src/Tools/isac/Interpret/solve-step.sml
author wneuper <Walther.Neuper@jku.at>
Fri, 31 Mar 2023 12:07:52 +0200
changeset 60705 b719a0b7c6b5
parent 60675 d841c720d288
child 60733 4097c1317986
permissions -rw-r--r--
//new Pre_Conds.check/_TEST breaks tests, need new signature
     1 (* Title:  Specify/solve-step.sml
     2    Author: Walther Neuper
     3    (c) due to copyright terms
     4 
     5 Code for the solve-phase in analogy to structure Specify_Step for the specify-phase.
     6 *)
     7 
     8 signature SOLVE_STEP =
     9 sig
    10   val check: Tactic.input -> Calc.T -> Applicable.T
    11   val add: Tactic.T -> Istate_Def.T * Proof.context -> Calc.T -> Test_Out.T
    12 
    13   val add_general: Tactic.T -> Istate_Def.T * Proof.context -> Calc.T -> Test_Out.T
    14   val s_add_general: State_Steps.T ->
    15     Ctree.ctree * Pos.pos' list * Pos.pos' -> Ctree.ctree * Pos.pos' list * Pos.pos'
    16   val add_hard:
    17     theory -> Tactic.T -> Pos.pos' -> Ctree.ctree -> Test_Out.T
    18 
    19   val get_ruleset: 'a -> Pos.pos' -> Ctree.ctree ->
    20     string * ThyC.id * Rewrite_Ord.id * Rule_Def.rule_set * bool
    21   val get_eval: string -> Pos.pos' -> Ctree.ctree -> string * ThyC.id * Eval.ml
    22 
    23 \<^isac_test>\<open>
    24   val rew_info: Rule_Def.rule_set -> string * Rule_Def.rule_set * Eval.ml_from_prog list
    25 \<close>
    26 end
    27 
    28 (**)
    29 structure Solve_Step(**): SOLVE_STEP(**) =
    30 struct
    31 (**)
    32 
    33 (** get data from Calc.T **)
    34 
    35 (* the source is the parent node, either a problem or a Rule_Set (with inter_steps) *)
    36 fun rew_info (Rule_Def.Repeat {asm_rls, rew_ord = (rew_ord, _), calc = ca, ...}) =
    37     (rew_ord, asm_rls, ca)
    38   | rew_info (Rule_Set.Sequence {asm_rls, rew_ord = (rew_ord, _), calc = ca, ...}) =
    39     (rew_ord, asm_rls, ca)
    40   | rew_info (Rule_Set.Rrls {asm_rls, rew_ord = (rew_ord, _), calc = ca, ...}) =
    41     (rew_ord, asm_rls, ca)
    42   | rew_info rls = raise ERROR ("rew_info called with '" ^ Rule_Set.id rls ^ "'");
    43 
    44 fun get_ruleset _ (pos as (p, _)) pt = 
    45   let 
    46     val (pbl, p', rls', ctxt) = LItool.parent_node pt pos
    47   in                                                      
    48     if pbl
    49     then 
    50       let 
    51         val thy' = Ctree.get_obj Ctree.g_domID pt p'
    52         val {rew_ord, asm_rls, ...} = MethodC.from_store ctxt (Ctree.get_obj Ctree.g_metID pt p')              
    53 	    in ("OK", thy', rew_ord, asm_rls, false) end
    54      else 
    55       let
    56         val thy' = Ctree.get_obj Ctree.g_domID pt (Ctree.par_pblobj pt p)
    57 		    val (rew_ord, asm_rls, _) = rew_info rls'
    58 		  in ("OK", thy', rew_ord, asm_rls, false) end
    59   end;
    60 
    61 fun get_eval scrop (pos as (p, _)) pt = 
    62   let
    63     val (pbl, p', rls', ctxt) =  LItool.parent_node pt pos
    64   in
    65     if pbl
    66     then
    67       let
    68         val thy' = Ctree.get_obj Ctree.g_domID pt p'
    69         val {calc = scr_isa_fns, ...} = MethodC.from_store ctxt (Ctree.get_obj Ctree.g_metID pt p')
    70         val opt = assoc (scr_isa_fns, scrop)
    71 	    in
    72 	      case opt of
    73 	        SOME isa_fn => ("OK", thy', isa_fn)
    74 	      | NONE => ("applicable_in Calculate: unknown '" ^ scrop ^ "'", "", ("", Eval.ml_fun_empty))
