src/HOL/Library/Permutations.thy
author nipkow
Sun, 18 Oct 2009 12:07:56 +0200
changeset 32989 c28279b29ff1
parent 32962 69916a850301
parent 32988 d1d4d7a08a66
child 33057 764547b68538
permissions -rw-r--r--
merged
     1 (* Title:      Library/Permutations
     2    Author:     Amine Chaieb, University of Cambridge
     3 *)
     4 
     5 header {* Permutations, both general and specifically on finite sets.*}
     6 
     7 theory Permutations
     8 imports Finite_Cartesian_Product Parity Fact
     9 begin
    10 
    11 definition permutes (infixr "permutes" 41) where
    12   "(p permutes S) \<longleftrightarrow> (\<forall>x. x \<notin> S \<longrightarrow> p x = x) \<and> (\<forall>y. \<exists>!x. p x = y)"
    13 
    14 (* ------------------------------------------------------------------------- *)
    15 (* Transpositions.                                                           *)
    16 (* ------------------------------------------------------------------------- *)
    17 
    18 declare swap_self[simp]
    19 lemma swapid_sym: "Fun.swap a b id = Fun.swap b a id"
    20   by (auto simp add: expand_fun_eq swap_def fun_upd_def)
    21 lemma swap_id_refl: "Fun.swap a a id = id" by simp
    22 lemma swap_id_sym: "Fun.swap a b id = Fun.swap b a id"
    23   by (rule ext, simp add: swap_def)
    24 lemma swap_id_idempotent[simp]: "Fun.swap a b id o Fun.swap a b id = id"
    25   by (rule ext, auto simp add: swap_def)
    26 
    27 lemma inv_unique_comp: assumes fg: "f o g = id" and gf: "g o f = id"
    28   shows "inv f = g"
    29   using fg gf inv_equality[of g f] by (auto simp add: expand_fun_eq)
    30 
    31 lemma inverse_swap_id: "inv (Fun.swap a b id) = Fun.swap a b id"
    32   by (rule inv_unique_comp, simp_all)
    33 
    34 lemma swap_id_eq: "Fun.swap a b id x = (if x = a then b else if x = b then a else x)"
    35   by (simp add: swap_def)
    36 
    37 (* ------------------------------------------------------------------------- *)
    38 (* Basic consequences of the definition.                                     *)
    39 (* ------------------------------------------------------------------------- *)
    40 
    41 lemma permutes_in_image: "p permutes S \<Longrightarrow> p x \<in> S \<longleftrightarrow> x \<in> S"
    42   unfolding permutes_def by metis
    43 
    44 lemma permutes_image: assumes pS: "p permutes S" shows "p ` S = S"
    45   using pS
    46   unfolding permutes_def
    47   apply -
    48   apply (rule set_ext)
    49   apply (simp add: image_iff)
    50   apply metis
    51   done
    52 
    53 lemma permutes_inj: "p permutes S ==> inj p "
    54   unfolding permutes_def inj_on_def by blast
    55 
    56 lemma permutes_surj: "p permutes s ==> surj p"
    57   unfolding permutes_def surj_def by metis
    58 
    59 lemma permutes_inv_o: assumes pS: "p permutes S"
    60   shows " p o inv p = id"
    61   and "inv p o p = id"
    62   using permutes_inj[OF pS] permutes_surj[OF pS]
    63   unfolding inj_iff[symmetric] surj_iff[symmetric] by blast+
    64 
    65 
    66 lemma permutes_inverses:
    67   fixes p :: "'a \<Rightarrow> 'a"
    68   assumes pS: "p permutes S"
    69   shows "p (inv p x) = x"
    70   and "inv p (p x) = x"
    71   using permutes_inv_o[OF pS, unfolded expand_fun_eq o_def] by auto
    72 
    73 lemma permutes_subset: "p permutes S \<Longrightarrow> S \<subseteq> T ==> p permutes T"
    74   unfolding permutes_def by blast
    75 
    76 lemma permutes_empty[simp]: "p permutes {} \<longleftrightarrow> p = id"
    77   unfolding expand_fun_eq permutes_def apply simp by metis
    78 
    79 lemma permutes_sing[simp]: "p permutes {a} \<longleftrightarrow> p = id"
    80   unfolding expand_fun_eq permutes_def apply simp by metis
    81 
    82 lemma permutes_univ: "p permutes UNIV \<longleftrightarrow> (\<forall>y. \<exists>!x. p x = y)"
    83   unfolding permutes_def by simp
    84 
    85 lemma permutes_inv_eq: "p permutes S ==> inv p y = x \<longleftrightarrow> p x = y"
    86   unfolding permutes_def inv_onto_def apply auto
    87   apply (erule allE[where x=y])
    88   apply (erule allE[where x=y])
    89   apply (rule someI_ex) apply blast
    90   apply (rule some1_equality)
    91   apply blast
    92   apply blast
    93   done
    94 
    95 lemma permutes_swap_id: "a \<in> S \<Longrightarrow> b \<in> S ==> Fun.swap a b id permutes S"
    96   unfolding permutes_def swap_def fun_upd_def  by auto metis
    97 
    98 lemma permutes_superset:
    99   "p permutes S \<Longrightarrow> (\<forall>x \<in> S - T. p x = x) \<Longrightarrow> p permutes T"
   100 by (simp add: Ball_def permutes_def Diff_iff) metis
   101 
   102 (* ------------------------------------------------------------------------- *)
   103 (* Group properties.                                                         *)
   104 (* ------------------------------------------------------------------------- *)
   105 
   106 lemma permutes_id: "id permutes S" unfolding permutes_def by simp
   107 
   108 lemma permutes_compose: "p permutes S \<Longrightarrow> q permutes S ==> q o p permutes S"
   109   unfolding permutes_def o_def by metis
   110 
   111 lemma permutes_inv: assumes pS: "p permutes S" shows "inv p permutes S"
   112   using pS unfolding permutes_def permutes_inv_eq[OF pS] by metis
   113 
   114 lemma permutes_inv_inv: assumes pS: "p permutes S" shows "inv (inv p) = p"
   115   unfolding expand_fun_eq permutes_inv_eq[OF pS] permutes_inv_eq[OF permutes_inv[OF pS]]
   116   by blast
   117 
   118 (* ------------------------------------------------------------------------- *)
   119 (* The number of permutations on a finite set.                               *)
   120 (* ------------------------------------------------------------------------- *)
   121 
   122 lemma permutes_insert_lemma:
   123   assumes pS: "p permutes (insert a S)"
   124   shows "Fun.swap a (p a) id o p permutes S"
   125   apply (rule permutes_superset[where S = "insert a S"])
   126   apply (rule permutes_compose[OF pS])
