \<Rightarrow> 'a fps \<Rightarrow> nat \<Rightarrow> 'a::{field}"
  2370 where
  2371   "gcompinv b a 0 = b$0"
  2372 | "gcompinv b a (Suc n) =
  2373     (b$ Suc n - setsum (\<lambda>i. (gcompinv b a i) * (a^i)$Suc n) {0 .. n}) / (a$1) ^ Suc n"
  2374 
  2375 definition "fps_ginv b a = Abs_fps (gcompinv b a)"
  2376 
  2377 lemma fps_ginv:
  2378   assumes a0: "a$0 = 0"
  2379     and a1: "a$1 \<noteq> 0"
  2380   shows "fps_ginv b a oo a = b"
  2381 proof -
  2382   let ?i = "fps_ginv b a oo a"
  2383   {
  2384     fix n
  2385     have "?i $n = b$n"
  2386     proof (induct n rule: nat_less_induct)
  2387       fix n
  2388       assume h: "\<forall>m<n. ?i$m = b$m"
  2389       show "?i $ n = b$n"
  2390       proof (cases n)
  2391         case 0
  2392         then show ?thesis using a0
  2393           by (simp add: fps_compose_nth fps_ginv_def)
  2394       next
  2395         case (Suc n1)
  2396         have "?i $ n = setsum (\<lambda>i. (fps_ginv b a $ i) * (a^i)$n) {0 .. n1} + fps_ginv b a $ Suc n1 * (a $ 1)^ Suc n1"
  2397           by (simp add: fps_compose_nth Suc startsby_zero_power_nth_same[OF a0] del: power_Suc)
  2398         also have "\<dots> = setsum (\<lambda>i. (fps_ginv b a $ i) * (a^i)$n) {0 .. n1} +
  2399           (b$ Suc n1 - setsum (\<lambda>i. (fps_ginv b a $ i) * (a^i)$n) {0 .. n1})"
  2400           using a0 a1 Suc by (simp add: fps_ginv_def)
  2401         also have "\<dots> = b$n" using Suc by simp
  2402         finally show ?thesis .
  2403       qed
  2404     qed
  2405   }
  2406   then show ?thesis by (simp add: fps_eq_iff)
  2407 qed
  2408 
  2409 lemma fps_inv_ginv: "fps_inv = fps_ginv X"
  2410   apply (auto simp add: fun_eq_iff fps_eq_iff fps_inv_def fps_ginv_def)
  2411   apply (induct_tac n rule: nat_less_induct)
  2412   apply auto
  2413   apply (case_tac na)
  2414   apply simp
  2415   apply simp
  2416   done
  2417 
  2418 lemma fps_compose_1[simp]: "1 oo a = 1"
  2419   by (simp add: fps_eq_iff fps_compose_nth mult_delta_left setsum_delta)
  2420 
  2421 lemma fps_compose_0[simp]: "0 oo a = 0"
  2422   by (simp add: fps_eq_iff fps_compose_nth)
  2423 
  2424 lemma fps_compose_0_right[simp]: "a oo 0 = fps_const (a$0)"
  2425   by (auto simp add: fps_eq_iff fps_compose_nth power_0_left setsum_0')
  2426 
  2427 lemma fps_compose_add_distrib: "(a + b) oo c = (a oo c) + (b oo c)"
  2428   by (simp add: fps_eq_iff fps_compose_nth field_simps setsum_addf)
  2429 
  2430 lemma fps_compose_setsum_distrib: "(setsum f S) oo a = setsum (\<lambda>i. f i oo a) S"
  2431 proof (cases "finite S")
  2432   case True
  2433   show ?thesis
  2434   proof (rule finite_induct[OF True])
  2435     show "setsum f {} oo a = (\<Sum>i\<in>{}. f i oo a)" by simp
  2436   next
  2437     fix x F
  2438     assume fF: "finite F"
  2439       and xF: "x \<notin> F"
  2440       and h: "setsum f F oo a = setsum (\<lambda>i. f i oo a) F"
  2441     show "setsum f (insert x F) oo a  = setsum (\<lambda>i. f i oo a) (insert x F)"
  2442       using fF xF h by (simp add: fps_compose_add_distrib)
  2443   qed
  2444 next
  2445   case False
  2446   then show ?thesis by simp
  2447 qed
  2448 
  2449 lemma convolution_eq:
  2450   "setsum (%i. a (i :: nat) * b (n - i)) {0 .. n} = setsum (%(i,j). a i * b j) {(i,j). i <= n \<and> j \<le> n \<and> i + j = n}"
  2451   apply (rule setsum_reindex_cong[where f=fst])
  2452   apply (clarsimp simp add: inj_on_def)
  2453   apply (auto simp add: set_eq_iff image_iff)
  2454   apply (rule_tac x= "x" in exI)
  2455   apply clarsimp
  2456   apply (rule_tac x="n - x" in exI)
  2457   apply arith
  2458   done
  2459 
  2460 lemma product_composition_lemma:
  2461   assumes c0: "c$0 = (0::'a::idom)"
  2462     and d0: "d$0 = 0"
  2463   shows "((a oo c) * (b oo d))$n =
  2464     setsum (%(k,m). a$k * b$m * (c^k * d^m) $ n) {(k,m). k + m \<le> n}" (is "?l = ?r")
  2465 proof -
  2466   let ?S = "{(k\<Colon>nat, m\<Colon>nat). k + m \<le> n}"
  2467   have s: "?S \<subseteq> {0..n} <*> {0..n}" by (auto simp add: subset_eq)
  2468   have f: "finite {(k\<Colon>nat, m\<Colon>nat). k + m \<le> n}"
  2469     apply (rule finite_subset[OF s])
  2470     apply auto
  2471     done
  2472   have "?r =  setsum (%i. setsum (%(k,m). a$k * (c^k)$i * b$m * (d^m) $ (n - i)) {(k,m). k + m \<le> n}) {0..n}"
  2473     apply (simp add: fps_mult_nth setsum_right_distrib)
  2474     apply (subst setsum_commute)
  2475     apply (rule setsum_cong2)
  2476     apply (auto simp add: field_simps)
  2477     done
  2478   also have "\<dots> = ?l"
  2479     apply (simp add: fps_mult_nth fps_compose_nth setsum_product)
  2480     apply (rule setsum_cong2)
  2481     apply (simp add: setsum_cartesian_product mult_assoc)
  2482     apply (rule setsum_mono_zero_right[OF f])
  2483     apply (simp add: subset_eq) apply presburger
  2484     apply clarsimp
  2485     apply (rule ccontr)
  2486     apply (clarsimp simp add: not_le)
  2487     apply (case_tac "x < aa")
  2488     apply simp
  2489     apply (frule_tac startsby_zero_power_prefix[rule_format, OF c0])
  2490     apply blast
  2491     apply simp
  2492     apply (frule_tac startsby_zero_power_prefix[rule_format, OF d0])
  2493     apply blast
  2494     done
  2495   finally show ?thesis by simp
  2496 qed
  2497 
  2498 lemma product_composition_lemma':
  2499   assumes c0: "c$0 = (0::'a::idom)"
  2500     and d0: "d$0 = 0"
  2501   shows "((a oo c) * (b oo d))$n =
  2502     setsum (%k. setsum (%m. a$k * b$m * (c^k * d^m) $ n) {0..n}) {0..n}" (is "?l = ?r")
  2503   unfolding product_composition_lemma[OF c0 d0]
  2504   unfolding setsum_cartesian_product
  2505   apply (rule setsum_mono_zero_left)
  2506   apply simp
  2507   apply (clarsimp simp add: subset_eq)
  2508   apply clarsimp
  2509   apply (rule ccontr)
  2510   apply (subgoal_tac "(c^aa * d^ba) $ n = 0")
  2511   apply simp
  2512   unfolding fps_mult_nth
  2513   apply (rule setsum_0')
  2514   apply (clarsimp simp add: not_le)
  2515   apply (case_tac "x < aa")
  2516   apply (rule startsby_zero_power_prefix[OF c0, rule_format])
  2517   apply simp
  2518   apply (subgoal_tac "n - x < ba")
  2519   apply (frule_tac k = "ba" in startsby_zero_power_prefix[OF d0, rule_format])
  2520   apply simp
  2521   apply arith
  2522   done
  2523 
  2524 
  2525 lemma setsum_pair_less_iff:
  2526   "setsum (%((k::nat),m). a k * b m * c (k + m)) {(k,m). k + m \<le> n} =
  2527     setsum (%s. setsum (%i. a i * b (s - i) * c s) {0..s}) {0..n}"
  2528   (is "?l = ?r")
  2529 proof -
  2530   let ?KM = "{(k,m). k + m \<le> n}"
  2531   let ?f = "%s. UNION {(0::nat)..s} (%i. {(i,s - i)})"
  2532   have th0: "?KM = UNION {0..n} ?f"
  2533     apply (simp add: set_eq_iff)
  2534     apply presburger (* FIXME: slow! *)
  2535     done
  2536   show "?l = ?r "
  2537     unfolding th0
  2538     apply (subst setsum_UN_disjoint)
  2539     apply auto
  2540     apply (subst setsum_UN_disjoint)
  2541     apply auto
  2542     done
  2543 qed
  2544 
  2545 lemma fps_compose_mult_distrib_lemma:
  2546   assumes c0: "c$0 = (0::'a::idom)"
  2547   shows "((a oo c) * (b oo c))$n =
  2548     setsum (%s. setsum (%i. a$i * b$(s - i) * (c^s) $ n) {0..s}) {0..n}"
  2549     (is "?l = ?r")
  2550   unfolding product_composition_lemma[OF c0 c0] power_add[symmetric]
  2551   unfolding setsum_pair_less_iff[where a = "%k. a$k" and b="%m. b$m" and c="%s. (c ^ s)$n" and n = n] ..
