doc-src/ZF/ZF.tex
author paulson
Sat, 12 Aug 2000 21:42:51 +0200
changeset 9584 af21f4364c05
parent 8249 3fc32155372c
child 9695 ec7d7f877712
permissions -rw-r--r--
documented the integers and updated section on nat arithmetic
     1 %% $Id$
     2 \chapter{Zermelo-Fraenkel Set Theory}
     3 \index{set theory|(}
     4 
     5 The theory~\thydx{ZF} implements Zermelo-Fraenkel set
     6 theory~\cite{halmos60,suppes72} as an extension of~\texttt{FOL}, classical
     7 first-order logic.  The theory includes a collection of derived natural
     8 deduction rules, for use with Isabelle's classical reasoner.  Much
     9 of it is based on the work of No\"el~\cite{noel}.
    10 
    11 A tremendous amount of set theory has been formally developed, including the
    12 basic properties of relations, functions, ordinals and cardinals.  Significant
    13 results have been proved, such as the Schr\"oder-Bernstein Theorem, the
    14 Wellordering Theorem and a version of Ramsey's Theorem.  \texttt{ZF} provides
    15 both the integers and the natural numbers.  General methods have been
    16 developed for solving recursion equations over monotonic functors; these have
    17 been applied to yield constructions of lists, trees, infinite lists, etc.
    18 
    19 \texttt{ZF} has a flexible package for handling inductive definitions,
    20 such as inference systems, and datatype definitions, such as lists and
    21 trees.  Moreover it handles coinductive definitions, such as
    22 bisimulation relations, and codatatype definitions, such as streams.  It
    23 provides a streamlined syntax for defining primitive recursive functions over
    24 datatypes. 
    25 
    26 Because {\ZF} is an extension of {\FOL}, it provides the same
    27 packages, namely \texttt{hyp_subst_tac}, the simplifier, and the
    28 classical reasoner.  The default simpset and claset are usually
    29 satisfactory.
    30 
    31 Published articles~\cite{paulson-set-I,paulson-set-II} describe \texttt{ZF}
    32 less formally than this chapter.  Isabelle employs a novel treatment of
    33 non-well-founded data structures within the standard {\sc zf} axioms including
    34 the Axiom of Foundation~\cite{paulson-mscs}.
    35 
    36 
    37 \section{Which version of axiomatic set theory?}
    38 The two main axiom systems for set theory are Bernays-G\"odel~({\sc bg})
    39 and Zermelo-Fraenkel~({\sc zf}).  Resolution theorem provers can use {\sc
    40   bg} because it is finite~\cite{boyer86,quaife92}.  {\sc zf} does not
    41 have a finite axiom system because of its Axiom Scheme of Replacement.
    42 This makes it awkward to use with many theorem provers, since instances
    43 of the axiom scheme have to be invoked explicitly.  Since Isabelle has no
    44 difficulty with axiom schemes, we may adopt either axiom system.
    45 
    46 These two theories differ in their treatment of {\bf classes}, which are
    47 collections that are `too big' to be sets.  The class of all sets,~$V$,
    48 cannot be a set without admitting Russell's Paradox.  In {\sc bg}, both
    49 classes and sets are individuals; $x\in V$ expresses that $x$ is a set.  In
    50 {\sc zf}, all variables denote sets; classes are identified with unary
    51 predicates.  The two systems define essentially the same sets and classes,
    52 with similar properties.  In particular, a class cannot belong to another
    53 class (let alone a set).
    54 
    55 Modern set theorists tend to prefer {\sc zf} because they are mainly concerned
    56 with sets, rather than classes.  {\sc bg} requires tiresome proofs that various
    57 collections are sets; for instance, showing $x\in\{x\}$ requires showing that
    58 $x$ is a set.
    59 
    60 
    61 \begin{figure} \small
    62 \begin{center}
    63 \begin{tabular}{rrr} 
    64   \it name      &\it meta-type  & \it description \\ 
    65   \cdx{Let}     & $[\alpha,\alpha\To\beta]\To\beta$ & let binder\\
    66   \cdx{0}       & $i$           & empty set\\
    67   \cdx{cons}    & $[i,i]\To i$  & finite set constructor\\
    68   \cdx{Upair}   & $[i,i]\To i$  & unordered pairing\\
    69   \cdx{Pair}    & $[i,i]\To i$  & ordered pairing\\
    70   \cdx{Inf}     & $i$   & infinite set\\
    71   \cdx{Pow}     & $i\To i$      & powerset\\
    72   \cdx{Union} \cdx{Inter} & $i\To i$    & set union/intersection \\
    73   \cdx{split}   & $[[i,i]\To i, i] \To i$ & generalized projection\\
    74   \cdx{fst} \cdx{snd}   & $i\To i$      & projections\\
    75   \cdx{converse}& $i\To i$      & converse of a relation\\
    76   \cdx{succ}    & $i\To i$      & successor\\
    77   \cdx{Collect} & $[i,i\To o]\To i$     & separation\\
    78   \cdx{Replace} & $[i, [i,i]\To o] \To i$       & replacement\\
    79   \cdx{PrimReplace} & $[i, [i,i]\To o] \To i$   & primitive replacement\\
    80   \cdx{RepFun}  & $[i, i\To i] \To i$   & functional replacement\\
    81   \cdx{Pi} \cdx{Sigma}  & $[i,i\To i]\To i$     & general product/sum\\
    82   \cdx{domain}  & $i\To i$      & domain of a relation\\
    83   \cdx{range}   & $i\To i$      & range of a relation\\
    84   \cdx{field}   & $i\To i$      & field of a relation\\
    85   \cdx{Lambda}  & $[i, i\To i]\To i$    & $\lambda$-abstraction\\
    86   \cdx{restrict}& $[i, i] \To i$        & restriction of a function\\
    87   \cdx{The}     & $[i\To o]\To i$       & definite description\\
    88   \cdx{if}      & $[o,i,i]\To i$        & conditional\\
    89   \cdx{Ball} \cdx{Bex}  & $[i, i\To o]\To o$    & bounded quantifiers
    90 \end{tabular}
    91 \end{center}
    92 \subcaption{Constants}
    93 
    94 \begin{center}
    95 \index{*"`"` symbol}
    96 \index{*"-"`"` symbol}
    97 \index{*"` symbol}\index{function applications!in \ZF}
    98 \index{*"- symbol}
    99 \index{*": symbol}
   100 \index{*"<"= symbol}
   101 \begin{tabular}{rrrr} 
   102   \it symbol  & \it meta-type & \it priority & \it description \\ 
   103   \tt ``        & $[i,i]\To i$  &  Left 90      & image \\
   104   \tt -``       & $[i,i]\To i$  &  Left 90      & inverse image \\
   105   \tt `         & $[i,i]\To i$  &  Left 90      & application \\
   106   \sdx{Int}     & $[i,i]\To i$  &  Left 70      & intersection ($\int$) \\
   107   \sdx{Un}      & $[i,i]\To i$  &  Left 65      & union ($\un$) \\
   108   \tt -         & $[i,i]\To i$  &  Left 65      & set difference ($-$) \\[1ex]
   109   \tt:          & $[i,i]\To o$  &  Left 50      & membership ($\in$) \\
   110   \tt <=        & $[i,i]\To o$  &  Left 50      & subset ($\subseteq$) 
   111 \end{tabular}
   112 \end{center}
   113 \subcaption{Infixes}
   114 \caption{Constants of {\ZF}} \label{zf-constants}
   115 \end{figure} 
   116 
   117 
   118 \section{The syntax of set theory}
   119 The language of set theory, as studied by logicians, has no constants.  The
   120 traditional axioms merely assert the existence of empty sets, unions,
   121 powersets, etc.; this would be intolerable for practical reasoning.  The
   122 Isabelle theory declares constants for primitive sets.  It also extends
   123 \texttt{FOL} with additional syntax for finite sets, ordered pairs,
   124 comprehension, general union/intersection, general sums/products, and
   125 bounded quantifiers.  In most other respects, Isabelle implements precisely
   126 Zermelo-Fraenkel set theory.
   127 
   128 Figure~\ref{zf-constants} lists the constants and infixes of~\ZF, while
   129 Figure~\ref{zf-trans} presents the syntax translations.  Finally,
   130 Figure~\ref{zf-syntax} presents the full grammar for set theory, including
   131 the constructs of \FOL.
   132 
   133 Local abbreviations can be introduced by a \texttt{let} construct whose
   134 syntax appears in Fig.\ts\ref{zf-syntax}.  Internally it is translated into
   135 the constant~\cdx{Let}.  It can be expanded by rewriting with its
   136 definition, \tdx{Let_def}.
   137 
   138 Apart from \texttt{let}, set theory does not use polymorphism.  All terms in
   139 {\ZF} have type~\tydx{i}, which is the type of individuals and has class~{\tt
   140   term}.  The type of first-order formulae, remember, is~\textit{o}.
   141 
   142 Infix operators include binary union and intersection ($A\un B$ and
   143 $A\int B$), set difference ($A-B$), and the subset and membership
   144 relations.  Note that $a$\verb|~:|$b$ is translated to $\neg(a\in b)$.  The
   145 union and intersection operators ($\bigcup A$ and $\bigcap A$) form the
   146 union or intersection of a set of sets; $\bigcup A$ means the same as
   147 $\bigcup@{x\in A}x$.  Of these operators, only $\bigcup A$ is primitive.
   148 
   149 The constant \cdx{Upair} constructs unordered pairs; thus {\tt
   150   Upair($A$,$B$)} denotes the set~$\{A,B\}$ and \texttt{Upair($A$,$A$)}
   151 denotes the singleton~$\{A\}$.  General union is used to define binary
   152 union.  The Isabelle version goes on to define the constant
   153 \cdx{cons}:
   154 \begin{eqnarray*}
   155    A\cup B              & \equiv &       \bigcup(\texttt{Upair}(A,B)) \\
   156    \texttt{cons}(a,B)      & \equiv &        \texttt{Upair}(a,a) \un B
   157 \end{eqnarray*}
   158 The $\{a@1, \ldots\}$ notation abbreviates finite sets constructed in the
   159 obvious manner using~\texttt{cons} and~$\emptyset$ (the empty set):
   160 \begin{eqnarray*}
   161  \{a,b,c\} & \equiv & \texttt{cons}(a,\texttt{cons}(b,\texttt{cons}(c,\emptyset)))
   162 \end{eqnarray*}
   163 
   164 The constant \cdx{Pair} constructs ordered pairs, as in {\tt
   165 Pair($a$,$b$)}.  Ordered pairs may also be written within angle brackets,
   166 as {\tt<$a$,$b$>}.  The $n$-tuple {\tt<$a@1$,\ldots,$a@{n-1}$,$a@n$>}
   167 abbreviates the nest of pairs\par\nobreak
   168 \centerline{\texttt{Pair($a@1$,\ldots,Pair($a@{n-1}$,$a@n$)\ldots).}}
   169 
   170 In {\ZF}, a function is a set of pairs.  A {\ZF} function~$f$ is simply an
   171 individual as far as Isabelle is concerned: its Isabelle type is~$i$, not
   172 say $i\To i$.  The infix operator~{\tt`} denotes the application of a
   173 function set to its argument; we must write~$f{\tt`}x$, not~$f(x)$.  The
   174 syntax for image is~$f{\tt``}A$ and that for inverse image is~$f{\tt-``}A$.
   175 
   176 
   177 \begin{figure} 
   178 \index{lambda abs@$\lambda$-abstractions!in \ZF}
   179 \index{*"-"> symbol}
   180 \index{*"* symbol}
   181 \begin{center} \footnotesize\tt\frenchspacing
   182 \begin{tabular}{rrr} 
   183   \it external          & \it internal  & \it description \\ 
   184   $a$ \ttilde: $b$      & \ttilde($a$ : $b$)    & \rm negated membership\\
   185   \ttlbrace$a@1$, $\ldots$, $a@n$\ttrbrace  &  cons($a@1$,$\ldots$,cons($a@n$,0)) &
   186         \rm finite set \\
   187   <$a@1$, $\ldots$, $a@{n-1}$, $a@n$> & 
   188         Pair($a@1$,\ldots,Pair($a@{n-1}$,$a@n$)\ldots) &
   189         \rm ordered $n$-tuple \\
   190   \ttlbrace$x$:$A . P[x]$\ttrbrace    &  Collect($A$,$\lambda x. P[x]$) &
   191         \rm separation \\
   192   \ttlbrace$y . x$:$A$, $Q[x,y]$\ttrbrace  &  Replace($A$,$\lambda x\,y. Q[x,y]$) &
   193         \rm replacement \\
   194   \ttlbrace$b[x] . x$:$A$\ttrbrace  &  RepFun($A$,$\lambda x. b[x]$) &
   195         \rm functional replacement \\
   196   \sdx{INT} $x$:$A . B[x]$      & Inter(\ttlbrace$B[x] . x$:$A$\ttrbrace) &
   197         \rm general intersection \\
   198   \sdx{UN}  $x$:$A . B[x]$      & Union(\ttlbrace$B[x] . x$:$A$\ttrbrace) &
   199         \rm general union \\
   200   \sdx{PROD} $x$:$A . B[x]$     & Pi($A$,$\lambda x. B[x]$) & 
   201         \rm general product \\
   202   \sdx{SUM}  $x$:$A . B[x]$     & Sigma($A$,$\lambda x. B[x]$) & 
   203         \rm general sum \\
   204   $A$ -> $B$            & Pi($A$,$\lambda x. B$) & 
   205         \rm function space \\
   206   $A$ * $B$             & Sigma($A$,$\lambda x. B$) & 
   207         \rm binary product \\
   208   \sdx{THE}  $x . P[x]$ & The($\lambda x. P[x]$) & 
   209         \rm definite description \\
   210   \sdx{lam}  $x$:$A . b[x]$     & Lambda($A$,$\lambda x. b[x]$) & 
   211         \rm $\lambda$-abstraction\\[1ex]
   212   \sdx{ALL} $x$:$A . P[x]$      & Ball($A$,$\lambda x. P[x]$) & 
   213         \rm bounded $\forall$ \\
   214   \sdx{EX}  $x$:$A . P[x]$      & Bex($A$,$\lambda x. P[x]$) & 
   215         \rm bounded $\exists$
   216 \end{tabular}
   217 \end{center}
   218 \caption{Translations for {\ZF}} \label{zf-trans}
   219 \end{figure} 
   220 
   221 
   222 \begin{figure} 
   223 \index{*let symbol}
   224 \index{*in symbol}
   225 \dquotes
   226 \[\begin{array}{rcl}
   227     term & = & \hbox{expression of type~$i$} \\
   228          & | & "let"~id~"="~term";"\dots";"~id~"="~term~"in"~term \\
   229          & | & "if"~term~"then"~term~"else"~term \\
   230          & | & "{\ttlbrace} " term\; ("," term)^* " {\ttrbrace}" \\
   231          & | & "< "  term\; ("," term)^* " >"  \\
   232          & | & "{\ttlbrace} " id ":" term " . " formula " {\ttrbrace}" \\
   233          & | & "{\ttlbrace} " id " . " id ":" term ", " formula " {\ttrbrace}" \\
   234          & | & "{\ttlbrace} " term " . " id ":" term " {\ttrbrace}" \\
   235          & | & term " `` " term \\
   236          & | & term " -`` " term \\
   237          & | & term " ` " term \\
   238          & | & term " * " term \\
   239          & | & term " Int " term \\
   240          & | & term " Un " term \\
   241          & | & term " - " term \\
   242          & | & term " -> " term \\
   243          & | & "THE~~"  id  " . " formula\\
   244          & | & "lam~~"  id ":" term " . " term \\
   245          & | & "INT~~"  id ":" term " . " term \\
   246          & | & "UN~~~"  id ":" term " . " term \\
   247          & | & "PROD~"  id ":" term " . " term \\
   248          & | & "SUM~~"  id ":" term " . " term \\[2ex]
   249  formula & = & \hbox{expression of type~$o$} \\
   250          & | & term " : " term \\
   251          & | & term " \ttilde: " term \\
   252          & | & term " <= " term \\
   253          & | & term " = " term \\
   254          & | & term " \ttilde= " term \\
   255          & | & "\ttilde\ " formula \\
   256          & | & formula " \& " formula \\
   257          & | & formula " | " formula \\
   258          & | & formula " --> " formula \\
   259          & | & formula " <-> " formula \\
   260          & | & "ALL " id ":" term " . " formula \\
   261          & | & "EX~~" id ":" term " . " formula \\
   262          & | & "ALL~" id~id^* " . " formula \\
   263          & | & "EX~~" id~id^* " . " formula \\
   264          & | & "EX!~" id~id^* " . " formula
   265   \end{array}
   266 \]
   267 \caption{Full grammar for {\ZF}} \label{zf-syntax}
   268 \end{figure} 
   269 
   270 
   271 \section{Binding operators}
   272 The constant \cdx{Collect} constructs sets by the principle of {\bf
   273   separation}.  The syntax for separation is
   274 \hbox{\tt\ttlbrace$x$:$A$.\ $P[x]$\ttrbrace}, where $P[x]$ is a formula
   275 that may contain free occurrences of~$x$.  It abbreviates the set {\tt
   276   Collect($A$,$\lambda x. P[x]$)}, which consists of all $x\in A$ that
   277 satisfy~$P[x]$.  Note that \texttt{Collect} is an unfortunate choice of
   278 name: some set theories adopt a set-formation principle, related to
   279 replacement, called collection.
   280 
   281 The constant \cdx{Replace} constructs sets by the principle of {\bf
   282   replacement}.  The syntax
   283 \hbox{\tt\ttlbrace$y$.\ $x$:$A$,$Q[x,y]$\ttrbrace} denotes the set {\tt
   284   Replace($A$,$\lambda x\,y. Q[x,y]$)}, which consists of all~$y$ such
   285 that there exists $x\in A$ satisfying~$Q[x,y]$.  The Replacement Axiom
   286 has the condition that $Q$ must be single-valued over~$A$: for
   287 all~$x\in A$ there exists at most one $y$ satisfying~$Q[x,y]$.  A
   288 single-valued binary predicate is also called a {\bf class function}.
   289 
   290 The constant \cdx{RepFun} expresses a special case of replacement,
   291 where $Q[x,y]$ has the form $y=b[x]$.  Such a $Q$ is trivially
   292 single-valued, since it is just the graph of the meta-level
   293 function~$\lambda x. b[x]$.  The resulting set consists of all $b[x]$
   294 for~$x\in A$.  This is analogous to the \ML{} functional \texttt{map},
   295 since it applies a function to every element of a set.  The syntax is
   296 \hbox{\tt\ttlbrace$b[x]$.\ $x$:$A$\ttrbrace}, which expands to {\tt
   297   RepFun($A$,$\lambda x. b[x]$)}.
   298 
   299 \index{*INT symbol}\index{*UN symbol} 
   300 General unions and intersections of indexed
   301 families of sets, namely $\bigcup@{x\in A}B[x]$ and $\bigcap@{x\in A}B[x]$,
   302 are written \hbox{\tt UN $x$:$A$.\ $B[x]$} and \hbox{\tt INT $x$:$A$.\ $B[x]$}.
   303 Their meaning is expressed using \texttt{RepFun} as
   304 \[
   305 \bigcup(\{B[x]. x\in A\}) \qquad\hbox{and}\qquad 
   306 \bigcap(\{B[x]. x\in A\}). 