   127   apply (rule permutes_swap_id, simp)
   128   using permutes_in_image[OF pS, of a] apply simp
   129   apply (auto simp add: Ball_def Diff_iff swap_def)
   130   done
   131 
   132 lemma permutes_insert: "{p. p permutes (insert a S)} =
   133         (\<lambda>(b,p). Fun.swap a b id o p) ` {(b,p). b \<in> insert a S \<and> p \<in> {p. p permutes S}}"
   134 proof-
   135 
   136   {fix p
   137     {assume pS: "p permutes insert a S"
   138       let ?b = "p a"
   139       let ?q = "Fun.swap a (p a) id o p"
   140       have th0: "p = Fun.swap a ?b id o ?q" unfolding expand_fun_eq o_assoc by simp
   141       have th1: "?b \<in> insert a S " unfolding permutes_in_image[OF pS] by simp
   142       from permutes_insert_lemma[OF pS] th0 th1
   143       have "\<exists> b q. p = Fun.swap a b id o q \<and> b \<in> insert a S \<and> q permutes S" by blast}
   144     moreover
   145     {fix b q assume bq: "p = Fun.swap a b id o q" "b \<in> insert a S" "q permutes S"
   146       from permutes_subset[OF bq(3), of "insert a S"]
   147       have qS: "q permutes insert a S" by auto
   148       have aS: "a \<in> insert a S" by simp
   149       from bq(1) permutes_compose[OF qS permutes_swap_id[OF aS bq(2)]]
   150       have "p permutes insert a S"  by simp }
   151     ultimately have "p permutes insert a S \<longleftrightarrow> (\<exists> b q. p = Fun.swap a b id o q \<and> b \<in> insert a S \<and> q permutes S)" by blast}
   152   thus ?thesis by auto
   153 qed
   154 
   155 lemma hassize_insert: "a \<notin> F \<Longrightarrow> insert a F hassize n \<Longrightarrow> F hassize (n - 1)"
   156   by (auto simp add: hassize_def)
   157 
   158 lemma hassize_permutations: assumes Sn: "S hassize n"
   159   shows "{p. p permutes S} hassize (fact n)"
   160 proof-
   161   from Sn have fS:"finite S" by (simp add: hassize_def)
   162 
   163   have "\<forall>n. (S hassize n) \<longrightarrow> ({p. p permutes S} hassize (fact n))"
   164   proof(rule finite_induct[where F = S])
   165     from fS show "finite S" .
   166   next
   167     show "\<forall>n. ({} hassize n) \<longrightarrow> ({p. p permutes {}} hassize fact n)"
   168       by (simp add: hassize_def permutes_empty)
   169   next
   170     fix x F
   171     assume fF: "finite F" and xF: "x \<notin> F"
   172       and H: "\<forall>n. (F hassize n) \<longrightarrow> ({p. p permutes F} hassize fact n)"
   173     {fix n assume H0: "insert x F hassize n"
   174       let ?xF = "{p. p permutes insert x F}"
   175       let ?pF = "{p. p permutes F}"
   176       let ?pF' = "{(b, p). b \<in> insert x F \<and> p \<in> ?pF}"
   177       let ?g = "(\<lambda>(b, p). Fun.swap x b id \<circ> p)"
   178       from permutes_insert[of x F]
   179       have xfgpF': "?xF = ?g ` ?pF'" .
   180       from hassize_insert[OF xF H0] have Fs: "F hassize (n - 1)" .
   181       from H Fs have pFs: "?pF hassize fact (n - 1)" by blast
   182       hence pF'f: "finite ?pF'" using H0 unfolding hassize_def
   183         apply (simp only: Collect_split Collect_mem_eq)
   184         apply (rule finite_cartesian_product)
   185         apply simp_all
   186         done
   187 
   188       have ginj: "inj_on ?g ?pF'"
   189       proof-
   190         {
   191           fix b p c q assume bp: "(b,p) \<in> ?pF'" and cq: "(c,q) \<in> ?pF'"
   192             and eq: "?g (b,p) = ?g (c,q)"
   193           from bp cq have ths: "b \<in> insert x F" "c \<in> insert x F" "x \<in> insert x F" "p permutes F" "q permutes F" by auto
   194           from ths(4) xF eq have "b = ?g (b,p) x" unfolding permutes_def
   195             by (auto simp add: swap_def fun_upd_def expand_fun_eq)
   196           also have "\<dots> = ?g (c,q) x" using ths(5) xF eq
   197             by (auto simp add: swap_def fun_upd_def expand_fun_eq)
   198           also have "\<dots> = c"using ths(5) xF unfolding permutes_def
   199             by (auto simp add: swap_def fun_upd_def expand_fun_eq)
   200           finally have bc: "b = c" .
   201           hence "Fun.swap x b id = Fun.swap x c id" by simp
   202           with eq have "Fun.swap x b id o p = Fun.swap x b id o q" by simp
   203           hence "Fun.swap x b id o (Fun.swap x b id o p) = Fun.swap x b id o (Fun.swap x b id o q)" by simp
   204           hence "p = q" by (simp add: o_assoc)
   205           with bc have "(b,p) = (c,q)" by simp }
   206         thus ?thesis  unfolding inj_on_def by blast
   207       qed
   208       from xF H0 have n0: "n \<noteq> 0 " by (auto simp add: hassize_def)
   209       hence "\<exists>m. n = Suc m" by arith
   210       then obtain m where n[simp]: "n = Suc m" by blast
   211       from pFs H0 have xFc: "card ?xF = fact n"
   212         unfolding xfgpF' card_image[OF ginj] hassize_def
   213         apply (simp only: Collect_split Collect_mem_eq card_cartesian_product)
   214         by simp
   215       from finite_imageI[OF pF'f, of ?g] have xFf: "finite ?xF" unfolding xfgpF' by simp
   216       have "?xF hassize fact n"
   217         using xFf xFc
   218         unfolding hassize_def  xFf by blast }
   219     thus "\<forall>n. (insert x F hassize n) \<longrightarrow> ({p. p permutes insert x F} hassize fact n)"
   220       by blast
   221   qed
   222   with Sn show ?thesis by blast
   223 qed
   224 
   225 lemma finite_permutations: "finite S ==> finite {p. p permutes S}"
   226   using hassize_permutations[of S] unfolding hassize_def by blast
   227 
   228 (* ------------------------------------------------------------------------- *)
   229 (* Permutations of index set for iterated operations.                        *)
   230 (* ------------------------------------------------------------------------- *)
   231 
   232 lemma (in ab_semigroup_mult) fold_image_permute: assumes fS: "finite S" and pS: "p permutes S"
   233   shows "fold_image times f z S = fold_image times (f o p) z S"
   234   using fold_image_reindex[OF fS subset_inj_on[OF permutes_inj[OF pS], of S, simplified], of f z]
   235   unfolding permutes_image[OF pS] .