    75 	    end
    76     else 
    77 		  let
    78 		    val thy' = Ctree.get_obj Ctree.g_domID pt (Ctree.par_pblobj pt p);
    79 		    val (_, _,(*_,*)scr_isa_fns) = rew_info rls'(*rls*)
    80 		  in
    81 		    case assoc (scr_isa_fns, scrop) of
    82 		      SOME isa_fn => ("OK",thy',isa_fn)
    83 		    | NONE => ("applicable_in Calculate: unknown '" ^ scrop ^ "'", "", ("", Eval.ml_fun_empty))
    84 		  end
    85   end;
    86 
    87 (** get context reliably at switch_specify_solve **)
    88 
    89 fun at_begin_program (is, Pos.Res) = last_elem is = 0
    90   | at_begin_program _ = false;
    91 
    92 (* strange special case at Apply_Method *)
    93 fun get_ctxt_from_PblObj pt (p_, Pos.Res) =
    94     let
    95       val pp = Ctree.par_pblobj pt p_ (*drops the "0"*)
    96       val {ctxt, ...} = Ctree.get_obj I pt pp |> Ctree.rep_specify_data
    97     in ctxt end
    98   | get_ctxt_from_PblObj _ _ = raise ERROR "get_ctxt_from_PblObj called by PrfObj or EmptyPtree";
    99 
   100 fun get_ctxt pt (p_, Pos.Pbl) =
   101     let
   102       val pp = Ctree.par_pblobj pt p_ (*drops the "0"*)
   103       val {ctxt, ...} = Ctree.get_obj I pt pp |> Ctree.rep_specify_data
   104     in ctxt end
   105   | get_ctxt pt pos =
   106     if at_begin_program pos
   107     then get_ctxt_from_PblObj pt pos
   108     else Ctree.get_ctxt pt pos
   109 
   110 
   111 
   112 (** Solve_Step.check **)
   113 
   114 (*
   115   check tactics (input by the user, mostly) for applicability
   116   and determine as much of the result of the tactic as possible initially.
   117 *)
   118 fun check (Tactic.Apply_Method mI) (pt, (p, _)) =
   119       let
   120         val (dI, pI, probl, ctxt) = case Ctree.get_obj I pt p of
   121           Ctree.PblObj {origin = (_, (dI, pI, _), _), probl, ctxt, ...} => (dI, pI, probl, ctxt)
   122         | _ => raise ERROR "Solve_Step.check Apply_Method: uncovered case Ctree.get_obj"
   123         val {where_, ...} = Problem.from_store ctxt pI
   124         val pres = map (Pre_Conds.environment probl |> subst_atomic) where_
   125         val ctxt = if ContextC.is_empty ctxt (*only in case of input by user*)
   126           then dI 
   127             |> Know_Store.get_via_last_thy
   128             |> Proof_Context.init_global
   129             |> ContextC.insert_assumptions pres
   130           else ctxt
   131       in
   132         Applicable.Yes (Tactic.Apply_Method' (mI, NONE, Istate_Def.empty (*filled later*), ctxt))
   133       end
   134   | check (Tactic.Calculate op_) (cs as (pt, pos)) =
   135       let 
   136         val (msg, thy', isa_fn) = get_eval op_ pos pt;
   137         val ctxt = Ctree.get_ctxt pt pos
   138         val f = Calc.current_formula cs;
   139       in
   140         if msg = "OK"
   141         then
   142     	    case Rewrite.calculate_ ctxt isa_fn f of
   143     	      SOME (f', (id, thm))
   144     	        => Applicable.Yes (Tactic.Calculate' (thy', op_, f, (f', (id, thm))))
   145     	    | NONE => Applicable.No ("'calculate " ^ op_ ^ "' not applicable") 
   146         else Applicable.No msg                                              
   147       end
   148   | check (Tactic.Check_Postcond pI) (_, _) = (*TODO: only applicable, if evaluating to True*)
   149       Applicable.Yes (Tactic.Check_Postcond' (pI, TermC.empty))
