src/HOL/Tools/ATP/atp_translate.ML
author blanchet
Mon, 25 Jul 2011 14:10:12 +0200
changeset 44837 bb11faa6a79e
parent 44832 91294d386539
child 44855 aefc5b046c1e
permissions -rw-r--r--
declare "undefined" constant
     1 (*  Title:      HOL/Tools/ATP/atp_translate.ML
     2     Author:     Fabian Immler, TU Muenchen
     3     Author:     Makarius
     4     Author:     Jasmin Blanchette, TU Muenchen
     5 
     6 Translation of HOL to FOL for Metis and Sledgehammer.
     7 *)
     8 
     9 signature ATP_TRANSLATE =
    10 sig
    11   type ('a, 'b) ho_term = ('a, 'b) ATP_Problem.ho_term
    12   type connective = ATP_Problem.connective
    13   type ('a, 'b, 'c) formula = ('a, 'b, 'c) ATP_Problem.formula
    14   type format = ATP_Problem.format
    15   type formula_kind = ATP_Problem.formula_kind
    16   type 'a problem = 'a ATP_Problem.problem
    17 
    18   datatype locality =
    19     General | Helper | Extensionality | Intro | Elim | Simp | Local | Assum |
    20     Chained
    21 
    22   datatype order = First_Order | Higher_Order
    23   datatype polymorphism = Polymorphic | Monomorphic | Mangled_Monomorphic
    24   datatype type_level =
    25     All_Types | Noninf_Nonmono_Types | Fin_Nonmono_Types | Const_Arg_Types |
    26     No_Types
    27   datatype type_heaviness = Heavyweight | Lightweight
    28 
    29   datatype type_enc =
    30     Simple_Types of order * type_level |
    31     Preds of polymorphism * type_level * type_heaviness |
    32     Tags of polymorphism * type_level * type_heaviness
    33 
    34   val bound_var_prefix : string
    35   val schematic_var_prefix : string
    36   val fixed_var_prefix : string
    37   val tvar_prefix : string
    38   val tfree_prefix : string
    39   val const_prefix : string
    40   val type_const_prefix : string
    41   val class_prefix : string
    42   val polymorphic_free_prefix : string
    43   val skolem_const_prefix : string
    44   val old_skolem_const_prefix : string
    45   val new_skolem_const_prefix : string
    46   val type_decl_prefix : string
    47   val sym_decl_prefix : string
    48   val preds_sym_formula_prefix : string
    49   val lightweight_tags_sym_formula_prefix : string
    50   val fact_prefix : string
    51   val conjecture_prefix : string
    52   val helper_prefix : string
    53   val class_rel_clause_prefix : string
    54   val arity_clause_prefix : string
    55   val tfree_clause_prefix : string
    56   val typed_helper_suffix : string
    57   val untyped_helper_suffix : string
    58   val type_tag_idempotence_helper_name : string
    59   val predicator_name : string
    60   val app_op_name : string
    61   val type_tag_name : string
    62   val type_pred_name : string
    63   val simple_type_prefix : string
    64   val prefixed_predicator_name : string
    65   val prefixed_app_op_name : string
    66   val prefixed_type_tag_name : string
    67   val ascii_of : string -> string
    68   val unascii_of : string -> string
    69   val strip_prefix_and_unascii : string -> string -> string option
    70   val proxy_table : (string * (string * (thm * (string * string)))) list
    71   val proxify_const : string -> (string * string) option
    72   val invert_const : string -> string
    73   val unproxify_const : string -> string
    74   val new_skolem_var_name_from_const : string -> string
    75   val atp_irrelevant_consts : string list
    76   val atp_schematic_consts_of : term -> typ list Symtab.table
    77   val is_locality_global : locality -> bool
    78   val type_enc_from_string : string -> type_enc
    79   val is_type_enc_higher_order : type_enc -> bool
    80   val polymorphism_of_type_enc : type_enc -> polymorphism
    81   val level_of_type_enc : type_enc -> type_level
    82   val is_type_enc_virtually_sound : type_enc -> bool
    83   val is_type_enc_fairly_sound : type_enc -> bool
    84   val choose_format : format list -> type_enc -> format * type_enc
    85   val mk_aconns :
    86     connective -> ('a, 'b, 'c) formula list -> ('a, 'b, 'c) formula
    87   val unmangled_const : string -> string * (string, 'b) ho_term list
    88   val unmangled_const_name : string -> string
    89   val helper_table : ((string * bool) * thm list) list
    90   val factsN : string
    91   val introduce_combinators : Proof.context -> term -> term
    92   val prepare_atp_problem :
    93     Proof.context -> format -> formula_kind -> formula_kind -> type_enc -> bool
    94     -> bool -> (term list -> term list * term list) -> bool -> bool -> term list
    95     -> term -> ((string * locality) * term) list
    96     -> string problem * string Symtab.table * int * int
    97        * (string * locality) list vector * int list * int Symtab.table
    98   val atp_problem_weights : string problem -> (string * real) list
    99 end;
   100 
   101 structure ATP_Translate : ATP_TRANSLATE =
   102 struct
   103 
   104 open ATP_Util
   105 open ATP_Problem
   106 
   107 type name = string * string
   108 
   109 val generate_info = false (* experimental *)
   110 
   111 fun isabelle_info s =
   112   if generate_info then SOME (ATerm ("[]", [ATerm ("isabelle_" ^ s, [])]))
   113   else NONE
   114 
   115 val introN = "intro"
   116 val elimN = "elim"
   117 val simpN = "simp"
   118 
   119 val bound_var_prefix = "B_"
   120 val schematic_var_prefix = "V_"
   121 val fixed_var_prefix = "v_"
   122 val tvar_prefix = "T_"
   123 val tfree_prefix = "t_"
   124 val const_prefix = "c_"
   125 val type_const_prefix = "tc_"
   126 val class_prefix = "cl_"
   127 
   128 val polymorphic_free_prefix = "poly_free"
   129 
   130 val skolem_const_prefix = "ATP" ^ Long_Name.separator ^ "Sko"
   131 val old_skolem_const_prefix = skolem_const_prefix ^ "o"
   132 val new_skolem_const_prefix = skolem_const_prefix ^ "n"
   133 
   134 val type_decl_prefix = "ty_"
   135 val sym_decl_prefix = "sy_"
   136 val preds_sym_formula_prefix = "psy_"
   137 val lightweight_tags_sym_formula_prefix = "tsy_"
   138 val fact_prefix = "fact_"
   139 val conjecture_prefix = "conj_"
   140 val helper_prefix = "help_"
   141 val class_rel_clause_prefix = "clar_"
   142 val arity_clause_prefix = "arity_"
   143 val tfree_clause_prefix = "tfree_"
   144 
   145 val lambda_fact_prefix = "ATP.lambda_"
   146 val typed_helper_suffix = "_T"
   147 val untyped_helper_suffix = "_U"
   148 val type_tag_idempotence_helper_name = helper_prefix ^ "ti_idem"
   149 
   150 val predicator_name = "hBOOL"
   151 val app_op_name = "hAPP"
   152 val type_tag_name = "ti"
   153 val type_pred_name = "is"
   154 val simple_type_prefix = "ty_"
   155 
   156 val prefixed_predicator_name = const_prefix ^ predicator_name
   157 val prefixed_app_op_name = const_prefix ^ app_op_name
   158 val prefixed_type_tag_name = const_prefix ^ type_tag_name
   159 
   160 (* Freshness almost guaranteed! *)
   161 val atp_weak_prefix = "ATP:"
   162 
   163 (*Escaping of special characters.
   164   Alphanumeric characters are left unchanged.
   165   The character _ goes to __
   166   Characters in the range ASCII space to / go to _A to _P, respectively.
   167   Other characters go to _nnn where nnn is the decimal ASCII code.*)
   168 val upper_a_minus_space = Char.ord #"A" - Char.ord #" "
   169 
   170 fun stringN_of_int 0 _ = ""
   171   | stringN_of_int k n =
   172     stringN_of_int (k - 1) (n div 10) ^ string_of_int (n mod 10)
   173 
   174 fun ascii_of_char c =
   175   if Char.isAlphaNum c then
   176     String.str c
   177   else if c = #"_" then
   178     "__"
   179   else if #" " <= c andalso c <= #"/" then
   180     "_" ^ String.str (Char.chr (Char.ord c + upper_a_minus_space))
   181   else
   182     (* fixed width, in case more digits follow *)
   183     "_" ^ stringN_of_int 3 (Char.ord c)
   184 
   185 val ascii_of = String.translate ascii_of_char
   186 
   187 (** Remove ASCII armoring from names in proof files **)
   188 
   189 (* We don't raise error exceptions because this code can run inside a worker
   190    thread. Also, the errors are impossible. *)
   191 val unascii_of =
   192   let
   193     fun un rcs [] = String.implode(rev rcs)
   194       | un rcs [#"_"] = un (#"_" :: rcs) [] (* ERROR *)
   195         (* Three types of _ escapes: __, _A to _P, _nnn *)
   196       | un rcs (#"_" :: #"_" :: cs) = un (#"_" :: rcs) cs
   197       | un rcs (#"_" :: c :: cs) =
   198         if #"A" <= c andalso c<= #"P" then
   199           (* translation of #" " to #"/" *)
   200           un (Char.chr (Char.ord c - upper_a_minus_space) :: rcs) cs
   201         else
   202           let val digits = List.take (c :: cs, 3) handle General.Subscript => [] in
   203             case Int.fromString (String.implode digits) of
   204               SOME n => un (Char.chr n :: rcs) (List.drop (cs, 2))
   205             | NONE => un (c :: #"_" :: rcs) cs (* ERROR *)
   206           end
   207       | un rcs (c :: cs) = un (c :: rcs) cs
   208   in un [] o String.explode end
   209 
   210 (* If string s has the prefix s1, return the result of deleting it,
   211    un-ASCII'd. *)
   212 fun strip_prefix_and_unascii s1 s =
   213   if String.isPrefix s1 s then
   214     SOME (unascii_of (String.extract (s, size s1, NONE)))
   215   else
   216     NONE
   217 
   218 val proxy_table =
   219   [("c_False", (@{const_name False}, (@{thm fFalse_def},
   220        ("fFalse", @{const_name ATP.fFalse})))),
   221    ("c_True", (@{const_name True}, (@{thm fTrue_def},
   222        ("fTrue", @{const_name ATP.fTrue})))),
   223    ("c_Not", (@{const_name Not}, (@{thm fNot_def},
   224        ("fNot", @{const_name ATP.fNot})))),
   225    ("c_conj", (@{const_name conj}, (@{thm fconj_def},
   226        ("fconj", @{const_name ATP.fconj})))),
   227    ("c_disj", (@{const_name disj}, (@{thm fdisj_def},
   228        ("fdisj", @{const_name ATP.fdisj})))),
   229    ("c_implies", (@{const_name implies}, (@{thm fimplies_def},
   230        ("fimplies", @{const_name ATP.fimplies})))),
   231    ("equal", (@{const_name HOL.eq}, (@{thm fequal_def},
   232        ("fequal", @{const_name ATP.fequal})))),
   233    ("c_All", (@{const_name All}, (@{thm fAll_def},
   234        ("fAll", @{const_name ATP.fAll})))),
   235    ("c_Ex", (@{const_name Ex}, (@{thm fEx_def},
   236        ("fEx", @{const_name ATP.fEx}))))]
   237 
   238 val proxify_const = AList.lookup (op =) proxy_table #> Option.map (snd o snd)
   239 
   240 (* Readable names for the more common symbolic functions. Do not mess with the
   241    table unless you know what you are doing. *)
   242 val const_trans_table =
   243   [(@{type_name Product_Type.prod}, "prod"),
   244    (@{type_name Sum_Type.sum}, "sum"),
   245    (@{const_name False}, "False"),
   246    (@{const_name True}, "True"),
   247    (@{const_name Not}, "Not"),
   248    (@{const_name conj}, "conj"),
   249    (@{const_name disj}, "disj"),
   250    (@{const_name implies}, "implies"),
   251    (@{const_name HOL.eq}, "equal"),
   252    (@{const_name All}, "All"),
   253    (@{const_name Ex}, "Ex"),
   254    (@{const_name If}, "If"),
   255    (@{const_name Set.member}, "member"),
   256    (@{const_name Meson.COMBI}, "COMBI"),
   257    (@{const_name Meson.COMBK}, "COMBK"),
   258    (@{const_name Meson.COMBB}, "COMBB"),
   259    (@{const_name Meson.COMBC}, "COMBC"),
   260    (@{const_name Meson.COMBS}, "COMBS")]
   261   |> Symtab.make
   262   |> fold (Symtab.update o swap o snd o snd o snd) proxy_table
   263 
   264 (* Invert the table of translations between Isabelle and ATPs. *)
   265 val const_trans_table_inv =
   266   const_trans_table |> Symtab.dest |> map swap |> Symtab.make
   267 val const_trans_table_unprox =
   268   Symtab.empty
   269   |> fold (fn (_, (isa, (_, (_, atp)))) => Symtab.update (atp, isa)) proxy_table
   270 
   271 val invert_const = perhaps (Symtab.lookup const_trans_table_inv)
   272 val unproxify_const = perhaps (Symtab.lookup const_trans_table_unprox)
   273 
   274 fun lookup_const c =
   275   case Symtab.lookup const_trans_table c of
   276     SOME c' => c'
   277   | NONE => ascii_of c
   278 
   279 fun ascii_of_indexname (v, 0) = ascii_of v
   280   | ascii_of_indexname (v, i) = ascii_of v ^ "_" ^ string_of_int i
   281 
   282 fun make_bound_var x = bound_var_prefix ^ ascii_of x
   283 fun make_schematic_var v = schematic_var_prefix ^ ascii_of_indexname v
   284 fun make_fixed_var x = fixed_var_prefix ^ ascii_of x
   285 
   286 fun make_schematic_type_var (x, i) =