  2552 
  2553 
  2554 lemma fps_compose_mult_distrib:
  2555   assumes c0: "c$0 = (0::'a::idom)"
  2556   shows "(a * b) oo c = (a oo c) * (b oo c)" (is "?l = ?r")
  2557   apply (simp add: fps_eq_iff fps_compose_mult_distrib_lemma[OF c0])
  2558   apply (simp add: fps_compose_nth fps_mult_nth setsum_left_distrib)
  2559   done
  2560 
  2561 lemma fps_compose_setprod_distrib:
  2562   assumes c0: "c$0 = (0::'a::idom)"
  2563   shows "(setprod a S) oo c = setprod (%k. a k oo c) S" (is "?l = ?r")
  2564   apply (cases "finite S")
  2565   apply simp_all
  2566   apply (induct S rule: finite_induct)
  2567   apply simp
  2568   apply (simp add: fps_compose_mult_distrib[OF c0])
  2569   done
  2570 
  2571 lemma fps_compose_power:
  2572   assumes c0: "c$0 = (0::'a::idom)"
  2573   shows "(a oo c)^n = a^n oo c"
  2574   (is "?l = ?r")
  2575 proof (cases n)
  2576   case 0
  2577   then show ?thesis by simp
  2578 next
  2579   case (Suc m)
  2580   have th0: "a^n = setprod (%k. a) {0..m}" "(a oo c) ^ n = setprod (%k. a oo c) {0..m}"
  2581     by (simp_all add: setprod_constant Suc)
  2582   then show ?thesis
  2583     by (simp add: fps_compose_setprod_distrib[OF c0])
  2584 qed
  2585 
  2586 lemma fps_compose_uminus: "- (a::'a::ring_1 fps) oo c = - (a oo c)"
  2587   by (simp add: fps_eq_iff fps_compose_nth field_simps setsum_negf[symmetric])
  2588 
  2589 lemma fps_compose_sub_distrib: "(a - b) oo (c::'a::ring_1 fps) = (a oo c) - (b oo c)"
  2590   using fps_compose_add_distrib [of a "- b" c] by (simp add: fps_compose_uminus)
  2591 
  2592 lemma X_fps_compose: "X oo a = Abs_fps (\<lambda>n. if n = 0 then (0::'a::comm_ring_1) else a$n)"
  2593   by (simp add: fps_eq_iff fps_compose_nth mult_delta_left setsum_delta)
  2594 
  2595 lemma fps_inverse_compose:
  2596   assumes b0: "(b$0 :: 'a::field) = 0"
  2597     and a0: "a$0 \<noteq> 0"
  2598   shows "inverse a oo b = inverse (a oo b)"
  2599 proof -
  2600   let ?ia = "inverse a"
  2601   let ?ab = "a oo b"
  2602   let ?iab = "inverse ?ab"
  2603 
  2604   from a0 have ia0: "?ia $ 0 \<noteq> 0" by simp
  2605   from a0 have ab0: "?ab $ 0 \<noteq> 0" by (simp add: fps_compose_def)
  2606   have "(?ia oo b) *  (a oo b) = 1"
  2607     unfolding fps_compose_mult_distrib[OF b0, symmetric]
  2608     unfolding inverse_mult_eq_1[OF a0]
  2609     fps_compose_1 ..
  2610   
  2611   then have "(?ia oo b) *  (a oo b) * ?iab  = 1 * ?iab" by simp
  2612   then have "(?ia oo b) *  (?iab * (a oo b))  = ?iab" by simp
  2613   then show ?thesis unfolding inverse_mult_eq_1[OF ab0] by simp
  2614 qed
  2615 
  2616 lemma fps_divide_compose:
  2617   assumes c0: "(c$0 :: 'a::field) = 0"
  2618     and b0: "b$0 \<noteq> 0"
  2619   shows "(a/b) oo c = (a oo c) / (b oo c)"
  2620     unfolding fps_divide_def fps_compose_mult_distrib[OF c0]
  2621     fps_inverse_compose[OF c0 b0] ..
  2622 
  2623 lemma gp:
  2624   assumes a0: "a$0 = (0::'a::field)"
  2625   shows "(Abs_fps (\<lambda>n. 1)) oo a = 1/(1 - a)"
  2626     (is "?one oo a = _")
  2627 proof -
  2628   have o0: "?one $ 0 \<noteq> 0" by simp
  2629   have th0: "(1 - X) $ 0 \<noteq> (0::'a)" by simp
  2630   from fps_inverse_gp[where ?'a = 'a]
  2631   have "inverse ?one = 1 - X" by (simp add: fps_eq_iff)
  2632   hence "inverse (inverse ?one) = inverse (1 - X)" by simp
  2633   hence th: "?one = 1/(1 - X)" unfolding fps_inverse_idempotent[OF o0]
  2634     by (simp add: fps_divide_def)
  2635   show ?thesis
  2636     unfolding th
  2637     unfolding fps_divide_compose[OF a0 th0]
  2638     fps_compose_1 fps_compose_sub_distrib X_fps_compose_startby0[OF a0] ..
  2639 qed
  2640 
  2641 lemma fps_const_power [simp]: "fps_const (c::'a::ring_1) ^ n = fps_const (c^n)"
  2642   by (induct n) auto
  2643 
  2644 lemma fps_compose_radical:
  2645   assumes b0: "b$0 = (0::'a::field_char_0)"
  2646     and ra0: "r (Suc k) (a$0) ^ Suc k = a$0"
  2647     and a0: "a$0 \<noteq> 0"
  2648   shows "fps_radical r (Suc k)  a oo b = fps_radical r (Suc k) (a oo b)"
  2649 proof -
  2650   let ?r = "fps_radical r (Suc k)"
  2651   let ?ab = "a oo b"
  2652   have ab0: "?ab $ 0 = a$0"
  2653     by (simp add: fps_compose_def)
  2654   from ab0 a0 ra0 have rab0: "?ab $ 0 \<noteq> 0" "r (Suc k) (?ab $ 0) ^ Suc k = ?ab $ 0"
  2655     by simp_all
  2656   have th00: "r (Suc k) ((a oo b) $ 0) = (fps_radical r (Suc k) a oo b) $ 0"
  2657     by (simp add: ab0 fps_compose_def)
  2658   have th0: "(?r a oo b) ^ (Suc k) = a  oo b"
  2659     unfolding fps_compose_power[OF b0]
  2660     unfolding iffD1[OF power_radical[of a r k], OF a0 ra0]  ..
  2661   from iffD1[OF radical_unique[where r=r and k=k and b= ?ab and a = "?r a oo b", OF rab0(2) th00 rab0(1)], OF th0]
  2662   show ?thesis  .
  2663 qed
  2664 
  2665 lemma fps_const_mult_apply_left: "fps_const c * (a oo b) = (fps_const c * a) oo b"
  2666   by (simp add: fps_eq_iff fps_compose_nth setsum_right_distrib mult_assoc)
  2667 
  2668 lemma fps_const_mult_apply_right:
  2669   "(a oo b) * fps_const (c::'a::comm_semiring_1) = (fps_const c * a) oo b"
  2670   by (auto simp add: fps_const_mult_apply_left mult_commute)
  2671 
  2672 lemma fps_compose_assoc:
  2673   assumes c0: "c$0 = (0::'a::idom)"
  2674     and b0: "b$0 = 0"
  2675   shows "a oo (b oo c) = a oo b oo c" (is "?l = ?r")
  2676 proof -
  2677   {
  2678     fix n
  2679     have "?l$n = (setsum (\<lambda>i. (fps_const (a$i) * b^i) oo c) {0..n})$n"
  2680       by (simp add: fps_compose_nth fps_compose_power[OF c0] fps_const_mult_apply_left
  2681         setsum_right_distrib mult_assoc fps_setsum_nth)
  2682     also have "\<dots> = ((setsum (\<lambda>i. fps_const (a$i) * b^i) {0..n}) oo c)$n"
  2683       by (simp add: fps_compose_setsum_distrib)
  2684     also have "\<dots> = ?r$n"
  2685       apply (simp add: fps_compose_nth fps_setsum_nth setsum_left_distrib mult_assoc)
  2686       apply (rule setsum_cong2)
  2687       apply (rule setsum_mono_zero_right)
  2688       apply (auto simp add: not_le)
  2689       apply (erule startsby_zero_power_prefix[OF b0, rule_format])
  2690       done
  2691     finally have "?l$n = ?r$n" .
  2692   }
  2693   then show ?thesis by (simp add: fps_eq_iff)
  2694 qed
  2695 
  2696 
  2697 lemma fps_X_power_compose:
  2698   assumes a0: "a$0=0"
  2699   shows "X^k oo a = (a::('a::idom fps))^k" (is "?l = ?r")
  2700 proof (cases k)
  2701   case 0
  2702   then show ?thesis by simp
  2703 next
  2704   case (Suc h)
  2705   {
  2706     fix n
  2707     {
  2708       assume kn: "k>n"
  2709       hence "?l $ n = ?r $n" using a0 startsby_zero_power_prefix[OF a0] Suc
  2710         by (simp add: fps_compose_nth del: power_Suc)
  2711     }
  2712     moreover
  2713     {
  2714       assume kn: "k \<le> n"
  2715       hence "?l$n = ?r$n"
  2716         by (simp add: fps_compose_nth mult_delta_left setsum_delta)
  2717     }
  2718     moreover have "k >n \<or> k\<le> n"  by arith
  2719     ultimately have "?l$n = ?r$n"  by blast
  2720   }
  2721   then show ?thesis unfolding fps_eq_iff by blast
  2722 qed
  2723 
  2724 lemma fps_inv_right:
  2725   assumes a0: "a$0 = 0"
  2726     and a1: "a$1 \<noteq> 0"
  2727   shows "a oo fps_inv a = X"
  2728 proof -
  2729   let ?ia = "fps_inv a"
  2730   let ?iaa = "a oo fps_inv a"
  2731   have th0: "?ia $ 0 = 0" by (simp add: fps_inv_def)
  2732   have th1: "?iaa $ 0 = 0" using a0 a1
  2733     by (simp add: fps_inv_def fps_compose_nth)
  2734   have th2: "X$0 = 0" by simp
  2735   from fps_inv[OF a0 a1] have "a oo (fps_inv a oo a) = a oo X" by simp
  2736   then have "(a oo fps_inv a) oo a = X oo a"
  2737     by (simp add: fps_compose_assoc[OF a0 th0] X_fps_compose_startby0[OF a0])
  2738   with fps_compose_inj_right[OF a0 a1]
  2739   show ?thesis by simp
  2740 qed
  2741 
  2742 lemma fps_inv_deriv:
  2743   assumes a0:"a$0 = (0::'a::{field})"
  2744     and a1: "a$1 \<noteq> 0"
  2745   shows "fps_deriv (fps_inv a) = inverse (fps_deriv a oo fps_inv a)"
  2746 proof -
  2747   let ?ia = "fps_inv a"
  2748   let ?d = "fps_deriv a oo ?ia"
  2749   let ?dia = "fps_deriv ?ia"
  2750   have ia0: "?ia$0 = 0" by (simp add: fps_inv_def)
  2751   have th0: "?d$0 \<noteq> 0" using a1 by (simp add: fps_compose_nth)
  2752   from fps_inv_right[OF a0 a1] have "?d * ?dia = 1"
  2753     by (simp add: fps_compose_deriv[OF ia0, of a, symmetric] )
  2754   hence "inverse ?d * ?d * ?dia = inverse ?d * 1" by simp
  2755   with inverse_mult_eq_1 [OF th0]
  2756   show "?dia = inverse ?d" by simp
  2757 qed
  2758 
  2759 lemma fps_inv_idempotent:
  2760   assumes a0: "a$0 = 0"
  2761     and a1: "a$1 \<noteq> 0"
  2762   shows "fps_inv (fps_inv a) = a"
  2763 proof -
  2764   let ?r = "fps_inv"
  2765   have ra0: "?r a $ 0 = 0" by (simp add: fps_inv_def)
  2766   from a1 have ra1: "?r a $ 1 \<noteq> 0" by (simp add: fps_inv_def field_simps)
  2767   have X0: "X$0 = 0" by simp
  2768   from fps_inv[OF ra0 ra1] have "?r (?r a) oo ?r a = X" .