   150   | check (Tactic.Check_elementwise pred) cs =
   151       let 
   152         val f = Calc.current_formula cs;
   153       in
   154         Applicable.Yes (Tactic.Check_elementwise' (f, pred, (f, [])))
   155       end
   156   | check Tactic.Empty_Tac _ = Applicable.No "Empty_Tac is not applicable"
   157   | check (Tactic.Free_Solve) _ = Applicable.Yes (Tactic.Free_Solve')
   158   | check Tactic.Or_to_List cs =
   159        let 
   160         val f = Calc.current_formula cs;
   161         val ls = Prog_Expr.or2list f;
   162       in
   163         Applicable.Yes (Tactic.Or_to_List' (f, ls))
   164       end
   165   | check (Tactic.Rewrite thm) (cs as (pt, pos)) = 
   166       let
   167         val (msg, _, ro, rls', _) = get_ruleset thm pos pt;
   168         val ctxt = Ctree.get_ctxt pt pos
   169         val thy = ctxt |> Proof_Context.theory_of
   170         val f = Calc.current_formula cs;
   171       in
   172         if msg = "OK" 
   173         then
   174           case Rewrite.rewrite_ ctxt (get_rew_ord ctxt ro) rls' false (snd thm) f of
   175             SOME (f',asm) =>
   176               Applicable.Yes (Tactic.Rewrite' (ThyC.id_of thy, ro, rls', false, thm, f, (f', asm)))
   177           | NONE => Applicable.No ((thm |> fst |> quote) ^ " not applicable") 
   178         else Applicable.No msg
   179       end
   180   | check (Tactic.Rewrite_Inst (subs, thm)) (cs as (pt, pos as (p, _))) = 
   181       let 
   182         val pp = Ctree.par_pblobj pt p;
   183         val ctxt = Ctree.get_loc pt pos |> snd
   184         val thy = Proof_Context.theory_of ctxt
   185         val {rew_ord = ro', asm_rls = asm_rls, ...} = MethodC.from_store ctxt (Ctree.get_obj Ctree.g_metID pt pp);
   186         val f = Calc.current_formula cs;
   187         val subst = Tactic.subst_adapt_to_type ctxt subs; 
   188       in 
   189         case Rewrite.rewrite_inst_ ctxt (get_rew_ord ctxt ro') asm_rls false subst (snd thm) f of
   190           SOME (f', asm) =>
   191             Applicable.Yes (Tactic.Rewrite_Inst' 
   192               (Context.theory_name thy, ro', asm_rls, false, subst, thm, f, (f', asm)))
   193         | NONE => Applicable.No (fst thm ^ " not applicable")
   194       end
   195   | check (Tactic.Rewrite_Set rls) (cs as (pt, pos)) =
   196       let 
   197         val ctxt = Ctree.get_loc pt pos |> snd
   198         val thy' = ctxt |> Proof_Context.theory_of |> Context.theory_name
   199         val f = Calc.current_formula cs;
   200       in
   201         case Rewrite.rewrite_set_ ctxt false (get_rls ctxt rls) f of
   202           SOME (f', asm)
   203             => Applicable.Yes (Tactic.Rewrite_Set' (thy', false, get_rls ctxt rls, f, (f', asm)))
   204           | NONE => Applicable.No (rls ^ " not applicable")
   205       end
   206   | check (Tactic.Rewrite_Set_Inst (subs, rls)) (cs as (pt, pos)) =
   207       let 
   208         val ctxt = Ctree.get_loc pt pos |> snd
   209         val thy' = ctxt |> Proof_Context.theory_of |> Context.theory_name
   210         val f = Calc.current_formula cs;
   211     	  val subst = Tactic.subst_adapt_to_type ctxt subs; 
   212       in 
   213         case Rewrite.rewrite_set_inst_ ctxt false subst (get_rls ctxt rls) f of
   214           SOME (f', asm)
   215             => Applicable.Yes