   287       tvar_prefix ^ (ascii_of_indexname (unprefix "'" x, i))
   288 fun make_fixed_type_var x = tfree_prefix ^ (ascii_of (unprefix "'" x))
   289 
   290 (* "HOL.eq" is mapped to the ATP's equality. *)
   291 fun make_fixed_const @{const_name HOL.eq} = tptp_old_equal
   292   | make_fixed_const c = const_prefix ^ lookup_const c
   293 
   294 fun make_fixed_type_const c = type_const_prefix ^ lookup_const c
   295 
   296 fun make_type_class clas = class_prefix ^ ascii_of clas
   297 
   298 fun new_skolem_var_name_from_const s =
   299   let val ss = s |> space_explode Long_Name.separator in
   300     nth ss (length ss - 2)
   301   end
   302 
   303 (* These are either simplified away by "Meson.presimplify" (most of the time) or
   304    handled specially via "fFalse", "fTrue", ..., "fequal". *)
   305 val atp_irrelevant_consts =
   306   [@{const_name False}, @{const_name True}, @{const_name Not},
   307    @{const_name conj}, @{const_name disj}, @{const_name implies},
   308    @{const_name HOL.eq}, @{const_name If}, @{const_name Let}]
   309 
   310 val atp_monomorph_bad_consts =
   311   atp_irrelevant_consts @
   312   (* These are ignored anyway by the relevance filter (unless they appear in
   313      higher-order places) but not by the monomorphizer. *)
   314   [@{const_name all}, @{const_name "==>"}, @{const_name "=="},
   315    @{const_name Trueprop}, @{const_name All}, @{const_name Ex},
   316    @{const_name Ex1}, @{const_name Ball}, @{const_name Bex}]
   317 
   318 fun add_schematic_const (x as (_, T)) =
   319   Monomorph.typ_has_tvars T ? Symtab.insert_list (op =) x
   320 val add_schematic_consts_of =
   321   Term.fold_aterms (fn Const (x as (s, _)) =>
   322                        not (member (op =) atp_monomorph_bad_consts s)
   323                        ? add_schematic_const x
   324                       | _ => I)
   325 fun atp_schematic_consts_of t = add_schematic_consts_of t Symtab.empty
   326 
   327 (** Definitions and functions for FOL clauses and formulas for TPTP **)
   328 
   329 (* The first component is the type class; the second is a "TVar" or "TFree". *)
   330 datatype type_literal =
   331   TyLitVar of name * name |
   332   TyLitFree of name * name
   333 
   334 
   335 (** Isabelle arities **)
   336 
   337 datatype arity_literal =
   338   TConsLit of name * name * name list |
   339   TVarLit of name * name
   340 
   341 fun gen_TVars 0 = []
   342   | gen_TVars n = ("T_" ^ string_of_int n) :: gen_TVars (n-1)
   343 
   344 val type_class = the_single @{sort type}
   345 
   346 fun add_packed_sort tvar =
   347   fold (fn s => s <> type_class ? cons (`make_type_class s, `I tvar))
   348 
   349 type arity_clause =
   350   {name : string,
   351    prem_lits : arity_literal list,
   352    concl_lits : arity_literal}
   353 
   354 (* Arity of type constructor "tcon :: (arg1, ..., argN) res" *)
   355 fun make_axiom_arity_clause (tcons, name, (cls, args)) =
   356   let
   357     val tvars = gen_TVars (length args)
   358     val tvars_srts = ListPair.zip (tvars, args)
   359   in
   360     {name = name,
   361      prem_lits = [] |> fold (uncurry add_packed_sort) tvars_srts |> map TVarLit,
   362      concl_lits = TConsLit (`make_type_class cls,
   363                             `make_fixed_type_const tcons,
   364                             tvars ~~ tvars)}
   365   end
   366 
   367 fun arity_clause _ _ (_, []) = []
   368   | arity_clause seen n (tcons, ("HOL.type", _) :: ars) =  (* ignore *)
   369     arity_clause seen n (tcons, ars)
   370   | arity_clause seen n (tcons, (ar as (class, _)) :: ars) =
   371     if member (op =) seen class then
   372       (* multiple arities for the same (tycon, class) pair *)
   373       make_axiom_arity_clause (tcons,
   374           lookup_const tcons ^ "___" ^ ascii_of class ^ "_" ^ string_of_int n,
   375           ar) ::
   376       arity_clause seen (n + 1) (tcons, ars)
   377     else
   378       make_axiom_arity_clause (tcons, lookup_const tcons ^ "___" ^
   379                                ascii_of class, ar) ::
   380       arity_clause (class :: seen) n (tcons, ars)
   381 
   382 fun multi_arity_clause [] = []
   383   | multi_arity_clause ((tcons, ars) :: tc_arlists) =
   384       arity_clause [] 1 (tcons, ars) @ multi_arity_clause tc_arlists
   385 
   386 (* Generate all pairs (tycon, class, sorts) such that tycon belongs to class in
   387    theory thy provided its arguments have the corresponding sorts. *)
   388 fun type_class_pairs thy tycons classes =
   389   let
   390     val alg = Sign.classes_of thy
   391     fun domain_sorts tycon = Sorts.mg_domain alg tycon o single
   392     fun add_class tycon class =
   393       cons (class, domain_sorts tycon class)
   394       handle Sorts.CLASS_ERROR _ => I
   395     fun try_classes tycon = (tycon, fold (add_class tycon) classes [])
   396   in map try_classes tycons end
   397 
   398 (*Proving one (tycon, class) membership may require proving others, so iterate.*)
   399 fun iter_type_class_pairs _ _ [] = ([], [])
   400   | iter_type_class_pairs thy tycons classes =
   401       let
   402         fun maybe_insert_class s =
   403           (s <> type_class andalso not (member (op =) classes s))
   404           ? insert (op =) s
   405         val cpairs = type_class_pairs thy tycons classes
   406         val newclasses =
   407           [] |> fold (fold (fold (fold maybe_insert_class) o snd) o snd) cpairs
   408         val (classes', cpairs') = iter_type_class_pairs thy tycons newclasses
   409       in (classes' @ classes, union (op =) cpairs' cpairs) end
   410 
   411 fun make_arity_clauses thy tycons =
   412   iter_type_class_pairs thy tycons ##> multi_arity_clause
   413 
   414 
   415 (** Isabelle class relations **)
   416 
   417 type class_rel_clause =
   418   {name : string,
   419    subclass : name,
   420    superclass : name}
   421 
   422 (* Generate all pairs (sub, super) such that sub is a proper subclass of super
   423    in theory "thy". *)
   424 fun class_pairs _ [] _ = []
   425   | class_pairs thy subs supers =
   426       let
   427         val class_less = Sorts.class_less (Sign.classes_of thy)
   428         fun add_super sub super = class_less (sub, super) ? cons (sub, super)
   429         fun add_supers sub = fold (add_super sub) supers
   430       in fold add_supers subs [] end
   431 
   432 fun make_class_rel_clause (sub, super) =
   433   {name = sub ^ "_" ^ super, subclass = `make_type_class sub,
   434    superclass = `make_type_class super}
   435 
   436 fun make_class_rel_clauses thy subs supers =
   437   map make_class_rel_clause (class_pairs thy subs supers)
   438 
   439 (* intermediate terms *)
   440 datatype iterm =
   441   IConst of name * typ * typ list |
   442   IVar of name * typ |
   443   IApp of iterm * iterm |
   444   IAbs of (name * typ) * iterm
   445 
   446 fun ityp_of (IConst (_, T, _)) = T
   447   | ityp_of (IVar (_, T)) = T
   448   | ityp_of (IApp (t1, _)) = snd (dest_funT (ityp_of t1))
   449   | ityp_of (IAbs ((_, T), tm)) = T --> ityp_of tm
   450 
   451 (*gets the head of a combinator application, along with the list of arguments*)
   452 fun strip_iterm_comb u =
   453   let
   454     fun stripc (IApp (t, u), ts) = stripc (t, u :: ts)
   455       | stripc x = x
   456   in stripc (u, []) end
   457 
   458 fun atyps_of T = fold_atyps (insert (op =)) T []
   459 
   460 fun new_skolem_const_name s num_T_args =
   461   [new_skolem_const_prefix, s, string_of_int num_T_args]
   462   |> space_implode Long_Name.separator
   463 
   464 (* Converts an Isabelle/HOL term (with combinators) into an intermediate term.
   465    Also accumulates sort infomation. *)
   466 fun iterm_from_term thy bs (P $ Q) =
   467     let
   468       val (P', P_atomics_Ts) = iterm_from_term thy bs P
   469       val (Q', Q_atomics_Ts) = iterm_from_term thy bs Q
   470     in (IApp (P', Q'), union (op =) P_atomics_Ts Q_atomics_Ts) end
   471   | iterm_from_term thy _ (Const (c, T)) =
   472     (IConst (`make_fixed_const c, T,
   473              if String.isPrefix old_skolem_const_prefix c then
   474                [] |> Term.add_tvarsT T |> map TVar
   475              else
   476                (c, T) |> Sign.const_typargs thy),
   477      atyps_of T)
   478   | iterm_from_term _ _ (Free (s, T)) =
   479     (IConst (`make_fixed_var s, T,
   480              if String.isPrefix polymorphic_free_prefix s then [T] else []),
   481      atyps_of T)
   482   | iterm_from_term _ _ (Var (v as (s, _), T)) =
   483     (if String.isPrefix Meson_Clausify.new_skolem_var_prefix s then
   484        let
   485          val Ts = T |> strip_type |> swap |> op ::
   486          val s' = new_skolem_const_name s (length Ts)
   487        in IConst (`make_fixed_const s', T, Ts) end
   488      else
   489        IVar ((make_schematic_var v, s), T), atyps_of T)
   490   | iterm_from_term _ bs (Bound j) =
   491     nth bs j |> (fn (s, T) => (IConst (`make_bound_var s, T, []), atyps_of T))
   492   | iterm_from_term thy bs (Abs (s, T, t)) =
   493     let
   494       fun vary s = s |> AList.defined (op =) bs s ? vary o Symbol.bump_string
   495       val s = vary s
   496       val (tm, atomic_Ts) = iterm_from_term thy ((s, T) :: bs) t
   497     in
   498       (IAbs ((`make_bound_var s, T), tm),
   499        union (op =) atomic_Ts (atyps_of T))
   500     end
   501 
   502 datatype locality =
   503   General | Helper | Extensionality | Intro | Elim | Simp | Local | Assum |
   504   Chained
   505 
   506 (* (quasi-)underapproximation of the truth *)
   507 fun is_locality_global Local = false
   508   | is_locality_global Assum = false
   509   | is_locality_global Chained = false
   510   | is_locality_global _ = true
   511 
   512 datatype order = First_Order | Higher_Order
   513 datatype polymorphism = Polymorphic | Monomorphic | Mangled_Monomorphic
   514 datatype type_level =
   515   All_Types | Noninf_Nonmono_Types | Fin_Nonmono_Types | Const_Arg_Types |
   516   No_Types
   517 datatype type_heaviness = Heavyweight | Lightweight
   518 
   519 datatype type_enc =
   520   Simple_Types of order * type_level |
   521   Preds of polymorphism * type_level * type_heaviness |
   522   Tags of polymorphism * type_level * type_heaviness
   523 
   524 fun try_unsuffixes ss s =
   525   fold (fn s' => fn NONE => try (unsuffix s') s | some => some) ss NONE
   526 
   527 fun type_enc_from_string s =
   528   (case try (unprefix "poly_") s of
   529      SOME s => (SOME Polymorphic, s)
   530    | NONE =>
   531      case try (unprefix "mono_") s of
   532        SOME s => (SOME Monomorphic, s)
   533      | NONE =>
   534        case try (unprefix "mangled_") s of
   535          SOME s => (SOME Mangled_Monomorphic, s)
   536        | NONE => (NONE, s))
   537   ||> (fn s =>
   538           (* "_query" and "_bang" are for the ASCII-challenged Metis and
   539              Mirabelle. *)
   540           case try_unsuffixes ["?", "_query"] s of
   541             SOME s => (Noninf_Nonmono_Types, s)
   542           | NONE =>
   543             case try_unsuffixes ["!", "_bang"] s of
   544               SOME s => (Fin_Nonmono_Types, s)
   545             | NONE => (All_Types, s))
   546   ||> apsnd (fn s =>
   547                 case try (unsuffix "_heavy") s of
   548                   SOME s => (Heavyweight, s)
   549                 | NONE => (Lightweight, s))
   550   |> (fn (poly, (level, (heaviness, core))) =>
   551          case (core, (poly, level, heaviness)) of
   552            ("simple", (NONE, _, Lightweight)) =>
   553            Simple_Types (First_Order, level)
   554          | ("simple_higher", (NONE, _, Lightweight)) =>
   555            if level = Noninf_Nonmono_Types then raise Same.SAME
   556            else Simple_Types (Higher_Order, level)
   557          | ("preds", (SOME poly, _, _)) => Preds (poly, level, heaviness)
   558          | ("tags", (SOME Polymorphic, _, _)) =>
   559            Tags (Polymorphic, level, heaviness)
   560          | ("tags", (SOME poly, _, _)) => Tags (poly, level, heaviness)
   561          | ("args", (SOME poly, All_Types (* naja *), Lightweight)) =>
   562            Preds (poly, Const_Arg_Types, Lightweight)
   563          | ("erased", (NONE, All_Types (* naja *), Lightweight)) =>
   564            Preds (Polymorphic, No_Types, Lightweight)
   565          | _ => raise Same.SAME)
   566   handle Same.SAME => error ("Unknown type system: " ^ quote s ^ ".")