   236 lemma (in ab_semigroup_add) fold_image_permute: assumes fS: "finite S" and pS: "p permutes S"
   237   shows "fold_image plus f z S = fold_image plus (f o p) z S"
   238 proof-
   239   interpret ab_semigroup_mult plus apply unfold_locales apply (simp add: add_assoc)
   240     apply (simp add: add_commute) done
   241   from fold_image_reindex[OF fS subset_inj_on[OF permutes_inj[OF pS], of S, simplified], of f z]
   242   show ?thesis
   243   unfolding permutes_image[OF pS] .
   244 qed
   245 
   246 lemma setsum_permute: assumes pS: "p permutes S"
   247   shows "setsum f S = setsum (f o p) S"
   248   unfolding setsum_def using fold_image_permute[of S p f 0] pS by clarsimp
   249 
   250 lemma setsum_permute_natseg:assumes pS: "p permutes {m .. n}"
   251   shows "setsum f {m .. n} = setsum (f o p) {m .. n}"
   252   using setsum_permute[OF pS, of f ] pS by blast
   253 
   254 lemma setprod_permute: assumes pS: "p permutes S"
   255   shows "setprod f S = setprod (f o p) S"
   256   unfolding setprod_def
   257   using ab_semigroup_mult_class.fold_image_permute[of S p f 1] pS by clarsimp
   258 
   259 lemma setprod_permute_natseg:assumes pS: "p permutes {m .. n}"
   260   shows "setprod f {m .. n} = setprod (f o p) {m .. n}"
   261   using setprod_permute[OF pS, of f ] pS by blast
   262 
   263 (* ------------------------------------------------------------------------- *)
   264 (* Various combinations of transpositions with 2, 1 and 0 common elements.   *)
   265 (* ------------------------------------------------------------------------- *)
   266 
   267 lemma swap_id_common:" a \<noteq> c \<Longrightarrow> b \<noteq> c \<Longrightarrow>  Fun.swap a b id o Fun.swap a c id = Fun.swap b c id o Fun.swap a b id" by (simp add: expand_fun_eq swap_def)
   268 
   269 lemma swap_id_common': "~(a = b) \<Longrightarrow> ~(a = c) \<Longrightarrow> Fun.swap a c id o Fun.swap b c id = Fun.swap b c id o Fun.swap a b id" by (simp add: expand_fun_eq swap_def)
   270 
   271 lemma swap_id_independent: "~(a = c) \<Longrightarrow> ~(a = d) \<Longrightarrow> ~(b = c) \<Longrightarrow> ~(b = d) ==> Fun.swap a b id o Fun.swap c d id = Fun.swap c d id o Fun.swap a b id"
   272   by (simp add: swap_def expand_fun_eq)
   273 
   274 (* ------------------------------------------------------------------------- *)
   275 (* Permutations as transposition sequences.                                  *)
   276 (* ------------------------------------------------------------------------- *)
   277 
   278 
   279 inductive swapidseq :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> bool" where
   280   id[simp]: "swapidseq 0 id"
   281 | comp_Suc: "swapidseq n p \<Longrightarrow> a \<noteq> b \<Longrightarrow> swapidseq (Suc n) (Fun.swap a b id o p)"
   282 
   283 declare id[unfolded id_def, simp]
   284 definition "permutation p \<longleftrightarrow> (\<exists>n. swapidseq n p)"
   285 
   286 (* ------------------------------------------------------------------------- *)
   287 (* Some closure properties of the set of permutations, with lengths.         *)
   288 (* ------------------------------------------------------------------------- *)
   289 
   290 lemma permutation_id[simp]: "permutation id"unfolding permutation_def
   291   by (rule exI[where x=0], simp)
   292 declare permutation_id[unfolded id_def, simp]
   293 
   294 lemma swapidseq_swap: "swapidseq (if a = b then 0 else 1) (Fun.swap a b id)"
   295   apply clarsimp
   296   using comp_Suc[of 0 id a b] by simp
   297 
   298 lemma permutation_swap_id: "permutation (Fun.swap a b id)"
   299   apply (cases "a=b", simp_all)
   300   unfolding permutation_def using swapidseq_swap[of a b] by blast
   301 
   302 lemma swapidseq_comp_add: "swapidseq n p \<Longrightarrow> swapidseq m q ==> swapidseq (n + m) (p o q)"
   303   proof (induct n p arbitrary: m q rule: swapidseq.induct)
   304     case (id m q) thus ?case by simp
   305   next
   306     case (comp_Suc n p a b m q)
   307     have th: "Suc n + m = Suc (n + m)" by arith
   308     show ?case unfolding th o_assoc[symmetric]
   309       apply (rule swapidseq.comp_Suc) using comp_Suc.hyps(2)[OF comp_Suc.prems]  comp_Suc.hyps(3) by blast+
   310 qed
   311 
   312 lemma permutation_compose: "permutation p \<Longrightarrow> permutation q ==> permutation(p o q)"
   313   unfolding permutation_def using swapidseq_comp_add[of _ p _ q] by metis
   314 
   315 lemma swapidseq_endswap: "swapidseq n p \<Longrightarrow> a \<noteq> b ==> swapidseq (Suc n) (p o Fun.swap a b id)"
   316   apply (induct n p rule: swapidseq.induct)
   317   using swapidseq_swap[of a b]
   318   by (auto simp add: o_assoc[symmetric] intro: swapidseq.comp_Suc)
   319 
   320 lemma swapidseq_inverse_exists: "swapidseq n p ==> \<exists>q. swapidseq n q \<and> p o q = id \<and> q o p = id"
   321 proof(induct n p rule: swapidseq.induct)
   322   case id  thus ?case by (rule exI[where x=id], simp)
   323 next
   324   case (comp_Suc n p a b)
   325   from comp_Suc.hyps obtain q where q: "swapidseq n q" "p \<circ> q = id" "q \<circ> p = id" by blast
   326   let ?q = "q o Fun.swap a b id"
   327   note H = comp_Suc.hyps
   328   from swapidseq_swap[of a b] H(3)  have th0: "swapidseq 1 (Fun.swap a b id)" by simp
   329   from swapidseq_comp_add[OF q(1) th0] have th1:"swapidseq (Suc n) ?q" by simp
   330   have "Fun.swap a b id o p o ?q = Fun.swap a b id o (p o q) o Fun.swap a b id" by (simp add: o_assoc)
   331   also have "\<dots> = id" by (simp add: q(2))
   332   finally have th2: "Fun.swap a b id o p o ?q = id" .