   216                  (Tactic.Rewrite_Set_Inst' (thy', false, subst, get_rls ctxt rls, f, (f', asm)))
   217         | NONE => Applicable.No (rls ^ " not applicable")
   218       end
   219   | check (Tactic.Subproblem (domID, pblID)) (_, _) = 
   220       Applicable.Yes (Tactic.Subproblem' ((domID, pblID, MethodC.id_empty), [], 
   221 			  TermC.empty, [], ContextC.empty, Auto_Prog.subpbl domID pblID))
   222   | check (Tactic.Substitute sube) (cs as (pt, pos as (p, _))) =
   223       let
   224         val pp = Ctree.par_pblobj pt p
   225         val ctxt = Ctree.get_loc pt pos |> snd
   226         val f = Calc.current_formula cs;
   227 		    val {rew_ord, asm_rls, ...} = MethodC.from_store ctxt (Ctree.get_obj Ctree.g_metID pt pp)
   228 		    val subte = Prog_Tac.Substitute_adapt_to_type' ctxt sube
   229 		    val ro = get_rew_ord ctxt rew_ord
   230 		  in
   231 		    if foldl and_ (true, map TermC.contains_Var subte)
   232 		    then (*1*)
   233 		      let val f' = subst_atomic (Subst.T_from_string_eqs ctxt sube) f
   234 		      in if f = f'
   235 		        then Applicable.No (Subst.string_eqs_to_string sube ^ " not applicable")
   236 		        else Applicable.Yes (Tactic.Substitute' (ro, asm_rls, subte, f, f'))
   237 		      end
   238 		    else (*2*)
   239 		      case Rewrite.rewrite_terms_ ctxt ro asm_rls subte f of
   240 		        SOME (f', _) =>  Applicable.Yes (Tactic.Substitute' (ro, asm_rls, subte, f, f'))
   241 		      | NONE => Applicable.No (Subst.string_eqs_to_string sube ^ " not applicable")
   242 		  end
   243   | check (Tactic.Tac id) (cs as (pt, pos)) =
   244       let 
   245         val ctxt = Ctree.get_ctxt pt pos
   246         val thy = ctxt |> Proof_Context.theory_of
   247         val f = Calc.current_formula cs;
   248         val f' = UnparseC.term ctxt f
   249       in
   250         Applicable.Yes (Tactic.Tac_ (thy, f', id, f'))
   251       end
   252   | check (Tactic.Take str) (pt, pos) =
   253     let
   254       val ctxt = (*Solve_Step.*)get_ctxt pt pos
   255       val t = Prog_Tac.Take_adapt_to_type ctxt str
   256     in Applicable.Yes (Tactic.Take' t) end
   257   | check (Tactic.Begin_Trans) cs =
   258       Applicable.Yes (Tactic.Begin_Trans' (Calc.current_formula cs))
   259   | check (Tactic.End_Trans) (pt, (p, p_)) = (*TODO: check parent branches*)
   260     if p_ = Pos.Res 
   261 	  then Applicable.Yes (Tactic.End_Trans' (Ctree.get_obj Ctree.g_result pt p))
   262     else Applicable.No "Tactic.End_Trans not applicable at the beginning of a transitive sequence"
   263   | check Tactic.End_Proof' _ =
   264       Applicable.Yes Tactic.End_Proof'' (*TODO! check Post_Cond first !*)
   265   | check m (pt, pos) =
   266     let
   267       val ctxt = (*Solve_Step.*)get_ctxt pt pos
   268     in
   269       raise ERROR ("Solve_Step.check called for " ^ Tactic.input_to_string ctxt m)
   270     end;
   271 
   272 
   273 (** Solve_Step.add **)
   274 
   275 fun add (Tactic.Apply_Method' (_, topt, is, _)) (_, ctxt) (pt, pos as (p, _)) = 
   276     (case topt of 
   277       SOME t => 
   278         let val (pt, c) = Ctree.cappend_form pt p (is, ctxt) t
   279         in (pos, c, Test_Out.EmptyMout, pt) end
   280     | NONE => (pos, [], Test_Out.EmptyMout, pt))
   281   | add (Tactic.Take' t) (l as (_, ctxt)) (pt, (p, _)) = (* val (Take' t) = m; *)
   282     let
   283       val p =