   567 
   568 fun is_type_enc_higher_order (Simple_Types (Higher_Order, _)) = true
   569   | is_type_enc_higher_order _ = false
   570 
   571 fun polymorphism_of_type_enc (Simple_Types _) = Mangled_Monomorphic
   572   | polymorphism_of_type_enc (Preds (poly, _, _)) = poly
   573   | polymorphism_of_type_enc (Tags (poly, _, _)) = poly
   574 
   575 fun level_of_type_enc (Simple_Types (_, level)) = level
   576   | level_of_type_enc (Preds (_, level, _)) = level
   577   | level_of_type_enc (Tags (_, level, _)) = level
   578 
   579 fun heaviness_of_type_enc (Simple_Types _) = Heavyweight
   580   | heaviness_of_type_enc (Preds (_, _, heaviness)) = heaviness
   581   | heaviness_of_type_enc (Tags (_, _, heaviness)) = heaviness
   582 
   583 fun is_type_level_virtually_sound level =
   584   level = All_Types orelse level = Noninf_Nonmono_Types
   585 val is_type_enc_virtually_sound =
   586   is_type_level_virtually_sound o level_of_type_enc
   587 
   588 fun is_type_level_fairly_sound level =
   589   is_type_level_virtually_sound level orelse level = Fin_Nonmono_Types
   590 val is_type_enc_fairly_sound = is_type_level_fairly_sound o level_of_type_enc
   591 
   592 fun choose_format formats (Simple_Types (order, level)) =
   593     if member (op =) formats THF then
   594       (THF, Simple_Types (order, level))
   595     else if member (op =) formats TFF then
   596       (TFF, Simple_Types (First_Order, level))
   597     else
   598       choose_format formats (Preds (Mangled_Monomorphic, level, Heavyweight))
   599   | choose_format formats type_enc =
   600     (case hd formats of
   601        CNF_UEQ =>
   602        (CNF_UEQ, case type_enc of
   603                    Preds stuff =>
   604                    (if is_type_enc_fairly_sound type_enc then Tags else Preds)
   605                        stuff
   606                  | _ => type_enc)
   607      | format => (format, type_enc))
   608 
   609 type translated_formula =
   610   {name : string,
   611    locality : locality,
   612    kind : formula_kind,
   613    iformula : (name, typ, iterm) formula,
   614    atomic_types : typ list}
   615 
   616 fun update_iformula f ({name, locality, kind, iformula, atomic_types}
   617                        : translated_formula) =
   618   {name = name, locality = locality, kind = kind, iformula = f iformula,
   619    atomic_types = atomic_types} : translated_formula
   620 
   621 fun fact_lift f ({iformula, ...} : translated_formula) = f iformula
   622 
   623 val type_instance = Sign.typ_instance o Proof_Context.theory_of
   624 
   625 fun insert_type ctxt get_T x xs =
   626   let val T = get_T x in
   627     if exists (curry (type_instance ctxt) T o get_T) xs then xs
   628     else x :: filter_out (curry (type_instance ctxt o swap) T o get_T) xs
   629   end
   630 
   631 (* The Booleans indicate whether all type arguments should be kept. *)
   632 datatype type_arg_policy =
   633   Explicit_Type_Args of bool |
   634   Mangled_Type_Args of bool |
   635   No_Type_Args
   636 
   637 fun should_drop_arg_type_args (Simple_Types _) =
   638     false (* since TFF doesn't support overloading *)
   639   | should_drop_arg_type_args type_enc =
   640     level_of_type_enc type_enc = All_Types andalso
   641     heaviness_of_type_enc type_enc = Heavyweight
   642 
   643 fun type_arg_policy type_enc s =
   644   if s = type_tag_name then
   645     (if polymorphism_of_type_enc type_enc = Mangled_Monomorphic then
   646        Mangled_Type_Args
   647      else
   648        Explicit_Type_Args) false
   649   else case type_enc of
   650     Tags (_, All_Types, Heavyweight) => No_Type_Args
   651   | _ =>
   652     if level_of_type_enc type_enc = No_Types orelse
   653        s = @{const_name HOL.eq} orelse
   654        (s = app_op_name andalso
   655         level_of_type_enc type_enc = Const_Arg_Types) then
   656       No_Type_Args
   657     else
   658       should_drop_arg_type_args type_enc
   659       |> (if polymorphism_of_type_enc type_enc = Mangled_Monomorphic then
   660             Mangled_Type_Args
   661           else
   662             Explicit_Type_Args)
   663 
   664 (* Make literals for sorted type variables. *)
   665 fun generic_add_sorts_on_type (_, []) = I
   666   | generic_add_sorts_on_type ((x, i), s :: ss) =
   667     generic_add_sorts_on_type ((x, i), ss)
   668     #> (if s = the_single @{sort HOL.type} then
   669           I
   670         else if i = ~1 then
   671           insert (op =) (TyLitFree (`make_type_class s, `make_fixed_type_var x))
   672         else
   673           insert (op =) (TyLitVar (`make_type_class s,
   674                                    (make_schematic_type_var (x, i), x))))
   675 fun add_sorts_on_tfree (TFree (s, S)) = generic_add_sorts_on_type ((s, ~1), S)
   676   | add_sorts_on_tfree _ = I
   677 fun add_sorts_on_tvar (TVar z) = generic_add_sorts_on_type z
   678   | add_sorts_on_tvar _ = I
   679 
   680 fun type_literals_for_types type_enc add_sorts_on_typ Ts =
   681   [] |> level_of_type_enc type_enc <> No_Types ? fold add_sorts_on_typ Ts
   682 
   683 fun mk_aconns c phis =
   684   let val (phis', phi') = split_last phis in
   685     fold_rev (mk_aconn c) phis' phi'
   686   end
   687 fun mk_ahorn [] phi = phi
   688   | mk_ahorn phis psi = AConn (AImplies, [mk_aconns AAnd phis, psi])
   689 fun mk_aquant _ [] phi = phi
   690   | mk_aquant q xs (phi as AQuant (q', xs', phi')) =
   691     if q = q' then AQuant (q, xs @ xs', phi') else AQuant (q, xs, phi)
   692   | mk_aquant q xs phi = AQuant (q, xs, phi)
   693 
   694 fun close_universally atom_vars phi =
   695   let
   696     fun formula_vars bounds (AQuant (_, xs, phi)) =
   697         formula_vars (map fst xs @ bounds) phi
   698       | formula_vars bounds (AConn (_, phis)) = fold (formula_vars bounds) phis
   699       | formula_vars bounds (AAtom tm) =
   700         union (op =) (atom_vars tm []
   701                       |> filter_out (member (op =) bounds o fst))
   702   in mk_aquant AForall (formula_vars [] phi []) phi end
   703 
   704 fun iterm_vars (IApp (tm1, tm2)) = fold iterm_vars [tm1, tm2]
   705   | iterm_vars (IConst _) = I
   706   | iterm_vars (IVar (name, T)) = insert (op =) (name, SOME T)
   707   | iterm_vars (IAbs (_, tm)) = iterm_vars tm
   708 fun close_iformula_universally phi = close_universally iterm_vars phi
   709 
   710 fun term_vars bounds (ATerm (name as (s, _), tms)) =
   711     (is_tptp_variable s andalso not (member (op =) bounds name))
   712     ? insert (op =) (name, NONE) #> fold (term_vars bounds) tms
   713   | term_vars bounds (AAbs ((name, _), tm)) = term_vars (name :: bounds) tm
   714 fun close_formula_universally phi = close_universally (term_vars []) phi
   715 
   716 val homo_infinite_type_name = @{type_name ind} (* any infinite type *)
   717 val homo_infinite_type = Type (homo_infinite_type_name, [])
   718 
   719 fun ho_term_from_typ format type_enc =
   720   let
   721     fun term (Type (s, Ts)) =
   722       ATerm (case (is_type_enc_higher_order type_enc, s) of
   723                (true, @{type_name bool}) => `I tptp_bool_type
   724              | (true, @{type_name fun}) => `I tptp_fun_type
   725              | _ => if s = homo_infinite_type_name andalso
   726                        (format = TFF orelse format = THF) then
   727                       `I tptp_individual_type
   728                     else
   729                       `make_fixed_type_const s,
   730              map term Ts)
   731     | term (TFree (s, _)) = ATerm (`make_fixed_type_var s, [])
   732     | term (TVar ((x as (s, _)), _)) =
   733       ATerm ((make_schematic_type_var x, s), [])
   734   in term end
   735 
   736 fun ho_term_for_type_arg format type_enc T =
   737   if T = dummyT then NONE else SOME (ho_term_from_typ format type_enc T)
   738 
   739 (* This shouldn't clash with anything else. *)
   740 val mangled_type_sep = "\000"
   741 
   742 fun generic_mangled_type_name f (ATerm (name, [])) = f name
   743   | generic_mangled_type_name f (ATerm (name, tys)) =
   744     f name ^ "(" ^ space_implode "," (map (generic_mangled_type_name f) tys)
   745     ^ ")"
   746   | generic_mangled_type_name _ _ = raise Fail "unexpected type abstraction"
   747 
   748 val bool_atype = AType (`I tptp_bool_type)
   749 
   750 fun make_simple_type s =
   751   if s = tptp_bool_type orelse s = tptp_fun_type orelse
   752      s = tptp_individual_type then
   753     s
   754   else
   755     simple_type_prefix ^ ascii_of s
   756 
   757 fun ho_type_from_ho_term type_enc pred_sym ary =
   758   let
   759     fun to_atype ty =
   760       AType ((make_simple_type (generic_mangled_type_name fst ty),
   761               generic_mangled_type_name snd ty))
   762     fun to_afun f1 f2 tys = AFun (f1 (hd tys), f2 (nth tys 1))
   763     fun to_fo 0 ty = if pred_sym then bool_atype else to_atype ty
   764       | to_fo ary (ATerm (_, tys)) = to_afun to_atype (to_fo (ary - 1)) tys
   765       | to_fo _ _ = raise Fail "unexpected type abstraction"
   766     fun to_ho (ty as ATerm ((s, _), tys)) =
   767         if s = tptp_fun_type then to_afun to_ho to_ho tys else to_atype ty
   768       | to_ho _ = raise Fail "unexpected type abstraction"
   769   in if is_type_enc_higher_order type_enc then to_ho else to_fo ary end
   770 
   771 fun ho_type_from_typ format type_enc pred_sym ary =
   772   ho_type_from_ho_term type_enc pred_sym ary
   773   o ho_term_from_typ format type_enc
   774 
   775 fun mangled_const_name format type_enc T_args (s, s') =
   776   let
   777     val ty_args = T_args |> map_filter (ho_term_for_type_arg format type_enc)
   778     fun type_suffix f g =
   779       fold_rev (curry (op ^) o g o prefix mangled_type_sep
   780                 o generic_mangled_type_name f) ty_args ""
   781   in (s ^ type_suffix fst ascii_of, s' ^ type_suffix snd I) end
   782 
   783 val parse_mangled_ident =
   784   Scan.many1 (not o member (op =) ["(", ")", ","]) >> implode
   785 
   786 fun parse_mangled_type x =
   787   (parse_mangled_ident
   788    -- Scan.optional ($$ "(" |-- Scan.optional parse_mangled_types [] --| $$ ")")
   789                     [] >> ATerm) x
   790 and parse_mangled_types x =
   791   (parse_mangled_type ::: Scan.repeat ($$ "," |-- parse_mangled_type)) x
   792 
   793 fun unmangled_type s =
   794   s |> suffix ")" |> raw_explode
   795     |> Scan.finite Symbol.stopper
   796            (Scan.error (!! (fn _ => raise Fail ("unrecognized mangled type " ^
   797                                                 quote s)) parse_mangled_type))
   798     |> fst
   799 
   800 val unmangled_const_name = space_explode mangled_type_sep #> hd
   801 fun unmangled_const s =
   802   let val ss = space_explode mangled_type_sep s in
   803     (hd ss, map unmangled_type (tl ss))
   804   end
   805 
   806 fun introduce_proxies type_enc =
   807   let
   808     fun intro top_level (IApp (tm1, tm2)) =
   809         IApp (intro top_level tm1, intro false tm2)
   810       | intro top_level (IConst (name as (s, _), T, T_args)) =
   811         (case proxify_const s of
   812            SOME proxy_base =>
   813            if top_level orelse is_type_enc_higher_order type_enc then
   814              case (top_level, s) of
   815                (_, "c_False") => (`I tptp_false, [])
   816              | (_, "c_True") => (`I tptp_true, [])
   817              | (false, "c_Not") => (`I tptp_not, [])
   818              | (false, "c_conj") => (`I tptp_and, [])
   819              | (false, "c_disj") => (`I tptp_or, [])
   820              | (false, "c_implies") => (`I tptp_implies, [])