   307 \]
   308 General sums $\sum@{x\in A}B[x]$ and products $\prod@{x\in A}B[x]$ can be
   309 constructed in set theory, where $B[x]$ is a family of sets over~$A$.  They
   310 have as special cases $A\times B$ and $A\to B$, where $B$ is simply a set.
   311 This is similar to the situation in Constructive Type Theory (set theory
   312 has `dependent sets') and calls for similar syntactic conventions.  The
   313 constants~\cdx{Sigma} and~\cdx{Pi} construct general sums and
   314 products.  Instead of \texttt{Sigma($A$,$B$)} and \texttt{Pi($A$,$B$)} we may
   315 write 
   316 \hbox{\tt SUM $x$:$A$.\ $B[x]$} and \hbox{\tt PROD $x$:$A$.\ $B[x]$}.  
   317 \index{*SUM symbol}\index{*PROD symbol}%
   318 The special cases as \hbox{\tt$A$*$B$} and \hbox{\tt$A$->$B$} abbreviate
   319 general sums and products over a constant family.\footnote{Unlike normal
   320 infix operators, {\tt*} and {\tt->} merely define abbreviations; there are
   321 no constants~\texttt{op~*} and~\hbox{\tt op~->}.} Isabelle accepts these
   322 abbreviations in parsing and uses them whenever possible for printing.
   323 
   324 \index{*THE symbol} 
   325 As mentioned above, whenever the axioms assert the existence and uniqueness
   326 of a set, Isabelle's set theory declares a constant for that set.  These
   327 constants can express the {\bf definite description} operator~$\iota
   328 x. P[x]$, which stands for the unique~$a$ satisfying~$P[a]$, if such exists.
   329 Since all terms in {\ZF} denote something, a description is always
   330 meaningful, but we do not know its value unless $P[x]$ defines it uniquely.
   331 Using the constant~\cdx{The}, we may write descriptions as {\tt
   332   The($\lambda x. P[x]$)} or use the syntax \hbox{\tt THE $x$.\ $P[x]$}.
   333 
   334 \index{*lam symbol}
   335 Function sets may be written in $\lambda$-notation; $\lambda x\in A. b[x]$
   336 stands for the set of all pairs $\pair{x,b[x]}$ for $x\in A$.  In order for
   337 this to be a set, the function's domain~$A$ must be given.  Using the
   338 constant~\cdx{Lambda}, we may express function sets as {\tt
   339 Lambda($A$,$\lambda x. b[x]$)} or use the syntax \hbox{\tt lam $x$:$A$.\ $b[x]$}.
   340 
   341 Isabelle's set theory defines two {\bf bounded quantifiers}:
   342 \begin{eqnarray*}
   343    \forall x\in A. P[x] &\hbox{abbreviates}& \forall x. x\in A\imp P[x] \\
   344    \exists x\in A. P[x] &\hbox{abbreviates}& \exists x. x\in A\conj P[x]
   345 \end{eqnarray*}
   346 The constants~\cdx{Ball} and~\cdx{Bex} are defined
   347 accordingly.  Instead of \texttt{Ball($A$,$P$)} and \texttt{Bex($A$,$P$)} we may
   348 write
   349 \hbox{\tt ALL $x$:$A$.\ $P[x]$} and \hbox{\tt EX $x$:$A$.\ $P[x]$}.
   350 
   351 
   352 %%%% ZF.thy
   353 
   354 \begin{figure}
   355 \begin{ttbox}
   356 \tdx{Let_def}            Let(s, f) == f(s)
   357 
   358 \tdx{Ball_def}           Ball(A,P) == ALL x. x:A --> P(x)
   359 \tdx{Bex_def}            Bex(A,P)  == EX x. x:A & P(x)
   360 
   361 \tdx{subset_def}         A <= B  == ALL x:A. x:B
   362 \tdx{extension}          A = B  <->  A <= B & B <= A
   363 
   364 \tdx{Union_iff}          A : Union(C) <-> (EX B:C. A:B)
   365 \tdx{Pow_iff}            A : Pow(B) <-> A <= B
   366 \tdx{foundation}         A=0 | (EX x:A. ALL y:x. ~ y:A)
   367 
   368 \tdx{replacement}        (ALL x:A. ALL y z. P(x,y) & P(x,z) --> y=z) ==>
   369                    b : PrimReplace(A,P) <-> (EX x:A. P(x,b))
   370 \subcaption{The Zermelo-Fraenkel Axioms}
   371 
   372 \tdx{Replace_def}  Replace(A,P) == 
   373                    PrimReplace(A, \%x y. (EX!z. P(x,z)) & P(x,y))
   374 \tdx{RepFun_def}   RepFun(A,f)  == {\ttlbrace}y . x:A, y=f(x)\ttrbrace
   375 \tdx{the_def}      The(P)       == Union({\ttlbrace}y . x:{\ttlbrace}0{\ttrbrace}, P(y){\ttrbrace})
   376 \tdx{if_def}       if(P,a,b)    == THE z. P & z=a | ~P & z=b
   377 \tdx{Collect_def}  Collect(A,P) == {\ttlbrace}y . x:A, x=y & P(x){\ttrbrace}
   378 \tdx{Upair_def}    Upair(a,b)   == 
   379                  {\ttlbrace}y. x:Pow(Pow(0)), (x=0 & y=a) | (x=Pow(0) & y=b){\ttrbrace}
   380 \subcaption{Consequences of replacement}
   381 
   382 \tdx{Inter_def}    Inter(A) == {\ttlbrace}x:Union(A) . ALL y:A. x:y{\ttrbrace}
   383 \tdx{Un_def}       A Un  B  == Union(Upair(A,B))
   384 \tdx{Int_def}      A Int B  == Inter(Upair(A,B))
   385 \tdx{Diff_def}     A - B    == {\ttlbrace}x:A . x~:B{\ttrbrace}
   386 \subcaption{Union, intersection, difference}
   387 \end{ttbox}
   388 \caption{Rules and axioms of {\ZF}} \label{zf-rules}
   389 \end{figure}
   390 
   391 
   392 \begin{figure}
   393 \begin{ttbox}
   394 \tdx{cons_def}     cons(a,A) == Upair(a,a) Un A
   395 \tdx{succ_def}     succ(i) == cons(i,i)
   396 \tdx{infinity}     0:Inf & (ALL y:Inf. succ(y): Inf)
   397 \subcaption{Finite and infinite sets}
   398 
   399 \tdx{Pair_def}       <a,b>      == {\ttlbrace}{\ttlbrace}a,a{\ttrbrace}, {\ttlbrace}a,b{\ttrbrace}{\ttrbrace}
   400 \tdx{split_def}      split(c,p) == THE y. EX a b. p=<a,b> & y=c(a,b)
   401 \tdx{fst_def}        fst(A)     == split(\%x y. x, p)
   402 \tdx{snd_def}        snd(A)     == split(\%x y. y, p)
   403 \tdx{Sigma_def}      Sigma(A,B) == UN x:A. UN y:B(x). {\ttlbrace}<x,y>{\ttrbrace}
   404 \subcaption{Ordered pairs and Cartesian products}
   405 
   406 \tdx{converse_def}   converse(r) == {\ttlbrace}z. w:r, EX x y. w=<x,y> & z=<y,x>{\ttrbrace}
   407 \tdx{domain_def}     domain(r)   == {\ttlbrace}x. w:r, EX y. w=<x,y>{\ttrbrace}
   408 \tdx{range_def}      range(r)    == domain(converse(r))
   409 \tdx{field_def}      field(r)    == domain(r) Un range(r)
   410 \tdx{image_def}      r `` A      == {\ttlbrace}y : range(r) . EX x:A. <x,y> : r{\ttrbrace}
   411 \tdx{vimage_def}     r -`` A     == converse(r)``A
   412 \subcaption{Operations on relations}
   413 
   414 \tdx{lam_def}    Lambda(A,b) == {\ttlbrace}<x,b(x)> . x:A{\ttrbrace}
   415 \tdx{apply_def}  f`a         == THE y. <a,y> : f
   416 \tdx{Pi_def}     Pi(A,B) == {\ttlbrace}f: Pow(Sigma(A,B)). ALL x:A. EX! y. <x,y>: f{\ttrbrace}
   417 \tdx{restrict_def}   restrict(f,A) == lam x:A. f`x
   418 \subcaption{Functions and general product}
   419 \end{ttbox}
   420 \caption{Further definitions of {\ZF}} \label{zf-defs}
   421 \end{figure}
   422 
   423 
   424 
   425 \section{The Zermelo-Fraenkel axioms}
   426 The axioms appear in Fig.\ts \ref{zf-rules}.  They resemble those
   427 presented by Suppes~\cite{suppes72}.  Most of the theory consists of
   428 definitions.  In particular, bounded quantifiers and the subset relation
   429 appear in other axioms.  Object-level quantifiers and implications have
   430 been replaced by meta-level ones wherever possible, to simplify use of the
   431 axioms.  See the file \texttt{ZF/ZF.thy} for details.
   432 
   433 The traditional replacement axiom asserts
   434 \[ y \in \texttt{PrimReplace}(A,P) \bimp (\exists x\in A. P(x,y)) \]
   435 subject to the condition that $P(x,y)$ is single-valued for all~$x\in A$.
   436 The Isabelle theory defines \cdx{Replace} to apply
   437 \cdx{PrimReplace} to the single-valued part of~$P$, namely
   438 \[ (\exists!z. P(x,z)) \conj P(x,y). \]
   439 Thus $y\in \texttt{Replace}(A,P)$ if and only if there is some~$x$ such that
   440 $P(x,-)$ holds uniquely for~$y$.  Because the equivalence is unconditional,
   441 \texttt{Replace} is much easier to use than \texttt{PrimReplace}; it defines the
   442 same set, if $P(x,y)$ is single-valued.  The nice syntax for replacement
   443 expands to \texttt{Replace}.
   444 
   445 Other consequences of replacement include functional replacement
   446 (\cdx{RepFun}) and definite descriptions (\cdx{The}).
   447 Axioms for separation (\cdx{Collect}) and unordered pairs
   448 (\cdx{Upair}) are traditionally assumed, but they actually follow
   449 from replacement~\cite[pages 237--8]{suppes72}.
   450 
   451 The definitions of general intersection, etc., are straightforward.  Note
   452 the definition of \texttt{cons}, which underlies the finite set notation.
   453 The axiom of infinity gives us a set that contains~0 and is closed under
   454 successor (\cdx{succ}).  Although this set is not uniquely defined,
   455 the theory names it (\cdx{Inf}) in order to simplify the
   456 construction of the natural numbers.
   457                                              
   458 Further definitions appear in Fig.\ts\ref{zf-defs}.  Ordered pairs are
   459 defined in the standard way, $\pair{a,b}\equiv\{\{a\},\{a,b\}\}$.  Recall
   460 that \cdx{Sigma}$(A,B)$ generalizes the Cartesian product of two
   461 sets.  It is defined to be the union of all singleton sets
   462 $\{\pair{x,y}\}$, for $x\in A$ and $y\in B(x)$.  This is a typical usage of
   463 general union.
   464 
   465 The projections \cdx{fst} and~\cdx{snd} are defined in terms of the
   466 generalized projection \cdx{split}.  The latter has been borrowed from
   467 Martin-L\"of's Type Theory, and is often easier to use than \cdx{fst}
   468 and~\cdx{snd}.
   469 
   470 Operations on relations include converse, domain, range, and image.  The
   471 set ${\tt Pi}(A,B)$ generalizes the space of functions between two sets.
   472 Note the simple definitions of $\lambda$-abstraction (using
   473 \cdx{RepFun}) and application (using a definite description).  The
   474 function \cdx{restrict}$(f,A)$ has the same values as~$f$, but only
   475 over the domain~$A$.
   476 
   477 
   478 %%%% zf.ML
   479 
   480 \begin{figure}
   481 \begin{ttbox}
   482 \tdx{ballI}       [| !!x. x:A ==> P(x) |] ==> ALL x:A. P(x)
   483 \tdx{bspec}       [| ALL x:A. P(x);  x: A |] ==> P(x)
   484 \tdx{ballE}       [| ALL x:A. P(x);  P(x) ==> Q;  ~ x:A ==> Q |] ==> Q
   485 
   486 \tdx{ball_cong}   [| A=A';  !!x. x:A' ==> P(x) <-> P'(x) |] ==> 
   487             (ALL x:A. P(x)) <-> (ALL x:A'. P'(x))
   488 
   489 \tdx{bexI}        [| P(x);  x: A |] ==> EX x:A. P(x)
   490 \tdx{bexCI}       [| ALL x:A. ~P(x) ==> P(a);  a: A |] ==> EX x:A. P(x)
   491 \tdx{bexE}        [| EX x:A. P(x);  !!x. [| x:A; P(x) |] ==> Q |] ==> Q
   492 
   493 \tdx{bex_cong}    [| A=A';  !!x. x:A' ==> P(x) <-> P'(x) |] ==> 
   494             (EX x:A. P(x)) <-> (EX x:A'. P'(x))
   495 \subcaption{Bounded quantifiers}
   496 
   497 \tdx{subsetI}       (!!x. x:A ==> x:B) ==> A <= B
   498 \tdx{subsetD}       [| A <= B;  c:A |] ==> c:B
   499 \tdx{subsetCE}      [| A <= B;  ~(c:A) ==> P;  c:B ==> P |] ==> P
   500 \tdx{subset_refl}   A <= A
   501 \tdx{subset_trans}  [| A<=B;  B<=C |] ==> A<=C
   502 
   503 \tdx{equalityI}     [| A <= B;  B <= A |] ==> A = B
   504 \tdx{equalityD1}    A = B ==> A<=B
   505 \tdx{equalityD2}    A = B ==> B<=A
   506 \tdx{equalityE}     [| A = B;  [| A<=B; B<=A |] ==> P |]  ==>  P
   507 \subcaption{Subsets and extensionality}
   508 
   509 \tdx{emptyE}          a:0 ==> P
   510 \tdx{empty_subsetI}   0 <= A
   511 \tdx{equals0I}        [| !!y. y:A ==> False |] ==> A=0
   512 \tdx{equals0D}        [| A=0;  a:A |] ==> P
   513 
   514 \tdx{PowI}            A <= B ==> A : Pow(B)
   515 \tdx{PowD}            A : Pow(B)  ==>  A<=B
   516 \subcaption{The empty set; power sets}
   517 \end{ttbox}
   518 \caption{Basic derived rules for {\ZF}} \label{zf-lemmas1}
   519 \end{figure}
   520 
   521 
   522 \section{From basic lemmas to function spaces}
   523 Faced with so many definitions, it is essential to prove lemmas.  Even
   524 trivial theorems like $A \int B = B \int A$ would be difficult to
   525 prove from the definitions alone.  Isabelle's set theory derives many
   526 rules using a natural deduction style.  Ideally, a natural deduction
   527 rule should introduce or eliminate just one operator, but this is not
   528 always practical.  For most operators, we may forget its definition
   529 and use its derived rules instead.
   530 
   531 \subsection{Fundamental lemmas}
   532 Figure~\ref{zf-lemmas1} presents the derived rules for the most basic
   533 operators.  The rules for the bounded quantifiers resemble those for the
   534 ordinary quantifiers, but note that \tdx{ballE} uses a negated assumption
   535 in the style of Isabelle's classical reasoner.  The \rmindex{congruence
   536   rules} \tdx{ball_cong} and \tdx{bex_cong} are required by Isabelle's
   537 simplifier, but have few other uses.  Congruence rules must be specially
   538 derived for all binding operators, and henceforth will not be shown.
   539 
   540 Figure~\ref{zf-lemmas1} also shows rules for the subset and equality
   541 relations (proof by extensionality), and rules about the empty set and the
   542 power set operator.
   543 
   544 Figure~\ref{zf-lemmas2} presents rules for replacement and separation.
   545 The rules for \cdx{Replace} and \cdx{RepFun} are much simpler than
   546 comparable rules for \texttt{PrimReplace} would be.  The principle of
   547 separation is proved explicitly, although most proofs should use the
   548 natural deduction rules for \texttt{Collect}.  The elimination rule
   549 \tdx{CollectE} is equivalent to the two destruction rules
   550 \tdx{CollectD1} and \tdx{CollectD2}, but each rule is suited to
   551 particular circumstances.  Although too many rules can be confusing, there
   552 is no reason to aim for a minimal set of rules.  See the file
   553 \texttt{ZF/ZF.ML} for a complete listing.
   554 
   555 Figure~\ref{zf-lemmas3} presents rules for general union and intersection.
   556 The empty intersection should be undefined.  We cannot have
   557 $\bigcap(\emptyset)=V$ because $V$, the universal class, is not a set.  All
   558 expressions denote something in {\ZF} set theory; the definition of
   559 intersection implies $\bigcap(\emptyset)=\emptyset$, but this value is
   560 arbitrary.  The rule \tdx{InterI} must have a premise to exclude
   561 the empty intersection.  Some of the laws governing intersections require
   562 similar premises.