   333   have "?q \<circ> (Fun.swap a b id \<circ> p) = q \<circ> (Fun.swap a b id o Fun.swap a b id) \<circ> p" by (simp only: o_assoc)
   334   hence "?q \<circ> (Fun.swap a b id \<circ> p) = id" by (simp add: q(3))
   335   with th1 th2 show ?case by blast
   336 qed
   337 
   338 
   339 lemma swapidseq_inverse: assumes H: "swapidseq n p" shows "swapidseq n (inv p)"
   340   using swapidseq_inverse_exists[OF H] inv_unique_comp[of p] by auto
   341 
   342 lemma permutation_inverse: "permutation p ==> permutation (inv p)"
   343   using permutation_def swapidseq_inverse by blast
   344 
   345 (* ------------------------------------------------------------------------- *)
   346 (* The identity map only has even transposition sequences.                   *)
   347 (* ------------------------------------------------------------------------- *)
   348 
   349 lemma symmetry_lemma:"(\<And>a b c d. P a b c d ==> P a b d c) \<Longrightarrow>
   350    (\<And>a b c d. a \<noteq> b \<Longrightarrow> c \<noteq> d \<Longrightarrow> (a = c \<and> b = d \<or>  a = c \<and> b \<noteq> d \<or> a \<noteq> c \<and> b = d \<or> a \<noteq> c \<and> a \<noteq> d \<and> b \<noteq> c \<and> b \<noteq> d) ==> P a b c d)
   351    ==> (\<And>a b c d. a \<noteq> b --> c \<noteq> d \<longrightarrow>  P a b c d)" by metis
   352 
   353 lemma swap_general: "a \<noteq> b \<Longrightarrow> c \<noteq> d \<Longrightarrow> Fun.swap a b id o Fun.swap c d id = id \<or>
   354   (\<exists>x y z. x \<noteq> a \<and> y \<noteq> a \<and> z \<noteq> a \<and> x \<noteq> y \<and> Fun.swap a b id o Fun.swap c d id = Fun.swap x y id o Fun.swap a z id)"
   355 proof-
   356   assume H: "a\<noteq>b" "c\<noteq>d"
   357 have "a \<noteq> b \<longrightarrow> c \<noteq> d \<longrightarrow>
   358 (  Fun.swap a b id o Fun.swap c d id = id \<or>
   359   (\<exists>x y z. x \<noteq> a \<and> y \<noteq> a \<and> z \<noteq> a \<and> x \<noteq> y \<and> Fun.swap a b id o Fun.swap c d id = Fun.swap x y id o Fun.swap a z id))"
   360   apply (rule symmetry_lemma[where a=a and b=b and c=c and d=d])
   361   apply (simp_all only: swapid_sym)
   362   apply (case_tac "a = c \<and> b = d", clarsimp simp only: swapid_sym swap_id_idempotent)
   363   apply (case_tac "a = c \<and> b \<noteq> d")
   364   apply (rule disjI2)
   365   apply (rule_tac x="b" in exI)
   366   apply (rule_tac x="d" in exI)
   367   apply (rule_tac x="b" in exI)
   368   apply (clarsimp simp add: expand_fun_eq swap_def)
   369   apply (case_tac "a \<noteq> c \<and> b = d")
   370   apply (rule disjI2)
   371   apply (rule_tac x="c" in exI)
   372   apply (rule_tac x="d" in exI)
   373   apply (rule_tac x="c" in exI)
   374   apply (clarsimp simp add: expand_fun_eq swap_def)
   375   apply (rule disjI2)
   376   apply (rule_tac x="c" in exI)
   377   apply (rule_tac x="d" in exI)
   378   apply (rule_tac x="b" in exI)
   379   apply (clarsimp simp add: expand_fun_eq swap_def)
   380   done
   381 with H show ?thesis by metis
   382 qed
   383 
   384 lemma swapidseq_id_iff[simp]: "swapidseq 0 p \<longleftrightarrow> p = id"
   385   using swapidseq.cases[of 0 p "p = id"]
   386   by auto
   387 
   388 lemma swapidseq_cases: "swapidseq n p \<longleftrightarrow> (n=0 \<and> p = id \<or> (\<exists>a b q m. n = Suc m \<and> p = Fun.swap a b id o q \<and> swapidseq m q \<and> a\<noteq> b))"
   389   apply (rule iffI)
   390   apply (erule swapidseq.cases[of n p])
   391   apply simp
   392   apply (rule disjI2)
   393   apply (rule_tac x= "a" in exI)
   394   apply (rule_tac x= "b" in exI)
   395   apply (rule_tac x= "pa" in exI)
   396   apply (rule_tac x= "na" in exI)
   397   apply simp
   398   apply auto
   399   apply (rule comp_Suc, simp_all)
   400   done
   401 lemma fixing_swapidseq_decrease:
   402   assumes spn: "swapidseq n p" and ab: "a\<noteq>b" and pa: "(Fun.swap a b id o p) a = a"
   403   shows "n \<noteq> 0 \<and> swapidseq (n - 1) (Fun.swap a b id o p)"
   404   using spn ab pa
   405 proof(induct n arbitrary: p a b)
   406   case 0 thus ?case by (auto simp add: swap_def fun_upd_def)
   407 next
   408   case (Suc n p a b)
   409   from Suc.prems(1) swapidseq_cases[of "Suc n" p] obtain
   410     c d q m where cdqm: "Suc n = Suc m" "p = Fun.swap c d id o q" "swapidseq m q" "c \<noteq> d" "n = m"
   411     by auto
   412   {assume H: "Fun.swap a b id o Fun.swap c d id = id"
   413 
   414     have ?case apply (simp only: cdqm o_assoc H)
   415       by (simp add: cdqm)}
   416   moreover
   417   { fix x y z
   418     assume H: "x\<noteq>a" "y\<noteq>a" "z \<noteq>a" "x \<noteq>y"
   419       "Fun.swap a b id o Fun.swap c d id = Fun.swap x y id o Fun.swap a z id"
   420     from H have az: "a \<noteq> z" by simp
   421 
   422     {fix h have "(Fun.swap x y id o h) a = a \<longleftrightarrow> h a = a"
   423       using H by (simp add: swap_def)}
   424     note th3 = this
   425     from cdqm(2) have "Fun.swap a b id o p = Fun.swap a b id o (Fun.swap c d id o q)" by simp
   426     hence "Fun.swap a b id o p = Fun.swap x y id o (Fun.swap a z id o q)" by (simp add: o_assoc H)
   427     hence "(Fun.swap a b id o p) a = (Fun.swap x y id o (Fun.swap a z id o q)) a" by simp
   428     hence "(Fun.swap x y id o (Fun.swap a z id o q)) a  = a" unfolding Suc by metis
   429     hence th1: "(Fun.swap a z id o q) a = a" unfolding th3 .