  2769   then have "?r (?r a) oo ?r a oo a = X oo a" by simp
  2770   then have "?r (?r a) oo (?r a oo a) = a"
  2771     unfolding X_fps_compose_startby0[OF a0]
  2772     unfolding fps_compose_assoc[OF a0 ra0, symmetric] .
  2773   then show ?thesis unfolding fps_inv[OF a0 a1] by simp
  2774 qed
  2775 
  2776 lemma fps_ginv_ginv:
  2777   assumes a0: "a$0 = 0"
  2778     and a1: "a$1 \<noteq> 0"
  2779     and c0: "c$0 = 0"
  2780     and  c1: "c$1 \<noteq> 0"
  2781   shows "fps_ginv b (fps_ginv c a) = b oo a oo fps_inv c"
  2782 proof -
  2783   let ?r = "fps_ginv"
  2784   from c0 have rca0: "?r c a $0 = 0" by (simp add: fps_ginv_def)
  2785   from a1 c1 have rca1: "?r c a $ 1 \<noteq> 0" by (simp add: fps_ginv_def field_simps)
  2786   from fps_ginv[OF rca0 rca1]
  2787   have "?r b (?r c a) oo ?r c a = b" .
  2788   then have "?r b (?r c a) oo ?r c a oo a = b oo a" by simp
  2789   then have "?r b (?r c a) oo (?r c a oo a) = b oo a"
  2790     apply (subst fps_compose_assoc)
  2791     using a0 c0
  2792     apply (auto simp add: fps_ginv_def)
  2793     done
  2794   then have "?r b (?r c a) oo c = b oo a"
  2795     unfolding fps_ginv[OF a0 a1] .
  2796   then have "?r b (?r c a) oo c oo fps_inv c= b oo a oo fps_inv c" by simp
  2797   then have "?r b (?r c a) oo (c oo fps_inv c) = b oo a oo fps_inv c"
  2798     apply (subst fps_compose_assoc)
  2799     using a0 c0
  2800     apply (auto simp add: fps_inv_def)
  2801     done
  2802   then show ?thesis unfolding fps_inv_right[OF c0 c1] by simp
  2803 qed
  2804 
  2805 lemma fps_ginv_deriv:
  2806   assumes a0:"a$0 = (0::'a::{field})"
  2807     and a1: "a$1 \<noteq> 0"
  2808   shows "fps_deriv (fps_ginv b a) = (fps_deriv b / fps_deriv a) oo fps_ginv X a"
  2809 proof -
  2810   let ?ia = "fps_ginv b a"
  2811   let ?iXa = "fps_ginv X a"
  2812   let ?d = "fps_deriv"
  2813   let ?dia = "?d ?ia"
  2814   have iXa0: "?iXa $ 0 = 0" by (simp add: fps_ginv_def)
  2815   have da0: "?d a $ 0 \<noteq> 0" using a1 by simp
  2816   from fps_ginv[OF a0 a1, of b] have "?d (?ia oo a) = fps_deriv b" by simp
  2817   then have "(?d ?ia oo a) * ?d a = ?d b" unfolding fps_compose_deriv[OF a0] .
  2818   then have "(?d ?ia oo a) * ?d a * inverse (?d a) = ?d b * inverse (?d a)" by simp
  2819   then have "(?d ?ia oo a) * (inverse (?d a) * ?d a) = ?d b / ?d a"
  2820     by (simp add: fps_divide_def)
  2821   then have "(?d ?ia oo a) oo ?iXa =  (?d b / ?d a) oo ?iXa "
  2822     unfolding inverse_mult_eq_1[OF da0] by simp
  2823   then have "?d ?ia oo (a oo ?iXa) =  (?d b / ?d a) oo ?iXa"
  2824     unfolding fps_compose_assoc[OF iXa0 a0] .
  2825   then show ?thesis unfolding fps_inv_ginv[symmetric]
  2826     unfolding fps_inv_right[OF a0 a1] by simp
  2827 qed
  2828 
  2829 subsection{* Elementary series *}
  2830 
  2831 subsubsection{* Exponential series *}
  2832 
  2833 definition "E x = Abs_fps (\<lambda>n. x^n / of_nat (fact n))"
  2834 
  2835 lemma E_deriv[simp]: "fps_deriv (E a) = fps_const (a::'a::field_char_0) * E a" (is "?l = ?r")
  2836 proof -
  2837   {
  2838     fix n
  2839     have "?l$n = ?r $ n"
  2840       apply (auto simp add: E_def field_simps power_Suc[symmetric]
  2841         simp del: fact_Suc of_nat_Suc power_Suc)
  2842       apply (simp add: of_nat_mult field_simps)
  2843       done
  2844   }
  2845   then show ?thesis by (simp add: fps_eq_iff)
  2846 qed
  2847 
  2848 lemma E_unique_ODE:
  2849   "fps_deriv a = fps_const c * a \<longleftrightarrow> a = fps_const (a$0) * E (c :: 'a::field_char_0)"
  2850   (is "?lhs \<longleftrightarrow> ?rhs")
  2851 proof
  2852   assume d: ?lhs
  2853   from d have th: "\<And>n. a $ Suc n = c * a$n / of_nat (Suc n)"
  2854     by (simp add: fps_deriv_def fps_eq_iff field_simps del: of_nat_Suc)
  2855   {
  2856     fix n
  2857     have "a$n = a$0 * c ^ n/ (of_nat (fact n))"
  2858       apply (induct n)
  2859       apply simp
  2860       unfolding th
  2861       using fact_gt_zero_nat
  2862       apply (simp add: field_simps del: of_nat_Suc fact_Suc)
  2863       apply (drule sym)
  2864       apply (simp add: field_simps of_nat_mult)
  2865       done
  2866   }
  2867   note th' = this
  2868   show ?rhs by (auto simp add: fps_eq_iff fps_const_mult_left E_def intro: th')
  2869 next
  2870   assume h: ?rhs
  2871   show ?lhs
  2872     apply (subst h)
  2873     apply simp
  2874     apply (simp only: h[symmetric])
  2875     apply simp
  2876     done
  2877 qed
  2878 
  2879 lemma E_add_mult: "E (a + b) = E (a::'a::field_char_0) * E b" (is "?l = ?r")
  2880 proof -
  2881   have "fps_deriv (?r) = fps_const (a+b) * ?r"
  2882     by (simp add: fps_const_add[symmetric] field_simps del: fps_const_add)
  2883   then have "?r = ?l" apply (simp only: E_unique_ODE)
  2884     by (simp add: fps_mult_nth E_def)
  2885   then show ?thesis ..
  2886 qed
  2887 
  2888 lemma E_nth[simp]: "E a $ n = a^n / of_nat (fact n)"
  2889   by (simp add: E_def)
  2890 
  2891 lemma E0[simp]: "E (0::'a::{field}) = 1"
  2892   by (simp add: fps_eq_iff power_0_left)
  2893 
  2894 lemma E_neg: "E (- a) = inverse (E (a::'a::field_char_0))"
  2895 proof -
  2896   from E_add_mult[of a "- a"] have th0: "E a * E (- a) = 1"
  2897     by (simp )
  2898   have th1: "E a $ 0 \<noteq> 0" by simp
  2899   from fps_inverse_unique[OF th1 th0] show ?thesis by simp
  2900 qed
  2901 
  2902 lemma E_nth_deriv[simp]: "fps_nth_deriv n (E (a::'a::field_char_0)) = (fps_const a)^n * (E a)"
  2903   by (induct n) auto
  2904 
  2905 lemma X_compose_E[simp]: "X oo E (a::'a::{field}) = E a - 1"
  2906   by (simp add: fps_eq_iff X_fps_compose)
  2907 
  2908 lemma LE_compose:
  2909   assumes a: "a\<noteq>0"
  2910   shows "fps_inv (E a - 1) oo (E a - 1) = X"
  2911     and "(E a - 1) oo fps_inv (E a - 1) = X"
  2912 proof -
  2913   let ?b = "E a - 1"
  2914   have b0: "?b $ 0 = 0" by simp
  2915   have b1: "?b $ 1 \<noteq> 0" by (simp add: a)
  2916   from fps_inv[OF b0 b1] show "fps_inv (E a - 1) oo (E a - 1) = X" .
  2917   from fps_inv_right[OF b0 b1] show "(E a - 1) oo fps_inv (E a - 1) = X" .
  2918 qed
  2919 
  2920 lemma fps_const_inverse:
  2921   "a \<noteq> 0 \<Longrightarrow> inverse (fps_const (a::'a::field)) = fps_const (inverse a)"
  2922   apply (auto simp add: fps_eq_iff fps_inverse_def)
  2923   apply (case_tac n)
  2924   apply auto
  2925   done
  2926 
  2927 lemma inverse_one_plus_X:
  2928   "inverse (1 + X) = Abs_fps (\<lambda>n. (- 1 ::'a::{field})^n)"
  2929   (is "inverse ?l = ?r")
  2930 proof -
  2931   have th: "?l * ?r = 1"
  2932     by (auto simp add: field_simps fps_eq_iff minus_one_power_iff simp del: minus_one)
  2933   have th': "?l $ 0 \<noteq> 0" by (simp add: )
  2934   from fps_inverse_unique[OF th' th] show ?thesis .