   563 
   564 
   565 %the [p] gives better page breaking for the book
   566 \begin{figure}[p]
   567 \begin{ttbox}
   568 \tdx{ReplaceI}      [| x: A;  P(x,b);  !!y. P(x,y) ==> y=b |] ==> 
   569               b : {\ttlbrace}y. x:A, P(x,y){\ttrbrace}
   570 
   571 \tdx{ReplaceE}      [| b : {\ttlbrace}y. x:A, P(x,y){\ttrbrace};  
   572                  !!x. [| x: A;  P(x,b);  ALL y. P(x,y)-->y=b |] ==> R 
   573               |] ==> R
   574 
   575 \tdx{RepFunI}       [| a : A |] ==> f(a) : {\ttlbrace}f(x). x:A{\ttrbrace}
   576 \tdx{RepFunE}       [| b : {\ttlbrace}f(x). x:A{\ttrbrace};  
   577                  !!x.[| x:A;  b=f(x) |] ==> P |] ==> P
   578 
   579 \tdx{separation}     a : {\ttlbrace}x:A. P(x){\ttrbrace} <-> a:A & P(a)
   580 \tdx{CollectI}       [| a:A;  P(a) |] ==> a : {\ttlbrace}x:A. P(x){\ttrbrace}
   581 \tdx{CollectE}       [| a : {\ttlbrace}x:A. P(x){\ttrbrace};  [| a:A; P(a) |] ==> R |] ==> R
   582 \tdx{CollectD1}      a : {\ttlbrace}x:A. P(x){\ttrbrace} ==> a:A
   583 \tdx{CollectD2}      a : {\ttlbrace}x:A. P(x){\ttrbrace} ==> P(a)
   584 \end{ttbox}
   585 \caption{Replacement and separation} \label{zf-lemmas2}
   586 \end{figure}
   587 
   588 
   589 \begin{figure}
   590 \begin{ttbox}
   591 \tdx{UnionI}    [| B: C;  A: B |] ==> A: Union(C)
   592 \tdx{UnionE}    [| A : Union(C);  !!B.[| A: B;  B: C |] ==> R |] ==> R
   593 
   594 \tdx{InterI}    [| !!x. x: C ==> A: x;  c:C |] ==> A : Inter(C)
   595 \tdx{InterD}    [| A : Inter(C);  B : C |] ==> A : B
   596 \tdx{InterE}    [| A : Inter(C);  A:B ==> R;  ~ B:C ==> R |] ==> R
   597 
   598 \tdx{UN_I}      [| a: A;  b: B(a) |] ==> b: (UN x:A. B(x))
   599 \tdx{UN_E}      [| b : (UN x:A. B(x));  !!x.[| x: A;  b: B(x) |] ==> R 
   600           |] ==> R
   601 
   602 \tdx{INT_I}     [| !!x. x: A ==> b: B(x);  a: A |] ==> b: (INT x:A. B(x))
   603 \tdx{INT_E}     [| b : (INT x:A. B(x));  a: A |] ==> b : B(a)
   604 \end{ttbox}
   605 \caption{General union and intersection} \label{zf-lemmas3}
   606 \end{figure}
   607 
   608 
   609 %%% upair.ML
   610 
   611 \begin{figure}
   612 \begin{ttbox}
   613 \tdx{pairing}      a:Upair(b,c) <-> (a=b | a=c)
   614 \tdx{UpairI1}      a : Upair(a,b)
   615 \tdx{UpairI2}      b : Upair(a,b)
   616 \tdx{UpairE}       [| a : Upair(b,c);  a = b ==> P;  a = c ==> P |] ==> P
   617 \end{ttbox}
   618 \caption{Unordered pairs} \label{zf-upair1}
   619 \end{figure}
   620 
   621 
   622 \begin{figure}
   623 \begin{ttbox}
   624 \tdx{UnI1}         c : A ==> c : A Un B
   625 \tdx{UnI2}         c : B ==> c : A Un B
   626 \tdx{UnCI}         (~c : B ==> c : A) ==> c : A Un B
   627 \tdx{UnE}          [| c : A Un B;  c:A ==> P;  c:B ==> P |] ==> P
   628 
   629 \tdx{IntI}         [| c : A;  c : B |] ==> c : A Int B
   630 \tdx{IntD1}        c : A Int B ==> c : A
   631 \tdx{IntD2}        c : A Int B ==> c : B
   632 \tdx{IntE}         [| c : A Int B;  [| c:A; c:B |] ==> P |] ==> P
   633 
   634 \tdx{DiffI}        [| c : A;  ~ c : B |] ==> c : A - B
   635 \tdx{DiffD1}       c : A - B ==> c : A
   636 \tdx{DiffD2}       c : A - B ==> c ~: B
   637 \tdx{DiffE}        [| c : A - B;  [| c:A; ~ c:B |] ==> P |] ==> P
   638 \end{ttbox}
   639 \caption{Union, intersection, difference} \label{zf-Un}
   640 \end{figure}
   641 
   642 
   643 \begin{figure}
   644 \begin{ttbox}
   645 \tdx{consI1}       a : cons(a,B)
   646 \tdx{consI2}       a : B ==> a : cons(b,B)
   647 \tdx{consCI}       (~ a:B ==> a=b) ==> a: cons(b,B)
   648 \tdx{consE}        [| a : cons(b,A);  a=b ==> P;  a:A ==> P |] ==> P
   649 
   650 \tdx{singletonI}   a : {\ttlbrace}a{\ttrbrace}
   651 \tdx{singletonE}   [| a : {\ttlbrace}b{\ttrbrace}; a=b ==> P |] ==> P
   652 \end{ttbox}
   653 \caption{Finite and singleton sets} \label{zf-upair2}
   654 \end{figure}
   655 
   656 
   657 \begin{figure}
   658 \begin{ttbox}
   659 \tdx{succI1}       i : succ(i)
   660 \tdx{succI2}       i : j ==> i : succ(j)
   661 \tdx{succCI}       (~ i:j ==> i=j) ==> i: succ(j)
   662 \tdx{succE}        [| i : succ(j);  i=j ==> P;  i:j ==> P |] ==> P
   663 \tdx{succ_neq_0}   [| succ(n)=0 |] ==> P
   664 \tdx{succ_inject}  succ(m) = succ(n) ==> m=n
   665 \end{ttbox}
   666 \caption{The successor function} \label{zf-succ}
   667 \end{figure}
   668 
   669 
   670 \begin{figure}
   671 \begin{ttbox}
   672 \tdx{the_equality}     [| P(a);  !!x. P(x) ==> x=a |] ==> (THE x. P(x)) = a
   673 \tdx{theI}             EX! x. P(x) ==> P(THE x. P(x))
   674 
   675 \tdx{if_P}              P ==> (if P then a else b) = a
   676 \tdx{if_not_P}         ~P ==> (if P then a else b) = b
   677 
   678 \tdx{mem_asym}         [| a:b;  b:a |] ==> P
   679 \tdx{mem_irrefl}       a:a ==> P
   680 \end{ttbox}
   681 \caption{Descriptions; non-circularity} \label{zf-the}
   682 \end{figure}
   683 
   684 
   685 \subsection{Unordered pairs and finite sets}
   686 Figure~\ref{zf-upair1} presents the principle of unordered pairing, along
   687 with its derived rules.  Binary union and intersection are defined in terms
   688 of ordered pairs (Fig.\ts\ref{zf-Un}).  Set difference is also included.  The
   689 rule \tdx{UnCI} is useful for classical reasoning about unions,
   690 like \texttt{disjCI}\@; it supersedes \tdx{UnI1} and
   691 \tdx{UnI2}, but these rules are often easier to work with.  For
   692 intersection and difference we have both elimination and destruction rules.
   693 Again, there is no reason to provide a minimal rule set.
   694 
   695 Figure~\ref{zf-upair2} is concerned with finite sets: it presents rules
   696 for~\texttt{cons}, the finite set constructor, and rules for singleton
   697 sets.  Figure~\ref{zf-succ} presents derived rules for the successor
   698 function, which is defined in terms of~\texttt{cons}.  The proof that {\tt
   699   succ} is injective appears to require the Axiom of Foundation.
   700 
   701 Definite descriptions (\sdx{THE}) are defined in terms of the singleton
   702 set~$\{0\}$, but their derived rules fortunately hide this
   703 (Fig.\ts\ref{zf-the}).  The rule~\tdx{theI} is difficult to apply
   704 because of the two occurrences of~$\Var{P}$.  However,
   705 \tdx{the_equality} does not have this problem and the files contain
   706 many examples of its use.
   707 
   708 Finally, the impossibility of having both $a\in b$ and $b\in a$
   709 (\tdx{mem_asym}) is proved by applying the Axiom of Foundation to
   710 the set $\{a,b\}$.  The impossibility of $a\in a$ is a trivial consequence.
   711 
   712 See the file \texttt{ZF/upair.ML} for full proofs of the rules discussed in
   713 this section.
   714 
   715 
   716 %%% subset.ML
   717 
   718 \begin{figure}
   719 \begin{ttbox}
   720 \tdx{Union_upper}       B:A ==> B <= Union(A)
   721 \tdx{Union_least}       [| !!x. x:A ==> x<=C |] ==> Union(A) <= C
   722 
   723 \tdx{Inter_lower}       B:A ==> Inter(A) <= B
   724 \tdx{Inter_greatest}    [| a:A;  !!x. x:A ==> C<=x |] ==> C <= Inter(A)
   725 
   726 \tdx{Un_upper1}         A <= A Un B
   727 \tdx{Un_upper2}         B <= A Un B
   728 \tdx{Un_least}          [| A<=C;  B<=C |] ==> A Un B <= C
   729 
   730 \tdx{Int_lower1}        A Int B <= A
   731 \tdx{Int_lower2}        A Int B <= B
   732 \tdx{Int_greatest}      [| C<=A;  C<=B |] ==> C <= A Int B
   733 
   734 \tdx{Diff_subset}       A-B <= A
   735 \tdx{Diff_contains}     [| C<=A;  C Int B = 0 |] ==> C <= A-B
   736 
   737 \tdx{Collect_subset}    Collect(A,P) <= A
   738 \end{ttbox}
   739 \caption{Subset and lattice properties} \label{zf-subset}
   740 \end{figure}
   741 
   742 
   743 \subsection{Subset and lattice properties}
   744 The subset relation is a complete lattice.  Unions form least upper bounds;
   745 non-empty intersections form greatest lower bounds.  Figure~\ref{zf-subset}
   746 shows the corresponding rules.  A few other laws involving subsets are
   747 included.  Proofs are in the file \texttt{ZF/subset.ML}.
   748 
   749 Reasoning directly about subsets often yields clearer proofs than
   750 reasoning about the membership relation.  Section~\ref{sec:ZF-pow-example}
   751 below presents an example of this, proving the equation ${{\tt Pow}(A)\cap
   752   {\tt Pow}(B)}= {\tt Pow}(A\cap B)$.
   753 
   754 %%% pair.ML
   755 
   756 \begin{figure}
   757 \begin{ttbox}
   758 \tdx{Pair_inject1}    <a,b> = <c,d> ==> a=c
   759 \tdx{Pair_inject2}    <a,b> = <c,d> ==> b=d
   760 \tdx{Pair_inject}     [| <a,b> = <c,d>;  [| a=c; b=d |] ==> P |] ==> P
   761 \tdx{Pair_neq_0}      <a,b>=0 ==> P
   762 
   763 \tdx{fst_conv}        fst(<a,b>) = a
   764 \tdx{snd_conv}        snd(<a,b>) = b
   765 \tdx{split}           split(\%x y. c(x,y), <a,b>) = c(a,b)
   766 
   767 \tdx{SigmaI}          [| a:A;  b:B(a) |] ==> <a,b> : Sigma(A,B)
   768 
   769 \tdx{SigmaE}          [| c: Sigma(A,B);  
   770                    !!x y.[| x:A; y:B(x); c=<x,y> |] ==> P |] ==> P
   771 
   772 \tdx{SigmaE2}         [| <a,b> : Sigma(A,B);    
   773                    [| a:A;  b:B(a) |] ==> P   |] ==> P
   774 \end{ttbox}
   775 \caption{Ordered pairs; projections; general sums} \label{zf-pair}
   776 \end{figure}
   777 
   778 
   779 \subsection{Ordered pairs} \label{sec:pairs}
   780 
   781 Figure~\ref{zf-pair} presents the rules governing ordered pairs,
   782 projections and general sums.  File \texttt{ZF/pair.ML} contains the
   783 full (and tedious) proof that $\{\{a\},\{a,b\}\}$ functions as an ordered
   784 pair.  This property is expressed as two destruction rules,
   785 \tdx{Pair_inject1} and \tdx{Pair_inject2}, and equivalently
   786 as the elimination rule \tdx{Pair_inject}.
   787 
   788 The rule \tdx{Pair_neq_0} asserts $\pair{a,b}\neq\emptyset$.  This
   789 is a property of $\{\{a\},\{a,b\}\}$, and need not hold for other 
   790 encodings of ordered pairs.  The non-standard ordered pairs mentioned below
   791 satisfy $\pair{\emptyset;\emptyset}=\emptyset$.
   792 
   793 The natural deduction rules \tdx{SigmaI} and \tdx{SigmaE}
   794 assert that \cdx{Sigma}$(A,B)$ consists of all pairs of the form
   795 $\pair{x,y}$, for $x\in A$ and $y\in B(x)$.  The rule \tdx{SigmaE2}
   796 merely states that $\pair{a,b}\in \texttt{Sigma}(A,B)$ implies $a\in A$ and
   797 $b\in B(a)$.
   798 
   799 In addition, it is possible to use tuples as patterns in abstractions:
   800 \begin{center}
   801 {\tt\%<$x$,$y$>. $t$} \quad stands for\quad \texttt{split(\%$x$ $y$.\ $t$)}
   802 \end{center}
   803 Nested patterns are translated recursively:
   804 {\tt\%<$x$,$y$,$z$>. $t$} $\leadsto$ {\tt\%<$x$,<$y$,$z$>>. $t$} $\leadsto$
   805 \texttt{split(\%$x$.\%<$y$,$z$>. $t$)} $\leadsto$ \texttt{split(\%$x$. split(\%$y$
   806   $z$.\ $t$))}.  The reverse translation is performed upon printing.
   807 \begin{warn}
   808   The translation between patterns and \texttt{split} is performed automatically
   809   by the parser and printer.  Thus the internal and external form of a term
   810   may differ, which affects proofs.  For example the term {\tt
   811     (\%<x,y>.<y,x>)<a,b>} requires the theorem \texttt{split} to rewrite to
   812   {\tt<b,a>}.
   813 \end{warn}
   814 In addition to explicit $\lambda$-abstractions, patterns can be used in any
   815 variable binding construct which is internally described by a
   816 $\lambda$-abstraction.  Here are some important examples:
   817 \begin{description}
   818 \item[Let:] \texttt{let {\it pattern} = $t$ in $u$}
   819 \item[Choice:] \texttt{THE~{\it pattern}~.~$P$}
   820 \item[Set operations:] \texttt{UN~{\it pattern}:$A$.~$B$}
   821 \item[Comprehension:] \texttt{{\ttlbrace}~{\it pattern}:$A$~.~$P$~{\ttrbrace}}
   822 \end{description}
   823 
   824 
   825 %%% domrange.ML
   826 
   827 \begin{figure}
   828 \begin{ttbox}
   829 \tdx{domainI}        <a,b>: r ==> a : domain(r)
   830 \tdx{domainE}        [| a : domain(r);  !!y. <a,y>: r ==> P |] ==> P
   831 \tdx{domain_subset}  domain(Sigma(A,B)) <= A
   832 
   833 \tdx{rangeI}         <a,b>: r ==> b : range(r)
   834 \tdx{rangeE}         [| b : range(r);  !!x. <x,b>: r ==> P |] ==> P
   835 \tdx{range_subset}   range(A*B) <= B
   836 
   837 \tdx{fieldI1}        <a,b>: r ==> a : field(r)
   838 \tdx{fieldI2}        <a,b>: r ==> b : field(r)
   839 \tdx{fieldCI}        (~ <c,a>:r ==> <a,b>: r) ==> a : field(r)
   840 
   841 \tdx{fieldE}         [| a : field(r);  
   842                   !!x. <a,x>: r ==> P;  
   843                   !!x. <x,a>: r ==> P      
   844                |] ==> P
   845 
   846 \tdx{field_subset}   field(A*A) <= A
   847 \end{ttbox}
   848 \caption{Domain, range and field of a relation} \label{zf-domrange}
   849 \end{figure}
   850 
   851 \begin{figure}
   852 \begin{ttbox}
   853 \tdx{imageI}         [| <a,b>: r;  a:A |] ==> b : r``A
   854 \tdx{imageE}         [| b: r``A;  !!x.[| <x,b>: r;  x:A |] ==> P |] ==> P
   855 
   856 \tdx{vimageI}        [| <a,b>: r;  b:B |] ==> a : r-``B
   857 \tdx{vimageE}        [| a: r-``B;  !!x.[| <a,x>: r;  x:B |] ==> P |] ==> P
   858 \end{ttbox}
   859 \caption{Image and inverse image} \label{zf-domrange2}
   860 \end{figure}
   861 
   862 
   863 \subsection{Relations}
   864 Figure~\ref{zf-domrange} presents rules involving relations, which are sets
   865 of ordered pairs.  The converse of a relation~$r$ is the set of all pairs
   866 $\pair{y,x}$ such that $\pair{x,y}\in r$; if $r$ is a function, then
   867 {\cdx{converse}$(r)$} is its inverse.  The rules for the domain
   868 operation, namely \tdx{domainI} and~\tdx{domainE}, assert that
   869 \cdx{domain}$(r)$ consists of all~$x$ such that $r$ contains
   870 some pair of the form~$\pair{x,y}$.  The range operation is similar, and
   871 the field of a relation is merely the union of its domain and range.  
   872 
   873 Figure~\ref{zf-domrange2} presents rules for images and inverse images.
   874 Note that these operations are generalisations of range and domain,
   875 respectively.  See the file \texttt{ZF/domrange.ML} for derivations of the
   876 rules.
   877 
   878 
   879 %%% func.ML
   880 
   881 \begin{figure}
   882 \begin{ttbox}
   883 \tdx{fun_is_rel}      f: Pi(A,B) ==> f <= Sigma(A,B)
   884 
   885 \tdx{apply_equality}  [| <a,b>: f;  f: Pi(A,B) |] ==> f`a = b
   886 \tdx{apply_equality2} [| <a,b>: f;  <a,c>: f;  f: Pi(A,B) |] ==> b=c
   887 
   888 \tdx{apply_type}      [| f: Pi(A,B);  a:A |] ==> f`a : B(a)
   889 \tdx{apply_Pair}      [| f: Pi(A,B);  a:A |] ==> <a,f`a>: f
   890 \tdx{apply_iff}       f: Pi(A,B) ==> <a,b>: f <-> a:A & f`a = b
   891 
   892 \tdx{fun_extension}   [| f : Pi(A,B);  g: Pi(A,D);
   893                    !!x. x:A ==> f`x = g`x     |] ==> f=g
   894 
   895 \tdx{domain_type}     [| <a,b> : f;  f: Pi(A,B) |] ==> a : A
   896 \tdx{range_type}      [| <a,b> : f;  f: Pi(A,B) |] ==> b : B(a)
   897 
   898 \tdx{Pi_type}         [| f: A->C;  !!x. x:A ==> f`x: B(x) |] ==> f: Pi(A,B)
   899 \tdx{domain_of_fun}   f: Pi(A,B) ==> domain(f)=A
   900 \tdx{range_of_fun}    f: Pi(A,B) ==> f: A->range(f)
   901 
   902 \tdx{restrict}        a : A ==> restrict(f,A) ` a = f`a
   903 \tdx{restrict_type}   [| !!x. x:A ==> f`x: B(x) |] ==> 
   904                 restrict(f,A) : Pi(A,B)
   905 \end{ttbox}
   906 \caption{Functions} \label{zf-func1}
   907 \end{figure}
   908 
   909 
   910 \begin{figure}
   911 \begin{ttbox}
   912 \tdx{lamI}      a:A ==> <a,b(a)> : (lam x:A. b(x))
   913 \tdx{lamE}      [| p: (lam x:A. b(x));  !!x.[| x:A; p=<x,b(x)> |] ==> P 
   914           |] ==>  P
   915 
   916 \tdx{lam_type}  [| !!x. x:A ==> b(x): B(x) |] ==> (lam x:A. b(x)) : Pi(A,B)
   917 
   918 \tdx{beta}      a : A ==> (lam x:A. b(x)) ` a = b(a)
   919 \tdx{eta}       f : Pi(A,B) ==> (lam x:A. f`x) = f
   920 \end{ttbox}
   921 \caption{$\lambda$-abstraction} \label{zf-lam}
   922 \end{figure}
   923 
   924 
   925 \begin{figure}
   926 \begin{ttbox}
   927 \tdx{fun_empty}            0: 0->0
   928 \tdx{fun_single}           {\ttlbrace}<a,b>{\ttrbrace} : {\ttlbrace}a{\ttrbrace} -> {\ttlbrace}b{\ttrbrace}
   929 
   930 \tdx{fun_disjoint_Un}      [| f: A->B;  g: C->D;  A Int C = 0  |] ==>  
   931                      (f Un g) : (A Un C) -> (B Un D)
   932 
   933 \tdx{fun_disjoint_apply1}  [| a:A;  f: A->B;  g: C->D;  A Int C = 0 |] ==>  
   934                      (f Un g)`a = f`a
   935 
   936 \tdx{fun_disjoint_apply2}  [| c:C;  f: A->B;  g: C->D;  A Int C = 0 |] ==>  
   937                      (f Un g)`c = g`c
   938 \end{ttbox}
   939 \caption{Constructing functions from smaller sets} \label{zf-func2}
   940 \end{figure}
   941 
   942 
   943 \subsection{Functions}
   944 Functions, represented by graphs, are notoriously difficult to reason
   945 about.  The file \texttt{ZF/func.ML} derives many rules, which overlap more
   946 than they ought.  This section presents the more important rules.