   821              | (false, "c_All") => (`I tptp_ho_forall, [])
   822              | (false, "c_Ex") => (`I tptp_ho_exists, [])
   823              | (false, s) =>
   824                if is_tptp_equal s then (`I tptp_equal, [])
   825                else (proxy_base |>> prefix const_prefix, T_args)
   826              | _ => (name, [])
   827            else
   828              (proxy_base |>> prefix const_prefix, T_args)
   829           | NONE => (name, T_args))
   830         |> (fn (name, T_args) => IConst (name, T, T_args))
   831       | intro _ (IAbs (bound, tm)) = IAbs (bound, intro false tm)
   832       | intro _ tm = tm
   833   in intro true end
   834 
   835 fun iformula_from_prop thy type_enc eq_as_iff =
   836   let
   837     fun do_term bs t atomic_types =
   838       iterm_from_term thy bs (Envir.eta_contract t)
   839       |>> (introduce_proxies type_enc #> AAtom)
   840       ||> union (op =) atomic_types
   841     fun do_quant bs q s T t' =
   842       let val s = singleton (Name.variant_list (map fst bs)) s in
   843         do_formula ((s, T) :: bs) t'
   844         #>> mk_aquant q [(`make_bound_var s, SOME T)]
   845       end
   846     and do_conn bs c t1 t2 =
   847       do_formula bs t1 ##>> do_formula bs t2 #>> uncurry (mk_aconn c)
   848     and do_formula bs t =
   849       case t of
   850         @{const Trueprop} $ t1 => do_formula bs t1
   851       | @{const Not} $ t1 => do_formula bs t1 #>> mk_anot
   852       | Const (@{const_name All}, _) $ Abs (s, T, t') =>
   853         do_quant bs AForall s T t'
   854       | Const (@{const_name Ex}, _) $ Abs (s, T, t') =>
   855         do_quant bs AExists s T t'
   856       | @{const HOL.conj} $ t1 $ t2 => do_conn bs AAnd t1 t2
   857       | @{const HOL.disj} $ t1 $ t2 => do_conn bs AOr t1 t2
   858       | @{const HOL.implies} $ t1 $ t2 => do_conn bs AImplies t1 t2
   859       | Const (@{const_name HOL.eq}, Type (_, [@{typ bool}, _])) $ t1 $ t2 =>
   860         if eq_as_iff then do_conn bs AIff t1 t2 else do_term bs t
   861       | _ => do_term bs t
   862   in do_formula [] end
   863 
   864 fun presimplify_term _ [] t = t
   865   | presimplify_term ctxt presimp_consts t =
   866     t |> exists_Const (member (op =) presimp_consts o fst) t
   867          ? (Skip_Proof.make_thm (Proof_Context.theory_of ctxt)
   868             #> Meson.presimplify ctxt
   869             #> prop_of)
   870 
   871 fun concealed_bound_name j = atp_weak_prefix ^ string_of_int j
   872 fun conceal_bounds Ts t =
   873   subst_bounds (map (Free o apfst concealed_bound_name)
   874                     (0 upto length Ts - 1 ~~ Ts), t)
   875 fun reveal_bounds Ts =
   876   subst_atomic (map (fn (j, T) => (Free (concealed_bound_name j, T), Bound j))
   877                     (0 upto length Ts - 1 ~~ Ts))
   878 
   879 fun is_fun_equality (@{const_name HOL.eq},
   880                      Type (_, [Type (@{type_name fun}, _), _])) = true
   881   | is_fun_equality _ = false
   882 
   883 fun extensionalize_term ctxt t =
   884   if exists_Const is_fun_equality t then
   885     let val thy = Proof_Context.theory_of ctxt in
   886       t |> cterm_of thy |> Meson.extensionalize_conv ctxt
   887         |> prop_of |> Logic.dest_equals |> snd
   888     end
   889   else
   890     t
   891 
   892 fun simple_translate_lambdas do_lambdas ctxt t =
   893   let val thy = Proof_Context.theory_of ctxt in
   894     if Meson.is_fol_term thy t then
   895       t
   896     else
   897       let
   898         fun aux Ts t =
   899           case t of
   900             @{const Not} $ t1 => @{const Not} $ aux Ts t1
   901           | (t0 as Const (@{const_name All}, _)) $ Abs (s, T, t') =>
   902             t0 $ Abs (s, T, aux (T :: Ts) t')
   903           | (t0 as Const (@{const_name All}, _)) $ t1 =>
   904             aux Ts (t0 $ eta_expand Ts t1 1)
   905           | (t0 as Const (@{const_name Ex}, _)) $ Abs (s, T, t') =>
   906             t0 $ Abs (s, T, aux (T :: Ts) t')
   907           | (t0 as Const (@{const_name Ex}, _)) $ t1 =>
   908             aux Ts (t0 $ eta_expand Ts t1 1)
   909           | (t0 as @{const HOL.conj}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
   910           | (t0 as @{const HOL.disj}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
   911           | (t0 as @{const HOL.implies}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
   912           | (t0 as Const (@{const_name HOL.eq}, Type (_, [@{typ bool}, _])))
   913               $ t1 $ t2 =>
   914             t0 $ aux Ts t1 $ aux Ts t2
   915           | _ =>
   916             if not (exists_subterm (fn Abs _ => true | _ => false) t) then t
   917             else t |> Envir.eta_contract |> do_lambdas ctxt Ts
   918         val (t, ctxt') = Variable.import_terms true [t] ctxt |>> the_single
   919       in t |> aux [] |> singleton (Variable.export_terms ctxt' ctxt) end
   920   end
   921 
   922 fun do_conceal_lambdas Ts (t1 $ t2) =
   923     do_conceal_lambdas Ts t1 $ do_conceal_lambdas Ts t2
   924   | do_conceal_lambdas Ts (Abs (_, T, t)) =
   925     (* slightly unsound because of hash collisions *)
   926     Free (polymorphic_free_prefix ^ serial_string (), T --> fastype_of1 (Ts, t))
   927   | do_conceal_lambdas _ t = t
   928 
   929 fun do_introduce_combinators ctxt Ts t =
   930   let val thy = Proof_Context.theory_of ctxt in
   931     t |> conceal_bounds Ts
   932       |> cterm_of thy
   933       |> Meson_Clausify.introduce_combinators_in_cterm
   934       |> prop_of |> Logic.dest_equals |> snd
   935       |> reveal_bounds Ts
   936   end
   937   (* A type variable of sort "{}" will make abstraction fail. *)
   938   handle THM _ => t |> do_conceal_lambdas Ts
   939 val introduce_combinators = simple_translate_lambdas do_introduce_combinators
   940 
   941 fun preprocess_abstractions_in_terms trans_lambdas facts =
   942   let
   943     val (facts, lambda_ts) =
   944       facts |> map (snd o snd) |> trans_lambdas 
   945             |>> map2 (fn (name, (kind, _)) => fn t => (name, (kind, t))) facts
   946     val lambda_facts =
   947       map2 (fn t => fn j =>
   948                ((lambda_fact_prefix ^ Int.toString j, Helper), (Axiom, t)))
   949            lambda_ts (1 upto length lambda_ts)
   950   in (facts, lambda_facts) end
   951 
   952 (* Metis's use of "resolve_tac" freezes the schematic variables. We simulate the
   953    same in Sledgehammer to prevent the discovery of unreplayable proofs. *)
   954 fun freeze_term t =
   955   let
   956     fun aux (t $ u) = aux t $ aux u
   957       | aux (Abs (s, T, t)) = Abs (s, T, aux t)
   958       | aux (Var ((s, i), T)) =
   959         Free (atp_weak_prefix ^ s ^ "_" ^ string_of_int i, T)
   960       | aux t = t
   961   in t |> exists_subterm is_Var t ? aux end
   962 
   963 fun presimp_prop ctxt presimp_consts t =
   964   let
   965     val thy = Proof_Context.theory_of ctxt
   966     val t = t |> Envir.beta_eta_contract
   967               |> transform_elim_prop
   968               |> Object_Logic.atomize_term thy
   969     val need_trueprop = (fastype_of t = @{typ bool})
   970   in
   971     t |> need_trueprop ? HOLogic.mk_Trueprop
   972       |> Raw_Simplifier.rewrite_term thy (Meson.unfold_set_const_simps ctxt) []
   973       |> extensionalize_term ctxt
   974       |> presimplify_term ctxt presimp_consts
   975       |> perhaps (try (HOLogic.dest_Trueprop))
   976   end
   977 
   978 (* making fact and conjecture formulas *)
   979 fun make_formula thy type_enc eq_as_iff name loc kind t =
   980   let
   981     val (iformula, atomic_types) =
   982       iformula_from_prop thy type_enc eq_as_iff t []
   983   in
   984     {name = name, locality = loc, kind = kind, iformula = iformula,
   985      atomic_types = atomic_types}
   986   end
   987 
   988 fun make_fact ctxt format type_enc eq_as_iff ((name, loc), t) =
   989   let val thy = Proof_Context.theory_of ctxt in
   990     case t |> make_formula thy type_enc (eq_as_iff andalso format <> CNF) name
   991                            loc Axiom of
   992       formula as {iformula = AAtom (IConst ((s, _), _, _)), ...} =>
   993       if s = tptp_true then NONE else SOME formula
   994     | formula => SOME formula
   995   end
   996 
   997 fun make_conjecture ctxt format type_enc ps =
   998   let
   999     val thy = Proof_Context.theory_of ctxt
  1000     val last = length ps - 1
  1001   in
  1002     map2 (fn j => fn ((name, loc), (kind, t)) =>
  1003              t |> make_formula thy type_enc (format <> CNF) name loc kind
  1004                |> (j <> last) = (kind = Conjecture) ? update_iformula mk_anot)
  1005          (0 upto last) ps
  1006   end
  1007 
  1008 (** Finite and infinite type inference **)
  1009 
  1010 fun deep_freeze_atyp (TVar (_, S)) = TFree ("v", S)
  1011   | deep_freeze_atyp T = T
  1012 val deep_freeze_type = map_atyps deep_freeze_atyp
  1013 
  1014 (* Finite types such as "unit", "bool", "bool * bool", and "bool => bool" are
  1015    dangerous because their "exhaust" properties can easily lead to unsound ATP
  1016    proofs. On the other hand, all HOL infinite types can be given the same
  1017    models in first-order logic (via Löwenheim-Skolem). *)
  1018 
  1019 fun should_encode_type ctxt (nonmono_Ts as _ :: _) _ T =
  1020     exists (curry (type_instance ctxt) (deep_freeze_type T)) nonmono_Ts
  1021   | should_encode_type _ _ All_Types _ = true
  1022   | should_encode_type ctxt _ Fin_Nonmono_Types T =
  1023     is_type_surely_finite ctxt false T
  1024   | should_encode_type _ _ _ _ = false
  1025 
  1026 fun should_predicate_on_type ctxt nonmono_Ts (Preds (_, level, heaviness))
  1027                              should_predicate_on_var T =
  1028     (heaviness = Heavyweight orelse should_predicate_on_var ()) andalso
  1029     should_encode_type ctxt nonmono_Ts level T
  1030   | should_predicate_on_type _ _ _ _ _ = false
  1031 
  1032 fun is_var_or_bound_var (IConst ((s, _), _, _)) =
  1033     String.isPrefix bound_var_prefix s
  1034   | is_var_or_bound_var (IVar _) = true
  1035   | is_var_or_bound_var _ = false
  1036 
  1037 datatype tag_site =
  1038   Top_Level of bool option |
  1039   Eq_Arg of bool option |
  1040   Elsewhere
  1041 
  1042 fun should_tag_with_type _ _ _ (Top_Level _) _ _ = false
  1043   | should_tag_with_type ctxt nonmono_Ts (Tags (poly, level, heaviness)) site
  1044                          u T =
  1045     (case heaviness of
  1046        Heavyweight => should_encode_type ctxt nonmono_Ts level T
  1047      | Lightweight =>
  1048        case (site, is_var_or_bound_var u) of
  1049          (Eq_Arg pos, true) =>
  1050          (* The first disjunct prevents a subtle soundness issue explained in
  1051             Blanchette's Ph.D. thesis. See also
  1052             "formula_lines_for_lightweight_tags_sym_decl". *)
  1053          (pos <> SOME false andalso poly = Polymorphic andalso
  1054           level <> All_Types andalso heaviness = Lightweight andalso
  1055           exists (fn T' => type_instance ctxt (T', T)) nonmono_Ts) orelse
  1056          should_encode_type ctxt nonmono_Ts level T
  1057        | _ => false)
  1058   | should_tag_with_type _ _ _ _ _ _ = false
  1059 
  1060 fun homogenized_type ctxt nonmono_Ts level =
  1061   let
  1062     val should_encode = should_encode_type ctxt nonmono_Ts level
  1063     fun homo 0 T = if should_encode T then T else homo_infinite_type
  1064       | homo ary (Type (@{type_name fun}, [T1, T2])) =
  1065         homo 0 T1 --> homo (ary - 1) T2
  1066       | homo _ _ = raise Fail "expected function type"
  1067   in homo end
  1068 
  1069 (** "hBOOL" and "hAPP" **)
  1070 