  2935 qed
  2936 
  2937 lemma E_power_mult: "(E (c::'a::field_char_0))^n = E (of_nat n * c)"
  2938   by (induct n) (auto simp add: field_simps E_add_mult)
  2939 
  2940 lemma radical_E:
  2941   assumes r: "r (Suc k) 1 = 1"
  2942   shows "fps_radical r (Suc k) (E (c::'a::{field_char_0})) = E (c / of_nat (Suc k))"
  2943 proof -
  2944   let ?ck = "(c / of_nat (Suc k))"
  2945   let ?r = "fps_radical r (Suc k)"
  2946   have eq0[simp]: "?ck * of_nat (Suc k) = c" "of_nat (Suc k) * ?ck = c"
  2947     by (simp_all del: of_nat_Suc)
  2948   have th0: "E ?ck ^ (Suc k) = E c" unfolding E_power_mult eq0 ..
  2949   have th: "r (Suc k) (E c $0) ^ Suc k = E c $ 0"
  2950     "r (Suc k) (E c $ 0) = E ?ck $ 0" "E c $ 0 \<noteq> 0" using r by simp_all
  2951   from th0 radical_unique[where r=r and k=k, OF th]
  2952   show ?thesis by auto
  2953 qed
  2954 
  2955 lemma Ec_E1_eq: "E (1::'a::{field_char_0}) oo (fps_const c * X) = E c"
  2956   apply (auto simp add: fps_eq_iff E_def fps_compose_def power_mult_distrib)
  2957   apply (simp add: cond_value_iff cond_application_beta setsum_delta' cong del: if_weak_cong)
  2958   done
  2959 
  2960 text{* The generalized binomial theorem as a  consequence of @{thm E_add_mult} *}
  2961 
  2962 lemma gbinomial_theorem:
  2963   "((a::'a::{field_char_0, field_inverse_zero})+b) ^ n =
  2964     (\<Sum>k=0..n. of_nat (n choose k) * a^k * b^(n-k))"
  2965 proof -
  2966   from E_add_mult[of a b]
  2967   have "(E (a + b)) $ n = (E a * E b)$n" by simp
  2968   then have "(a + b) ^ n =
  2969     (\<Sum>i\<Colon>nat = 0\<Colon>nat..n. a ^ i * b ^ (n - i)  * (of_nat (fact n) / of_nat (fact i * fact (n - i))))"
  2970     by (simp add: field_simps fps_mult_nth of_nat_mult[symmetric] setsum_right_distrib)
  2971   then show ?thesis
  2972     apply simp
  2973     apply (rule setsum_cong2)
  2974     apply simp
  2975     apply (frule binomial_fact[where ?'a = 'a, symmetric])
  2976     apply (simp add: field_simps of_nat_mult)
  2977     done
  2978 qed
  2979 
  2980 text{* And the nat-form -- also available from Binomial.thy *}
  2981 lemma binomial_theorem: "(a+b) ^ n = (\<Sum>k=0..n. (n choose k) * a^k * b^(n-k))"
  2982   using gbinomial_theorem[of "of_nat a" "of_nat b" n]
  2983   unfolding of_nat_add[symmetric] of_nat_power[symmetric] of_nat_mult[symmetric]
  2984     of_nat_setsum[symmetric]
  2985   by simp
  2986 
  2987 
  2988 subsubsection{* Logarithmic series *}
  2989 
  2990 lemma Abs_fps_if_0:
  2991   "Abs_fps(%n. if n=0 then (v::'a::ring_1) else f n) = fps_const v + X * Abs_fps (%n. f (Suc n))"
  2992   by (auto simp add: fps_eq_iff)
  2993 
  2994 definition L :: "'a::field_char_0 \<Rightarrow> 'a fps"
  2995   where "L c = fps_const (1/c) * Abs_fps (\<lambda>n. if n = 0 then 0 else (- 1) ^ (n - 1) / of_nat n)"
  2996 
  2997 lemma fps_deriv_L: "fps_deriv (L c) = fps_const (1/c) * inverse (1 + X)"
  2998   unfolding inverse_one_plus_X
  2999   by (simp add: L_def fps_eq_iff del: of_nat_Suc)
  3000 
  3001 lemma L_nth: "L c $ n = (if n=0 then 0 else 1/c * ((- 1) ^ (n - 1) / of_nat n))"
  3002   by (simp add: L_def field_simps)
  3003 
  3004 lemma L_0[simp]: "L c $ 0 = 0" by (simp add: L_def)
  3005 
  3006 lemma L_E_inv:
  3007   assumes a: "a\<noteq> (0::'a::{field_char_0})"
  3008   shows "L a = fps_inv (E a - 1)" (is "?l = ?r")
  3009 proof -
  3010   let ?b = "E a - 1"
  3011   have b0: "?b $ 0 = 0" by simp
  3012   have b1: "?b $ 1 \<noteq> 0" by (simp add: a)
  3013   have "fps_deriv (E a - 1) oo fps_inv (E a - 1) =
  3014     (fps_const a * (E a - 1) + fps_const a) oo fps_inv (E a - 1)"
  3015     by (simp add: field_simps)
  3016   also have "\<dots> = fps_const a * (X + 1)"
  3017     apply (simp add: fps_compose_add_distrib fps_const_mult_apply_left[symmetric] fps_inv_right[OF b0 b1])
  3018     apply (simp add: field_simps)
  3019     done
  3020   finally have eq: "fps_deriv (E a - 1) oo fps_inv (E a - 1) = fps_const a * (X + 1)" .
  3021   from fps_inv_deriv[OF b0 b1, unfolded eq]
  3022   have "fps_deriv (fps_inv ?b) = fps_const (inverse a) / (X + 1)"
  3023     using a
  3024     by (simp add: fps_const_inverse eq fps_divide_def fps_inverse_mult)
  3025   hence "fps_deriv ?l = fps_deriv ?r"
  3026     by (simp add: fps_deriv_L add_commute fps_divide_def divide_inverse)
  3027   then show ?thesis unfolding fps_deriv_eq_iff
  3028     by (simp add: L_nth fps_inv_def)
  3029 qed
  3030 
  3031 lemma L_mult_add:
  3032   assumes c0: "c\<noteq>0"
  3033     and d0: "d\<noteq>0"
  3034   shows "L c + L d = fps_const (c+d) * L (c*d)"
  3035   (is "?r = ?l")
  3036 proof-
  3037   from c0 d0 have eq: "1/c + 1/d = (c+d)/(c*d)" by (simp add: field_simps)
  3038   have "fps_deriv ?r = fps_const (1/c + 1/d) * inverse (1 + X)"
  3039     by (simp add: fps_deriv_L fps_const_add[symmetric] algebra_simps del: fps_const_add)
  3040   also have "\<dots> = fps_deriv ?l"
  3041     apply (simp add: fps_deriv_L)
  3042     apply (simp add: fps_eq_iff eq)
  3043     done
  3044   finally show ?thesis
  3045     unfolding fps_deriv_eq_iff by simp
  3046 qed
  3047 
  3048 
  3049 subsubsection{* Binomial series *}
  3050 
  3051 definition "fps_binomial a = Abs_fps (\<lambda>n. a gchoose n)"
  3052 
  3053 lemma fps_binomial_nth[simp]: "fps_binomial a $ n = a gchoose n"
  3054   by (simp add: fps_binomial_def)
  3055 
  3056 lemma fps_binomial_ODE_unique:
  3057   fixes c :: "'a::field_char_0"
  3058   shows "fps_deriv a = (fps_const c * a) / (1 + X) \<longleftrightarrow> a = fps_const (a$0) * fps_binomial c"
  3059   (is "?lhs \<longleftrightarrow> ?rhs")
  3060 proof -
  3061   let ?da = "fps_deriv a"
  3062   let ?x1 = "(1 + X):: 'a fps"
  3063   let ?l = "?x1 * ?da"
  3064   let ?r = "fps_const c * a"
  3065   have x10: "?x1 $ 0 \<noteq> 0" by simp
  3066   have "?l = ?r \<longleftrightarrow> inverse ?x1 * ?l = inverse ?x1 * ?r" by simp
  3067   also have "\<dots> \<longleftrightarrow> ?da = (fps_const c * a) / ?x1"
  3068     apply (simp only: fps_divide_def  mult_assoc[symmetric] inverse_mult_eq_1[OF x10])
  3069     apply (simp add: field_simps)
  3070     done
  3071   finally have eq: "?l = ?r \<longleftrightarrow> ?lhs" by simp
  3072   moreover
  3073   {assume h: "?l = ?r"
  3074     {fix n
  3075       from h have lrn: "?l $ n = ?r$n" by simp
  3076 
  3077       from lrn
  3078       have "a$ Suc n = ((c - of_nat n) / of_nat (Suc n)) * a $n"
  3079         apply (simp add: field_simps del: of_nat_Suc)
  3080         by (cases n, simp_all add: field_simps del: of_nat_Suc)
  3081     }
  3082     note th0 = this
  3083     {
  3084       fix n
  3085       have "a$n = (c gchoose n) * a$0"
  3086       proof (induct n)
  3087         case 0
  3088         thus ?case by simp
  3089       next
  3090         case (Suc m)
  3091         thus ?case unfolding th0
  3092           apply (simp add: field_simps del: of_nat_Suc)
  3093           unfolding mult_assoc[symmetric] gbinomial_mult_1
  3094           apply (simp add: field_simps)
  3095           done
  3096       qed
  3097     }
  3098     note th1 = this
  3099     have ?rhs
  3100       apply (simp add: fps_eq_iff)
  3101       apply (subst th1)
  3102       apply (simp add: field_simps)
  3103       done
  3104   }
  3105   moreover
  3106   {
  3107     assume h: ?rhs
  3108     have th00: "\<And>x y. x * (a$0 * y) = a$0 * (x*y)"
  3109       by (simp add: mult_commute)
  3110     have "?l = ?r"
  3111       apply (subst h)
  3112       apply (subst (2) h)
  3113       apply (clarsimp simp add: fps_eq_iff field_simps)
  3114       unfolding mult_assoc[symmetric] th00 gbinomial_mult_1
  3115       apply (simp add: field_simps gbinomial_mult_1)
  3116       done
  3117   }
  3118   ultimately show ?thesis by blast
  3119 qed
  3120 
  3121 lemma fps_binomial_deriv: "fps_deriv (fps_binomial c) = fps_const c * fps_binomial c / (1 + X)"
  3122 proof -
  3123   let ?a = "fps_binomial c"
  3124   have th0: "?a = fps_const (?a$0) * ?a" by (simp)
  3125   from iffD2[OF fps_binomial_ODE_unique, OF th0] show ?thesis .