   947 
   948 Figure~\ref{zf-func1} presents the basic properties of \cdx{Pi}$(A,B)$,
   949 the generalized function space.  For example, if $f$ is a function and
   950 $\pair{a,b}\in f$, then $f`a=b$ (\tdx{apply_equality}).  Two functions
   951 are equal provided they have equal domains and deliver equals results
   952 (\tdx{fun_extension}).
   953 
   954 By \tdx{Pi_type}, a function typing of the form $f\in A\to C$ can be
   955 refined to the dependent typing $f\in\prod@{x\in A}B(x)$, given a suitable
   956 family of sets $\{B(x)\}@{x\in A}$.  Conversely, by \tdx{range_of_fun},
   957 any dependent typing can be flattened to yield a function type of the form
   958 $A\to C$; here, $C={\tt range}(f)$.
   959 
   960 Among the laws for $\lambda$-abstraction, \tdx{lamI} and \tdx{lamE}
   961 describe the graph of the generated function, while \tdx{beta} and
   962 \tdx{eta} are the standard conversions.  We essentially have a
   963 dependently-typed $\lambda$-calculus (Fig.\ts\ref{zf-lam}).
   964 
   965 Figure~\ref{zf-func2} presents some rules that can be used to construct
   966 functions explicitly.  We start with functions consisting of at most one
   967 pair, and may form the union of two functions provided their domains are
   968 disjoint.  
   969 
   970 
   971 \begin{figure}
   972 \begin{ttbox}
   973 \tdx{Int_absorb}         A Int A = A
   974 \tdx{Int_commute}        A Int B = B Int A
   975 \tdx{Int_assoc}          (A Int B) Int C  =  A Int (B Int C)
   976 \tdx{Int_Un_distrib}     (A Un B) Int C  =  (A Int C) Un (B Int C)
   977 
   978 \tdx{Un_absorb}          A Un A = A
   979 \tdx{Un_commute}         A Un B = B Un A
   980 \tdx{Un_assoc}           (A Un B) Un C  =  A Un (B Un C)
   981 \tdx{Un_Int_distrib}     (A Int B) Un C  =  (A Un C) Int (B Un C)
   982 
   983 \tdx{Diff_cancel}        A-A = 0
   984 \tdx{Diff_disjoint}      A Int (B-A) = 0
   985 \tdx{Diff_partition}     A<=B ==> A Un (B-A) = B
   986 \tdx{double_complement}  [| A<=B; B<= C |] ==> (B - (C-A)) = A
   987 \tdx{Diff_Un}            A - (B Un C) = (A-B) Int (A-C)
   988 \tdx{Diff_Int}           A - (B Int C) = (A-B) Un (A-C)
   989 
   990 \tdx{Union_Un_distrib}   Union(A Un B) = Union(A) Un Union(B)
   991 \tdx{Inter_Un_distrib}   [| a:A;  b:B |] ==> 
   992                    Inter(A Un B) = Inter(A) Int Inter(B)
   993 
   994 \tdx{Int_Union_RepFun}   A Int Union(B) = (UN C:B. A Int C)
   995 
   996 \tdx{Un_Inter_RepFun}    b:B ==> 
   997                    A Un Inter(B) = (INT C:B. A Un C)
   998 
   999 \tdx{SUM_Un_distrib1}    (SUM x:A Un B. C(x)) = 
  1000                    (SUM x:A. C(x)) Un (SUM x:B. C(x))
  1001 
  1002 \tdx{SUM_Un_distrib2}    (SUM x:C. A(x) Un B(x)) =
  1003                    (SUM x:C. A(x))  Un  (SUM x:C. B(x))
  1004 
  1005 \tdx{SUM_Int_distrib1}   (SUM x:A Int B. C(x)) =
  1006                    (SUM x:A. C(x)) Int (SUM x:B. C(x))
  1007 
  1008 \tdx{SUM_Int_distrib2}   (SUM x:C. A(x) Int B(x)) =
  1009                    (SUM x:C. A(x)) Int (SUM x:C. B(x))
  1010 \end{ttbox}
  1011 \caption{Equalities} \label{zf-equalities}
  1012 \end{figure}
  1013 
  1014 
  1015 \begin{figure}
  1016 %\begin{constants} 
  1017 %  \cdx{1}       & $i$           &       & $\{\emptyset\}$       \\
  1018 %  \cdx{bool}    & $i$           &       & the set $\{\emptyset,1\}$     \\
  1019 %  \cdx{cond}   & $[i,i,i]\To i$ &       & conditional for \texttt{bool}    \\
  1020 %  \cdx{not}    & $i\To i$       &       & negation for \texttt{bool}       \\
  1021 %  \sdx{and}    & $[i,i]\To i$   & Left 70 & conjunction for \texttt{bool}  \\
  1022 %  \sdx{or}     & $[i,i]\To i$   & Left 65 & disjunction for \texttt{bool}  \\
  1023 %  \sdx{xor}    & $[i,i]\To i$   & Left 65 & exclusive-or for \texttt{bool}
  1024 %\end{constants}
  1025 %
  1026 \begin{ttbox}
  1027 \tdx{bool_def}       bool == {\ttlbrace}0,1{\ttrbrace}
  1028 \tdx{cond_def}       cond(b,c,d) == if b=1 then c else d
  1029 \tdx{not_def}        not(b)  == cond(b,0,1)
  1030 \tdx{and_def}        a and b == cond(a,b,0)
  1031 \tdx{or_def}         a or b  == cond(a,1,b)
  1032 \tdx{xor_def}        a xor b == cond(a,not(b),b)
  1033 
  1034 \tdx{bool_1I}        1 : bool
  1035 \tdx{bool_0I}        0 : bool
  1036 \tdx{boolE}          [| c: bool;  c=1 ==> P;  c=0 ==> P |] ==> P
  1037 \tdx{cond_1}         cond(1,c,d) = c
  1038 \tdx{cond_0}         cond(0,c,d) = d
  1039 \end{ttbox}
  1040 \caption{The booleans} \label{zf-bool}
  1041 \end{figure}
  1042 
  1043 
  1044 \section{Further developments}
  1045 The next group of developments is complex and extensive, and only
  1046 highlights can be covered here.  It involves many theories and ML files of
  1047 proofs. 
  1048 
  1049 Figure~\ref{zf-equalities} presents commutative, associative, distributive,
  1050 and idempotency laws of union and intersection, along with other equations.
  1051 See file \texttt{ZF/equalities.ML}.
  1052 
  1053 Theory \thydx{Bool} defines $\{0,1\}$ as a set of booleans, with the usual
  1054 operators including a conditional (Fig.\ts\ref{zf-bool}).  Although {\ZF} is a
  1055 first-order theory, you can obtain the effect of higher-order logic using
  1056 \texttt{bool}-valued functions, for example.  The constant~\texttt{1} is
  1057 translated to \texttt{succ(0)}.
  1058 
  1059 \begin{figure}
  1060 \index{*"+ symbol}
  1061 \begin{constants}
  1062   \it symbol    & \it meta-type & \it priority & \it description \\ 
  1063   \tt +         & $[i,i]\To i$  &  Right 65     & disjoint union operator\\
  1064   \cdx{Inl}~~\cdx{Inr}  & $i\To i$      &       & injections\\
  1065   \cdx{case}    & $[i\To i,i\To i, i]\To i$ &   & conditional for $A+B$
  1066 \end{constants}
  1067 \begin{ttbox}
  1068 \tdx{sum_def}        A+B == {\ttlbrace}0{\ttrbrace}*A Un {\ttlbrace}1{\ttrbrace}*B
  1069 \tdx{Inl_def}        Inl(a) == <0,a>
  1070 \tdx{Inr_def}        Inr(b) == <1,b>
  1071 \tdx{case_def}       case(c,d,u) == split(\%y z. cond(y, d(z), c(z)), u)
  1072 
  1073 \tdx{sum_InlI}       a : A ==> Inl(a) : A+B
  1074 \tdx{sum_InrI}       b : B ==> Inr(b) : A+B
  1075 
  1076 \tdx{Inl_inject}     Inl(a)=Inl(b) ==> a=b
  1077 \tdx{Inr_inject}     Inr(a)=Inr(b) ==> a=b
  1078 \tdx{Inl_neq_Inr}    Inl(a)=Inr(b) ==> P
  1079 
  1080 \tdx{sumE2}   u: A+B ==> (EX x. x:A & u=Inl(x)) | (EX y. y:B & u=Inr(y))
  1081 
  1082 \tdx{case_Inl}       case(c,d,Inl(a)) = c(a)
  1083 \tdx{case_Inr}       case(c,d,Inr(b)) = d(b)
  1084 \end{ttbox}
  1085 \caption{Disjoint unions} \label{zf-sum}
  1086 \end{figure}
  1087 
  1088 
  1089 \subsection{Disjoint unions}
  1090 
  1091 Theory \thydx{Sum} defines the disjoint union of two sets, with
  1092 injections and a case analysis operator (Fig.\ts\ref{zf-sum}).  Disjoint
  1093 unions play a role in datatype definitions, particularly when there is
  1094 mutual recursion~\cite{paulson-set-II}.
  1095 
  1096 \begin{figure}
  1097 \begin{ttbox}
  1098 \tdx{QPair_def}       <a;b> == a+b
  1099 \tdx{qsplit_def}      qsplit(c,p)  == THE y. EX a b. p=<a;b> & y=c(a,b)
  1100 \tdx{qfsplit_def}     qfsplit(R,z) == EX x y. z=<x;y> & R(x,y)
  1101 \tdx{qconverse_def}   qconverse(r) == {\ttlbrace}z. w:r, EX x y. w=<x;y> & z=<y;x>{\ttrbrace}
  1102 \tdx{QSigma_def}      QSigma(A,B)  == UN x:A. UN y:B(x). {\ttlbrace}<x;y>{\ttrbrace}
  1103 
  1104 \tdx{qsum_def}        A <+> B      == ({\ttlbrace}0{\ttrbrace} <*> A) Un ({\ttlbrace}1{\ttrbrace} <*> B)
  1105 \tdx{QInl_def}        QInl(a)      == <0;a>
  1106 \tdx{QInr_def}        QInr(b)      == <1;b>
  1107 \tdx{qcase_def}       qcase(c,d)   == qsplit(\%y z. cond(y, d(z), c(z)))
  1108 \end{ttbox}
  1109 \caption{Non-standard pairs, products and sums} \label{zf-qpair}
  1110 \end{figure}
  1111 
  1112 
  1113 \subsection{Non-standard ordered pairs}
  1114 
  1115 Theory \thydx{QPair} defines a notion of ordered pair that admits
  1116 non-well-founded tupling (Fig.\ts\ref{zf-qpair}).  Such pairs are written
  1117 {\tt<$a$;$b$>}.  It also defines the eliminator \cdx{qsplit}, the
  1118 converse operator \cdx{qconverse}, and the summation operator
  1119 \cdx{QSigma}.  These are completely analogous to the corresponding
  1120 versions for standard ordered pairs.  The theory goes on to define a
  1121 non-standard notion of disjoint sum using non-standard pairs.  All of these
  1122 concepts satisfy the same properties as their standard counterparts; in
  1123 addition, {\tt<$a$;$b$>} is continuous.  The theory supports coinductive
  1124 definitions, for example of infinite lists~\cite{paulson-mscs}.
  1125 
  1126 \begin{figure}
  1127 \begin{ttbox}
  1128 \tdx{bnd_mono_def}   bnd_mono(D,h) == 
  1129                  h(D)<=D & (ALL W X. W<=X --> X<=D --> h(W) <= h(X))
  1130 
  1131 \tdx{lfp_def}        lfp(D,h) == Inter({\ttlbrace}X: Pow(D). h(X) <= X{\ttrbrace})
  1132 \tdx{gfp_def}        gfp(D,h) == Union({\ttlbrace}X: Pow(D). X <= h(X){\ttrbrace})
  1133 
  1134 
  1135 \tdx{lfp_lowerbound} [| h(A) <= A;  A<=D |] ==> lfp(D,h) <= A
  1136 
  1137 \tdx{lfp_subset}     lfp(D,h) <= D
  1138 
  1139 \tdx{lfp_greatest}   [| bnd_mono(D,h);  
  1140                   !!X. [| h(X) <= X;  X<=D |] ==> A<=X 
  1141                |] ==> A <= lfp(D,h)
  1142 
  1143 \tdx{lfp_Tarski}     bnd_mono(D,h) ==> lfp(D,h) = h(lfp(D,h))
  1144 
  1145 \tdx{induct}         [| a : lfp(D,h);  bnd_mono(D,h);
  1146                   !!x. x : h(Collect(lfp(D,h),P)) ==> P(x)
  1147                |] ==> P(a)
  1148 
  1149 \tdx{lfp_mono}       [| bnd_mono(D,h);  bnd_mono(E,i);
  1150                   !!X. X<=D ==> h(X) <= i(X)  
  1151                |] ==> lfp(D,h) <= lfp(E,i)
  1152 
  1153 \tdx{gfp_upperbound} [| A <= h(A);  A<=D |] ==> A <= gfp(D,h)
  1154 
  1155 \tdx{gfp_subset}     gfp(D,h) <= D
  1156 
  1157 \tdx{gfp_least}      [| bnd_mono(D,h);  
  1158                   !!X. [| X <= h(X);  X<=D |] ==> X<=A
  1159                |] ==> gfp(D,h) <= A
  1160 
  1161 \tdx{gfp_Tarski}     bnd_mono(D,h) ==> gfp(D,h) = h(gfp(D,h))
  1162 
  1163 \tdx{coinduct}       [| bnd_mono(D,h); a: X; X <= h(X Un gfp(D,h)); X <= D 
  1164                |] ==> a : gfp(D,h)
  1165 
  1166 \tdx{gfp_mono}       [| bnd_mono(D,h);  D <= E;
  1167                   !!X. X<=D ==> h(X) <= i(X)  
  1168                |] ==> gfp(D,h) <= gfp(E,i)
  1169 \end{ttbox}
  1170 \caption{Least and greatest fixedpoints} \label{zf-fixedpt}
  1171 \end{figure}
  1172 
  1173 
  1174 \subsection{Least and greatest fixedpoints}
  1175 
  1176 The Knaster-Tarski Theorem states that every monotone function over a
  1177 complete lattice has a fixedpoint.  Theory \thydx{Fixedpt} proves the
  1178 Theorem only for a particular lattice, namely the lattice of subsets of a
  1179 set (Fig.\ts\ref{zf-fixedpt}).  The theory defines least and greatest
  1180 fixedpoint operators with corresponding induction and coinduction rules.
  1181 These are essential to many definitions that follow, including the natural
  1182 numbers and the transitive closure operator.  The (co)inductive definition
  1183 package also uses the fixedpoint operators~\cite{paulson-CADE}.  See
  1184 Davey and Priestley~\cite{davey-priestley} for more on the Knaster-Tarski
  1185 Theorem and my paper~\cite{paulson-set-II} for discussion of the Isabelle
  1186 proofs.
  1187 
  1188 Monotonicity properties are proved for most of the set-forming operations:
  1189 union, intersection, Cartesian product, image, domain, range, etc.  These
  1190 are useful for applying the Knaster-Tarski Fixedpoint Theorem.  The proofs
  1191 themselves are trivial applications of Isabelle's classical reasoner.  See
  1192 file \texttt{ZF/mono.ML}.
  1193 
  1194 
  1195 \subsection{Finite sets and lists}
  1196 
  1197 Theory \texttt{Finite} (Figure~\ref{zf-fin}) defines the finite set operator;
  1198 ${\tt Fin}(A)$ is the set of all finite sets over~$A$.  The theory employs
  1199 Isabelle's inductive definition package, which proves various rules
  1200 automatically.  The induction rule shown is stronger than the one proved by
  1201 the package.  The theory also defines the set of all finite functions
  1202 between two given sets.
  1203 
  1204 \begin{figure}
  1205 \begin{ttbox}
  1206 \tdx{Fin.emptyI}      0 : Fin(A)
  1207 \tdx{Fin.consI}       [| a: A;  b: Fin(A) |] ==> cons(a,b) : Fin(A)
  1208 
  1209 \tdx{Fin_induct}
  1210     [| b: Fin(A);
  1211        P(0);
  1212        !!x y. [| x: A;  y: Fin(A);  x~:y;  P(y) |] ==> P(cons(x,y))
  1213     |] ==> P(b)
  1214 
  1215 \tdx{Fin_mono}        A<=B ==> Fin(A) <= Fin(B)
  1216 \tdx{Fin_UnI}         [| b: Fin(A);  c: Fin(A) |] ==> b Un c : Fin(A)
  1217 \tdx{Fin_UnionI}      C : Fin(Fin(A)) ==> Union(C) : Fin(A)
  1218 \tdx{Fin_subset}      [| c<=b;  b: Fin(A) |] ==> c: Fin(A)
  1219 \end{ttbox}
  1220 \caption{The finite set operator} \label{zf-fin}
  1221 \end{figure}
  1222 
  1223 \begin{figure}
  1224 \begin{constants}
  1225   \it symbol  & \it meta-type & \it priority & \it description \\ 
  1226   \cdx{list}    & $i\To i$      && lists over some set\\
  1227   \cdx{list_case} & $[i, [i,i]\To i, i] \To i$  && conditional for $list(A)$ \\
  1228   \cdx{map}     & $[i\To i, i] \To i$   &       & mapping functional\\
  1229   \cdx{length}  & $i\To i$              &       & length of a list\\
  1230   \cdx{rev}     & $i\To i$              &       & reverse of a list\\
  1231   \tt \at       & $[i,i]\To i$  &  Right 60     & append for lists\\
  1232   \cdx{flat}    & $i\To i$   &                  & append of list of lists
  1233 \end{constants}
  1234 
  1235 \underscoreon %%because @ is used here
  1236 \begin{ttbox}
  1237 \tdx{NilI}            Nil : list(A)
  1238 \tdx{ConsI}           [| a: A;  l: list(A) |] ==> Cons(a,l) : list(A)
  1239 
  1240 \tdx{List.induct}
  1241     [| l: list(A);
  1242        P(Nil);
  1243        !!x y. [| x: A;  y: list(A);  P(y) |] ==> P(Cons(x,y))
  1244     |] ==> P(l)
  1245 
  1246 \tdx{Cons_iff}        Cons(a,l)=Cons(a',l') <-> a=a' & l=l'
  1247 \tdx{Nil_Cons_iff}    ~ Nil=Cons(a,l)
  1248 
  1249 \tdx{list_mono}       A<=B ==> list(A) <= list(B)
  1250 
  1251 \tdx{map_ident}       l: list(A) ==> map(\%u. u, l) = l
  1252 \tdx{map_compose}     l: list(A) ==> map(h, map(j,l)) = map(\%u. h(j(u)), l)
  1253 \tdx{map_app_distrib} xs: list(A) ==> map(h, xs@ys) = map(h,xs) @ map(h,ys)
  1254 \tdx{map_type}
  1255     [| l: list(A);  !!x. x: A ==> h(x): B |] ==> map(h,l) : list(B)
  1256 \tdx{map_flat}
  1257     ls: list(list(A)) ==> map(h, flat(ls)) = flat(map(map(h),ls))
  1258 \end{ttbox}
  1259 \caption{Lists} \label{zf-list}
  1260 \end{figure}
  1261 
  1262 
  1263 Figure~\ref{zf-list} presents the set of lists over~$A$, ${\tt list}(A)$.  The
  1264 definition employs Isabelle's datatype package, which defines the introduction
  1265 and induction rules automatically, as well as the constructors, case operator
  1266 (\verb|list_case|) and recursion operator.  The theory then defines the usual
  1267 list functions by primitive recursion.  See theory \texttt{List}.