   430     from Suc.hyps[OF cdqm(3)[ unfolded cdqm(5)[symmetric]] az th1]
   431     have th2: "swapidseq (n - 1) (Fun.swap a z id o q)" "n \<noteq> 0" by blast+
   432     have th: "Suc n - 1 = Suc (n - 1)" using th2(2) by auto
   433     have ?case unfolding cdqm(2) H o_assoc th
   434       apply (simp only: Suc_not_Zero simp_thms o_assoc[symmetric])
   435       apply (rule comp_Suc)
   436       using th2 H apply blast+
   437       done}
   438   ultimately show ?case using swap_general[OF Suc.prems(2) cdqm(4)] by metis
   439 qed
   440 
   441 lemma swapidseq_identity_even:
   442   assumes "swapidseq n (id :: 'a \<Rightarrow> 'a)" shows "even n"
   443   using `swapidseq n id`
   444 proof(induct n rule: nat_less_induct)
   445   fix n
   446   assume H: "\<forall>m<n. swapidseq m (id::'a \<Rightarrow> 'a) \<longrightarrow> even m" "swapidseq n (id :: 'a \<Rightarrow> 'a)"
   447   {assume "n = 0" hence "even n" by arith}
   448   moreover
   449   {fix a b :: 'a and q m
   450     assume h: "n = Suc m" "(id :: 'a \<Rightarrow> 'a) = Fun.swap a b id \<circ> q" "swapidseq m q" "a \<noteq> b"
   451     from fixing_swapidseq_decrease[OF h(3,4), unfolded h(2)[symmetric]]
   452     have m: "m \<noteq> 0" "swapidseq (m - 1) (id :: 'a \<Rightarrow> 'a)" by auto
   453     from h m have mn: "m - 1 < n" by arith
   454     from H(1)[rule_format, OF mn m(2)] h(1) m(1) have "even n" apply arith done}
   455   ultimately show "even n" using H(2)[unfolded swapidseq_cases[of n id]] by auto
   456 qed
   457 
   458 (* ------------------------------------------------------------------------- *)
   459 (* Therefore we have a welldefined notion of parity.                         *)
   460 (* ------------------------------------------------------------------------- *)
   461 
   462 definition "evenperm p = even (SOME n. swapidseq n p)"
   463 
   464 lemma swapidseq_even_even: assumes
   465   m: "swapidseq m p" and n: "swapidseq n p"
   466   shows "even m \<longleftrightarrow> even n"
   467 proof-
   468   from swapidseq_inverse_exists[OF n]
   469   obtain q where q: "swapidseq n q" "p \<circ> q = id" "q \<circ> p = id" by blast
   470 
   471   from swapidseq_identity_even[OF swapidseq_comp_add[OF m q(1), unfolded q]]
   472   show ?thesis by arith
   473 qed
   474 
   475 lemma evenperm_unique: assumes p: "swapidseq n p" and n:"even n = b"
   476   shows "evenperm p = b"
   477   unfolding n[symmetric] evenperm_def
   478   apply (rule swapidseq_even_even[where p = p])
   479   apply (rule someI[where x = n])
   480   using p by blast+
   481 
   482 (* ------------------------------------------------------------------------- *)
   483 (* And it has the expected composition properties.                           *)
   484 (* ------------------------------------------------------------------------- *)
   485 
   486 lemma evenperm_id[simp]: "evenperm id = True"
   487   apply (rule evenperm_unique[where n = 0]) by simp_all
   488 
   489 lemma evenperm_swap: "evenperm (Fun.swap a b id) = (a = b)"
   490 apply (rule evenperm_unique[where n="if a = b then 0 else 1"])
   491 by (simp_all add: swapidseq_swap)
   492 
   493 lemma evenperm_comp:
   494   assumes p: "permutation p" and q:"permutation q"
   495   shows "evenperm (p o q) = (evenperm p = evenperm q)"
   496 proof-
   497   from p q obtain
   498     n m where n: "swapidseq n p" and m: "swapidseq m q"
   499     unfolding permutation_def by blast
   500   note nm =  swapidseq_comp_add[OF n m]
   501   have th: "even (n + m) = (even n \<longleftrightarrow> even m)" by arith
   502   from evenperm_unique[OF n refl] evenperm_unique[OF m refl]
   503     evenperm_unique[OF nm th]
   504   show ?thesis by blast
   505 qed
   506 
   507 lemma evenperm_inv: assumes p: "permutation p"
   508   shows "evenperm (inv p) = evenperm p"
   509 proof-
   510   from p obtain n where n: "swapidseq n p" unfolding permutation_def by blast
   511   from evenperm_unique[OF swapidseq_inverse[OF n] evenperm_unique[OF n refl, symmetric]]
   512   show ?thesis .