  1071 type sym_info =
  1072   {pred_sym : bool, min_ary : int, max_ary : int, types : typ list}
  1073 
  1074 fun add_iterm_syms_to_table ctxt explicit_apply =
  1075   let
  1076     fun consider_var_arity const_T var_T max_ary =
  1077       let
  1078         fun iter ary T =
  1079           if ary = max_ary orelse type_instance ctxt (var_T, T) orelse
  1080              type_instance ctxt (T, var_T) then
  1081             ary
  1082           else
  1083             iter (ary + 1) (range_type T)
  1084       in iter 0 const_T end
  1085     fun add_var_or_bound_var T (accum as ((bool_vars, fun_var_Ts), sym_tab)) =
  1086       if explicit_apply = NONE andalso
  1087          (can dest_funT T orelse T = @{typ bool}) then
  1088         let
  1089           val bool_vars' = bool_vars orelse body_type T = @{typ bool}
  1090           fun repair_min_arity {pred_sym, min_ary, max_ary, types} =
  1091             {pred_sym = pred_sym andalso not bool_vars',
  1092              min_ary = fold (fn T' => consider_var_arity T' T) types min_ary,
  1093              max_ary = max_ary, types = types}
  1094           val fun_var_Ts' =
  1095             fun_var_Ts |> can dest_funT T ? insert_type ctxt I T
  1096         in
  1097           if bool_vars' = bool_vars andalso
  1098              pointer_eq (fun_var_Ts', fun_var_Ts) then
  1099             accum
  1100           else
  1101             ((bool_vars', fun_var_Ts'), Symtab.map (K repair_min_arity) sym_tab)
  1102         end
  1103       else
  1104         accum
  1105     fun add top_level tm (accum as ((bool_vars, fun_var_Ts), sym_tab)) =
  1106       let val (head, args) = strip_iterm_comb tm in
  1107         (case head of
  1108            IConst ((s, _), T, _) =>
  1109            if String.isPrefix bound_var_prefix s then
  1110              add_var_or_bound_var T accum
  1111            else
  1112              let val ary = length args in
  1113                ((bool_vars, fun_var_Ts),
  1114                 case Symtab.lookup sym_tab s of
  1115                   SOME {pred_sym, min_ary, max_ary, types} =>
  1116                   let
  1117                     val pred_sym =
  1118                       pred_sym andalso top_level andalso not bool_vars
  1119                     val types' = types |> insert_type ctxt I T
  1120                     val min_ary =
  1121                       if is_some explicit_apply orelse
  1122                          pointer_eq (types', types) then
  1123                         min_ary
  1124                       else
  1125                         fold (consider_var_arity T) fun_var_Ts min_ary
  1126                   in
  1127                     Symtab.update (s, {pred_sym = pred_sym,
  1128                                        min_ary = Int.min (ary, min_ary),
  1129                                        max_ary = Int.max (ary, max_ary),
  1130                                        types = types'})
  1131                                   sym_tab
  1132                   end
  1133                 | NONE =>
  1134                   let
  1135                     val pred_sym = top_level andalso not bool_vars
  1136                     val min_ary =
  1137                       case explicit_apply of
  1138                         SOME true => 0
  1139                       | SOME false => ary
  1140                       | NONE => fold (consider_var_arity T) fun_var_Ts ary
  1141                   in
  1142                     Symtab.update_new (s, {pred_sym = pred_sym,
  1143                                            min_ary = min_ary, max_ary = ary,
  1144                                            types = [T]})
  1145                                       sym_tab
  1146                   end)
  1147              end
  1148          | IVar (_, T) => add_var_or_bound_var T accum
  1149          | IAbs ((_, T), tm) => accum |> add_var_or_bound_var T |> add false tm
  1150          | _ => accum)
  1151         |> fold (add false) args
  1152       end
  1153   in add true end
  1154 fun add_fact_syms_to_table ctxt explicit_apply =
  1155   fact_lift (formula_fold NONE
  1156                           (K (add_iterm_syms_to_table ctxt explicit_apply)))
  1157 
  1158 val undefined_name = make_fixed_const @{const_name undefined}
  1159 val tvar_a = TVar (("'a", 0), HOLogic.typeS)
  1160 
  1161 val default_sym_tab_entries : (string * sym_info) list =
  1162   (prefixed_predicator_name,
  1163    {pred_sym = true, min_ary = 1, max_ary = 1, types = []}) ::
  1164   (undefined_name,
  1165    {pred_sym = false, min_ary = 0, max_ary = 0, types = []}) ::
  1166   ([tptp_false, tptp_true]
  1167    |> map (rpair {pred_sym = true, min_ary = 0, max_ary = 0, types = []})) @
  1168   ([tptp_equal, tptp_old_equal]
  1169    |> map (rpair {pred_sym = true, min_ary = 2, max_ary = 2, types = []}))
  1170 
  1171 fun sym_table_for_facts ctxt explicit_apply facts =
  1172   ((false, []), Symtab.empty)
  1173   |> fold (add_fact_syms_to_table ctxt explicit_apply) facts |> snd
  1174   |> fold Symtab.update default_sym_tab_entries
  1175 
  1176 fun min_arity_of sym_tab s =
  1177   case Symtab.lookup sym_tab s of
  1178     SOME ({min_ary, ...} : sym_info) => min_ary
  1179   | NONE =>
  1180     case strip_prefix_and_unascii const_prefix s of
  1181       SOME s =>
  1182       let val s = s |> unmangled_const_name |> invert_const in
  1183         if s = predicator_name then 1
  1184         else if s = app_op_name then 2
  1185         else if s = type_pred_name then 1
  1186         else 0
  1187       end
  1188     | NONE => 0
  1189 
  1190 (* True if the constant ever appears outside of the top-level position in
  1191    literals, or if it appears with different arities (e.g., because of different
  1192    type instantiations). If false, the constant always receives all of its
  1193    arguments and is used as a predicate. *)
  1194 fun is_pred_sym sym_tab s =
  1195   case Symtab.lookup sym_tab s of
  1196     SOME ({pred_sym, min_ary, max_ary, ...} : sym_info) =>
  1197     pred_sym andalso min_ary = max_ary
  1198   | NONE => false
  1199 
  1200 val predicator_combconst =
  1201   IConst (`make_fixed_const predicator_name, @{typ "bool => bool"}, [])
  1202 fun predicator tm = IApp (predicator_combconst, tm)
  1203 
  1204 fun introduce_predicators_in_iterm sym_tab tm =
  1205   case strip_iterm_comb tm of
  1206     (IConst ((s, _), _, _), _) =>
  1207     if is_pred_sym sym_tab s then tm else predicator tm
  1208   | _ => predicator tm
  1209 
  1210 fun list_app head args = fold (curry (IApp o swap)) args head
  1211 
  1212 val app_op = `make_fixed_const app_op_name
  1213 
  1214 fun explicit_app arg head =
  1215   let
  1216     val head_T = ityp_of head
  1217     val (arg_T, res_T) = dest_funT head_T
  1218     val explicit_app = IConst (app_op, head_T --> head_T, [arg_T, res_T])
  1219   in list_app explicit_app [head, arg] end
  1220 fun list_explicit_app head args = fold explicit_app args head
  1221 
  1222 fun introduce_explicit_apps_in_iterm sym_tab =
  1223   let
  1224     fun aux tm =
  1225       case strip_iterm_comb tm of
  1226         (head as IConst ((s, _), _, _), args) =>
  1227         args |> map aux
  1228              |> chop (min_arity_of sym_tab s)
  1229              |>> list_app head
  1230              |-> list_explicit_app
  1231       | (head, args) => list_explicit_app head (map aux args)
  1232   in aux end
  1233 
  1234 fun chop_fun 0 T = ([], T)
  1235   | chop_fun n (Type (@{type_name fun}, [dom_T, ran_T])) =
  1236     chop_fun (n - 1) ran_T |>> cons dom_T
  1237   | chop_fun _ _ = raise Fail "unexpected non-function"
  1238 
  1239 fun filter_type_args _ _ _ [] = []
  1240   | filter_type_args thy s arity T_args =
  1241     let
  1242       (* will throw "TYPE" for pseudo-constants *)
  1243       val U = if s = app_op_name then
  1244                 @{typ "('a => 'b) => 'a => 'b"} |> Logic.varifyT_global
  1245               else
  1246                 s |> Sign.the_const_type thy
  1247     in
  1248       case Term.add_tvarsT (U |> chop_fun arity |> snd) [] of
  1249         [] => []
  1250       | res_U_vars =>
  1251         let val U_args = (s, U) |> Sign.const_typargs thy in
  1252           U_args ~~ T_args
  1253           |> map (fn (U, T) =>
  1254                      if member (op =) res_U_vars (dest_TVar U) then T
  1255                      else dummyT)
  1256         end
  1257     end
  1258     handle TYPE _ => T_args
  1259 
  1260 fun enforce_type_arg_policy_in_iterm ctxt format type_enc =
  1261   let
  1262     val thy = Proof_Context.theory_of ctxt
  1263     fun aux arity (IApp (tm1, tm2)) = IApp (aux (arity + 1) tm1, aux 0 tm2)
  1264       | aux arity (IConst (name as (s, _), T, T_args)) =
  1265         (case strip_prefix_and_unascii const_prefix s of
  1266            NONE =>
  1267            (name, if level_of_type_enc type_enc = No_Types then [] else T_args)
  1268          | SOME s'' =>
  1269            let
  1270              val s'' = invert_const s''
  1271              fun filtered_T_args false = T_args
  1272                | filtered_T_args true = filter_type_args thy s'' arity T_args
  1273            in
  1274              case type_arg_policy type_enc s'' of
  1275                Explicit_Type_Args drop_args =>
  1276                (name, filtered_T_args drop_args)
  1277              | Mangled_Type_Args drop_args =>
  1278                (mangled_const_name format type_enc (filtered_T_args drop_args)
  1279                                    name, [])
  1280              | No_Type_Args => (name, [])
  1281            end)
  1282         |> (fn (name, T_args) => IConst (name, T, T_args))
  1283       | aux _ (IAbs (bound, tm)) = IAbs (bound, aux 0 tm)
  1284       | aux _ tm = tm
  1285   in aux 0 end
  1286 
  1287 fun repair_iterm ctxt format type_enc sym_tab =
  1288   not (is_type_enc_higher_order type_enc)
  1289   ? (introduce_explicit_apps_in_iterm sym_tab
  1290      #> introduce_predicators_in_iterm sym_tab)
  1291   #> enforce_type_arg_policy_in_iterm ctxt format type_enc
  1292 fun repair_fact ctxt format type_enc sym_tab =
  1293   update_iformula (formula_map (repair_iterm ctxt format type_enc sym_tab))
  1294 
  1295 (** Helper facts **)
  1296 
  1297 (* The Boolean indicates that a fairly sound type encoding is needed. *)
  1298 val helper_table =
  1299   [(("COMBI", false), @{thms Meson.COMBI_def}),
  1300    (("COMBK", false), @{thms Meson.COMBK_def}),
  1301    (("COMBB", false), @{thms Meson.COMBB_def}),
  1302    (("COMBC", false), @{thms Meson.COMBC_def}),
  1303    (("COMBS", false), @{thms Meson.COMBS_def}),
  1304    (("fFalse", false), [@{lemma "~ fFalse" by (unfold fFalse_def) fast}]),
  1305    (("fFalse", true), @{thms True_or_False}),
  1306    (("fTrue", false), [@{lemma "fTrue" by (unfold fTrue_def) fast}]),
  1307    (("fTrue", true), @{thms True_or_False}),
  1308    (("fNot", false),
  1309     @{thms fNot_def [THEN Meson.iff_to_disjD, THEN conjunct1]
  1310            fNot_def [THEN Meson.iff_to_disjD, THEN conjunct2]}),
  1311    (("fconj", false),
  1312     @{lemma "~ P | ~ Q | fconj P Q" "~ fconj P Q | P" "~ fconj P Q | Q"
  1313         by (unfold fconj_def) fast+}),
  1314    (("fdisj", false),
  1315     @{lemma "~ P | fdisj P Q" "~ Q | fdisj P Q" "~ fdisj P Q | P | Q"
  1316         by (unfold fdisj_def) fast+}),
  1317    (("fimplies", false),
  1318     @{lemma "P | fimplies P Q" "~ Q | fimplies P Q" "~ fimplies P Q | ~ P | Q"
  1319         by (unfold fimplies_def) fast+}),
  1320    (("fequal", true),
  1321     (* This is a lie: Higher-order equality doesn't need a sound type encoding.