  1268 
  1269 
  1270 \subsection{Miscellaneous}
  1271 
  1272 \begin{figure}
  1273 \begin{constants} 
  1274   \it symbol  & \it meta-type & \it priority & \it description \\ 
  1275   \sdx{O}       & $[i,i]\To i$  &  Right 60     & composition ($\circ$) \\
  1276   \cdx{id}      & $i\To i$      &       & identity function \\
  1277   \cdx{inj}     & $[i,i]\To i$  &       & injective function space\\
  1278   \cdx{surj}    & $[i,i]\To i$  &       & surjective function space\\
  1279   \cdx{bij}     & $[i,i]\To i$  &       & bijective function space
  1280 \end{constants}
  1281 
  1282 \begin{ttbox}
  1283 \tdx{comp_def}  r O s     == {\ttlbrace}xz : domain(s)*range(r) . 
  1284                         EX x y z. xz=<x,z> & <x,y>:s & <y,z>:r{\ttrbrace}
  1285 \tdx{id_def}    id(A)     == (lam x:A. x)
  1286 \tdx{inj_def}   inj(A,B)  == {\ttlbrace} f: A->B. ALL w:A. ALL x:A. f`w=f`x --> w=x {\ttrbrace}
  1287 \tdx{surj_def}  surj(A,B) == {\ttlbrace} f: A->B . ALL y:B. EX x:A. f`x=y {\ttrbrace}
  1288 \tdx{bij_def}   bij(A,B)  == inj(A,B) Int surj(A,B)
  1289 
  1290 
  1291 \tdx{left_inverse}     [| f: inj(A,B);  a: A |] ==> converse(f)`(f`a) = a
  1292 \tdx{right_inverse}    [| f: inj(A,B);  b: range(f) |] ==> 
  1293                  f`(converse(f)`b) = b
  1294 
  1295 \tdx{inj_converse_inj} f: inj(A,B) ==> converse(f): inj(range(f), A)
  1296 \tdx{bij_converse_bij} f: bij(A,B) ==> converse(f): bij(B,A)
  1297 
  1298 \tdx{comp_type}        [| s<=A*B;  r<=B*C |] ==> (r O s) <= A*C
  1299 \tdx{comp_assoc}       (r O s) O t = r O (s O t)
  1300 
  1301 \tdx{left_comp_id}     r<=A*B ==> id(B) O r = r
  1302 \tdx{right_comp_id}    r<=A*B ==> r O id(A) = r
  1303 
  1304 \tdx{comp_func}        [| g:A->B; f:B->C |] ==> (f O g):A->C
  1305 \tdx{comp_func_apply}  [| g:A->B; f:B->C; a:A |] ==> (f O g)`a = f`(g`a)
  1306 
  1307 \tdx{comp_inj}         [| g:inj(A,B);  f:inj(B,C)  |] ==> (f O g):inj(A,C)
  1308 \tdx{comp_surj}        [| g:surj(A,B); f:surj(B,C) |] ==> (f O g):surj(A,C)
  1309 \tdx{comp_bij}         [| g:bij(A,B); f:bij(B,C) |] ==> (f O g):bij(A,C)
  1310 
  1311 \tdx{left_comp_inverse}     f: inj(A,B) ==> converse(f) O f = id(A)
  1312 \tdx{right_comp_inverse}    f: surj(A,B) ==> f O converse(f) = id(B)
  1313 
  1314 \tdx{bij_disjoint_Un}   
  1315     [| f: bij(A,B);  g: bij(C,D);  A Int C = 0;  B Int D = 0 |] ==> 
  1316     (f Un g) : bij(A Un C, B Un D)
  1317 
  1318 \tdx{restrict_bij}  [| f:inj(A,B);  C<=A |] ==> restrict(f,C): bij(C, f``C)
  1319 \end{ttbox}
  1320 \caption{Permutations} \label{zf-perm}
  1321 \end{figure}
  1322 
  1323 The theory \thydx{Perm} is concerned with permutations (bijections) and
  1324 related concepts.  These include composition of relations, the identity
  1325 relation, and three specialized function spaces: injective, surjective and
  1326 bijective.  Figure~\ref{zf-perm} displays many of their properties that
  1327 have been proved.  These results are fundamental to a treatment of
  1328 equipollence and cardinality.
  1329 
  1330 Theory \thydx{Univ} defines a `universe' $\texttt{univ}(A)$, which is used by
  1331 the datatype package.  This set contains $A$ and the
  1332 natural numbers.  Vitally, it is closed under finite products: ${\tt
  1333   univ}(A)\times{\tt univ}(A)\subseteq{\tt univ}(A)$.  This theory also
  1334 defines the cumulative hierarchy of axiomatic set theory, which
  1335 traditionally is written $V@\alpha$ for an ordinal~$\alpha$.  The
  1336 `universe' is a simple generalization of~$V@\omega$.
  1337 
  1338 Theory \thydx{QUniv} defines a `universe' ${\tt quniv}(A)$, which is used by
  1339 the datatype package to construct codatatypes such as streams.  It is
  1340 analogous to ${\tt univ}(A)$ (and is defined in terms of it) but is closed
  1341 under the non-standard product and sum.
  1342 
  1343 
  1344 \section{Automatic Tools}
  1345 
  1346 {\ZF} provides the simplifier and the classical reasoner.   Moreover it
  1347 supplies a specialized tool to infer `types' of terms.
  1348 
  1349 \subsection{Simplification}
  1350 
  1351 {\ZF} inherits simplification from {\FOL} but adopts it for set theory.  The
  1352 extraction of rewrite rules takes the {\ZF} primitives into account.  It can
  1353 strip bounded universal quantifiers from a formula; for example, ${\forall
  1354   x\in A. f(x)=g(x)}$ yields the conditional rewrite rule $x\in A \Imp
  1355 f(x)=g(x)$.  Given $a\in\{x\in A. P(x)\}$ it extracts rewrite rules from $a\in
  1356 A$ and~$P(a)$.  It can also break down $a\in A\int B$ and $a\in A-B$.
  1357 
  1358 Simplification tactics tactics such as \texttt{Asm_simp_tac} and
  1359 \texttt{Full_simp_tac} use the default simpset (\texttt{simpset()}), which
  1360 works for most purposes.  A small simplification set for set theory is
  1361 called~\ttindexbold{ZF_ss}, and you can even use \ttindex{FOL_ss} as a minimal
  1362 starting point.  \texttt{ZF_ss} contains congruence rules for all the binding
  1363 operators of {\ZF}\@.  It contains all the conversion rules, such as
  1364 \texttt{fst} and \texttt{snd}, as well as the rewrites shown in
  1365 Fig.\ts\ref{zf-simpdata}.  See the file \texttt{ZF/simpdata.ML} for a fuller
  1366 list.
  1367 
  1368 
  1369 \subsection{Classical Reasoning}
  1370 
  1371 As for the classical reasoner, tactics such as \texttt{Blast_tac} and {\tt
  1372   Best_tac} refer to the default claset (\texttt{claset()}).  This works for
  1373 most purposes.  Named clasets include \ttindexbold{ZF_cs} (basic set theory)
  1374 and \ttindexbold{le_cs} (useful for reasoning about the relations $<$ and
  1375 $\le$).  You can use \ttindex{FOL_cs} as a minimal basis for building your own
  1376 clasets.  See \iflabelundefined{chap:classical}{the {\em Reference Manual\/}}%
  1377 {Chap.\ts\ref{chap:classical}} for more discussion of classical proof methods.
  1378 
  1379 
  1380 \begin{figure}
  1381 \begin{eqnarray*}
  1382   a\in \emptyset        & \bimp &  \bot\\
  1383   a \in A \un B      & \bimp &  a\in A \disj a\in B\\
  1384   a \in A \int B      & \bimp &  a\in A \conj a\in B\\
  1385   a \in A-B             & \bimp &  a\in A \conj \neg (a\in B)\\
  1386   \pair{a,b}\in {\tt Sigma}(A,B)
  1387                         & \bimp &  a\in A \conj b\in B(a)\\
  1388   a \in {\tt Collect}(A,P)      & \bimp &  a\in A \conj P(a)\\
  1389   (\forall x \in \emptyset. P(x)) & \bimp &  \top\\
  1390   (\forall x \in A. \top)       & \bimp &  \top
  1391 \end{eqnarray*}
  1392 \caption{Some rewrite rules for set theory} \label{zf-simpdata}
  1393 \end{figure}
  1394 
  1395 
  1396 \subsection{Type-Checking Tactics}
  1397 \index{type-checking tactics}
  1398 
  1399 Isabelle/{\ZF} provides simple tactics to help automate those proofs that are
  1400 essentially type-checking.  Such proofs are built by applying rules such as
  1401 these:
  1402 \begin{ttbox}
  1403 [| ?P ==> ?a: ?A; ~?P ==> ?b: ?A |] ==> (if ?P then ?a else ?b): ?A
  1404 
  1405 [| ?m : nat; ?n : nat |] ==> ?m #+ ?n : nat
  1406 
  1407 ?a : ?A ==> Inl(?a) : ?A + ?B  
  1408 \end{ttbox}
  1409 In typical applications, the goal has the form $t\in\Var{A}$: in other words,
  1410 we have a specific term~$t$ and need to infer its `type' by instantiating the
  1411 set variable~$\Var{A}$.  Neither the simplifier nor the classical reasoner
  1412 does this job well.  The if-then-else rule, and many similar ones, can make
  1413 the classical reasoner loop.  The simplifier refuses (on principle) to
  1414 instantiate variables during rewriting, so goals such as \texttt{i\#+j :\ ?A}
  1415 are left unsolved.
  1416 
  1417 The simplifier calls the type-checker to solve rewritten subgoals: this stage
  1418 can indeed instantiate variables.  If you have defined new constants and
  1419 proved type-checking rules for them, then insert the rules using
  1420 \texttt{AddTCs} and the rest should be automatic.  In particular, the
  1421 simplifier will use type-checking to help satisfy conditional rewrite rules.
  1422 Call the tactic \ttindex{Typecheck_tac} to break down all subgoals using
  1423 type-checking rules.
  1424 
  1425 Though the easiest way to invoke the type-checker is via the simplifier,
  1426 specialized applications may require more detailed knowledge of
  1427 the type-checking primitives.  They are modelled on the simplifier's:
  1428 \begin{ttdescription}
  1429 \item[\ttindexbold{tcset}] is the type of tcsets: sets of type-checking rules.
  1430 
  1431 \item[\ttindexbold{addTCs}] is an infix operator to add type-checking rules to
  1432   a tcset.
  1433   
  1434 \item[\ttindexbold{delTCs}] is an infix operator to remove type-checking rules
  1435   from a tcset.
  1436 
  1437 \item[\ttindexbold{typecheck_tac}] is a tactic for attempting to prove all
  1438   subgoals using the rules given in its argument, a tcset.
  1439 \end{ttdescription}
  1440 
  1441 Tcsets, like simpsets, are associated with theories and are merged when
  1442 theories are merged.  There are further primitives that use the default tcset.
  1443 \begin{ttdescription}
  1444 \item[\ttindexbold{tcset}] is a function to return the default tcset; use the
  1445   expression \texttt{tcset()}.
  1446 
  1447 \item[\ttindexbold{AddTCs}] adds type-checking rules to the default tcset.
  1448   
  1449 \item[\ttindexbold{DelTCs}] removes type-checking rules from the default
  1450   tcset.
  1451 
  1452 \item[\ttindexbold{Typecheck_tac}] calls \texttt{typecheck_tac} using the
  1453   default tcset.
  1454 \end{ttdescription}
  1455 
  1456 To supply some type-checking rules temporarily, using \texttt{Addrules} and
  1457 later \texttt{Delrules} is the simplest way.  There is also a high-tech
  1458 approach.  Call the simplifier with a new solver expressed using
  1459 \ttindexbold{type_solver_tac} and your temporary type-checking rules.
  1460 \begin{ttbox}
  1461 by (asm_simp_tac 
  1462      (simpset() setSolver type_solver_tac (tcset() addTCs prems)) 2);
  1463 \end{ttbox}
  1464 
  1465 
  1466 \section{Natural number and integer arithmetic}
  1467 
  1468 \index{arithmetic|(}
  1469 
  1470 \begin{figure}\small
  1471 \index{#*@{\tt\#*} symbol}
  1472 \index{*div symbol}
  1473 \index{*mod symbol}
  1474 \index{#+@{\tt\#+} symbol}
  1475 \index{#-@{\tt\#-} symbol}
  1476 \begin{constants}
  1477   \it symbol  & \it meta-type & \it priority & \it description \\ 
  1478   \cdx{nat}     & $i$                   &       & set of natural numbers \\
  1479   \cdx{nat_case}& $[i,i\To i,i]\To i$     &     & conditional for $nat$\\
  1480   \tt \#*       & $[i,i]\To i$  &  Left 70      & multiplication \\
  1481   \tt div       & $[i,i]\To i$  &  Left 70      & division\\
  1482   \tt mod       & $[i,i]\To i$  &  Left 70      & modulus\\
  1483   \tt \#+       & $[i,i]\To i$  &  Left 65      & addition\\
  1484   \tt \#-       & $[i,i]\To i$  &  Left 65      & subtraction
  1485 \end{constants}
  1486 
  1487 \begin{ttbox}
  1488 \tdx{nat_def}  nat == lfp(lam r: Pow(Inf). {\ttlbrace}0{\ttrbrace} Un {\ttlbrace}succ(x). x:r{\ttrbrace}
  1489 
  1490 \tdx{nat_case_def}  nat_case(a,b,k) == 
  1491               THE y. k=0 & y=a | (EX x. k=succ(x) & y=b(x))
  1492 
  1493 \tdx{nat_0I}           0 : nat
  1494 \tdx{nat_succI}        n : nat ==> succ(n) : nat
  1495 
  1496 \tdx{nat_induct}        
  1497     [| n: nat;  P(0);  !!x. [| x: nat;  P(x) |] ==> P(succ(x)) 
  1498     |] ==> P(n)
  1499 
  1500 \tdx{nat_case_0}      nat_case(a,b,0) = a
  1501 \tdx{nat_case_succ}   nat_case(a,b,succ(m)) = b(m)
  1502 
  1503 \tdx{add_0_natify}     0 #+ n = natify(n)
  1504 \tdx{add_succ}         succ(m) #+ n = succ(m #+ n)
  1505 
  1506 \tdx{mult_type}        m #* n : nat
  1507 \tdx{mult_0}           0 #* n = 0
  1508 \tdx{mult_succ}        succ(m) #* n = n #+ (m #* n)
  1509 \tdx{mult_commute}     m #* n = n #* m
  1510 \tdx{add_mult_dist}    (m #+ n) #* k = (m #* k) #+ (n #* k)
  1511 \tdx{mult_assoc}       (m #* n) #* k = m #* (n #* k)
  1512 \tdx{mod_div_equality} m: nat ==> (m div n)#*n #+ m mod n = m
  1513 \end{ttbox}
  1514 \caption{The natural numbers} \label{zf-nat}
  1515 \end{figure}
  1516 
  1517 \index{natural numbers}
  1518 
  1519 Theory \thydx{Nat} defines the natural numbers and mathematical
  1520 induction, along with a case analysis operator.  The set of natural
  1521 numbers, here called \texttt{nat}, is known in set theory as the ordinal~$\omega$.
  1522 
  1523 Theory \thydx{Arith} develops arithmetic on the natural numbers
  1524 (Fig.\ts\ref{zf-nat}).  Addition, multiplication and subtraction are defined
  1525 by primitive recursion.  Division and remainder are defined by repeated
  1526 subtraction, which requires well-founded recursion; the termination argument
  1527 relies on the divisor's being non-zero.  Many properties are proved:
  1528 commutative, associative and distributive laws, identity and cancellation
  1529 laws, etc.  The most interesting result is perhaps the theorem $a \bmod b +
  1530 (a/b)\times b = a$.
  1531 
  1532 To minimize the need for tedious proofs of $t\in\texttt{nat}$, the arithmetic
  1533 operators coerce their arguments to be natural numbers.  The function
  1534 \cdx{natify} is defined such that $\texttt{natify}(n) = n$ if $n$ is a natural
  1535 number, $\texttt{natify}(\texttt{succ}(x)) =
  1536 \texttt{succ}(\texttt{natify}(x))$ for all $x$, and finally
  1537 $\texttt{natify}(x)=0$ in all other cases.  The benefit is that the addition,
  1538 subtraction, multiplication, division and remainder operators always return
  1539 natural numbers, regardless of their arguments.  Algebraic laws (commutative,
  1540 associative, distributive) are unconditional.  Occurrences of \texttt{natify}
  1541 as operands of those operators are simplified away.  Any remaining occurrences
  1542 can either be tolerated or else eliminated by proving that the argument is a
  1543 natural number.
  1544 
  1545 The simplifier automatically cancels common terms on the opposite sides of
  1546 subtraction and of relations ($=$, $<$ and $\le$).  Here is an example:
  1547 \begin{ttbox}
  1548  1. i #+ j #+ k #- j < k #+ l
  1549 > by (Simp_tac 1);
  1550  1. natify(i) < natify(l)
  1551 \end{ttbox}
  1552 Given the assumptions \texttt{i:nat} and \texttt{l:nat}, both occurrences of
  1553 \cdx{natify} would be simplified away.
  1554 
  1555 
  1556 \begin{figure}\small
  1557 \index{$*@{\tt\$*} symbol}
  1558 \index{$+@{\tt\$+} symbol}
  1559 \index{$-@{\tt\$-} symbol}
  1560 \begin{constants}
  1561   \it symbol  & \it meta-type & \it priority & \it description \\ 
  1562   \cdx{int}     & $i$                   &       & set of integers \\
  1563   \tt \$*       & $[i,i]\To i$  &  Left 70      & multiplication \\
  1564   \tt \$+       & $[i,i]\To i$  &  Left 65      & addition\\
  1565   \tt \$-       & $[i,i]\To i$  &  Left 65      & subtraction\\
  1566   \tt \$<       & $[i,i]\To o$  &  Left 50      & $<$ on integers\\
  1567   \tt \$<=      & $[i,i]\To o$  &  Left 50      & $\le$ on integers
  1568 \end{constants}
  1569 
  1570 \begin{ttbox}
  1571 \tdx{zadd_0_intify}     0 $+ n = intify(n)
  1572 
  1573 \tdx{zmult_type}        m $* n : int
  1574 \tdx{zmult_0}           0 $* n = 0
  1575 \tdx{zmult_commute}     m $* n = n $* m
  1576 \tdx{zadd_zmult_dist}    (m $+ n) $* k = (m $* k) $+ (n $* k)
  1577 \tdx{zmult_assoc}       (m $* n) $* k = m $* (n $* k)
  1578 \end{ttbox}
  1579 \caption{The integers} \label{zf-int}
  1580 \end{figure}
  1581 
  1582 
  1583 \index{integers}
  1584 
  1585 Theory \thydx{Int} defines the integers, as equivalence classes of natural
  1586 numbers.   Figure~\ref{zf-int} presents a tidy collection of laws.  In
  1587 fact, a large library of facts is proved, including monotonicity laws for
  1588 addition and multiplication, covering both positive and negative operands.  