   513 qed
   514 
   515 (* ------------------------------------------------------------------------- *)
   516 (* A more abstract characterization of permutations.                         *)
   517 (* ------------------------------------------------------------------------- *)
   518 
   519 
   520 lemma bij_iff: "bij f \<longleftrightarrow> (\<forall>x. \<exists>!y. f y = x)"
   521   unfolding bij_def inj_on_def surj_def
   522   apply auto
   523   apply metis
   524   apply metis
   525   done
   526 
   527 lemma permutation_bijective:
   528   assumes p: "permutation p"
   529   shows "bij p"
   530 proof-
   531   from p obtain n where n: "swapidseq n p" unfolding permutation_def by blast
   532   from swapidseq_inverse_exists[OF n] obtain q where
   533     q: "swapidseq n q" "p \<circ> q = id" "q \<circ> p = id" by blast
   534   thus ?thesis unfolding bij_iff  apply (auto simp add: expand_fun_eq) apply metis done
   535 qed
   536 
   537 lemma permutation_finite_support: assumes p: "permutation p"
   538   shows "finite {x. p x \<noteq> x}"
   539 proof-
   540   from p obtain n where n: "swapidseq n p" unfolding permutation_def by blast
   541   from n show ?thesis
   542   proof(induct n p rule: swapidseq.induct)
   543     case id thus ?case by simp
   544   next
   545     case (comp_Suc n p a b)
   546     let ?S = "insert a (insert b {x. p x \<noteq> x})"
   547     from comp_Suc.hyps(2) have fS: "finite ?S" by simp
   548     from `a \<noteq> b` have th: "{x. (Fun.swap a b id o p) x \<noteq> x} \<subseteq> ?S"
   549       by (auto simp add: swap_def)
   550     from finite_subset[OF th fS] show ?case  .
   551 qed
   552 qed
   553 
   554 lemma bij_inv_eq_iff: "bij p ==> x = inv p y \<longleftrightarrow> p x = y"
   555   using surj_f_inv_f[of p] inv_f_f[of f] by (auto simp add: bij_def)
   556 
   557 lemma bij_swap_comp:
   558   assumes bp: "bij p" shows "Fun.swap a b id o p = Fun.swap (inv p a) (inv p b) p"
   559   using surj_f_inv_f[OF bij_is_surj[OF bp]]
   560   by (simp add: expand_fun_eq swap_def bij_inv_eq_iff[OF bp])
   561 
   562 lemma bij_swap_ompose_bij: "bij p \<Longrightarrow> bij (Fun.swap a b id o p)"
   563 proof-
   564   assume H: "bij p"
   565   show ?thesis
   566     unfolding bij_swap_comp[OF H] bij_swap_iff
   567     using H .
   568 qed
   569 
   570 lemma permutation_lemma:
   571   assumes fS: "finite S" and p: "bij p" and pS: "\<forall>x. x\<notin> S \<longrightarrow> p x = x"
   572   shows "permutation p"
   573 using fS p pS
   574 proof(induct S arbitrary: p rule: finite_induct)
   575   case (empty p) thus ?case by simp
   576 next
   577   case (insert a F p)
   578   let ?r = "Fun.swap a (p a) id o p"
   579   let ?q = "Fun.swap a (p a) id o ?r "
   580   have raa: "?r a = a" by (simp add: swap_def)
   581   from bij_swap_ompose_bij[OF insert(4)]
   582   have br: "bij ?r"  .
   583 
   584   from insert raa have th: "\<forall>x. x \<notin> F \<longrightarrow> ?r x = x"
   585     apply (clarsimp simp add: swap_def)
   586     apply (erule_tac x="x" in allE)
   587     apply auto
   588     unfolding bij_iff apply metis
   589     done
   590   from insert(3)[OF br th]
   591   have rp: "permutation ?r" .
   592   have "permutation ?q" by (simp add: permutation_compose permutation_swap_id rp)
   593   thus ?case by (simp add: o_assoc)
   594 qed
   595 
   596 lemma permutation: "permutation p \<longleftrightarrow> bij p \<and> finite {x. p x \<noteq> x}"
   597   (is "?lhs \<longleftrightarrow> ?b \<and> ?f")
   598 proof
   599   assume p: ?lhs
   600   from p permutation_bijective permutation_finite_support show "?b \<and> ?f" by auto
   601 next
   602   assume bf: "?b \<and> ?f"
   603   hence bf: "?f" "?b" by blast+
   604   from permutation_lemma[OF bf] show ?lhs by blast
   605 qed
   606 
   607 lemma permutation_inverse_works: assumes p: "permutation p"
   608   shows "inv p o p = id" "p o inv p = id"
   609 using permutation_bijective[OF p] surj_iff bij_def inj_iff by auto
   610 
   611 lemma permutation_inverse_compose:
   612   assumes p: "permutation p" and q: "permutation q"
   613   shows "inv (p o q) = inv q o inv p"
   614 proof-
   615   note ps = permutation_inverse_works[OF p]
   616   note qs = permutation_inverse_works[OF q]
   617   have "p o q o (inv q o inv p) = p o (q o inv q) o inv p" by (simp add: o_assoc)
   618   also have "\<dots> = id" by (simp add: ps qs)
   619   finally have th0: "p o q o (inv q o inv p) = id" .
   620   have "inv q o inv p o (p o q) = inv q o (inv p o p) o q" by (simp add: o_assoc)
   621   also have "\<dots> = id" by (simp add: ps qs)
   622   finally have th1: "inv q o inv p o (p o q) = id" .
   623   from inv_unique_comp[OF th0 th1] show ?thesis .