  3126 qed
  3127 
  3128 lemma fps_binomial_add_mult: "fps_binomial (c+d) = fps_binomial c * fps_binomial d" (is "?l = ?r")
  3129 proof -
  3130   let ?P = "?r - ?l"
  3131   let ?b = "fps_binomial"
  3132   let ?db = "\<lambda>x. fps_deriv (?b x)"
  3133   have "fps_deriv ?P = ?db c * ?b d + ?b c * ?db d - ?db (c + d)"  by simp
  3134   also have "\<dots> = inverse (1 + X) *
  3135       (fps_const c * ?b c * ?b d + fps_const d * ?b c * ?b d - fps_const (c+d) * ?b (c + d))"
  3136     unfolding fps_binomial_deriv
  3137     by (simp add: fps_divide_def field_simps)
  3138   also have "\<dots> = (fps_const (c + d)/ (1 + X)) * ?P"
  3139     by (simp add: field_simps fps_divide_def fps_const_add[symmetric] del: fps_const_add)
  3140   finally have th0: "fps_deriv ?P = fps_const (c+d) * ?P / (1 + X)"
  3141     by (simp add: fps_divide_def)
  3142   have "?P = fps_const (?P$0) * ?b (c + d)"
  3143     unfolding fps_binomial_ODE_unique[symmetric]
  3144     using th0 by simp
  3145   hence "?P = 0" by (simp add: fps_mult_nth)
  3146   then show ?thesis by simp
  3147 qed
  3148 
  3149 lemma fps_minomial_minus_one: "fps_binomial (- 1) = inverse (1 + X)"
  3150   (is "?l = inverse ?r")
  3151 proof-
  3152   have th: "?r$0 \<noteq> 0" by simp
  3153   have th': "fps_deriv (inverse ?r) = fps_const (- 1) * inverse ?r / (1 + X)"
  3154     by (simp add: fps_inverse_deriv[OF th] fps_divide_def
  3155       power2_eq_square mult_commute fps_const_neg[symmetric] del: fps_const_neg minus_one)
  3156   have eq: "inverse ?r $ 0 = 1"
  3157     by (simp add: fps_inverse_def)
  3158   from iffD1[OF fps_binomial_ODE_unique[of "inverse (1 + X)" "- 1"] th'] eq
  3159   show ?thesis by (simp add: fps_inverse_def)
  3160 qed
  3161 
  3162 text{* Vandermonde's Identity as a consequence *}
  3163 lemma gbinomial_Vandermonde:
  3164   "setsum (\<lambda>k. (a gchoose k) * (b gchoose (n - k))) {0..n} = (a + b) gchoose n"
  3165 proof -
  3166   let ?ba = "fps_binomial a"
  3167   let ?bb = "fps_binomial b"
  3168   let ?bab = "fps_binomial (a + b)"
  3169   from fps_binomial_add_mult[of a b] have "?bab $ n = (?ba * ?bb)$n" by simp
  3170   then show ?thesis by (simp add: fps_mult_nth)
  3171 qed
  3172 
  3173 lemma binomial_Vandermonde:
  3174   "setsum (\<lambda>k. (a choose k) * (b choose (n - k))) {0..n} = (a + b) choose n"
  3175   using gbinomial_Vandermonde[of "(of_nat a)" "of_nat b" n]
  3176   apply (simp only: binomial_gbinomial[symmetric] of_nat_mult[symmetric]
  3177     of_nat_setsum[symmetric] of_nat_add[symmetric])
  3178   apply simp
  3179   done
  3180 
  3181 lemma binomial_Vandermonde_same: "setsum (\<lambda>k. (n choose k)\<^sup>2) {0..n} = (2*n) choose n"
  3182   using binomial_Vandermonde[of n n n,symmetric]
  3183   unfolding mult_2
  3184   apply (simp add: power2_eq_square)
  3185   apply (rule setsum_cong2)
  3186   apply (auto intro:  binomial_symmetric)
  3187   done
  3188 
  3189 lemma Vandermonde_pochhammer_lemma:
  3190   fixes a :: "'a::field_char_0"
  3191   assumes b: "\<forall> j\<in>{0 ..<n}. b \<noteq> of_nat j"
  3192   shows "setsum (%k. (pochhammer (- a) k * pochhammer (- (of_nat n)) k) /
  3193       (of_nat (fact k) * pochhammer (b - of_nat n + 1) k)) {0..n} =
  3194     pochhammer (- (a+ b)) n / pochhammer (- b) n"
  3195   (is "?l = ?r")
  3196 proof -
  3197   let ?m1 = "%m. (- 1 :: 'a) ^ m"
  3198   let ?f = "%m. of_nat (fact m)"
  3199   let ?p = "%(x::'a). pochhammer (- x)"
  3200   from b have bn0: "?p b n \<noteq> 0" unfolding pochhammer_eq_0_iff by simp
  3201   {
  3202     fix k
  3203     assume kn: "k \<in> {0..n}"
  3204     {
  3205       assume c:"pochhammer (b - of_nat n + 1) n = 0"
  3206       then obtain j where j: "j < n" "b - of_nat n + 1 = - of_nat j"
  3207         unfolding pochhammer_eq_0_iff by blast
  3208       from j have "b = of_nat n - of_nat j - of_nat 1"
  3209         by (simp add: algebra_simps)
  3210       then have "b = of_nat (n - j - 1)"
  3211         using j kn by (simp add: of_nat_diff)
  3212       with b have False using j by auto
  3213     }
  3214     then have nz: "pochhammer (1 + b - of_nat n) n \<noteq> 0"
  3215       by (auto simp add: algebra_simps)
  3216 
  3217     from nz kn [simplified] have nz': "pochhammer (1 + b - of_nat n) k \<noteq> 0"
  3218       by (rule pochhammer_neq_0_mono)
  3219     {
  3220       assume k0: "k = 0 \<or> n =0"
  3221       then have "b gchoose (n - k) =
  3222         (?m1 n * ?p b n * ?m1 k * ?p (of_nat n) k) / (?f n * pochhammer (b - of_nat n + 1) k)"
  3223         using kn
  3224         by (cases "k = 0") (simp_all add: gbinomial_pochhammer)
  3225     }
  3226     moreover
  3227     {
  3228       assume n0: "n \<noteq> 0" and k0: "k \<noteq> 0"
  3229       then obtain m where m: "n = Suc m" by (cases n) auto
  3230       from k0 obtain h where h: "k = Suc h" by (cases k) auto
  3231       {
  3232         assume kn: "k = n"
  3233         then have "b gchoose (n - k) =
  3234           (?m1 n * ?p b n * ?m1 k * ?p (of_nat n) k) / (?f n * pochhammer (b - of_nat n + 1) k)"
  3235           using kn pochhammer_minus'[where k=k and n=n and b=b]
  3236           apply (simp add:  pochhammer_same)
  3237           using bn0
  3238           apply (simp add: field_simps power_add[symmetric])
  3239           done
  3240       }
  3241       moreover
  3242       {
  3243         assume nk: "k \<noteq> n"
  3244         have m1nk: "?m1 n = setprod (%i. - 1) {0..m}" "?m1 k = setprod (%i. - 1) {0..h}"
  3245           by (simp_all add: setprod_constant m h)
  3246         from kn nk have kn': "k < n" by simp
  3247         have bnz0: "pochhammer (b - of_nat n + 1) k \<noteq> 0"
  3248           using bn0 kn
  3249           unfolding pochhammer_eq_0_iff
  3250           apply auto
  3251           apply (erule_tac x= "n - ka - 1" in allE)
  3252           apply (auto simp add: algebra_simps of_nat_diff)
  3253           done
  3254         have eq1: "setprod (%k. (1::'a) + of_nat m - of_nat k) {0 .. h} =
  3255           setprod of_nat {Suc (m - h) .. Suc m}"
  3256           apply (rule strong_setprod_reindex_cong[where f="%k. Suc m - k "])
  3257           using kn' h m
  3258           apply (auto simp add: inj_on_def image_def)
  3259           apply (rule_tac x="Suc m - x" in bexI)
  3260           apply (simp_all add: of_nat_diff)
  3261           done
  3262 
  3263         have th1: "(?m1 k * ?p (of_nat n) k) / ?f n = 1 / of_nat(fact (n - k))"
  3264           unfolding m1nk
  3265           unfolding m h pochhammer_Suc_setprod
  3266           apply (simp add: field_simps del: fact_Suc minus_one)
  3267           unfolding fact_altdef_nat id_def
  3268           unfolding of_nat_setprod
  3269           unfolding setprod_timesf[symmetric]
  3270           apply auto
  3271           unfolding eq1
  3272           apply (subst setprod_Un_disjoint[symmetric])
  3273           apply (auto)
  3274           apply (rule setprod_cong)
  3275           apply auto
  3276           done
  3277         have th20: "?m1 n * ?p b n = setprod (%i. b - of_nat i) {0..m}"
  3278           unfolding m1nk
  3279           unfolding m h pochhammer_Suc_setprod
  3280           unfolding setprod_timesf[symmetric]
  3281           apply (rule setprod_cong)
  3282           apply auto
  3283           done
  3284         have th21:"pochhammer (b - of_nat n + 1) k = setprod (%i. b - of_nat i) {n - k .. n - 1}"
  3285           unfolding h m
  3286           unfolding pochhammer_Suc_setprod