  1589 
  1590 As with the natural numbers, the need for typing proofs is minimized.  All the
  1591 operators defined in Fig.\ts\ref{zf-int} coerce their operands to integers by
  1592 applying the function \cdx{intify}.  This function is the identity on integers
  1593 and maps other operands to zero.
  1594 
  1595 Decimal notation is provided for the integers.  Numbers, written as
  1596 \texttt{\#$nnn$} or \texttt{\#-$nnn$}, are represented internally in
  1597 two's-complement binary.  Expressions involving addition, subtraction and
  1598 multiplication of numeral constants are evaluated (with acceptable efficiency)
  1599 by simplification.  The simplifier also collects similar terms, multiplying
  1600 them by a numerical coefficient.  It also cancels occurrences of the same
  1601 terms on the other side of the relational operators.  Example:
  1602 \begin{ttbox}
  1603  1. y $+ z $+ #-3 $* x $+ y $<= x $* #2 $+ z
  1604 > by (Simp_tac 1);
  1605  1. #2 $* y $<= #5 $* x
  1606 \end{ttbox}
  1607 For more information on the integers, please see the theories on directory
  1608 \texttt{ZF/Integ}. 
  1609 
  1610 \index{arithmetic|)}
  1611 
  1612 
  1613 \section{Datatype definitions}
  1614 \label{sec:ZF:datatype}
  1615 \index{*datatype|(}
  1616 
  1617 The \ttindex{datatype} definition package of \ZF\ constructs inductive
  1618 datatypes similar to those of \ML.  It can also construct coinductive
  1619 datatypes (codatatypes), which are non-well-founded structures such as
  1620 streams.  It defines the set using a fixed-point construction and proves
  1621 induction rules, as well as theorems for recursion and case combinators.  It
  1622 supplies mechanisms for reasoning about freeness.  The datatype package can
  1623 handle both mutual and indirect recursion.
  1624 
  1625 
  1626 \subsection{Basics}
  1627 \label{subsec:datatype:basics}
  1628 
  1629 A \texttt{datatype} definition has the following form:
  1630 \[
  1631 \begin{array}{llcl}
  1632 \mathtt{datatype} & t@1(A@1,\ldots,A@h) & = &
  1633   constructor^1@1 ~\mid~ \ldots ~\mid~ constructor^1@{k@1} \\
  1634  & & \vdots \\
  1635 \mathtt{and} & t@n(A@1,\ldots,A@h) & = &
  1636   constructor^n@1~ ~\mid~ \ldots ~\mid~ constructor^n@{k@n}
  1637 \end{array}
  1638 \]
  1639 Here $t@1$, \ldots,~$t@n$ are identifiers and $A@1$, \ldots,~$A@h$ are
  1640 variables: the datatype's parameters.  Each constructor specification has the
  1641 form \dquotesoff
  1642 \[ C \hbox{\tt~( } \hbox{\tt"} x@1 \hbox{\tt:} T@1 \hbox{\tt"},\;
  1643                    \ldots,\;
  1644                    \hbox{\tt"} x@m \hbox{\tt:} T@m \hbox{\tt"}
  1645      \hbox{\tt~)}
  1646 \]
  1647 Here $C$ is the constructor name, and variables $x@1$, \ldots,~$x@m$ are the
  1648 constructor arguments, belonging to the sets $T@1$, \ldots, $T@m$,
  1649 respectively.  Typically each $T@j$ is either a constant set, a datatype
  1650 parameter (one of $A@1$, \ldots, $A@h$) or a recursive occurrence of one of
  1651 the datatypes, say $t@i(A@1,\ldots,A@h)$.  More complex possibilities exist,
  1652 but they are much harder to realize.  Often, additional information must be
  1653 supplied in the form of theorems.
  1654 
  1655 A datatype can occur recursively as the argument of some function~$F$.  This
  1656 is called a {\em nested} (or \emph{indirect}) occurrence.  It is only allowed
  1657 if the datatype package is given a theorem asserting that $F$ is monotonic.
  1658 If the datatype has indirect occurrences, then Isabelle/ZF does not support
  1659 recursive function definitions.
  1660 
  1661 A simple example of a datatype is \texttt{list}, which is built-in, and is
  1662 defined by
  1663 \begin{ttbox}
  1664 consts     list :: i=>i
  1665 datatype  "list(A)" = Nil | Cons ("a:A", "l: list(A)")
  1666 \end{ttbox}
  1667 Note that the datatype operator must be declared as a constant first.
  1668 However, the package declares the constructors.  Here, \texttt{Nil} gets type
  1669 $i$ and \texttt{Cons} gets type $[i,i]\To i$.
  1670 
  1671 Trees and forests can be modelled by the mutually recursive datatype
  1672 definition
  1673 \begin{ttbox}
  1674 consts     tree, forest, tree_forest :: i=>i
  1675 datatype  "tree(A)"   = Tcons ("a: A",  "f: forest(A)")
  1676 and       "forest(A)" = Fnil  |  Fcons ("t: tree(A)",  "f: forest(A)")
  1677 \end{ttbox}
  1678 Here $\texttt{tree}(A)$ is the set of trees over $A$, $\texttt{forest}(A)$ is
  1679 the set of forests over $A$, and  $\texttt{tree_forest}(A)$ is the union of
  1680 the previous two sets.  All three operators must be declared first.
  1681 
  1682 The datatype \texttt{term}, which is defined by
  1683 \begin{ttbox}
  1684 consts     term :: i=>i
  1685 datatype  "term(A)" = Apply ("a: A", "l: list(term(A))")
  1686   monos "[list_mono]"
  1687 \end{ttbox}
  1688 is an example of nested recursion.  (The theorem \texttt{list_mono} is proved
  1689 in file \texttt{List.ML}, and the \texttt{term} example is devaloped in theory
  1690 \thydx{ex/Term}.)
  1691 
  1692 \subsubsection{Freeness of the constructors}
  1693 
  1694 Constructors satisfy {\em freeness} properties.  Constructions are distinct,
  1695 for example $\texttt{Nil}\not=\texttt{Cons}(a,l)$, and they are injective, for
  1696 example $\texttt{Cons}(a,l)=\texttt{Cons}(a',l') \bimp a=a' \conj l=l'$.
  1697 Because the number of freeness is quadratic in the number of constructors, the
  1698 datatype package does not prove them.  Instead, it ensures that simplification
  1699 will prove them dynamically: when the simplifier encounters a formula
  1700 asserting the equality of two datatype constructors, it performs freeness
  1701 reasoning.  
  1702 
  1703 Freeness reasoning can also be done using the classical reasoner, but it is
  1704 more complicated.  You have to add some safe elimination rules rules to the
  1705 claset.  For the \texttt{list} datatype, they are called
  1706 \texttt{list.free_SEs}.  Occasionally this exposes the underlying
  1707 representation of some constructor, which can be rectified using the command
  1708 \hbox{\tt fold_tac list.con_defs}.
  1709 
  1710 
  1711 \subsubsection{Structural induction}
  1712 
  1713 The datatype package also provides structural induction rules.  For datatypes
  1714 without mutual or nested recursion, the rule has the form exemplified by
  1715 \texttt{list.induct} in Fig.\ts\ref{zf-list}.  For mutually recursive
  1716 datatypes, the induction rule is supplied in two forms.  Consider datatype
  1717 \texttt{TF}.  The rule \texttt{tree_forest.induct} performs induction over a
  1718 single predicate~\texttt{P}, which is presumed to be defined for both trees
  1719 and forests:
  1720 \begin{ttbox}
  1721 [| x : tree_forest(A);
  1722    !!a f. [| a : A; f : forest(A); P(f) |] ==> P(Tcons(a, f)); 
  1723    P(Fnil);
  1724    !!f t. [| t : tree(A); P(t); f : forest(A); P(f) |]
  1725           ==> P(Fcons(t, f)) 
  1726 |] ==> P(x)
  1727 \end{ttbox}
  1728 The rule \texttt{tree_forest.mutual_induct} performs induction over two
  1729 distinct predicates, \texttt{P_tree} and \texttt{P_forest}.
  1730 \begin{ttbox}
  1731 [| !!a f.
  1732       [| a : A; f : forest(A); P_forest(f) |] ==> P_tree(Tcons(a, f));
  1733    P_forest(Fnil);
  1734    !!f t. [| t : tree(A); P_tree(t); f : forest(A); P_forest(f) |]
  1735           ==> P_forest(Fcons(t, f)) 
  1736 |] ==> (ALL za. za : tree(A) --> P_tree(za)) &
  1737     (ALL za. za : forest(A) --> P_forest(za))
  1738 \end{ttbox}
  1739 
  1740 For datatypes with nested recursion, such as the \texttt{term} example from
  1741 above, things are a bit more complicated.  The rule \texttt{term.induct}
  1742 refers to the monotonic operator, \texttt{list}:
  1743 \begin{ttbox}
  1744 [| x : term(A);
  1745    !!a l. [| a: A; l: list(Collect(term(A), P)) |] ==> P(Apply(a, l)) 
  1746 |] ==> P(x)
  1747 \end{ttbox}
  1748 The file \texttt{ex/Term.ML} derives two higher-level induction rules, one of
  1749 which is particularly useful for proving equations:
  1750 \begin{ttbox}
  1751 [| t : term(A);
  1752    !!x zs. [| x : A; zs : list(term(A)); map(f, zs) = map(g, zs) |]
  1753            ==> f(Apply(x, zs)) = g(Apply(x, zs)) 
  1754 |] ==> f(t) = g(t)  
  1755 \end{ttbox}
  1756 How this can be generalized to other nested datatypes is a matter for future
  1757 research.
  1758 
  1759 
  1760 \subsubsection{The \texttt{case} operator}
  1761 
  1762 The package defines an operator for performing case analysis over the
  1763 datatype.  For \texttt{list}, it is called \texttt{list_case} and satisfies
  1764 the equations
  1765 \begin{ttbox}
  1766 list_case(f_Nil, f_Cons, []) = f_Nil
  1767 list_case(f_Nil, f_Cons, Cons(a, l)) = f_Cons(a, l)
  1768 \end{ttbox}
  1769 Here \texttt{f_Nil} is the value to return if the argument is \texttt{Nil} and
  1770 \texttt{f_Cons} is a function that computes the value to return if the
  1771 argument has the form $\texttt{Cons}(a,l)$.  The function can be expressed as
  1772 an abstraction, over patterns if desired (\S\ref{sec:pairs}).
  1773 
  1774 For mutually recursive datatypes, there is a single \texttt{case} operator.
  1775 In the tree/forest example, the constant \texttt{tree_forest_case} handles all
  1776 of the constructors of the two datatypes.
  1777 
  1778 
  1779 
  1780 
  1781 \subsection{Defining datatypes}
  1782 
  1783 The theory syntax for datatype definitions is shown in
  1784 Fig.~\ref{datatype-grammar}.  In order to be well-formed, a datatype
  1785 definition has to obey the rules stated in the previous section.  As a result
  1786 the theory is extended with the new types, the constructors, and the theorems
  1787 listed in the previous section.  The quotation marks are necessary because
  1788 they enclose general Isabelle formul\ae.
  1789 
  1790 \begin{figure}
  1791 \begin{rail}
  1792 datatype : ( 'datatype' | 'codatatype' ) datadecls;
  1793 
  1794 datadecls: ( '"' id arglist '"' '=' (constructor + '|') ) + 'and'
  1795          ;
  1796 constructor : name ( () | consargs )  ( () | ( '(' mixfix ')' ) )
  1797          ;
  1798 consargs : '(' ('"' var ':' term '"' + ',') ')'
  1799          ;
  1800 \end{rail}
  1801 \caption{Syntax of datatype declarations}
  1802 \label{datatype-grammar}
  1803 \end{figure}
  1804 
  1805 Codatatypes are declared like datatypes and are identical to them in every
  1806 respect except that they have a coinduction rule instead of an induction rule.
  1807 Note that while an induction rule has the effect of limiting the values
  1808 contained in the set, a coinduction rule gives a way of constructing new
  1809 values of the set.
  1810 
  1811 Most of the theorems about datatypes become part of the default simpset.  You
  1812 never need to see them again because the simplifier applies them
  1813 automatically.  Induction or exhaustion are usually invoked by hand,
  1814 usually via these special-purpose tactics:
  1815 \begin{ttdescription}
  1816 \item[\ttindexbold{induct_tac} {\tt"}$x${\tt"} $i$] applies structural
  1817   induction on variable $x$ to subgoal $i$, provided the type of $x$ is a
  1818   datatype.  The induction variable should not occur among other assumptions
  1819   of the subgoal.
  1820 \end{ttdescription}
  1821 In some cases, induction is overkill and a case distinction over all
  1822 constructors of the datatype suffices.
  1823 \begin{ttdescription}
  1824 \item[\ttindexbold{exhaust_tac} {\tt"}$x${\tt"} $i$]
  1825  performs an exhaustive case analysis for the variable~$x$.
  1826 \end{ttdescription}
  1827 
  1828 Both tactics can only be applied to a variable, whose typing must be given in
  1829 some assumption, for example the assumption \texttt{x:\ list(A)}.  The tactics
  1830 also work for the natural numbers (\texttt{nat}) and disjoint sums, although
  1831 these sets were not defined using the datatype package.  (Disjoint sums are
  1832 not recursive, so only \texttt{exhaust_tac} is available.)
  1833 
  1834 \bigskip
  1835 Here are some more details for the technically minded.  Processing the
  1836 theory file produces an \ML\ structure which, in addition to the usual
  1837 components, contains a structure named $t$ for each datatype $t$ defined in
  1838 the file.  Each structure $t$ contains the following elements:
  1839 \begin{ttbox}
  1840 val intrs         : thm list  \textrm{the introduction rules}
  1841 val elim          : thm       \textrm{the elimination (case analysis) rule}
  1842 val induct        : thm       \textrm{the standard induction rule}
  1843 val mutual_induct : thm       \textrm{the mutual induction rule, or \texttt{True}}
  1844 val case_eqns     : thm list  \textrm{equations for the case operator}
  1845 val recursor_eqns : thm list  \textrm{equations for the recursor}
  1846 val con_defs      : thm list  \textrm{definitions of the case operator and constructors}
  1847 val free_iffs     : thm list  \textrm{logical equivalences for proving freeness}
  1848 val free_SEs      : thm list  \textrm{elimination rules for proving freeness}
  1849 val mk_free       : string -> thm  \textrm{A function for proving freeness theorems}
  1850 val mk_cases      : string -> thm  \textrm{case analysis, see below}
  1851 val defs          : thm list  \textrm{definitions of operators}
  1852 val bnd_mono      : thm list  \textrm{monotonicity property}
  1853 val dom_subset    : thm list  \textrm{inclusion in `bounding set'}
  1854 \end{ttbox}
  1855 Furthermore there is the theorem $C$\texttt{_I} for every constructor~$C$; for
  1856 example, the \texttt{list} datatype's introduction rules are bound to the
  1857 identifiers \texttt{Nil_I} and \texttt{Cons_I}.
  1858 
  1859 For a codatatype, the component \texttt{coinduct} is the coinduction rule,
  1860 replacing the \texttt{induct} component.
  1861 
  1862 See the theories \texttt{ex/Ntree} and \texttt{ex/Brouwer} for examples of
  1863 infinitely branching datatypes.  See theory \texttt{ex/LList} for an example
  1864 of a codatatype.  Some of these theories illustrate the use of additional,
  1865 undocumented features of the datatype package.  Datatype definitions are
  1866 reduced to inductive definitions, and the advanced features should be
  1867 understood in that light.
  1868 
  1869 
  1870 \subsection{Examples}
  1871 
  1872 \subsubsection{The datatype of binary trees}
  1873 
  1874 Let us define the set $\texttt{bt}(A)$ of binary trees over~$A$.  The theory
  1875 must contain these lines:
  1876 \begin{ttbox}
  1877 consts   bt :: i=>i
  1878 datatype "bt(A)"  =  Lf  |  Br ("a: A",  "t1: bt(A)",  "t2: bt(A)")
  1879 \end{ttbox}
  1880 After loading the theory, we can prove, for example, that no tree equals its
  1881 left branch.  To ease the induction, we state the goal using quantifiers.
  1882 \begin{ttbox}
  1883 Goal "l : bt(A) ==> ALL x r. Br(x,l,r) ~= l";
  1884 {\out Level 0}
  1885 {\out l : bt(A) ==> ALL x r. Br(x, l, r) ~= l}
  1886 {\out  1. l : bt(A) ==> ALL x r. Br(x, l, r) ~= l}
  1887 \end{ttbox}
  1888 This can be proved by the structural induction tactic:
  1889 \begin{ttbox}
  1890 by (induct_tac "l" 1);
  1891 {\out Level 1}
  1892 {\out l : bt(A) ==> ALL x r. Br(x, l, r) ~= l}
  1893 {\out  1. ALL x r. Br(x, Lf, r) ~= Lf}
  1894 {\out  2. !!a t1 t2.}
  1895 {\out        [| a : A; t1 : bt(A);}
  1896 {\out           ALL x r. Br(x, t1, r) ~= t1; t2 : bt(A);}
  1897 {\out           ALL x r. Br(x, t2, r) ~= t2 |]}
  1898 {\out        ==> ALL x r. Br(x, Br(a, t1, t2), r) ~= Br(a, t1, t2)}
  1899 \end{ttbox}
  1900 Both subgoals are proved using \texttt{Auto_tac}, which performs the necessary
  1901 freeness reasoning. 
  1902 \begin{ttbox}
  1903 by Auto_tac;
  1904 {\out Level 2}
  1905 {\out l : bt(A) ==> ALL x r. Br(x, l, r) ~= l}
  1906 {\out No subgoals!}
  1907 \end{ttbox}
  1908 To remove the quantifiers from the induction formula, we save the theorem using
  1909 \ttindex{qed_spec_mp}.
  1910 \begin{ttbox}
  1911 qed_spec_mp "Br_neq_left";
  1912 {\out val Br_neq_left = "?l : bt(?A) ==> Br(?x, ?l, ?r) ~= ?l" : thm}
  1913 \end{ttbox}
  1914 
  1915 When there are only a few constructors, we might prefer to prove the freenness
  1916 theorems for each constructor.  This is trivial, using the function given us
  1917 for that purpose:
  1918 \begin{ttbox}
  1919 val Br_iff = 
  1920     bt.mk_free "Br(a,l,r)=Br(a',l',r') <-> a=a' & l=l' & r=r'";
  1921 {\out val Br_iff =}
  1922 {\out   "Br(?a, ?l, ?r) = Br(?a', ?l', ?r') <->}
  1923 {\out                     ?a = ?a' & ?l = ?l' & ?r = ?r'" : thm}
  1924 \end{ttbox}
  1925 
  1926 The purpose of \ttindex{mk_cases} is to generate instances of the elimination
  1927 (case analysis) rule that have been simplified using freeness reasoning.  For
  1928 example, this instance of the elimination rule propagates type-checking
  1929 information from the premise $\texttt{Br}(a,l,r)\in\texttt{bt}(A)$:
  1930 \begin{ttbox}
  1931 val BrE = bt.mk_cases "Br(a,l,r) : bt(A)";
  1932 {\out val BrE =}
  1933 {\out   "[| Br(?a, ?l, ?r) : bt(?A);}
  1934 {\out       [| ?a : ?A; ?l : bt(?A); ?r : bt(?A) |] ==> ?Q |]}
  1935 {\out    ==> ?Q" : thm}
  1936 \end{ttbox}
  1937 
  1938 
  1939 \subsubsection{Mixfix syntax in datatypes}
  1940 
  1941 Mixfix syntax is sometimes convenient.  The theory \texttt{ex/PropLog} makes a
  1942 deep embedding of propositional logic:
  1943 \begin{ttbox}
  1944 consts     prop :: i
  1945 datatype  "prop" = Fls
  1946                  | Var ("n: nat")                ("#_" [100] 100)
  1947                  | "=>" ("p: prop", "q: prop")   (infixr 90)
  1948 \end{ttbox}
  1949 The second constructor has a special $\#n$ syntax, while the third constructor
  1950 is an infixed arrow.