   284         let val (ps, p') = split_last p (* no connex to prev.ppobj *)
   285 	      in if p' = 0 then ps @ [1] else p end
   286       val (pt, c) = Ctree.cappend_form pt p l t
   287     in
   288       ((p, Pos.Frm), c, Test_Out.FormKF (UnparseC.term ctxt t), pt)
   289     end
   290   | add (Tactic.Begin_Trans' t) (l as (_, ctxt)) (pt, (p, Pos.Frm)) =
   291     let
   292       val (pt, c) = Ctree.cappend_form pt p l t
   293       val pt = Ctree.update_branch pt p Ctree.TransitiveB (*040312*)
   294       (* replace the old PrfOjb ~~~~~ *)
   295       val p = (Pos.lev_on o Pos.lev_dn (* starts with [...,0] *)) p
   296       val (pt, c') = Ctree.cappend_form pt p l t (*FIXME.0402 same istate ???*)
   297     in
   298       ((p, Pos.Frm), c @ c', Test_Out.FormKF (UnparseC.term ctxt t), pt)
   299     end
   300   | add (Tactic.Begin_Trans' t) l (pt, (p, Pos.Res)) = 
   301     (*append after existing PrfObj    vvvvvvvvvvvvv*)
   302     add (Tactic.Begin_Trans' t) l (pt, (Pos.lev_on p, Pos.Frm))
   303   | add (Tactic.End_Trans' tasm) (l as (_, _(*ctxt*))) (pt, (p, _)) =
   304     let
   305       val p' = Pos.lev_up p
   306       val (pt, c) = Ctree.append_result pt p' l tasm Ctree.Complete
   307     in
   308       ((p', Pos.Res), c, Test_Out.FormKF "DUMMY" (*UnparseC.term ctxt t*), pt)
   309     end
   310   | add (Tactic.Rewrite_Inst' (_, _, _, _, subs', thm', f, (f', asm))) (is, ctxt) (pt, (p, _)) =
   311     let
   312       val (pt, c) = Ctree.cappend_atomic pt p (is, ctxt) f
   313         (Tactic.Rewrite_Inst (Subst.T_to_input ctxt subs', thm')) (f',asm) Ctree.Complete;
   314       val pt = Ctree.update_branch pt p Ctree.TransitiveB
   315     in
   316       ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term ctxt f'), pt)
   317     end
   318  | add (Tactic.Rewrite' (_, _, _, _, thm', f, (f', asm))) (is, ctxt) (pt, (p, _)) =
   319    let
   320      val (pt, c) = Ctree.cappend_atomic pt p (is, ctxt) f (Tactic.Rewrite thm') (f', asm) Ctree.Complete
   321      val pt = Ctree.update_branch pt p Ctree.TransitiveB
   322    in
   323     ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term ctxt f'), pt)
   324    end
   325   | add (Tactic.Rewrite_Set_Inst' (_, _, subs', rls', f, (f', asm))) (is, ctxt) (pt, (p, _)) =
   326     let
   327       val (pt, c) = Ctree.cappend_atomic pt p (is, ctxt) f 
   328         (Tactic.Rewrite_Set_Inst (Subst.T_to_input ctxt subs', Rule_Set.id rls')) (f', asm) Ctree.Complete
   329       val pt = Ctree.update_branch pt p Ctree.TransitiveB
   330     in
   331       ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term ctxt f'), pt)
   332     end
   333   | add (Tactic.Rewrite_Set' (_, _, rls', f, (f', asm))) (is, ctxt) (pt, (p, _)) =
   334     let
   335       val (pt, c) = Ctree.cappend_atomic pt p (is, ctxt) f 
   336         (Tactic.Rewrite_Set (Rule_Set.id rls')) (f', asm) Ctree.Complete
   337       val pt = Ctree.update_branch pt p Ctree.TransitiveB
   338     in
   339       ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term ctxt f'), pt)
   340     end
   341   | add (Tactic.Check_Postcond' (_, scval)) (l as (_, ctxt)) (pt, (p, _)) =
   342       let
   343         val (pt, c) = Ctree.append_result pt p l (scval, []) Ctree.Complete
   344       in
   345         ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term ctxt scval), pt)
   346       end