  1322        However, this is done so for backward compatibility: Including the
  1323        equality helpers by default in Metis breaks a few existing proofs. *)
  1324     @{thms fequal_def [THEN Meson.iff_to_disjD, THEN conjunct1]
  1325            fequal_def [THEN Meson.iff_to_disjD, THEN conjunct2]}),
  1326    (("fAll", false), []), (*TODO: add helpers*)
  1327    (("fEx", false), []), (*TODO: add helpers*)
  1328    (("If", true), @{thms if_True if_False True_or_False})]
  1329   |> map (apsnd (map zero_var_indexes))
  1330 
  1331 val type_tag = `make_fixed_const type_tag_name
  1332 
  1333 fun type_tag_idempotence_fact () =
  1334   let
  1335     fun var s = ATerm (`I s, [])
  1336     fun tag tm = ATerm (type_tag, [var "T", tm])
  1337     val tagged_a = tag (var "A")
  1338   in
  1339     Formula (type_tag_idempotence_helper_name, Axiom,
  1340              AAtom (ATerm (`I tptp_equal, [tag tagged_a, tagged_a]))
  1341              |> close_formula_universally, isabelle_info simpN, NONE)
  1342   end
  1343 
  1344 fun should_specialize_helper type_enc t =
  1345   polymorphism_of_type_enc type_enc = Mangled_Monomorphic andalso
  1346   level_of_type_enc type_enc <> No_Types andalso
  1347   not (null (Term.hidden_polymorphism t))
  1348 
  1349 fun helper_facts_for_sym ctxt format type_enc (s, {types, ...} : sym_info) =
  1350   case strip_prefix_and_unascii const_prefix s of
  1351     SOME mangled_s =>
  1352     let
  1353       val thy = Proof_Context.theory_of ctxt
  1354       val unmangled_s = mangled_s |> unmangled_const_name
  1355       fun dub needs_fairly_sound j k =
  1356         (unmangled_s ^ "_" ^ string_of_int j ^ "_" ^ string_of_int k ^
  1357          (if mangled_s = unmangled_s then "" else "_" ^ ascii_of mangled_s) ^
  1358          (if needs_fairly_sound then typed_helper_suffix
  1359           else untyped_helper_suffix),
  1360          Helper)
  1361       fun dub_and_inst needs_fairly_sound (th, j) =
  1362         let val t = prop_of th in
  1363           if should_specialize_helper type_enc t then
  1364             map (fn T => specialize_type thy (invert_const unmangled_s, T) t)
  1365                 types
  1366           else
  1367             [t]
  1368         end
  1369         |> map (fn (k, t) => (dub needs_fairly_sound j k, t)) o tag_list 1
  1370       val make_facts = map_filter (make_fact ctxt format type_enc false)
  1371       val fairly_sound = is_type_enc_fairly_sound type_enc
  1372     in
  1373       helper_table
  1374       |> maps (fn ((helper_s, needs_fairly_sound), ths) =>
  1375                   if helper_s <> unmangled_s orelse
  1376                      (needs_fairly_sound andalso not fairly_sound) then
  1377                     []
  1378                   else
  1379                     ths ~~ (1 upto length ths)
  1380                     |> maps (dub_and_inst needs_fairly_sound)
  1381                     |> make_facts)
  1382     end
  1383   | NONE => []
  1384 fun helper_facts_for_sym_table ctxt format type_enc sym_tab =
  1385   Symtab.fold_rev (append o helper_facts_for_sym ctxt format type_enc) sym_tab
  1386                   []
  1387 
  1388 (***************************************************************)
  1389 (* Type Classes Present in the Axiom or Conjecture Clauses     *)
  1390 (***************************************************************)
  1391 
  1392 fun set_insert (x, s) = Symtab.update (x, ()) s
  1393 
  1394 fun add_classes (sorts, cset) = List.foldl set_insert cset (flat sorts)
  1395 
  1396 (* Remove this trivial type class (FIXME: similar code elsewhere) *)
  1397 fun delete_type cset = Symtab.delete_safe (the_single @{sort HOL.type}) cset
  1398 
  1399 fun classes_of_terms get_Ts =
  1400   map (map snd o get_Ts)
  1401   #> List.foldl add_classes Symtab.empty
  1402   #> delete_type #> Symtab.keys
  1403 
  1404 val tfree_classes_of_terms = classes_of_terms OldTerm.term_tfrees
  1405 val tvar_classes_of_terms = classes_of_terms OldTerm.term_tvars
  1406 
  1407 fun fold_type_constrs f (Type (s, Ts)) x =
  1408     fold (fold_type_constrs f) Ts (f (s, x))
  1409   | fold_type_constrs _ _ x = x
  1410 
  1411 (* Type constructors used to instantiate overloaded constants are the only ones
  1412    needed. *)
  1413 fun add_type_constrs_in_term thy =
  1414   let
  1415     fun add (Const (@{const_name Meson.skolem}, _) $ _) = I
  1416       | add (t $ u) = add t #> add u
  1417       | add (Const (x as (s, _))) =
  1418         if String.isPrefix skolem_const_prefix s then I
  1419         else x |> Sign.const_typargs thy |> fold (fold_type_constrs set_insert)
  1420       | add (Free (s, T)) =
  1421         if String.isPrefix polymorphic_free_prefix s then
  1422           T |> fold_type_constrs set_insert
  1423         else
  1424           I
  1425       | add (Abs (_, _, u)) = add u
  1426       | add _ = I
  1427   in add end
  1428 
  1429 fun type_constrs_of_terms thy ts =
  1430   Symtab.keys (fold (add_type_constrs_in_term thy) ts Symtab.empty)
  1431 
  1432 fun translate_formulas ctxt format prem_kind type_enc trans_lambdas preproc
  1433                        hyp_ts concl_t facts =
  1434   let
  1435     val thy = Proof_Context.theory_of ctxt
  1436     val presimp_consts = Meson.presimplified_consts ctxt
  1437     val fact_ts = facts |> map snd
  1438     (* Remove existing facts from the conjecture, as this can dramatically
  1439        boost an ATP's performance (for some reason). *)
  1440     val hyp_ts =
  1441       hyp_ts
  1442       |> map (fn t => if member (op aconv) fact_ts t then @{prop True} else t)
  1443     val facts = facts |> map (apsnd (pair Axiom))
  1444     val conjs =
  1445       map (pair prem_kind) hyp_ts @ [(Conjecture, concl_t)]
  1446       |> map2 (pair o rpair Local o string_of_int) (0 upto length hyp_ts)
  1447     val ((conjs, facts), lambdas) =
  1448       if preproc then
  1449         conjs @ facts
  1450         |> map (apsnd (apsnd (presimp_prop ctxt presimp_consts)))
  1451         |> preprocess_abstractions_in_terms trans_lambdas
  1452         |>> chop (length conjs)
  1453         |>> apfst (map (apsnd (apsnd freeze_term)))
  1454       else
  1455         ((conjs, facts), [])
  1456     val conjs = conjs |> make_conjecture ctxt format type_enc
  1457     val (fact_names, facts) =
  1458       facts
  1459       |> map_filter (fn (name, (_, t)) =>
  1460                         make_fact ctxt format type_enc true (name, t)
  1461                         |> Option.map (pair name))
  1462       |> ListPair.unzip
  1463     val lambdas =
  1464       lambdas |> map_filter (make_fact ctxt format type_enc true o apsnd snd)
  1465     val all_ts = concl_t :: hyp_ts @ fact_ts
  1466     val subs = tfree_classes_of_terms all_ts
  1467     val supers = tvar_classes_of_terms all_ts
  1468     val tycons = type_constrs_of_terms thy all_ts
  1469     val (supers, arity_clauses) =
  1470       if level_of_type_enc type_enc = No_Types then ([], [])
  1471       else make_arity_clauses thy tycons supers
  1472     val class_rel_clauses = make_class_rel_clauses thy subs supers
  1473   in
  1474     (fact_names |> map single,
  1475      (conjs, facts @ lambdas, class_rel_clauses, arity_clauses))
  1476   end
  1477 
  1478 fun fo_literal_from_type_literal (TyLitVar (class, name)) =
  1479     (true, ATerm (class, [ATerm (name, [])]))
  1480   | fo_literal_from_type_literal (TyLitFree (class, name)) =
  1481     (true, ATerm (class, [ATerm (name, [])]))
  1482 
  1483 fun formula_from_fo_literal (pos, t) = AAtom t |> not pos ? mk_anot
  1484 
  1485 val type_pred = `make_fixed_const type_pred_name
  1486 
  1487 fun type_pred_iterm ctxt format type_enc T tm =
  1488   IApp (IConst (type_pred, T --> @{typ bool}, [T])
  1489         |> enforce_type_arg_policy_in_iterm ctxt format type_enc, tm)
  1490 
  1491 fun is_var_positively_naked_in_term _ (SOME false) _ accum = accum
  1492   | is_var_positively_naked_in_term name _ (ATerm ((s, _), tms)) accum =
  1493     accum orelse (is_tptp_equal s andalso member (op =) tms (ATerm (name, [])))
  1494   | is_var_positively_naked_in_term _ _ _ _ = true
  1495 fun should_predicate_on_var_in_formula pos phi (SOME true) name =
  1496     formula_fold pos (is_var_positively_naked_in_term name) phi false
  1497   | should_predicate_on_var_in_formula _ _ _ _ = true
  1498 
  1499 fun mk_aterm format type_enc name T_args args =
  1500   ATerm (name, map_filter (ho_term_for_type_arg format type_enc) T_args @ args)
  1501 
  1502 fun tag_with_type ctxt format nonmono_Ts type_enc pos T tm =
  1503   IConst (type_tag, T --> T, [T])
  1504   |> enforce_type_arg_policy_in_iterm ctxt format type_enc
  1505   |> ho_term_from_iterm ctxt format nonmono_Ts type_enc (Top_Level pos)
  1506   |> (fn ATerm (s, tms) => ATerm (s, tms @ [tm])
  1507        | _ => raise Fail "unexpected lambda-abstraction")
  1508 and ho_term_from_iterm ctxt format nonmono_Ts type_enc =
  1509   let
  1510     fun aux site u =
  1511       let
  1512         val (head, args) = strip_iterm_comb u
  1513         val pos =
  1514           case site of
  1515             Top_Level pos => pos
  1516           | Eq_Arg pos => pos
  1517           | Elsewhere => NONE
  1518         val t =
  1519           case head of
  1520             IConst (name as (s, _), _, T_args) =>
  1521             let
  1522               val arg_site = if is_tptp_equal s then Eq_Arg pos else Elsewhere
  1523             in
  1524               mk_aterm format type_enc name T_args (map (aux arg_site) args)
  1525             end
  1526           | IVar (name, _) =>
  1527             mk_aterm format type_enc name [] (map (aux Elsewhere) args)
  1528           | IAbs ((name, T), tm) =>
  1529             AAbs ((name, ho_type_from_typ format type_enc true 0 T),
  1530                   aux Elsewhere tm)
  1531           | IApp _ => raise Fail "impossible \"IApp\""
  1532         val T = ityp_of u
  1533       in
  1534         t |> (if should_tag_with_type ctxt nonmono_Ts type_enc site u T then
  1535                 tag_with_type ctxt format nonmono_Ts type_enc pos T
  1536               else
  1537                 I)
  1538       end
  1539   in aux end
  1540 and formula_from_iformula ctxt format nonmono_Ts type_enc
  1541                           should_predicate_on_var =
  1542   let
  1543     val do_term = ho_term_from_iterm ctxt format nonmono_Ts type_enc o Top_Level
  1544     val do_bound_type =
  1545       case type_enc of
  1546         Simple_Types (_, level) =>
  1547         homogenized_type ctxt nonmono_Ts level 0
  1548         #> ho_type_from_typ format type_enc false 0 #> SOME
  1549       | _ => K NONE
  1550     fun do_out_of_bound_type pos phi universal (name, T) =
  1551       if should_predicate_on_type ctxt nonmono_Ts type_enc
  1552              (fn () => should_predicate_on_var pos phi universal name) T then
  1553         IVar (name, T)
  1554         |> type_pred_iterm ctxt format type_enc T
  1555         |> do_term pos |> AAtom |> SOME
  1556       else
  1557         NONE
  1558     fun do_formula pos (AQuant (q, xs, phi)) =
  1559         let
  1560           val phi = phi |> do_formula pos
  1561           val universal = Option.map (q = AExists ? not) pos
  1562         in
  1563           AQuant (q, xs |> map (apsnd (fn NONE => NONE