  1951 
  1952 
  1953 \subsubsection{A giant enumeration type}
  1954 
  1955 This example shows a datatype that consists of 60 constructors:
  1956 \begin{ttbox}
  1957 consts  enum :: i
  1958 datatype
  1959   "enum" = C00 | C01 | C02 | C03 | C04 | C05 | C06 | C07 | C08 | C09
  1960          | C10 | C11 | C12 | C13 | C14 | C15 | C16 | C17 | C18 | C19
  1961          | C20 | C21 | C22 | C23 | C24 | C25 | C26 | C27 | C28 | C29
  1962          | C30 | C31 | C32 | C33 | C34 | C35 | C36 | C37 | C38 | C39
  1963          | C40 | C41 | C42 | C43 | C44 | C45 | C46 | C47 | C48 | C49
  1964          | C50 | C51 | C52 | C53 | C54 | C55 | C56 | C57 | C58 | C59
  1965 end
  1966 \end{ttbox}
  1967 The datatype package scales well.  Even though all properties are proved
  1968 rather than assumed, full processing of this definition takes under 15 seconds
  1969 (on a 300 MHz Pentium).  The constructors have a balanced representation,
  1970 essentially binary notation, so freeness properties can be proved fast.
  1971 \begin{ttbox}
  1972 Goal "C00 ~= C01";
  1973 by (Simp_tac 1);
  1974 \end{ttbox}
  1975 You need not derive such inequalities explicitly.  The simplifier will dispose
  1976 of them automatically.
  1977 
  1978 \index{*datatype|)}
  1979 
  1980 
  1981 \subsection{Recursive function definitions}\label{sec:ZF:recursive}
  1982 \index{recursive functions|see{recursion}}
  1983 \index{*primrec|(}
  1984 \index{recursion!primitive|(}
  1985 
  1986 Datatypes come with a uniform way of defining functions, {\bf primitive
  1987   recursion}.  Such definitions rely on the recursion operator defined by the
  1988 datatype package.  Isabelle proves the desired recursion equations as
  1989 theorems.
  1990 
  1991 In principle, one could introduce primitive recursive functions by asserting
  1992 their reduction rules as new axioms.  Here is a dangerous way of defining the
  1993 append function for lists:
  1994 \begin{ttbox}\slshape
  1995 consts  "\at" :: [i,i]=>i                        (infixr 60)
  1996 rules 
  1997    app_Nil   "[] \at ys = ys"
  1998    app_Cons  "(Cons(a,l)) \at ys = Cons(a, l \at ys)"
  1999 \end{ttbox}
  2000 Asserting axioms brings the danger of accidentally asserting nonsense.  It
  2001 should be avoided at all costs!
  2002 
  2003 The \ttindex{primrec} declaration is a safe means of defining primitive
  2004 recursive functions on datatypes:
  2005 \begin{ttbox}
  2006 consts  "\at" :: [i,i]=>i                        (infixr 60)
  2007 primrec 
  2008    "[] \at ys = ys"
  2009    "(Cons(a,l)) \at ys = Cons(a, l \at ys)"
  2010 \end{ttbox}
  2011 Isabelle will now check that the two rules do indeed form a primitive
  2012 recursive definition.  For example, the declaration
  2013 \begin{ttbox}
  2014 primrec
  2015    "[] \at ys = us"
  2016 \end{ttbox}
  2017 is rejected with an error message ``\texttt{Extra variables on rhs}''.
  2018 
  2019 
  2020 \subsubsection{Syntax of recursive definitions}
  2021 
  2022 The general form of a primitive recursive definition is
  2023 \begin{ttbox}
  2024 primrec
  2025     {\it reduction rules}
  2026 \end{ttbox}
  2027 where \textit{reduction rules} specify one or more equations of the form
  2028 \[ f \, x@1 \, \dots \, x@m \, (C \, y@1 \, \dots \, y@k) \, z@1 \,
  2029 \dots \, z@n = r \] such that $C$ is a constructor of the datatype, $r$
  2030 contains only the free variables on the left-hand side, and all recursive
  2031 calls in $r$ are of the form $f \, \dots \, y@i \, \dots$ for some $i$.  
  2032 There must be at most one reduction rule for each constructor.  The order is
  2033 immaterial.  For missing constructors, the function is defined to return zero.
  2034 
  2035 All reduction rules are added to the default simpset.
  2036 If you would like to refer to some rule by name, then you must prefix
  2037 the rule with an identifier.  These identifiers, like those in the
  2038 \texttt{rules} section of a theory, will be visible at the \ML\ level.
  2039 
  2040 The reduction rules for {\tt\at} become part of the default simpset, which
  2041 leads to short proof scripts:
  2042 \begin{ttbox}\underscoreon
  2043 Goal "xs: list(A) ==> (xs @ ys) @ zs = xs @ (ys @ zs)";
  2044 by (induct\_tac "xs" 1);
  2045 by (ALLGOALS Asm\_simp\_tac);
  2046 \end{ttbox}
  2047 
  2048 You can even use the \texttt{primrec} form with non-recursive datatypes and
  2049 with codatatypes.  Recursion is not allowed, but it provides a convenient
  2050 syntax for defining functions by cases.
  2051 
  2052 
  2053 \subsubsection{Example: varying arguments}
  2054 
  2055 All arguments, other than the recursive one, must be the same in each equation
  2056 and in each recursive call.  To get around this restriction, use explict
  2057 $\lambda$-abstraction and function application.  Here is an example, drawn
  2058 from the theory \texttt{Resid/Substitution}.  The type of redexes is declared
  2059 as follows:
  2060 \begin{ttbox}
  2061 consts  redexes :: i
  2062 datatype
  2063   "redexes" = Var ("n: nat")            
  2064             | Fun ("t: redexes")
  2065             | App ("b:bool" ,"f:redexes" , "a:redexes")
  2066 \end{ttbox}
  2067 
  2068 The function \texttt{lift} takes a second argument, $k$, which varies in
  2069 recursive calls.
  2070 \begin{ttbox}
  2071 primrec
  2072   "lift(Var(i)) = (lam k:nat. if i<k then Var(i) else Var(succ(i)))"
  2073   "lift(Fun(t)) = (lam k:nat. Fun(lift(t) ` succ(k)))"
  2074   "lift(App(b,f,a)) = (lam k:nat. App(b, lift(f)`k, lift(a)`k))"
  2075 \end{ttbox}
  2076 Now \texttt{lift(r)`k} satisfies the required recursion equations.
  2077 
  2078 \index{recursion!primitive|)}
  2079 \index{*primrec|)}
  2080 
  2081 
  2082 \section{Inductive and coinductive definitions}
  2083 \index{*inductive|(}
  2084 \index{*coinductive|(}
  2085 
  2086 An {\bf inductive definition} specifies the least set~$R$ closed under given
  2087 rules.  (Applying a rule to elements of~$R$ yields a result within~$R$.)  For
  2088 example, a structural operational semantics is an inductive definition of an
  2089 evaluation relation.  Dually, a {\bf coinductive definition} specifies the
  2090 greatest set~$R$ consistent with given rules.  (Every element of~$R$ can be
  2091 seen as arising by applying a rule to elements of~$R$.)  An important example
  2092 is using bisimulation relations to formalise equivalence of processes and
  2093 infinite data structures.
  2094 
  2095 A theory file may contain any number of inductive and coinductive
  2096 definitions.  They may be intermixed with other declarations; in
  2097 particular, the (co)inductive sets {\bf must} be declared separately as
  2098 constants, and may have mixfix syntax or be subject to syntax translations.
  2099 
  2100 Each (co)inductive definition adds definitions to the theory and also
  2101 proves some theorems.  Each definition creates an \ML\ structure, which is a
  2102 substructure of the main theory structure.
  2103 This package is described in detail in a separate paper,%
  2104 \footnote{It appeared in CADE~\cite{paulson-CADE}; a longer version is
  2105   distributed with Isabelle as \emph{A Fixedpoint Approach to 
  2106  (Co)Inductive and (Co)Datatype Definitions}.}  %
  2107 which you might refer to for background information.
  2108 
  2109 
  2110 \subsection{The syntax of a (co)inductive definition}
  2111 An inductive definition has the form
  2112 \begin{ttbox}
  2113 inductive
  2114   domains    {\it domain declarations}
  2115   intrs      {\it introduction rules}
  2116   monos      {\it monotonicity theorems}
  2117   con_defs   {\it constructor definitions}
  2118   type_intrs {\it introduction rules for type-checking}
  2119   type_elims {\it elimination rules for type-checking}
  2120 \end{ttbox}
  2121 A coinductive definition is identical, but starts with the keyword
  2122 {\tt co\-inductive}.  
  2123 
  2124 The {\tt monos}, {\tt con\_defs}, {\tt type\_intrs} and {\tt type\_elims}
  2125 sections are optional.  If present, each is specified either as a list of
  2126 identifiers or as a string.  If the latter, then the string must be a valid
  2127 \textsc{ml} expression of type {\tt thm list}.  The string is simply inserted
  2128 into the {\tt _thy.ML} file; if it is ill-formed, it will trigger \textsc{ml}
  2129 error messages.  You can then inspect the file on the temporary directory.
  2130 
  2131 \begin{description}
  2132 \item[\it domain declarations] are items of the form
  2133   {\it string\/}~{\tt <=}~{\it string}, associating each recursive set with
  2134   its domain.  (The domain is some existing set that is large enough to
  2135   hold the new set being defined.)
  2136 
  2137 \item[\it introduction rules] specify one or more introduction rules in
  2138   the form {\it ident\/}~{\it string}, where the identifier gives the name of
  2139   the rule in the result structure.
  2140 
  2141 \item[\it monotonicity theorems] are required for each operator applied to
  2142   a recursive set in the introduction rules.  There \textbf{must} be a theorem
  2143   of the form $A\subseteq B\Imp M(A)\subseteq M(B)$, for each premise $t\in M(R_i)$
  2144   in an introduction rule!
  2145 
  2146 \item[\it constructor definitions] contain definitions of constants
  2147   appearing in the introduction rules.  The (co)datatype package supplies
  2148   the constructors' definitions here.  Most (co)inductive definitions omit
  2149   this section; one exception is the primitive recursive functions example;
  2150   see theory \texttt{ex/Primrec}.
  2151   
  2152 \item[\it type\_intrs] consists of introduction rules for type-checking the
  2153   definition: for demonstrating that the new set is included in its domain.
  2154   (The proof uses depth-first search.)
  2155 
  2156 \item[\it type\_elims] consists of elimination rules for type-checking the
  2157   definition.  They are presumed to be safe and are applied as often as
  2158   possible prior to the {\tt type\_intrs} search.
  2159 \end{description}
  2160 
  2161 The package has a few restrictions:
  2162 \begin{itemize}
  2163 \item The theory must separately declare the recursive sets as
  2164   constants.
  2165 
  2166 \item The names of the recursive sets must be identifiers, not infix
  2167 operators.  
  2168 
  2169 \item Side-conditions must not be conjunctions.  However, an introduction rule
  2170 may contain any number of side-conditions.
  2171 
  2172 \item Side-conditions of the form $x=t$, where the variable~$x$ does not
  2173   occur in~$t$, will be substituted through the rule \verb|mutual_induct|.
  2174 \end{itemize}
  2175 
  2176 
  2177 \subsection{Example of an inductive definition}
  2178 
  2179 Two declarations, included in a theory file, define the finite powerset
  2180 operator.  First we declare the constant~\texttt{Fin}.  Then we declare it
  2181 inductively, with two introduction rules:
  2182 \begin{ttbox}
  2183 consts  Fin :: i=>i
  2184 
  2185 inductive
  2186   domains   "Fin(A)" <= "Pow(A)"
  2187   intrs
  2188     emptyI  "0 : Fin(A)"
  2189     consI   "[| a: A;  b: Fin(A) |] ==> cons(a,b) : Fin(A)"
  2190   type_intrs empty_subsetI, cons_subsetI, PowI
  2191   type_elims "[make_elim PowD]"
  2192 \end{ttbox}
  2193 The resulting theory structure contains a substructure, called~\texttt{Fin}.
  2194 It contains the \texttt{Fin}$~A$ introduction rules as the list
  2195 \texttt{Fin.intrs}, and also individually as \texttt{Fin.emptyI} and
  2196 \texttt{Fin.consI}.  The induction rule is \texttt{Fin.induct}.
  2197 
  2198 The chief problem with making (co)inductive definitions involves type-checking
  2199 the rules.  Sometimes, additional theorems need to be supplied under
  2200 \texttt{type_intrs} or \texttt{type_elims}.  If the package fails when trying
  2201 to prove your introduction rules, then set the flag \ttindexbold{trace_induct}
  2202 to \texttt{true} and try again.  (See the manual \emph{A Fixedpoint Approach
  2203   \ldots} for more discussion of type-checking.)
  2204 
  2205 In the example above, $\texttt{Pow}(A)$ is given as the domain of
  2206 $\texttt{Fin}(A)$, for obviously every finite subset of~$A$ is a subset
  2207 of~$A$.  However, the inductive definition package can only prove that given a
  2208 few hints.
  2209 Here is the output that results (with the flag set) when the
  2210 \texttt{type_intrs} and \texttt{type_elims} are omitted from the inductive
  2211 definition above:
  2212 \begin{ttbox}
  2213 Inductive definition Finite.Fin
  2214 Fin(A) ==
  2215 lfp(Pow(A),
  2216     \%X. {z: Pow(A) . z = 0 | (EX a b. z = cons(a, b) & a : A & b : X)})
  2217   Proving monotonicity...
  2218 \ttbreak
  2219   Proving the introduction rules...
  2220 The type-checking subgoal:
  2221 0 : Fin(A)
  2222  1. 0 : Pow(A)
  2223 \ttbreak
  2224 The subgoal after monos, type_elims:
  2225 0 : Fin(A)
  2226  1. 0 : Pow(A)
  2227 *** prove_goal: tactic failed
  2228 \end{ttbox}
  2229 We see the need to supply theorems to let the package prove
  2230 $\emptyset\in\texttt{Pow}(A)$.  Restoring the \texttt{type_intrs} but not the
  2231 \texttt{type_elims}, we again get an error message:
  2232 \begin{ttbox}
  2233 The type-checking subgoal:
  2234 0 : Fin(A)
  2235  1. 0 : Pow(A)
  2236 \ttbreak
  2237 The subgoal after monos, type_elims:
  2238 0 : Fin(A)
  2239  1. 0 : Pow(A)
  2240 \ttbreak
  2241 The type-checking subgoal:
  2242 cons(a, b) : Fin(A)
  2243  1. [| a : A; b : Fin(A) |] ==> cons(a, b) : Pow(A)
  2244 \ttbreak
  2245 The subgoal after monos, type_elims:
  2246 cons(a, b) : Fin(A)
  2247  1. [| a : A; b : Pow(A) |] ==> cons(a, b) : Pow(A)
  2248 *** prove_goal: tactic failed
  2249 \end{ttbox}
  2250 The first rule has been type-checked, but the second one has failed.  The
  2251 simplest solution to such problems is to prove the failed subgoal separately
  2252 and to supply it under \texttt{type_intrs}.  The solution actually used is
  2253 to supply, under \texttt{type_elims}, a rule that changes
  2254 $b\in\texttt{Pow}(A)$ to $b\subseteq A$; together with \texttt{cons_subsetI}
  2255 and \texttt{PowI}, it is enough to complete the type-checking.
  2256 
  2257 
  2258 
  2259 \subsection{Further examples}
  2260 
  2261 An inductive definition may involve arbitrary monotonic operators.  Here is a
  2262 standard example: the accessible part of a relation.  Note the use
  2263 of~\texttt{Pow} in the introduction rule and the corresponding mention of the
  2264 rule \verb|Pow_mono| in the \texttt{monos} list.  If the desired rule has a
  2265 universally quantified premise, usually the effect can be obtained using
  2266 \texttt{Pow}.
  2267 \begin{ttbox}
  2268 consts  acc :: i=>i
  2269 inductive
  2270   domains "acc(r)" <= "field(r)"
  2271   intrs
  2272     vimage  "[| r-``{a}: Pow(acc(r)); a: field(r) |] ==> a: acc(r)"
  2273   monos      Pow_mono
  2274 \end{ttbox}
  2275 
  2276 Finally, here is a coinductive definition.  It captures (as a bisimulation)
  2277 the notion of equality on lazy lists, which are first defined as a codatatype:
  2278 \begin{ttbox}
  2279 consts  llist :: i=>i
  2280 codatatype  "llist(A)" = LNil | LCons ("a: A", "l: llist(A)")
  2281 \ttbreak
  2282 
  2283 consts  lleq :: i=>i
  2284 coinductive
  2285   domains "lleq(A)" <= "llist(A) * llist(A)"
  2286   intrs
  2287     LNil  "<LNil, LNil> : lleq(A)"
  2288     LCons "[| a:A; <l,l'>: lleq(A) |] 
  2289            ==> <LCons(a,l), LCons(a,l')>: lleq(A)"
  2290   type_intrs  "llist.intrs"
  2291 \end{ttbox}
  2292 This use of \texttt{type_intrs} is typical: the relation concerns the
  2293 codatatype \texttt{llist}, so naturally the introduction rules for that
  2294 codatatype will be required for type-checking the rules.
  2295 
  2296 The Isabelle distribution contains many other inductive definitions.  Simple
  2297 examples are collected on subdirectory \texttt{ZF/ex}.  The directory
  2298 \texttt{Coind} and the theory \texttt{ZF/ex/LList} contain coinductive
  2299 definitions.  Larger examples may be found on other subdirectories of
  2300 \texttt{ZF}, such as \texttt{IMP}, and \texttt{Resid}.
  2301 
  2302 
  2303 \subsection{The result structure}
  2304 
  2305 Each (co)inductive set defined in a theory file generates an \ML\ substructure
  2306 having the same name.  The the substructure contains the following elements:
  2307 
  2308 \begin{ttbox}
  2309 val intrs         : thm list  \textrm{the introduction rules}
  2310 val elim          : thm       \textrm{the elimination (case analysis) rule}
  2311 val mk_cases      : string -> thm  \textrm{case analysis, see below}
  2312 val induct        : thm       \textrm{the standard induction rule}
  2313 val mutual_induct : thm       \textrm{the mutual induction rule, or \texttt{True}}
  2314 val defs          : thm list  \textrm{definitions of operators}
  2315 val bnd_mono      : thm list  \textrm{monotonicity property}
  2316 val dom_subset    : thm list  \textrm{inclusion in `bounding set'}
  2317 \end{ttbox}
  2318 Furthermore there is the theorem $C$\texttt{_I} for every constructor~$C$; for
  2319 example, the \texttt{list} datatype's introduction rules are bound to the
  2320 identifiers \texttt{Nil_I} and \texttt{Cons_I}.