   624 qed
   625 
   626 (* ------------------------------------------------------------------------- *)
   627 (* Relation to "permutes".                                                   *)
   628 (* ------------------------------------------------------------------------- *)
   629 
   630 lemma permutation_permutes: "permutation p \<longleftrightarrow> (\<exists>S. finite S \<and> p permutes S)"
   631 unfolding permutation permutes_def bij_iff[symmetric]
   632 apply (rule iffI, clarify)
   633 apply (rule exI[where x="{x. p x \<noteq> x}"])
   634 apply simp
   635 apply clarsimp
   636 apply (rule_tac B="S" in finite_subset)
   637 apply auto
   638 done
   639 
   640 (* ------------------------------------------------------------------------- *)
   641 (* Hence a sort of induction principle composing by swaps.                   *)
   642 (* ------------------------------------------------------------------------- *)
   643 
   644 lemma permutes_induct: "finite S \<Longrightarrow>  P id  \<Longrightarrow> (\<And> a b p. a \<in> S \<Longrightarrow> b \<in> S \<Longrightarrow> P p \<Longrightarrow> P p \<Longrightarrow> permutation p ==> P (Fun.swap a b id o p))
   645          ==> (\<And>p. p permutes S ==> P p)"
   646 proof(induct S rule: finite_induct)
   647   case empty thus ?case by auto
   648 next
   649   case (insert x F p)
   650   let ?r = "Fun.swap x (p x) id o p"
   651   let ?q = "Fun.swap x (p x) id o ?r"
   652   have qp: "?q = p" by (simp add: o_assoc)
   653   from permutes_insert_lemma[OF insert.prems(3)] insert have Pr: "P ?r" by blast
   654   from permutes_in_image[OF insert.prems(3), of x]
   655   have pxF: "p x \<in> insert x F" by simp
   656   have xF: "x \<in> insert x F" by simp
   657   have rp: "permutation ?r"
   658     unfolding permutation_permutes using insert.hyps(1)
   659       permutes_insert_lemma[OF insert.prems(3)] by blast
   660   from insert.prems(2)[OF xF pxF Pr Pr rp]
   661   show ?case  unfolding qp .
   662 qed
   663 
   664 (* ------------------------------------------------------------------------- *)
   665 (* Sign of a permutation as a real number.                                   *)
   666 (* ------------------------------------------------------------------------- *)
   667 
   668 definition "sign p = (if evenperm p then (1::int) else -1)"
   669 
   670 lemma sign_nz: "sign p \<noteq> 0" by (simp add: sign_def)
   671 lemma sign_id: "sign id = 1" by (simp add: sign_def)
   672 lemma sign_inverse: "permutation p ==> sign (inv p) = sign p"
   673   by (simp add: sign_def evenperm_inv)
   674 lemma sign_compose: "permutation p \<Longrightarrow> permutation q ==> sign (p o q) = sign(p) * sign(q)" by (simp add: sign_def evenperm_comp)
   675 lemma sign_swap_id: "sign (Fun.swap a b id) = (if a = b then 1 else -1)"
   676   by (simp add: sign_def evenperm_swap)
   677 lemma sign_idempotent: "sign p * sign p = 1" by (simp add: sign_def)
   678 
   679 (* ------------------------------------------------------------------------- *)
   680 (* More lemmas about permutations.                                           *)
   681 (* ------------------------------------------------------------------------- *)
   682 
   683 lemma permutes_natset_le:
   684   assumes p: "p permutes (S::'a::wellorder set)" and le: "\<forall>i \<in> S.  p i <= i" shows "p = id"
   685 proof-
   686   {fix n
   687     have "p n = n"
   688       using p le
   689     proof(induct n arbitrary: S rule: less_induct)
   690       fix n S assume H: "\<And>m S. \<lbrakk>m < n; p permutes S; \<forall>i\<in>S. p i \<le> i\<rbrakk> \<Longrightarrow> p m = m"
   691         "p permutes S" "\<forall>i \<in>S. p i \<le> i"
   692       {assume "n \<notin> S"
   693         with H(2) have "p n = n" unfolding permutes_def by metis}
   694       moreover
   695       {assume ns: "n \<in> S"
   696         from H(3)  ns have "p n < n \<or> p n = n" by auto
   697         moreover{assume h: "p n < n"
   698           from H h have "p (p n) = p n" by metis
   699           with permutes_inj[OF H(2)] have "p n = n" unfolding inj_on_def by blast
   700           with h have False by simp}
   701         ultimately have "p n = n" by blast }
   702       ultimately show "p n = n"  by blast
   703     qed}
   704   thus ?thesis by (auto simp add: expand_fun_eq)
   705 qed
   706 
   707 lemma permutes_natset_ge:
   708   assumes p: "p permutes (S::'a::wellorder set)" and le: "\<forall>i \<in> S.  p i \<ge> i" shows "p = id"
   709 proof-
   710   {fix i assume i: "i \<in> S"
   711     from i permutes_in_image[OF permutes_inv[OF p]] have "inv p i \<in> S" by simp
   712     with le have "p (inv p i) \<ge> inv p i" by blast
   713     with permutes_inverses[OF p] have "i \<ge> inv p i" by simp}
   714   then have th: "\<forall>i\<in>S. inv p i \<le> i"  by blast
   715   from permutes_natset_le[OF permutes_inv[OF p] th]
   716   have "inv p = inv id" by simp
   717   then show ?thesis
   718     apply (subst permutes_inv_inv[OF p, symmetric])
   719     apply (rule inv_unique_comp)
   720     apply simp_all
   721     done
   722 qed
   723 
   724 lemma image_inverse_permutations: "{inv p |p. p permutes S} = {p. p permutes S}"
   725 apply (rule set_ext)
   726 apply auto
   727   using permutes_inv_inv permutes_inv apply auto
   728   apply (rule_tac x="inv x" in exI)
   729   apply auto
   730   done
   731 
   732 lemma image_compose_permutations_left:
   733   assumes q: "q permutes S" shows "{q o p | p. p permutes S} = {p . p permutes S}"
   734 apply (rule set_ext)
   735 apply auto
   736 apply (rule permutes_compose)
   737 using q apply auto
   738 apply (rule_tac x = "inv q o x" in exI)
   739 by (simp add: o_assoc permutes_inv permutes_compose permutes_inv_o)
   740 
   741 lemma image_compose_permutations_right:
   742   assumes q: "q permutes S"
   743   shows "{p o q | p. p permutes S} = {p . p permutes S}"
   744 apply (rule set_ext)
   745 apply auto
   746 apply (rule permutes_compose)
   747 using q apply auto
   748 apply (rule_tac x = "x o inv q" in exI)
   749 by (simp add: o_assoc permutes_inv permutes_compose permutes_inv_o o_assoc[symmetric])
   750 
   751 lemma permutes_in_seg: "p permutes {1 ..n} \<Longrightarrow> i \<in> {1..n} ==> 1 <= p i \<and> p i <= n"
   752 
   753 apply (simp add: permutes_def)
   754 apply metis
   755 done
   756 
   757 term setsum
   758 lemma setsum_permutations_inverse: "setsum f {p. p permutes S} = setsum (\<lambda>p. f(inv p)) {p. p permutes S}" (is "?lhs = ?rhs")
   759 proof-
   760   let ?S = "{p . p permutes S}"
   761 have th0: "inj_on inv ?S"
   762 proof(auto simp add: inj_on_def)
   763   fix q r
   764   assume q: "q permutes S" and r: "r permutes S" and qr: "inv q = inv r"
   765   hence "inv (inv q) = inv (inv r)" by simp
   766   with permutes_inv_inv[OF q] permutes_inv_inv[OF r]
   767   show "q = r" by metis
   768 qed
   769   have th1: "inv ` ?S = ?S" using image_inverse_permutations by blast
   770   have th2: "?rhs = setsum (f o inv) ?S" by (simp add: o_def)
   771   from setsum_reindex[OF th0, of f]  show ?thesis unfolding th1 th2 .