  3287           apply (rule strong_setprod_reindex_cong[where f="%k. n - 1 - k"])
  3288           using kn
  3289           apply (auto simp add: inj_on_def m h image_def)
  3290           apply (rule_tac x= "m - x" in bexI)
  3291           apply (auto simp add: of_nat_diff)
  3292           done
  3293 
  3294         have "?m1 n * ?p b n =
  3295           pochhammer (b - of_nat n + 1) k * setprod (%i. b - of_nat i) {0.. n - k - 1}"
  3296           unfolding th20 th21
  3297           unfolding h m
  3298           apply (subst setprod_Un_disjoint[symmetric])
  3299           using kn' h m
  3300           apply auto
  3301           apply (rule setprod_cong)
  3302           apply auto
  3303           done
  3304         then have th2: "(?m1 n * ?p b n)/pochhammer (b - of_nat n + 1) k =
  3305           setprod (%i. b - of_nat i) {0.. n - k - 1}"
  3306           using nz' by (simp add: field_simps)
  3307         have "(?m1 n * ?p b n * ?m1 k * ?p (of_nat n) k) / (?f n * pochhammer (b - of_nat n + 1) k) =
  3308           ((?m1 k * ?p (of_nat n) k) / ?f n) * ((?m1 n * ?p b n)/pochhammer (b - of_nat n + 1) k)"
  3309           using bnz0
  3310           by (simp add: field_simps)
  3311         also have "\<dots> = b gchoose (n - k)"
  3312           unfolding th1 th2
  3313           using kn' by (simp add: gbinomial_def)
  3314         finally have "b gchoose (n - k) =
  3315           (?m1 n * ?p b n * ?m1 k * ?p (of_nat n) k) / (?f n * pochhammer (b - of_nat n + 1) k)"
  3316           by simp
  3317       }
  3318       ultimately
  3319       have "b gchoose (n - k) =
  3320         (?m1 n * ?p b n * ?m1 k * ?p (of_nat n) k) / (?f n * pochhammer (b - of_nat n + 1) k)"
  3321         by (cases "k = n") auto
  3322     }
  3323     ultimately have "b gchoose (n - k) =
  3324         (?m1 n * ?p b n * ?m1 k * ?p (of_nat n) k) / (?f n * pochhammer (b - of_nat n + 1) k)"
  3325       "pochhammer (1 + b - of_nat n) k \<noteq> 0 "
  3326       apply (cases "n = 0")
  3327       using nz'
  3328       apply auto
  3329       apply (cases k)
  3330       apply auto
  3331       done
  3332   }
  3333   note th00 = this
  3334   have "?r = ((a + b) gchoose n) * (of_nat (fact n)/ (?m1 n * pochhammer (- b) n))"
  3335     unfolding gbinomial_pochhammer
  3336     using bn0 by (auto simp add: field_simps)
  3337   also have "\<dots> = ?l"
  3338     unfolding gbinomial_Vandermonde[symmetric]
  3339     apply (simp add: th00)
  3340     unfolding gbinomial_pochhammer
  3341     using bn0
  3342     apply (simp add: setsum_left_distrib setsum_right_distrib field_simps)
  3343     apply (rule setsum_cong2)
  3344     apply (drule th00(2))
  3345     apply (simp add: field_simps power_add[symmetric])
  3346     done
  3347   finally show ?thesis by simp
  3348 qed
  3349 
  3350 lemma Vandermonde_pochhammer:
  3351   fixes a :: "'a::field_char_0"
  3352   assumes c: "ALL i : {0..< n}. c \<noteq> - of_nat i"
  3353   shows "setsum (%k. (pochhammer a k * pochhammer (- (of_nat n)) k) /
  3354     (of_nat (fact k) * pochhammer c k)) {0..n} = pochhammer (c - a) n / pochhammer c n"
  3355 proof -
  3356   let ?a = "- a"
  3357   let ?b = "c + of_nat n - 1"
  3358   have h: "\<forall> j \<in>{0..< n}. ?b \<noteq> of_nat j" using c
  3359     apply (auto simp add: algebra_simps of_nat_diff)
  3360     apply (erule_tac x= "n - j - 1" in ballE)
  3361     apply (auto simp add: of_nat_diff algebra_simps)
  3362     done
  3363   have th0: "pochhammer (- (?a + ?b)) n = (- 1)^n * pochhammer (c - a) n"
  3364     unfolding pochhammer_minus[OF le_refl]
  3365     by (simp add: algebra_simps)
  3366   have th1: "pochhammer (- ?b) n = (- 1)^n * pochhammer c n"
  3367     unfolding pochhammer_minus[OF le_refl]
  3368     by simp
  3369   have nz: "pochhammer c n \<noteq> 0" using c
  3370     by (simp add: pochhammer_eq_0_iff)
  3371   from Vandermonde_pochhammer_lemma[where a = "?a" and b="?b" and n=n, OF h, unfolded th0 th1]
  3372   show ?thesis using nz by (simp add: field_simps setsum_right_distrib)
  3373 qed
  3374 
  3375 
  3376 subsubsection{* Formal trigonometric functions  *}
  3377 
  3378 definition "fps_sin (c::'a::field_char_0) =
  3379   Abs_fps (\<lambda>n. if even n then 0 else (- 1) ^((n - 1) div 2) * c^n /(of_nat (fact n)))"
  3380 
  3381 definition "fps_cos (c::'a::field_char_0) =
  3382   Abs_fps (\<lambda>n. if even n then (- 1) ^ (n div 2) * c^n / (of_nat (fact n)) else 0)"
  3383 
  3384 lemma fps_sin_deriv:
  3385   "fps_deriv (fps_sin c) = fps_const c * fps_cos c"
  3386   (is "?lhs = ?rhs")
  3387 proof (rule fps_ext)
  3388   fix n :: nat
  3389   {
  3390     assume en: "even n"
  3391     have "?lhs$n = of_nat (n+1) * (fps_sin c $ (n+1))" by simp
  3392     also have "\<dots> = of_nat (n+1) * ((- 1)^(n div 2) * c^Suc n / of_nat (fact (Suc n)))"
  3393       using en by (simp add: fps_sin_def)
  3394     also have "\<dots> = (- 1)^(n div 2) * c^Suc n * (of_nat (n+1) / (of_nat (Suc n) * of_nat (fact n)))"
  3395       unfolding fact_Suc of_nat_mult
  3396       by (simp add: field_simps del: of_nat_add of_nat_Suc)
  3397     also have "\<dots> = (- 1)^(n div 2) *c^Suc n / of_nat (fact n)"
  3398       by (simp add: field_simps del: of_nat_add of_nat_Suc)
  3399     finally have "?lhs $n = ?rhs$n" using en
  3400       by (simp add: fps_cos_def field_simps)
  3401   }
  3402   then show "?lhs $ n = ?rhs $ n"
  3403     by (cases "even n") (simp_all add: fps_deriv_def fps_sin_def fps_cos_def)
  3404 qed
  3405 
  3406 lemma fps_cos_deriv: "fps_deriv (fps_cos c) = fps_const (- c)* (fps_sin c)"
  3407   (is "?lhs = ?rhs")
  3408 proof (rule fps_ext)
  3409   have th0: "\<And>n. - ((- 1::'a) ^ n) = (- 1)^Suc n" by simp
  3410   have th1: "\<And>n. odd n \<Longrightarrow> Suc ((n - 1) div 2) = Suc n div 2"
  3411     by (case_tac n, simp_all)
  3412   fix n::nat
  3413   {
  3414     assume en: "odd n"
  3415     from en have n0: "n \<noteq>0 " by presburger
  3416     have "?lhs$n = of_nat (n+1) * (fps_cos c $ (n+1))" by simp
  3417     also have "\<dots> = of_nat (n+1) * ((- 1)^((n + 1) div 2) * c^Suc n / of_nat (fact (Suc n)))"
  3418       using en by (simp add: fps_cos_def)
  3419     also have "\<dots> = (- 1)^((n + 1) div 2)*c^Suc n * (of_nat (n+1) / (of_nat (Suc n) * of_nat (fact n)))"
  3420       unfolding fact_Suc of_nat_mult
  3421       by (simp add: field_simps del: of_nat_add of_nat_Suc)
  3422     also have "\<dots> = (- 1)^((n + 1) div 2) * c^Suc n / of_nat (fact n)"
  3423       by (simp add: field_simps del: of_nat_add of_nat_Suc)
  3424     also have "\<dots> = (- ((- 1)^((n - 1) div 2))) * c^Suc n / of_nat (fact n)"
  3425       unfolding th0 unfolding th1[OF en] by simp
  3426     finally have "?lhs $n = ?rhs$n" using en
  3427       by (simp add: fps_sin_def field_simps)
  3428   }
  3429   then show "?lhs $ n = ?rhs $ n"
  3430     by (cases "even n") (simp_all add: fps_deriv_def fps_sin_def fps_cos_def)
  3431 qed
  3432 
  3433 lemma fps_sin_cos_sum_of_squares:
  3434   "(fps_cos c)\<^sup>2 + (fps_sin c)\<^sup>2 = 1" (is "?lhs = 1")
  3435 proof -
  3436   have "fps_deriv ?lhs = 0"
  3437     apply (simp add:  fps_deriv_power fps_sin_deriv fps_cos_deriv)
  3438     apply (simp add: field_simps fps_const_neg[symmetric] del: fps_const_neg)
  3439     done
  3440   then have "?lhs = fps_const (?lhs $ 0)"
  3441     unfolding fps_deriv_eq_0_iff .
  3442   also have "\<dots> = 1"
  3443     by (auto simp add: fps_eq_iff numeral_2_eq_2 fps_mult_nth fps_cos_def fps_sin_def)
  3444   finally show ?thesis .