   347   | add (Tactic.Calculate' (_, op_, f, (f', _))) (l as (_, ctxt)) (pt, (p, _)) =
   348       let
   349         val (pt,c) = Ctree.cappend_atomic pt p l f (Tactic.Calculate op_) (f', []) Ctree.Complete
   350       in
   351         ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term ctxt f'), pt)
   352       end
   353   | add (Tactic.Check_elementwise' (consts, pred, (f', asm))) (l as (_, ctxt)) (pt, (p, _)) =
   354       let
   355         val (pt,c) = Ctree.cappend_atomic pt p l consts (Tactic.Check_elementwise pred) (f', asm) Ctree.Complete
   356       in
   357         ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term ctxt f'), pt)
   358       end
   359   | add (Tactic.Or_to_List' (ors, list)) (l as (_, ctxt)) (pt, (p, _)) =
   360       let
   361         val (pt,c) = Ctree.cappend_atomic pt p l ors Tactic.Or_to_List (list, []) Ctree.Complete
   362       in
   363         ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term ctxt list), pt)
   364       end
   365   | add (Tactic.Substitute' (_, _, subte, t, t')) (l as (_, ctxt)) (pt, (p, _)) =
   366       let
   367         val (pt, c) =
   368           Ctree.cappend_atomic pt p l t
   369             (Tactic.Substitute (Subst.eqs_to_input ctxt subte)) (t',[]) Ctree.Complete
   370         in ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term ctxt t'), pt) 
   371         end
   372   | add (Tactic.Tac_ (_, f, id, f')) l (pt, pos as (p, _)) =
   373       let
   374         val ctxt = Ctree.get_ctxt pt pos
   375         val (pt, c) = Ctree.cappend_atomic pt p l
   376           (ParseC.term_opt ctxt f |> the) (Tactic.Tac id) (ParseC.term_opt ctxt f' |> the, [])
   377             Ctree.Complete
   378       in
   379         ((p,Pos.Res), c, Test_Out.FormKF f', pt)
   380       end
   381   | add (Tactic.Subproblem' ((domID, pblID, metID), oris, hdl, fmz_, ctxt_specify, f))
   382       (l as (_, ctxt)) (pt, (p, _)) =
   383       let
   384   	    val (pt, c) = Ctree.cappend_problem pt p l (fmz_, (domID, pblID, metID))
   385   	      (oris, (domID, pblID, metID), hdl, ctxt_specify)
   386   	    val f = Syntax.string_of_term ctxt f
   387       in
   388         ((p, Pos.Pbl), c, Test_Out.FormKF f, pt)
   389       end
   390   | add m' (_, ctxt) (_, pos) =
   391       raise ERROR ("Solve_Step.add: not impl.for " ^ Tactic.string_of ctxt m' ^ " at " ^ Pos.pos'2str pos)
   392 
   393 (* LI switches between solve-phase and specify-phase *)
   394 fun add_general tac ic cs =
   395   if Tactic.for_specify' tac
   396   then Specify_Step.add tac ic cs
   397   else add tac ic cs
   398 
   399 (* the order of State_Steps is reversed: insert last element first  *)
   400 fun s_add_general [] ptp = ptp
   401   | s_add_general tacis (pt, c, _) = 
   402     let
   403       val (tacis', (_, tac_, (p, is))) = split_last tacis
   404 	    val (p', c', _, pt') = add_general tac_ is (pt, p)
   405     in
   406       s_add_general tacis' (pt', c@c', p')
   407     end
   408 
   409 (* a still undeveloped concept: do a calculation without LI *)
   410 fun add_hard _(*thy*) m' (p, p_) pt =
   411   let  
   412     val p = case p_ of
   413       Pos.Frm => p | Pos.Res => Pos.lev_on p
   414     | _ => raise ERROR ("generate_hard: call by " ^ Pos.pos'2str (p,p_))
   415   in
   416     add_general m' (Istate_Def.empty, ContextC.empty) (pt, (p, p_))
   417   end
   418 
   419 (**)end(**);