   772 qed
   773 
   774 lemma setum_permutations_compose_left:
   775   assumes q: "q permutes S"
   776   shows "setsum f {p. p permutes S} =
   777             setsum (\<lambda>p. f(q o p)) {p. p permutes S}" (is "?lhs = ?rhs")
   778 proof-
   779   let ?S = "{p. p permutes S}"
   780   have th0: "?rhs = setsum (f o (op o q)) ?S" by (simp add: o_def)
   781   have th1: "inj_on (op o q) ?S"
   782     apply (auto simp add: inj_on_def)
   783   proof-
   784     fix p r
   785     assume "p permutes S" and r:"r permutes S" and rp: "q \<circ> p = q \<circ> r"
   786     hence "inv q o q o p = inv q o q o r" by (simp add: o_assoc[symmetric])
   787     with permutes_inj[OF q, unfolded inj_iff]
   788 
   789     show "p = r" by simp
   790   qed
   791   have th3: "(op o q) ` ?S = ?S" using image_compose_permutations_left[OF q] by auto
   792   from setsum_reindex[OF th1, of f]
   793   show ?thesis unfolding th0 th1 th3 .
   794 qed
   795 
   796 lemma sum_permutations_compose_right:
   797   assumes q: "q permutes S"
   798   shows "setsum f {p. p permutes S} =
   799             setsum (\<lambda>p. f(p o q)) {p. p permutes S}" (is "?lhs = ?rhs")
   800 proof-
   801   let ?S = "{p. p permutes S}"
   802   have th0: "?rhs = setsum (f o (\<lambda>p. p o q)) ?S" by (simp add: o_def)
   803   have th1: "inj_on (\<lambda>p. p o q) ?S"
   804     apply (auto simp add: inj_on_def)
   805   proof-
   806     fix p r
   807     assume "p permutes S" and r:"r permutes S" and rp: "p o q = r o q"
   808     hence "p o (q o inv q)  = r o (q o inv q)" by (simp add: o_assoc)
   809     with permutes_surj[OF q, unfolded surj_iff]
   810 
   811     show "p = r" by simp
   812   qed
   813   have th3: "(\<lambda>p. p o q) ` ?S = ?S" using image_compose_permutations_right[OF q] by auto
   814   from setsum_reindex[OF th1, of f]
   815   show ?thesis unfolding th0 th1 th3 .
   816 qed
   817 
   818 (* ------------------------------------------------------------------------- *)
   819 (* Sum over a set of permutations (could generalize to iteration).           *)
   820 (* ------------------------------------------------------------------------- *)
   821 
   822 lemma setsum_over_permutations_insert:
   823   assumes fS: "finite S" and aS: "a \<notin> S"
   824   shows "setsum f {p. p permutes (insert a S)} = setsum (\<lambda>b. setsum (\<lambda>q. f (Fun.swap a b id o q)) {p. p permutes S}) (insert a S)"
   825 proof-
   826   have th0: "\<And>f a b. (\<lambda>(b,p). f (Fun.swap a b id o p)) = f o (\<lambda>(b,p). Fun.swap a b id o p)"
   827     by (simp add: expand_fun_eq)
   828   have th1: "\<And>P Q. P \<times> Q = {(a,b). a \<in> P \<and> b \<in> Q}" by blast
   829   have th2: "\<And>P Q. P \<Longrightarrow> (P \<Longrightarrow> Q) \<Longrightarrow> P \<and> Q" by blast
   830   show ?thesis
   831     unfolding permutes_insert
   832     unfolding setsum_cartesian_product
   833     unfolding  th1[symmetric]
   834     unfolding th0
   835   proof(rule setsum_reindex)
   836     let ?f = "(\<lambda>(b, y). Fun.swap a b id \<circ> y)"
   837     let ?P = "{p. p permutes S}"
   838     {fix b c p q assume b: "b \<in> insert a S" and c: "c \<in> insert a S"
   839       and p: "p permutes S" and q: "q permutes S"
   840       and eq: "Fun.swap a b id o p = Fun.swap a c id o q"
   841       from p q aS have pa: "p a = a" and qa: "q a = a"
   842         unfolding permutes_def by metis+
   843       from eq have "(Fun.swap a b id o p) a  = (Fun.swap a c id o q) a" by simp
   844       hence bc: "b = c"
   845         by (simp add: permutes_def pa qa o_def fun_upd_def swap_def id_def cong del: if_weak_cong split: split_if_asm)
   846       from eq[unfolded bc] have "(\<lambda>p. Fun.swap a c id o p) (Fun.swap a c id o p) = (\<lambda>p. Fun.swap a c id o p) (Fun.swap a c id o q)" by simp
   847       hence "p = q" unfolding o_assoc swap_id_idempotent
   848         by (simp add: o_def)
   849       with bc have "b = c \<and> p = q" by blast
   850     }
   851 
   852     then show "inj_on ?f (insert a S \<times> ?P)"
   853       unfolding inj_on_def
   854       apply clarify by metis
   855   qed
   856 qed
   857 
   858 end