  3445 qed
  3446 
  3447 lemma divide_eq_iff: "a \<noteq> (0::'a::field) \<Longrightarrow> x / a = y \<longleftrightarrow> x = y * a"
  3448   by auto
  3449 
  3450 lemma eq_divide_iff: "a \<noteq> (0::'a::field) \<Longrightarrow> x = y / a \<longleftrightarrow> x * a = y"
  3451   by auto
  3452 
  3453 lemma fps_sin_nth_0 [simp]: "fps_sin c $ 0 = 0"
  3454   unfolding fps_sin_def by simp
  3455 
  3456 lemma fps_sin_nth_1 [simp]: "fps_sin c $ 1 = c"
  3457   unfolding fps_sin_def by simp
  3458 
  3459 lemma fps_sin_nth_add_2:
  3460   "fps_sin c $ (n + 2) = - (c * c * fps_sin c $ n / (of_nat(n+1) * of_nat(n+2)))"
  3461   unfolding fps_sin_def
  3462   apply (cases n, simp)
  3463   apply (simp add: divide_eq_iff eq_divide_iff del: of_nat_Suc fact_Suc)
  3464   apply (simp add: of_nat_mult del: of_nat_Suc mult_Suc)
  3465   done
  3466 
  3467 lemma fps_cos_nth_0 [simp]: "fps_cos c $ 0 = 1"
  3468   unfolding fps_cos_def by simp
  3469 
  3470 lemma fps_cos_nth_1 [simp]: "fps_cos c $ 1 = 0"
  3471   unfolding fps_cos_def by simp
  3472 
  3473 lemma fps_cos_nth_add_2:
  3474   "fps_cos c $ (n + 2) = - (c * c * fps_cos c $ n / (of_nat(n+1) * of_nat(n+2)))"
  3475   unfolding fps_cos_def
  3476   apply (simp add: divide_eq_iff eq_divide_iff del: of_nat_Suc fact_Suc)
  3477   apply (simp add: of_nat_mult del: of_nat_Suc mult_Suc)
  3478   done
  3479 
  3480 lemma nat_induct2: "P 0 \<Longrightarrow> P 1 \<Longrightarrow> (\<And>n. P n \<Longrightarrow> P (n + 2)) \<Longrightarrow> P (n::nat)"
  3481   unfolding One_nat_def numeral_2_eq_2
  3482   apply (induct n rule: nat_less_induct)
  3483   apply (case_tac n)
  3484   apply simp
  3485   apply (rename_tac m)
  3486   apply (case_tac m)
  3487   apply simp
  3488   apply (rename_tac k)
  3489   apply (case_tac k)
  3490   apply simp_all
  3491   done
  3492 
  3493 lemma nat_add_1_add_1: "(n::nat) + 1 + 1 = n + 2"
  3494   by simp
  3495 
  3496 lemma eq_fps_sin:
  3497   assumes 0: "a $ 0 = 0"
  3498     and 1: "a $ 1 = c"
  3499     and 2: "fps_deriv (fps_deriv a) = - (fps_const c * fps_const c * a)"
  3500   shows "a = fps_sin c"
  3501   apply (rule fps_ext)
  3502   apply (induct_tac n rule: nat_induct2)
  3503   apply (simp add: 0)
  3504   apply (simp add: 1 del: One_nat_def)
  3505   apply (rename_tac m, cut_tac f="\<lambda>a. a $ m" in arg_cong [OF 2])
  3506   apply (simp add: nat_add_1_add_1 fps_sin_nth_add_2
  3507               del: One_nat_def of_nat_Suc of_nat_add add_2_eq_Suc')
  3508   apply (subst minus_divide_left)
  3509   apply (subst eq_divide_iff)
  3510   apply (simp del: of_nat_add of_nat_Suc)
  3511   apply (simp only: mult_ac)
  3512   done
  3513 
  3514 lemma eq_fps_cos:
  3515   assumes 0: "a $ 0 = 1"
  3516     and 1: "a $ 1 = 0"
  3517     and 2: "fps_deriv (fps_deriv a) = - (fps_const c * fps_const c * a)"
  3518   shows "a = fps_cos c"
  3519   apply (rule fps_ext)
  3520   apply (induct_tac n rule: nat_induct2)
  3521   apply (simp add: 0)
  3522   apply (simp add: 1 del: One_nat_def)
  3523   apply (rename_tac m, cut_tac f="\<lambda>a. a $ m" in arg_cong [OF 2])
  3524   apply (simp add: nat_add_1_add_1 fps_cos_nth_add_2
  3525               del: One_nat_def of_nat_Suc of_nat_add add_2_eq_Suc')
  3526   apply (subst minus_divide_left)
  3527   apply (subst eq_divide_iff)
  3528   apply (simp del: of_nat_add of_nat_Suc)
  3529   apply (simp only: mult_ac)
  3530   done
  3531 
  3532 lemma mult_nth_0 [simp]: "(a * b) $ 0 = a $ 0 * b $ 0"
  3533   by (simp add: fps_mult_nth)
  3534 
  3535 lemma mult_nth_1 [simp]: "(a * b) $ 1 = a $ 0 * b $ 1 + a $ 1 * b $ 0"
  3536   by (simp add: fps_mult_nth)
  3537 
  3538 lemma fps_sin_add: "fps_sin (a + b) = fps_sin a * fps_cos b + fps_cos a * fps_sin b"
  3539   apply (rule eq_fps_sin [symmetric], simp, simp del: One_nat_def)
  3540   apply (simp del: fps_const_neg fps_const_add fps_const_mult
  3541               add: fps_const_add [symmetric] fps_const_neg [symmetric]
  3542                    fps_sin_deriv fps_cos_deriv algebra_simps)
  3543   done
  3544 
  3545 lemma fps_cos_add: "fps_cos (a + b) = fps_cos a * fps_cos b - fps_sin a * fps_sin b"
  3546   apply (rule eq_fps_cos [symmetric], simp, simp del: One_nat_def)
  3547   apply (simp del: fps_const_neg fps_const_add fps_const_mult
  3548               add: fps_const_add [symmetric] fps_const_neg [symmetric]
  3549                    fps_sin_deriv fps_cos_deriv algebra_simps)
  3550   done
  3551 
  3552 lemma fps_sin_even: "fps_sin (- c) = - fps_sin c"
  3553   by (auto simp add: fps_eq_iff fps_sin_def)
  3554 
  3555 lemma fps_cos_odd: "fps_cos (- c) = fps_cos c"
  3556   by (auto simp add: fps_eq_iff fps_cos_def)
  3557 
  3558 definition "fps_tan c = fps_sin c / fps_cos c"
  3559 
  3560 lemma fps_tan_deriv: "fps_deriv (fps_tan c) = fps_const c / (fps_cos c)\<^sup>2"
  3561 proof -
  3562   have th0: "fps_cos c $ 0 \<noteq> 0" by (simp add: fps_cos_def)
  3563   show ?thesis
  3564     using fps_sin_cos_sum_of_squares[of c]
  3565     apply (simp add: fps_tan_def fps_divide_deriv[OF th0] fps_sin_deriv fps_cos_deriv
  3566       fps_const_neg[symmetric] field_simps power2_eq_square del: fps_const_neg)
  3567     unfolding distrib_left[symmetric]
  3568     apply simp
  3569     done
  3570 qed
  3571 
  3572 text {* Connection to E c over the complex numbers --- Euler and De Moivre*}
  3573 lemma Eii_sin_cos: "E (ii * c) = fps_cos c + fps_const ii * fps_sin c "
  3574   (is "?l = ?r")
  3575 proof -
  3576   { fix n :: nat
  3577     {
  3578       assume en: "even n"
  3579       from en obtain m where m: "n = 2 * m"
  3580         unfolding even_mult_two_ex by blast
  3581 
  3582       have "?l $n = ?r$n"
  3583         by (simp add: m fps_sin_def fps_cos_def power_mult_distrib power_mult power_minus)
  3584     }
  3585     moreover
  3586     {
  3587       assume on: "odd n"
  3588       from on obtain m where m: "n = 2*m + 1"
  3589         unfolding odd_nat_equiv_def2 by (auto simp add: mult_2)
  3590       have "?l $n = ?r$n"
  3591         by (simp add: m fps_sin_def fps_cos_def power_mult_distrib
  3592           power_mult power_minus)
  3593     }
  3594     ultimately have "?l $n = ?r$n"  by blast
  3595   } then show ?thesis by (simp add: fps_eq_iff)
  3596 qed
  3597 
  3598 lemma E_minus_ii_sin_cos: "E (- (ii * c)) = fps_cos c - fps_const ii * fps_sin c"
  3599   unfolding minus_mult_right Eii_sin_cos by (simp add: fps_sin_even fps_cos_odd)
  3600 
  3601 lemma fps_const_minus: "fps_const (c::'a::group_add) - fps_const d = fps_const (c - d)"
  3602   by (simp add: fps_eq_iff fps_const_def)
  3603 
  3604 lemma fps_numeral_fps_const: "numeral i = fps_const (numeral i :: 'a:: {comm_ring_1})"
  3605   by (fact numeral_fps_const) (* FIXME: duplicate *)
  3606 
  3607 lemma fps_cos_Eii: "fps_cos c = (E (ii * c) + E (- ii * c)) / fps_const 2"
  3608 proof -
  3609   have th: "fps_cos c + fps_cos c = fps_cos c * fps_const 2"
  3610     by (simp add: numeral_fps_const)
  3611   show ?thesis
  3612   unfolding Eii_sin_cos minus_mult_commute
  3613   by (simp add: fps_sin_even fps_cos_odd numeral_fps_const fps_divide_def fps_const_inverse th)
  3614 qed
  3615 
  3616 lemma fps_sin_Eii: "fps_sin c = (E (ii * c) - E (- ii * c)) / fps_const (2*ii)"
  3617 proof -
  3618   have th: "fps_const \<i> * fps_sin c + fps_const \<i> * fps_sin c = fps_sin c * fps_const (2 * ii)"
  3619     by (simp add: fps_eq_iff numeral_fps_const)
  3620   show ?thesis
  3621     unfolding Eii_sin_cos minus_mult_commute
  3622     by (simp add: fps_sin_even fps_cos_odd fps_divide_def fps_const_inverse th)
  3623 qed
  3624 
  3625 lemma fps_tan_Eii:
  3626   "fps_tan c = (E (ii * c) - E (- ii * c)) / (fps_const ii * (E (ii * c) + E (- ii * c)))"
  3627   unfolding fps_tan_def fps_sin_Eii fps_cos_Eii mult_minus_left E_neg
  3628   apply (simp add: fps_divide_def fps_inverse_mult fps_const_mult[symmetric] fps_const_inverse del: fps_const_mult)
  3629   apply simp
  3630   done
  3631 
  3632 lemma fps_demoivre: "(fps_cos a + fps_const ii * fps_sin a)^n = fps_cos (of_nat n * a) + fps_const ii * fps_sin (of_nat n * a)"
  3633   unfolding Eii_sin_cos[symmetric] E_power_mult
  3634   by (simp add: mult_ac)
  3635 
  3636 
  3637 subsection {* Hypergeometric series *}
  3638 
  3639 definition "F as bs (c::'a::{field_char_0, field_inverse_zero}) =
  3640   Abs_fps (%n. (foldl (%r a. r* pochhammer a n) 1 as * c^n) /