  1564                                         | SOME T => do_bound_type T)),
  1565                   (if q = AForall then mk_ahorn else fold_rev (mk_aconn AAnd))
  1566                       (map_filter
  1567                            (fn (_, NONE) => NONE
  1568                              | (s, SOME T) =>
  1569                                do_out_of_bound_type pos phi universal (s, T))
  1570                            xs)
  1571                       phi)
  1572         end
  1573       | do_formula pos (AConn conn) = aconn_map pos do_formula conn
  1574       | do_formula pos (AAtom tm) = AAtom (do_term pos tm)
  1575   in do_formula end
  1576 
  1577 fun bound_tvars type_enc Ts =
  1578   mk_ahorn (map (formula_from_fo_literal o fo_literal_from_type_literal)
  1579                 (type_literals_for_types type_enc add_sorts_on_tvar Ts))
  1580 
  1581 (* Each fact is given a unique fact number to avoid name clashes (e.g., because
  1582    of monomorphization). The TPTP explicitly forbids name clashes, and some of
  1583    the remote provers might care. *)
  1584 fun formula_line_for_fact ctxt format prefix encode freshen pos nonmono_Ts
  1585         type_enc (j, {name, locality, kind, iformula, atomic_types}) =
  1586   (prefix ^ (if freshen then string_of_int j ^ "_" else "") ^ encode name, kind,
  1587    iformula
  1588    |> close_iformula_universally
  1589    |> formula_from_iformula ctxt format nonmono_Ts type_enc
  1590                             should_predicate_on_var_in_formula
  1591                             (if pos then SOME true else NONE)
  1592    |> bound_tvars type_enc atomic_types
  1593    |> close_formula_universally,
  1594    NONE,
  1595    case locality of
  1596      Intro => isabelle_info introN
  1597    | Elim => isabelle_info elimN
  1598    | Simp => isabelle_info simpN
  1599    | _ => NONE)
  1600   |> Formula
  1601 
  1602 fun formula_line_for_class_rel_clause ({name, subclass, superclass, ...}
  1603                                        : class_rel_clause) =
  1604   let val ty_arg = ATerm (`I "T", []) in
  1605     Formula (class_rel_clause_prefix ^ ascii_of name, Axiom,
  1606              AConn (AImplies, [AAtom (ATerm (subclass, [ty_arg])),
  1607                                AAtom (ATerm (superclass, [ty_arg]))])
  1608              |> close_formula_universally, isabelle_info introN, NONE)
  1609   end
  1610 
  1611 fun fo_literal_from_arity_literal (TConsLit (c, t, args)) =
  1612     (true, ATerm (c, [ATerm (t, map (fn arg => ATerm (arg, [])) args)]))
  1613   | fo_literal_from_arity_literal (TVarLit (c, sort)) =
  1614     (false, ATerm (c, [ATerm (sort, [])]))
  1615 
  1616 fun formula_line_for_arity_clause ({name, prem_lits, concl_lits, ...}
  1617                                    : arity_clause) =
  1618   Formula (arity_clause_prefix ^ name, Axiom,
  1619            mk_ahorn (map (formula_from_fo_literal o apfst not
  1620                           o fo_literal_from_arity_literal) prem_lits)
  1621                     (formula_from_fo_literal
  1622                          (fo_literal_from_arity_literal concl_lits))
  1623            |> close_formula_universally, isabelle_info introN, NONE)
  1624 
  1625 fun formula_line_for_conjecture ctxt format nonmono_Ts type_enc
  1626         ({name, kind, iformula, atomic_types, ...} : translated_formula) =
  1627   Formula (conjecture_prefix ^ name, kind,
  1628            formula_from_iformula ctxt format nonmono_Ts type_enc
  1629                should_predicate_on_var_in_formula (SOME false)
  1630                (close_iformula_universally iformula)
  1631            |> bound_tvars type_enc atomic_types
  1632            |> close_formula_universally, NONE, NONE)
  1633 
  1634 fun free_type_literals type_enc ({atomic_types, ...} : translated_formula) =
  1635   atomic_types |> type_literals_for_types type_enc add_sorts_on_tfree
  1636                |> map fo_literal_from_type_literal
  1637 
  1638 fun formula_line_for_free_type j lit =
  1639   Formula (tfree_clause_prefix ^ string_of_int j, Hypothesis,
  1640            formula_from_fo_literal lit, NONE, NONE)
  1641 fun formula_lines_for_free_types type_enc facts =
  1642   let
  1643     val litss = map (free_type_literals type_enc) facts
  1644     val lits = fold (union (op =)) litss []
  1645   in map2 formula_line_for_free_type (0 upto length lits - 1) lits end
  1646 
  1647 (** Symbol declarations **)
  1648 
  1649 fun should_declare_sym type_enc pred_sym s =
  1650   is_tptp_user_symbol s andalso not (String.isPrefix bound_var_prefix s) andalso
  1651   (case type_enc of
  1652      Simple_Types _ => true
  1653    | Tags (_, _, Lightweight) => true
  1654    | _ => not pred_sym)
  1655 
  1656 fun sym_decl_table_for_facts ctxt type_enc repaired_sym_tab (conjs, facts) =
  1657   let
  1658     fun add_iterm_syms in_conj tm =
  1659       let val (head, args) = strip_iterm_comb tm in
  1660         (case head of
  1661            IConst ((s, s'), T, T_args) =>
  1662            let val pred_sym = is_pred_sym repaired_sym_tab s in
  1663              if should_declare_sym type_enc pred_sym s then
  1664                Symtab.map_default (s, [])
  1665                    (insert_type ctxt #3 (s', T_args, T, pred_sym, length args,
  1666                                          in_conj))
  1667              else
  1668                I
  1669            end
  1670          | IAbs (_, tm) => add_iterm_syms in_conj tm
  1671          | _ => I)
  1672         #> fold (add_iterm_syms in_conj) args
  1673       end
  1674     fun add_fact_syms in_conj =
  1675       fact_lift (formula_fold NONE (K (add_iterm_syms in_conj)))
  1676     fun add_formula_var_types (AQuant (_, xs, phi)) =
  1677         fold (fn (_, SOME T) => insert_type ctxt I T | _ => I) xs
  1678         #> add_formula_var_types phi
  1679       | add_formula_var_types (AConn (_, phis)) =
  1680         fold add_formula_var_types phis
  1681       | add_formula_var_types _ = I
  1682     fun var_types () =
  1683       if polymorphism_of_type_enc type_enc = Polymorphic then [tvar_a]
  1684       else fold (fact_lift add_formula_var_types) (conjs @ facts) []
  1685     fun add_undefined_const T =
  1686       Symtab.map_default (undefined_name, [])
  1687           (insert_type ctxt #3 (@{const_name undefined}, [T], T, false, 0,
  1688                                 false))
  1689   in
  1690     Symtab.empty
  1691     |> is_type_enc_fairly_sound type_enc
  1692        ? (fold (add_fact_syms true) conjs
  1693           #> fold (add_fact_syms false) facts
  1694           #> fold add_undefined_const (var_types ()))
  1695   end
  1696 
  1697 (* This inference is described in section 2.3 of Claessen et al.'s "Sorting it
  1698    out with monotonicity" paper presented at CADE 2011. *)
  1699 fun add_iterm_nonmonotonic_types _ _ _ _ (SOME false) _ = I
  1700   | add_iterm_nonmonotonic_types ctxt level sound locality _
  1701         (IApp (IApp (IConst ((s, _), Type (_, [T, _]), _), tm1), tm2)) =
  1702     (is_tptp_equal s andalso exists is_var_or_bound_var [tm1, tm2] andalso
  1703      (case level of
  1704         Noninf_Nonmono_Types =>
  1705         not (is_locality_global locality) orelse
  1706         not (is_type_surely_infinite ctxt sound T)
  1707       | Fin_Nonmono_Types => is_type_surely_finite ctxt false T
  1708       | _ => true)) ? insert_type ctxt I (deep_freeze_type T)
  1709   | add_iterm_nonmonotonic_types _ _ _ _ _ _ = I
  1710 fun add_fact_nonmonotonic_types ctxt level sound
  1711         ({kind, locality, iformula, ...} : translated_formula) =
  1712   formula_fold (SOME (kind <> Conjecture))
  1713                (add_iterm_nonmonotonic_types ctxt level sound locality)
  1714                iformula
  1715 fun nonmonotonic_types_for_facts ctxt type_enc sound facts =
  1716   let val level = level_of_type_enc type_enc in
  1717     if level = Noninf_Nonmono_Types orelse level = Fin_Nonmono_Types then
  1718       [] |> fold (add_fact_nonmonotonic_types ctxt level sound) facts
  1719          (* We must add "bool" in case the helper "True_or_False" is added
  1720             later. In addition, several places in the code rely on the list of
  1721             nonmonotonic types not being empty. *)
  1722          |> insert_type ctxt I @{typ bool}
  1723     else
  1724       []
  1725   end
  1726 
  1727 fun decl_line_for_sym ctxt format nonmono_Ts type_enc s
  1728                       (s', T_args, T, pred_sym, ary, _) =
  1729   let
  1730     val (T_arg_Ts, level) =
  1731       case type_enc of
  1732         Simple_Types (_, level) => ([], level)
  1733       | _ => (replicate (length T_args) homo_infinite_type, No_Types)
  1734   in
  1735     Decl (sym_decl_prefix ^ s, (s, s'),
  1736           (T_arg_Ts ---> (T |> homogenized_type ctxt nonmono_Ts level ary))
  1737           |> ho_type_from_typ format type_enc pred_sym (length T_arg_Ts + ary))
  1738   end
  1739 
  1740 fun formula_line_for_preds_sym_decl ctxt format conj_sym_kind nonmono_Ts
  1741         poly_nonmono_Ts type_enc n s j (s', T_args, T, _, ary, in_conj) =
  1742   let
  1743     val (kind, maybe_negate) =
  1744       if in_conj then (conj_sym_kind, conj_sym_kind = Conjecture ? mk_anot)
  1745       else (Axiom, I)
  1746     val (arg_Ts, res_T) = chop_fun ary T
  1747     val num_args = length arg_Ts
  1748     val bound_names =
  1749       1 upto num_args |> map (`I o make_bound_var o string_of_int)
  1750     val bounds =
  1751       bound_names ~~ arg_Ts |> map (fn (name, T) => IConst (name, T, []))
  1752     val sym_needs_arg_types = exists (curry (op =) dummyT) T_args
  1753     fun should_keep_arg_type T =
  1754       sym_needs_arg_types orelse
  1755       not (should_predicate_on_type ctxt nonmono_Ts type_enc (K false) T)
  1756     val bound_Ts =
  1757       arg_Ts |> map (fn T => if should_keep_arg_type T then SOME T else NONE)
  1758   in
  1759     Formula (preds_sym_formula_prefix ^ s ^
  1760              (if n > 1 then "_" ^ string_of_int j else ""), kind,
  1761              IConst ((s, s'), T, T_args)
  1762              |> fold (curry (IApp o swap)) bounds
  1763              |> type_pred_iterm ctxt format type_enc res_T
  1764              |> AAtom |> mk_aquant AForall (bound_names ~~ bound_Ts)
  1765              |> formula_from_iformula ctxt format poly_nonmono_Ts type_enc
  1766                                       (K (K (K (K true)))) (SOME true)
  1767              |> n > 1 ? bound_tvars type_enc (atyps_of T)
  1768              |> close_formula_universally
  1769              |> maybe_negate,
  1770              isabelle_info introN, NONE)
  1771   end
  1772 
  1773 fun formula_lines_for_lightweight_tags_sym_decl ctxt format conj_sym_kind
  1774         poly_nonmono_Ts type_enc n s
  1775         (j, (s', T_args, T, pred_sym, ary, in_conj)) =
  1776   let
  1777     val ident_base =
  1778       lightweight_tags_sym_formula_prefix ^ s ^
  1779       (if n > 1 then "_" ^ string_of_int j else "")
  1780     val (kind, maybe_negate) =
  1781       if in_conj then (conj_sym_kind, conj_sym_kind = Conjecture ? mk_anot)
  1782       else (Axiom, I)
  1783     val (arg_Ts, res_T) = chop_fun ary T
  1784     val bound_names =
  1785       1 upto length arg_Ts |> map (`I o make_bound_var o string_of_int)
  1786     val bounds = bound_names |> map (fn name => ATerm (name, []))
  1787     val cst = mk_aterm format type_enc (s, s') T_args
  1788     val atomic_Ts = atyps_of T
  1789     fun eq tms =
  1790       (if pred_sym then AConn (AIff, map AAtom tms)
  1791        else AAtom (ATerm (`I tptp_equal, tms)))
  1792       |> bound_tvars type_enc atomic_Ts
  1793       |> close_formula_universally
  1794       |> maybe_negate
  1795     (* See also "should_tag_with_type". *)
  1796     fun should_encode T =
  1797       should_encode_type ctxt poly_nonmono_Ts All_Types T orelse
  1798       (case type_enc of
  1799          Tags (Polymorphic, level, Lightweight) =>
  1800          level <> All_Types andalso Monomorph.typ_has_tvars T
  1801        | _ => false)
  1802     val tag_with = tag_with_type ctxt format poly_nonmono_Ts type_enc NONE
  1803     val add_formula_for_res =
  1804       if should_encode res_T then
  1805         cons (Formula (ident_base ^ "_res", kind,
  1806                        eq [tag_with res_T (cst bounds), cst bounds],
  1807                        isabelle_info simpN, NONE))
  1808       else
  1809         I
  1810     fun add_formula_for_arg k =
  1811       let val arg_T = nth arg_Ts k in
  1812         if should_encode arg_T then
  1813           case chop k bounds of
  1814             (bounds1, bound :: bounds2) =>
  1815             cons (Formula (ident_base ^ "_arg" ^ string_of_int (k + 1), kind,
  1816                            eq [cst (bounds1 @ tag_with arg_T bound :: bounds2),
  1817                                cst bounds],
  1818                            isabelle_info simpN, NONE))
  1819           | _ => raise Fail "expected nonempty tail"
  1820         else
  1821           I
  1822       end
  1823   in
  1824     [] |> not pred_sym ? add_formula_for_res
  1825        |> fold add_formula_for_arg (ary - 1 downto 0)
  1826   end
  1827 
  1828 fun result_type_of_decl (_, _, T, _, ary, _) = chop_fun ary T |> snd
  1829 
  1830 fun problem_lines_for_sym_decls ctxt format conj_sym_kind nonmono_Ts
  1831                                 poly_nonmono_Ts type_enc (s, decls) =
  1832   case type_enc of
  1833     Simple_Types _ =>
  1834     decls |> map (decl_line_for_sym ctxt format nonmono_Ts type_enc s)
  1835   | Preds _ =>
  1836     let
  1837       val decls =
  1838         case decls of
  1839           decl :: (decls' as _ :: _) =>
  1840           let val T = result_type_of_decl decl in
  1841             if forall (curry (type_instance ctxt o swap) T
  1842                        o result_type_of_decl) decls' then
  1843               [decl]
  1844             else
  1845               decls
  1846           end
  1847         | _ => decls
  1848       val n = length decls
  1849       val decls =
  1850         decls |> filter (should_predicate_on_type ctxt poly_nonmono_Ts type_enc
  1851                                                   (K true)
  1852                          o result_type_of_decl)
  1853     in
  1854       (0 upto length decls - 1, decls)
  1855       |-> map2 (formula_line_for_preds_sym_decl ctxt format conj_sym_kind
  1856                    nonmono_Ts poly_nonmono_Ts type_enc n s)
  1857     end
  1858   | Tags (_, _, heaviness) =>
  1859     (case heaviness of
  1860        Heavyweight => []
  1861      | Lightweight =>
  1862        let val n = length decls in
  1863          (0 upto n - 1 ~~ decls)
  1864          |> maps (formula_lines_for_lightweight_tags_sym_decl ctxt format
  1865                       conj_sym_kind poly_nonmono_Ts type_enc n s)
  1866        end)
  1867 
  1868 fun problem_lines_for_sym_decl_table ctxt format conj_sym_kind nonmono_Ts
  1869                                      poly_nonmono_Ts type_enc sym_decl_tab =
  1870   sym_decl_tab
  1871   |> Symtab.dest
  1872   |> sort_wrt fst
  1873   |> rpair []
  1874   |-> fold_rev (append o problem_lines_for_sym_decls ctxt format conj_sym_kind
  1875                              nonmono_Ts poly_nonmono_Ts type_enc)
  1876 
  1877 fun needs_type_tag_idempotence (Tags (poly, level, heaviness)) =
  1878     poly <> Mangled_Monomorphic andalso
  1879     ((level = All_Types andalso heaviness = Lightweight) orelse
  1880      level = Noninf_Nonmono_Types orelse level = Fin_Nonmono_Types)
  1881   | needs_type_tag_idempotence _ = false
  1882 
  1883 fun offset_of_heading_in_problem _ [] j = j
  1884   | offset_of_heading_in_problem needle ((heading, lines) :: problem) j =
  1885     if heading = needle then j
  1886     else offset_of_heading_in_problem needle problem (j + length lines)
  1887 
  1888 val implicit_declsN = "Should-be-implicit typings"
  1889 val explicit_declsN = "Explicit typings"
  1890 val factsN = "Relevant facts"
  1891 val class_relsN = "Class relationships"
  1892 val aritiesN = "Arities"
  1893 val helpersN = "Helper facts"
  1894 val conjsN = "Conjectures"
  1895 val free_typesN = "Type variables"
  1896 
  1897 val explicit_apply = NONE (* for experiments *)
  1898 
  1899 fun prepare_atp_problem ctxt format conj_sym_kind prem_kind type_enc sound
  1900         exporter trans_lambdas readable_names preproc hyp_ts concl_t facts =
  1901   let
  1902     val (format, type_enc) = choose_format [format] type_enc
  1903     val (fact_names, (conjs, facts, class_rel_clauses, arity_clauses)) =
  1904       translate_formulas ctxt format prem_kind type_enc trans_lambdas preproc
  1905                          hyp_ts concl_t facts
  1906     val sym_tab = conjs @ facts |> sym_table_for_facts ctxt explicit_apply
  1907     val nonmono_Ts =
  1908       conjs @ facts |> nonmonotonic_types_for_facts ctxt type_enc sound
  1909     val repair = repair_fact ctxt format type_enc sym_tab
  1910     val (conjs, facts) = (conjs, facts) |> pairself (map repair)
  1911     val repaired_sym_tab =
  1912       conjs @ facts |> sym_table_for_facts ctxt (SOME false)
  1913     val helpers =
  1914       repaired_sym_tab |> helper_facts_for_sym_table ctxt format type_enc
  1915                        |> map repair
  1916     val poly_nonmono_Ts =
  1917       if null nonmono_Ts orelse nonmono_Ts = [@{typ bool}] orelse
  1918          polymorphism_of_type_enc type_enc <> Polymorphic then
  1919         nonmono_Ts
  1920       else
  1921         [tvar_a]
  1922     val sym_decl_lines =
  1923       (conjs, helpers @ facts)
  1924       |> sym_decl_table_for_facts ctxt type_enc repaired_sym_tab
  1925       |> problem_lines_for_sym_decl_table ctxt format conj_sym_kind nonmono_Ts
  1926                                                poly_nonmono_Ts type_enc
  1927     val helper_lines =
  1928       0 upto length helpers - 1 ~~ helpers
  1929       |> map (formula_line_for_fact ctxt format helper_prefix I false true
  1930                                     poly_nonmono_Ts type_enc)
  1931       |> (if needs_type_tag_idempotence type_enc then
  1932             cons (type_tag_idempotence_fact ())
  1933           else
  1934             I)
  1935     (* Reordering these might confuse the proof reconstruction code or the SPASS
  1936        FLOTTER hack. *)
  1937     val problem =
  1938       [(explicit_declsN, sym_decl_lines),
  1939        (factsN,
  1940         map (formula_line_for_fact ctxt format fact_prefix ascii_of
  1941                                    (not exporter) (not exporter) nonmono_Ts
  1942                                    type_enc)
  1943             (0 upto length facts - 1 ~~ facts)),
  1944        (class_relsN, map formula_line_for_class_rel_clause class_rel_clauses),
  1945        (aritiesN, map formula_line_for_arity_clause arity_clauses),
  1946        (helpersN, helper_lines),
  1947        (conjsN,
  1948         map (formula_line_for_conjecture ctxt format nonmono_Ts type_enc)
  1949             conjs),
  1950        (free_typesN, formula_lines_for_free_types type_enc (facts @ conjs))]
  1951     val problem =
  1952       problem
  1953       |> (case format of
  1954             CNF => ensure_cnf_problem
  1955           | CNF_UEQ => filter_cnf_ueq_problem
  1956           | _ => I)
  1957       |> (if is_format_typed format then
  1958             declare_undeclared_syms_in_atp_problem type_decl_prefix
  1959                                                    implicit_declsN
  1960           else
  1961             I)
  1962     val (problem, pool) = problem |> nice_atp_problem readable_names
  1963     val helpers_offset = offset_of_heading_in_problem helpersN problem 0
  1964     val typed_helpers =
  1965       map_filter (fn (j, {name, ...}) =>
  1966                      if String.isSuffix typed_helper_suffix name then SOME j
  1967                      else NONE)
  1968                  ((helpers_offset + 1 upto helpers_offset + length helpers)
  1969                   ~~ helpers)
  1970     fun add_sym_arity (s, {min_ary, ...} : sym_info) =
  1971       if min_ary > 0 then
  1972         case strip_prefix_and_unascii const_prefix s of
  1973           SOME s => Symtab.insert (op =) (s, min_ary)
  1974         | NONE => I
  1975       else
  1976         I
  1977   in
  1978     (problem,
  1979      case pool of SOME the_pool => snd the_pool | NONE => Symtab.empty,
  1980      offset_of_heading_in_problem conjsN problem 0,
  1981      offset_of_heading_in_problem factsN problem 0,
  1982      fact_names |> Vector.fromList,
  1983      typed_helpers,
  1984      Symtab.empty |> Symtab.fold add_sym_arity sym_tab)
  1985   end
  1986 
  1987 (* FUDGE *)
  1988 val conj_weight = 0.0
  1989 val hyp_weight = 0.1
  1990 val fact_min_weight = 0.2
  1991 val fact_max_weight = 1.0
  1992 val type_info_default_weight = 0.8
  1993 
  1994 fun add_term_weights weight (ATerm (s, tms)) =
  1995     is_tptp_user_symbol s ? Symtab.default (s, weight)
  1996     #> fold (add_term_weights weight) tms
  1997   | add_term_weights weight (AAbs (_, tm)) = add_term_weights weight tm
  1998 fun add_problem_line_weights weight (Formula (_, _, phi, _, _)) =
  1999     formula_fold NONE (K (add_term_weights weight)) phi
  2000   | add_problem_line_weights _ _ = I
  2001 
  2002 fun add_conjectures_weights [] = I
  2003   | add_conjectures_weights conjs =
  2004     let val (hyps, conj) = split_last conjs in
  2005       add_problem_line_weights conj_weight conj
  2006       #> fold (add_problem_line_weights hyp_weight) hyps
  2007     end
  2008 
  2009 fun add_facts_weights facts =
  2010   let
  2011     val num_facts = length facts
  2012     fun weight_of j =
  2013       fact_min_weight + (fact_max_weight - fact_min_weight) * Real.fromInt j
  2014                         / Real.fromInt num_facts
  2015   in
  2016     map weight_of (0 upto num_facts - 1) ~~ facts
  2017     |> fold (uncurry add_problem_line_weights)
  2018   end
  2019 
  2020 (* Weights are from 0.0 (most important) to 1.0 (least important). *)
  2021 fun atp_problem_weights problem =
  2022   let val get = these o AList.lookup (op =) problem in
  2023     Symtab.empty
  2024     |> add_conjectures_weights (get free_typesN @ get conjsN)
  2025     |> add_facts_weights (get factsN)
  2026     |> fold (fold (add_problem_line_weights type_info_default_weight) o get)
  2027             [explicit_declsN, class_relsN, aritiesN]
  2028     |> Symtab.dest
  2029     |> sort (prod_ord Real.compare string_ord o pairself swap)
  2030   end
  2031 
  2032 end;