  3641     (foldl (%r b. r * pochhammer b n) 1 bs * of_nat (fact n)))"
  3642 
  3643 lemma F_nth[simp]: "F as bs c $ n =
  3644   (foldl (\<lambda>r a. r* pochhammer a n) 1 as * c^n) /
  3645     (foldl (\<lambda>r b. r * pochhammer b n) 1 bs * of_nat (fact n))"
  3646   by (simp add: F_def)
  3647 
  3648 lemma foldl_mult_start:
  3649   "foldl (%r x. r * f x) (v::'a::comm_ring_1) as * x = foldl (%r x. r * f x) (v * x) as "
  3650   by (induct as arbitrary: x v) (auto simp add: algebra_simps)
  3651 
  3652 lemma foldr_mult_foldl:
  3653   "foldr (%x r. r * f x) as v = foldl (%r x. r * f x) (v :: 'a::comm_ring_1) as"
  3654   by (induct as arbitrary: v) (auto simp add: foldl_mult_start)
  3655 
  3656 lemma F_nth_alt:
  3657   "F as bs c $ n = foldr (\<lambda>a r. r * pochhammer a n) as (c ^ n) /
  3658     foldr (\<lambda>b r. r * pochhammer b n) bs (of_nat (fact n))"
  3659   by (simp add: foldl_mult_start foldr_mult_foldl)
  3660 
  3661 lemma F_E[simp]: "F [] [] c = E c"
  3662   by (simp add: fps_eq_iff)
  3663 
  3664 lemma F_1_0[simp]: "F [1] [] c = 1/(1 - fps_const c * X)"
  3665 proof -
  3666   let ?a = "(Abs_fps (\<lambda>n. 1)) oo (fps_const c * X)"
  3667   have th0: "(fps_const c * X) $ 0 = 0" by simp
  3668   show ?thesis unfolding gp[OF th0, symmetric]
  3669     by (auto simp add: fps_eq_iff pochhammer_fact[symmetric]
  3670       fps_compose_nth power_mult_distrib cond_value_iff setsum_delta' cong del: if_weak_cong)
  3671 qed
  3672 
  3673 lemma F_B[simp]: "F [-a] [] (- 1) = fps_binomial a"
  3674   by (simp add: fps_eq_iff gbinomial_pochhammer algebra_simps)
  3675 
  3676 lemma F_0[simp]: "F as bs c $0 = 1"
  3677   apply simp
  3678   apply (subgoal_tac "ALL as. foldl (%(r::'a) (a::'a). r) 1 as = 1")
  3679   apply auto
  3680   apply (induct_tac as)
  3681   apply auto
  3682   done
  3683 
  3684 lemma foldl_prod_prod:
  3685   "foldl (%(r::'b::comm_ring_1) (x::'a::comm_ring_1). r * f x) v as * foldl (%r x. r * g x) w as =
  3686     foldl (%r x. r * f x * g x) (v*w) as"
  3687   by (induct as arbitrary: v w) (auto simp add: algebra_simps)
  3688 
  3689 
  3690 lemma F_rec:
  3691   "F as bs c $ Suc n = ((foldl (%r a. r* (a + of_nat n)) c as) /
  3692     (foldl (%r b. r * (b + of_nat n)) (of_nat (Suc n)) bs )) * F as bs c $ n"
  3693   apply (simp del: of_nat_Suc of_nat_add fact_Suc)
  3694   apply (simp add: foldl_mult_start del: fact_Suc of_nat_Suc)
  3695   unfolding foldl_prod_prod[unfolded foldl_mult_start] pochhammer_Suc
  3696   apply (simp add: algebra_simps of_nat_mult)
  3697   done
  3698 
  3699 lemma XD_nth[simp]: "XD a $ n = (if n=0 then 0 else of_nat n * a$n)"
  3700   by (simp add: XD_def)
  3701 
  3702 lemma XD_0th[simp]: "XD a $ 0 = 0" by simp
  3703 lemma XD_Suc[simp]:" XD a $ Suc n = of_nat (Suc n) * a $ Suc n" by simp
  3704 
  3705 definition "XDp c a = XD a + fps_const c * a"
  3706 
  3707 lemma XDp_nth[simp]: "XDp c a $ n = (c + of_nat n) * a$n"
  3708   by (simp add: XDp_def algebra_simps)
  3709 
  3710 lemma XDp_commute: "XDp b o XDp (c::'a::comm_ring_1) = XDp c o XDp b"
  3711   by (auto simp add: XDp_def fun_eq_iff fps_eq_iff algebra_simps)
  3712 
  3713 lemma XDp0 [simp]: "XDp 0 = XD"
  3714   by (simp add: fun_eq_iff fps_eq_iff)
  3715 
  3716 lemma XDp_fps_integral [simp]: "XDp 0 (fps_integral a c) = X * a"
  3717   by (simp add: fps_eq_iff fps_integral_def)
  3718 
  3719 lemma F_minus_nat:
  3720   "F [- of_nat n] [- of_nat (n + m)] (c::'a::{field_char_0, field_inverse_zero}) $ k =
  3721     (if k <= n then
  3722       pochhammer (- of_nat n) k * c ^ k / (pochhammer (- of_nat (n + m)) k * of_nat (fact k))
  3723      else 0)"
  3724   "F [- of_nat m] [- of_nat (m + n)] (c::'a::{field_char_0, field_inverse_zero}) $ k =
  3725     (if k <= m then
  3726       pochhammer (- of_nat m) k * c ^ k / (pochhammer (- of_nat (m + n)) k * of_nat (fact k))
  3727      else 0)"
  3728   by (auto simp add: pochhammer_eq_0_iff)
  3729 
  3730 lemma setsum_eq_if: "setsum f {(n::nat) .. m} = (if m < n then 0 else f n + setsum f {n+1 .. m})"
  3731   apply simp
  3732   apply (subst setsum_insert[symmetric])
  3733   apply (auto simp add: not_less setsum_head_Suc)
  3734   done
  3735 
  3736 lemma pochhammer_rec_if: "pochhammer a n = (if n = 0 then 1 else a * pochhammer (a + 1) (n - 1))"
  3737   by (cases n) (simp_all add: pochhammer_rec)
  3738 
  3739 lemma XDp_foldr_nth [simp]: "foldr (%c r. XDp c o r) cs (%c. XDp c a) c0 $ n =
  3740   foldr (%c r. (c + of_nat n) * r) cs (c0 + of_nat n) * a$n"
  3741   by (induct cs arbitrary: c0) (auto simp add: algebra_simps)
  3742 
  3743 lemma genric_XDp_foldr_nth:
  3744   assumes f: "ALL n c a. f c a $ n = (of_nat n + k c) * a$n"
  3745   shows "foldr (%c r. f c o r) cs (%c. g c a) c0 $ n =
  3746     foldr (%c r. (k c + of_nat n) * r) cs (g c0 a $ n)"
  3747   by (induct cs arbitrary: c0) (auto simp add: algebra_simps f)
  3748 
  3749 lemma dist_less_imp_nth_equal:
  3750   assumes "dist f g < inverse (2 ^ i)"
  3751     and"j \<le> i"
  3752   shows "f $ j = g $ j"
  3753 proof (rule ccontr)
  3754   assume "f $ j \<noteq> g $ j"
  3755   then have "\<exists>n. f $ n \<noteq> g $ n" by auto
  3756   with assms have "i < (LEAST n. f $ n \<noteq> g $ n)"
  3757     by (simp add: split_if_asm dist_fps_def)
  3758   also have "\<dots> \<le> j"
  3759     using `f $ j \<noteq> g $ j` by (auto intro: Least_le)
  3760   finally show False using `j \<le> i` by simp
  3761 qed
  3762 
  3763 lemma nth_equal_imp_dist_less:
  3764   assumes "\<And>j. j \<le> i \<Longrightarrow> f $ j = g $ j"
  3765   shows "dist f g < inverse (2 ^ i)"
  3766 proof (cases "f = g")
  3767   case False
  3768   hence "\<exists>n. f $ n \<noteq> g $ n" by (simp add: fps_eq_iff)
  3769   with assms have "dist f g = inverse (2 ^ (LEAST n. f $ n \<noteq> g $ n))"
  3770     by (simp add: split_if_asm dist_fps_def)
  3771   moreover
  3772   from assms `\<exists>n. f $ n \<noteq> g $ n` have "i < (LEAST n. f $ n \<noteq> g $ n)"
  3773     by (metis (mono_tags) LeastI not_less)
  3774   ultimately show ?thesis by simp
  3775 qed simp
  3776 
  3777 lemma dist_less_eq_nth_equal: "dist f g < inverse (2 ^ i) \<longleftrightarrow> (\<forall>j \<le> i. f $ j = g $ j)"
  3778   using dist_less_imp_nth_equal nth_equal_imp_dist_less by blast
  3779 
  3780 instance fps :: (comm_ring_1) complete_space
  3781 proof
  3782   fix X::"nat \<Rightarrow> 'a fps"
  3783   assume "Cauchy X"
  3784   {
  3785     fix i
  3786     have "0 < inverse ((2::real)^i)" by simp
  3787     from metric_CauchyD[OF `Cauchy X` this] dist_less_imp_nth_equal
  3788     have "\<exists>M. \<forall>m \<ge> M. \<forall>j\<le>i. X M $ j = X m $ j" by blast
  3789   }
  3790   then obtain M where M: "\<forall>i. \<forall>m \<ge> M i. \<forall>j \<le> i. X (M i) $ j = X m $ j" by metis
  3791   hence "\<forall>i. \<forall>m \<ge> M i. \<forall>j \<le> i. X (M i) $ j = X m $ j" by metis
  3792   show "convergent X"
  3793   proof (rule convergentI)
  3794     show "X ----> Abs_fps (\<lambda>i. X (M i) $ i)"
  3795       unfolding tendsto_iff
  3796     proof safe
  3797       fix e::real assume "0 < e"
  3798       with LIMSEQ_inverse_realpow_zero[of 2, simplified, simplified filterlim_iff,
  3799         THEN spec, of "\<lambda>x. x < e"]
  3800       have "eventually (\<lambda>i. inverse (2 ^ i) < e) sequentially"
  3801         apply safe
  3802         apply (auto simp: eventually_nhds)
  3803         done
  3804       then obtain i where "inverse (2 ^ i) < e" by (auto simp: eventually_sequentially)
  3805       have "eventually (\<lambda>x. M i \<le> x) sequentially" by (auto simp: eventually_sequentially)
  3806       thus "eventually (\<lambda>x. dist (X x) (Abs_fps (\<lambda>i. X (M i) $ i)) < e) sequentially"
  3807       proof eventually_elim
  3808         fix x
  3809         assume "M i \<le> x"
  3810         moreover
  3811         have "\<And>j. j \<le> i \<Longrightarrow> X (M i) $ j = X (M j) $ j"
  3812           using M by (metis nat_le_linear)
  3813         ultimately have "dist (X x) (Abs_fps (\<lambda>j. X (M j) $ j)) < inverse (2 ^ i)"
  3814           using M by (force simp: dist_less_eq_nth_equal)
  3815         also note `inverse (2 ^ i) < e`
  3816         finally show "dist (X x) (Abs_fps (\<lambda>j. X (M j) $ j)) < e" .
  3817       qed
  3818     qed
  3819   qed
  3820 qed
  3821 
  3822 end