  2321 
  2322 For a codatatype, the component \texttt{coinduct} is the coinduction rule,
  2323 replacing the \texttt{induct} component.
  2324 
  2325 Recall that \ttindex{mk_cases} generates simplified instances of the
  2326 elimination (case analysis) rule.  It is as useful for inductive definitions
  2327 as it is for datatypes.  There are many examples in the theory
  2328 \texttt{ex/Comb}, which is discussed at length
  2329 elsewhere~\cite{paulson-generic}.  The theory first defines the datatype
  2330 \texttt{comb} of combinators:
  2331 \begin{ttbox}
  2332 consts comb :: i
  2333 datatype  "comb" = K
  2334                  | S
  2335                  | "#" ("p: comb", "q: comb")   (infixl 90)
  2336 \end{ttbox}
  2337 The theory goes on to define contraction and parallel contraction
  2338 inductively.  Then the file \texttt{ex/Comb.ML} defines special cases of
  2339 contraction using \texttt{mk_cases}:
  2340 \begin{ttbox}
  2341 val K_contractE = contract.mk_cases "K -1-> r";
  2342 {\out val K_contractE = "K -1-> ?r ==> ?Q" : thm}
  2343 \end{ttbox}
  2344 We can read this as saying that the combinator \texttt{K} cannot reduce to
  2345 anything.  Similar elimination rules for \texttt{S} and application are also
  2346 generated and are supplied to the classical reasoner.  Note that
  2347 \texttt{comb.con_defs} is given to \texttt{mk_cases} to allow freeness
  2348 reasoning on datatype \texttt{comb}.
  2349 
  2350 \index{*coinductive|)} \index{*inductive|)}
  2351 
  2352 
  2353 
  2354 
  2355 \section{The outer reaches of set theory}
  2356 
  2357 The constructions of the natural numbers and lists use a suite of
  2358 operators for handling recursive function definitions.  I have described
  2359 the developments in detail elsewhere~\cite{paulson-set-II}.  Here is a brief
  2360 summary:
  2361 \begin{itemize}
  2362   \item Theory \texttt{Trancl} defines the transitive closure of a relation
  2363     (as a least fixedpoint).
  2364 
  2365   \item Theory \texttt{WF} proves the Well-Founded Recursion Theorem, using an
  2366     elegant approach of Tobias Nipkow.  This theorem permits general
  2367     recursive definitions within set theory.
  2368 
  2369   \item Theory \texttt{Ord} defines the notions of transitive set and ordinal
  2370     number.  It derives transfinite induction.  A key definition is {\bf
  2371       less than}: $i<j$ if and only if $i$ and $j$ are both ordinals and
  2372     $i\in j$.  As a special case, it includes less than on the natural
  2373     numbers.
  2374     
  2375   \item Theory \texttt{Epsilon} derives $\varepsilon$-induction and
  2376     $\varepsilon$-recursion, which are generalisations of transfinite
  2377     induction and recursion.  It also defines \cdx{rank}$(x)$, which
  2378     is the least ordinal $\alpha$ such that $x$ is constructed at
  2379     stage $\alpha$ of the cumulative hierarchy (thus $x\in
  2380     V@{\alpha+1}$).
  2381 \end{itemize}
  2382 
  2383 Other important theories lead to a theory of cardinal numbers.  They have
  2384 not yet been written up anywhere.  Here is a summary:
  2385 \begin{itemize}
  2386 \item Theory \texttt{Rel} defines the basic properties of relations, such as
  2387   (ir)reflexivity, (a)symmetry, and transitivity.
  2388 
  2389 \item Theory \texttt{EquivClass} develops a theory of equivalence
  2390   classes, not using the Axiom of Choice.
  2391 
  2392 \item Theory \texttt{Order} defines partial orderings, total orderings and
  2393   wellorderings.
  2394 
  2395 \item Theory \texttt{OrderArith} defines orderings on sum and product sets.
  2396   These can be used to define ordinal arithmetic and have applications to
  2397   cardinal arithmetic.
  2398 
  2399 \item Theory \texttt{OrderType} defines order types.  Every wellordering is
  2400   equivalent to a unique ordinal, which is its order type.
  2401 
  2402 \item Theory \texttt{Cardinal} defines equipollence and cardinal numbers.
  2403  
  2404 \item Theory \texttt{CardinalArith} defines cardinal addition and
  2405   multiplication, and proves their elementary laws.  It proves that there
  2406   is no greatest cardinal.  It also proves a deep result, namely
  2407   $\kappa\otimes\kappa=\kappa$ for every infinite cardinal~$\kappa$; see
  2408   Kunen~\cite[page 29]{kunen80}.  None of these results assume the Axiom of
  2409   Choice, which complicates their proofs considerably.  
  2410 \end{itemize}
  2411 
  2412 The following developments involve the Axiom of Choice (AC):
  2413 \begin{itemize}
  2414 \item Theory \texttt{AC} asserts the Axiom of Choice and proves some simple
  2415   equivalent forms.
  2416 
  2417 \item Theory \texttt{Zorn} proves Hausdorff's Maximal Principle, Zorn's Lemma
  2418   and the Wellordering Theorem, following Abrial and
  2419   Laffitte~\cite{abrial93}.
  2420 
  2421 \item Theory \verb|Cardinal_AC| uses AC to prove simplified theorems about
  2422   the cardinals.  It also proves a theorem needed to justify
  2423   infinitely branching datatype declarations: if $\kappa$ is an infinite
  2424   cardinal and $|X(\alpha)| \le \kappa$ for all $\alpha<\kappa$ then
  2425   $|\union\sb{\alpha<\kappa} X(\alpha)| \le \kappa$.
  2426 
  2427 \item Theory \texttt{InfDatatype} proves theorems to justify infinitely
  2428   branching datatypes.  Arbitrary index sets are allowed, provided their
  2429   cardinalities have an upper bound.  The theory also justifies some
  2430   unusual cases of finite branching, involving the finite powerset operator
  2431   and the finite function space operator.
  2432 \end{itemize}
  2433 
  2434 
  2435 
  2436 \section{The examples directories}
  2437 Directory \texttt{HOL/IMP} contains a mechanised version of a semantic
  2438 equivalence proof taken from Winskel~\cite{winskel93}.  It formalises the
  2439 denotational and operational semantics of a simple while-language, then
  2440 proves the two equivalent.  It contains several datatype and inductive
  2441 definitions, and demonstrates their use.
  2442 
  2443 The directory \texttt{ZF/ex} contains further developments in {\ZF} set
  2444 theory.  Here is an overview; see the files themselves for more details.  I
  2445 describe much of this material in other
  2446 publications~\cite{paulson-set-I,paulson-set-II,paulson-CADE}. 
  2447 \begin{itemize}
  2448 \item File \texttt{misc.ML} contains miscellaneous examples such as
  2449   Cantor's Theorem, the Schr\"oder-Bernstein Theorem and the `Composition
  2450   of homomorphisms' challenge~\cite{boyer86}.
  2451 
  2452 \item Theory \texttt{Ramsey} proves the finite exponent 2 version of
  2453   Ramsey's Theorem, following Basin and Kaufmann's
  2454   presentation~\cite{basin91}.
  2455 
  2456 \item Theory \texttt{Integ} develops a theory of the integers as
  2457   equivalence classes of pairs of natural numbers.
  2458 
  2459 \item Theory \texttt{Primrec} develops some computation theory.  It
  2460   inductively defines the set of primitive recursive functions and presents a
  2461   proof that Ackermann's function is not primitive recursive.
  2462 
  2463 \item Theory \texttt{Primes} defines the Greatest Common Divisor of two
  2464   natural numbers and and the ``divides'' relation.
  2465 
  2466 \item Theory \texttt{Bin} defines a datatype for two's complement binary
  2467   integers, then proves rewrite rules to perform binary arithmetic.  For
  2468   instance, $1359\times {-}2468 = {-}3354012$ takes under 14 seconds.
  2469 
  2470 \item Theory \texttt{BT} defines the recursive data structure ${\tt
  2471     bt}(A)$, labelled binary trees.
  2472 
  2473 \item Theory \texttt{Term} defines a recursive data structure for terms
  2474   and term lists.  These are simply finite branching trees.
  2475 
  2476 \item Theory \texttt{TF} defines primitives for solving mutually
  2477   recursive equations over sets.  It constructs sets of trees and forests
  2478   as an example, including induction and recursion rules that handle the
  2479   mutual recursion.
  2480 
  2481 \item Theory \texttt{Prop} proves soundness and completeness of
  2482   propositional logic~\cite{paulson-set-II}.  This illustrates datatype
  2483   definitions, inductive definitions, structural induction and rule
  2484   induction.
  2485 
  2486 \item Theory \texttt{ListN} inductively defines the lists of $n$
  2487   elements~\cite{paulin-tlca}.
  2488 
  2489 \item Theory \texttt{Acc} inductively defines the accessible part of a
  2490   relation~\cite{paulin-tlca}.
  2491 
  2492 \item Theory \texttt{Comb} defines the datatype of combinators and
  2493   inductively defines contraction and parallel contraction.  It goes on to
  2494   prove the Church-Rosser Theorem.  This case study follows Camilleri and
  2495   Melham~\cite{camilleri92}.
  2496 
  2497 \item Theory \texttt{LList} defines lazy lists and a coinduction
  2498   principle for proving equations between them.
  2499 \end{itemize}
  2500 
  2501 
  2502 \section{A proof about powersets}\label{sec:ZF-pow-example}
  2503 To demonstrate high-level reasoning about subsets, let us prove the
  2504 equation ${{\tt Pow}(A)\cap {\tt Pow}(B)}= {\tt Pow}(A\cap B)$.  Compared
  2505 with first-order logic, set theory involves a maze of rules, and theorems
  2506 have many different proofs.  Attempting other proofs of the theorem might
  2507 be instructive.  This proof exploits the lattice properties of
  2508 intersection.  It also uses the monotonicity of the powerset operation,
  2509 from \texttt{ZF/mono.ML}:
  2510 \begin{ttbox}
  2511 \tdx{Pow_mono}      A<=B ==> Pow(A) <= Pow(B)
  2512 \end{ttbox}
  2513 We enter the goal and make the first step, which breaks the equation into
  2514 two inclusions by extensionality:\index{*equalityI theorem}
  2515 \begin{ttbox}
  2516 Goal "Pow(A Int B) = Pow(A) Int Pow(B)";
  2517 {\out Level 0}
  2518 {\out Pow(A Int B) = Pow(A) Int Pow(B)}
  2519 {\out  1. Pow(A Int B) = Pow(A) Int Pow(B)}
  2520 \ttbreak
  2521 by (resolve_tac [equalityI] 1);
  2522 {\out Level 1}
  2523 {\out Pow(A Int B) = Pow(A) Int Pow(B)}
  2524 {\out  1. Pow(A Int B) <= Pow(A) Int Pow(B)}
  2525 {\out  2. Pow(A) Int Pow(B) <= Pow(A Int B)}
  2526 \end{ttbox}
  2527 Both inclusions could be tackled straightforwardly using \texttt{subsetI}.
  2528 A shorter proof results from noting that intersection forms the greatest
  2529 lower bound:\index{*Int_greatest theorem}
  2530 \begin{ttbox}
  2531 by (resolve_tac [Int_greatest] 1);
  2532 {\out Level 2}
  2533 {\out Pow(A Int B) = Pow(A) Int Pow(B)}
  2534 {\out  1. Pow(A Int B) <= Pow(A)}
  2535 {\out  2. Pow(A Int B) <= Pow(B)}
  2536 {\out  3. Pow(A) Int Pow(B) <= Pow(A Int B)}
  2537 \end{ttbox}
  2538 Subgoal~1 follows by applying the monotonicity of \texttt{Pow} to $A\int
  2539 B\subseteq A$; subgoal~2 follows similarly:
  2540 \index{*Int_lower1 theorem}\index{*Int_lower2 theorem}
  2541 \begin{ttbox}
  2542 by (resolve_tac [Int_lower1 RS Pow_mono] 1);
  2543 {\out Level 3}
  2544 {\out Pow(A Int B) = Pow(A) Int Pow(B)}
  2545 {\out  1. Pow(A Int B) <= Pow(B)}
  2546 {\out  2. Pow(A) Int Pow(B) <= Pow(A Int B)}
  2547 \ttbreak
  2548 by (resolve_tac [Int_lower2 RS Pow_mono] 1);
  2549 {\out Level 4}
  2550 {\out Pow(A Int B) = Pow(A) Int Pow(B)}
  2551 {\out  1. Pow(A) Int Pow(B) <= Pow(A Int B)}
  2552 \end{ttbox}
  2553 We are left with the opposite inclusion, which we tackle in the
  2554 straightforward way:\index{*subsetI theorem}
  2555 \begin{ttbox}
  2556 by (resolve_tac [subsetI] 1);
  2557 {\out Level 5}
  2558 {\out Pow(A Int B) = Pow(A) Int Pow(B)}
  2559 {\out  1. !!x. x : Pow(A) Int Pow(B) ==> x : Pow(A Int B)}
  2560 \end{ttbox}
  2561 The subgoal is to show $x\in {\tt Pow}(A\cap B)$ assuming $x\in{\tt
  2562 Pow}(A)\cap {\tt Pow}(B)$; eliminating this assumption produces two
  2563 subgoals.  The rule \tdx{IntE} treats the intersection like a conjunction
  2564 instead of unfolding its definition.
  2565 \begin{ttbox}
  2566 by (eresolve_tac [IntE] 1);
  2567 {\out Level 6}
  2568 {\out Pow(A Int B) = Pow(A) Int Pow(B)}
  2569 {\out  1. !!x. [| x : Pow(A); x : Pow(B) |] ==> x : Pow(A Int B)}
  2570 \end{ttbox}
  2571 The next step replaces the \texttt{Pow} by the subset
  2572 relation~($\subseteq$).\index{*PowI theorem}
  2573 \begin{ttbox}
  2574 by (resolve_tac [PowI] 1);
  2575 {\out Level 7}
  2576 {\out Pow(A Int B) = Pow(A) Int Pow(B)}
  2577 {\out  1. !!x. [| x : Pow(A); x : Pow(B) |] ==> x <= A Int B}
  2578 \end{ttbox}
  2579 We perform the same replacement in the assumptions.  This is a good
  2580 demonstration of the tactic \ttindex{dresolve_tac}:\index{*PowD theorem}
  2581 \begin{ttbox}
  2582 by (REPEAT (dresolve_tac [PowD] 1));
  2583 {\out Level 8}
  2584 {\out Pow(A Int B) = Pow(A) Int Pow(B)}
  2585 {\out  1. !!x. [| x <= A; x <= B |] ==> x <= A Int B}
  2586 \end{ttbox}
  2587 The assumptions are that $x$ is a lower bound of both $A$ and~$B$, but
  2588 $A\int B$ is the greatest lower bound:\index{*Int_greatest theorem}
  2589 \begin{ttbox}
  2590 by (resolve_tac [Int_greatest] 1);
  2591 {\out Level 9}
  2592 {\out Pow(A Int B) = Pow(A) Int Pow(B)}
  2593 {\out  1. !!x. [| x <= A; x <= B |] ==> x <= A}
  2594 {\out  2. !!x. [| x <= A; x <= B |] ==> x <= B}
  2595 \end{ttbox}
  2596 To conclude the proof, we clear up the trivial subgoals:
  2597 \begin{ttbox}
  2598 by (REPEAT (assume_tac 1));
  2599 {\out Level 10}
  2600 {\out Pow(A Int B) = Pow(A) Int Pow(B)}
  2601 {\out No subgoals!}
  2602 \end{ttbox}
  2603 \medskip
  2604 We could have performed this proof in one step by applying
  2605 \ttindex{Blast_tac}.  Let us
  2606 go back to the start:
  2607 \begin{ttbox}
  2608 choplev 0;
  2609 {\out Level 0}
  2610 {\out Pow(A Int B) = Pow(A) Int Pow(B)}
  2611 {\out  1. Pow(A Int B) = Pow(A) Int Pow(B)}
  2612 by (Blast_tac 1);
  2613 {\out Depth = 0}
  2614 {\out Depth = 1}
  2615 {\out Depth = 2}
  2616 {\out Depth = 3}
  2617 {\out Level 1}
  2618 {\out Pow(A Int B) = Pow(A) Int Pow(B)}
  2619 {\out No subgoals!}
  2620 \end{ttbox}
  2621 Past researchers regarded this as a difficult proof, as indeed it is if all
  2622 the symbols are replaced by their definitions.
  2623 \goodbreak
  2624 
  2625 \section{Monotonicity of the union operator}
  2626 For another example, we prove that general union is monotonic:
  2627 ${C\subseteq D}$ implies $\bigcup(C)\subseteq \bigcup(D)$.  To begin, we
  2628 tackle the inclusion using \tdx{subsetI}:
  2629 \begin{ttbox}
  2630 Goal "C<=D ==> Union(C) <= Union(D)";
  2631 {\out Level 0}
  2632 {\out C <= D ==> Union(C) <= Union(D)}
  2633 {\out  1. C <= D ==> Union(C) <= Union(D)}
  2634 \ttbreak
  2635 by (resolve_tac [subsetI] 1);
  2636 {\out Level 1}
  2637 {\out C <= D ==> Union(C) <= Union(D)}
  2638 {\out  1. !!x. [| C <= D; x : Union(C) |] ==> x : Union(D)}
  2639 \end{ttbox}
  2640 Big union is like an existential quantifier --- the occurrence in the
  2641 assumptions must be eliminated early, since it creates parameters.
  2642 \index{*UnionE theorem}
  2643 \begin{ttbox}
  2644 by (eresolve_tac [UnionE] 1);
  2645 {\out Level 2}
  2646 {\out C <= D ==> Union(C) <= Union(D)}
  2647 {\out  1. !!x B. [| C <= D; x : B; B : C |] ==> x : Union(D)}
  2648 \end{ttbox}
  2649 Now we may apply \tdx{UnionI}, which creates an unknown involving the
  2650 parameters.  To show $x\in \bigcup(D)$ it suffices to show that $x$ belongs
  2651 to some element, say~$\Var{B2}(x,B)$, of~$D$.
  2652 \begin{ttbox}
  2653 by (resolve_tac [UnionI] 1);
  2654 {\out Level 3}
  2655 {\out C <= D ==> Union(C) <= Union(D)}
  2656 {\out  1. !!x B. [| C <= D; x : B; B : C |] ==> ?B2(x,B) : D}
  2657 {\out  2. !!x B. [| C <= D; x : B; B : C |] ==> x : ?B2(x,B)}
  2658 \end{ttbox}
  2659 Combining \tdx{subsetD} with the assumption $C\subseteq D$ yields 
  2660 $\Var{a}\in C \Imp \Var{a}\in D$, which reduces subgoal~1.  Note that
  2661 \texttt{eresolve_tac} has removed that assumption.
  2662 \begin{ttbox}
  2663 by (eresolve_tac [subsetD] 1);
  2664 {\out Level 4}
  2665 {\out C <= D ==> Union(C) <= Union(D)}
  2666 {\out  1. !!x B. [| x : B; B : C |] ==> ?B2(x,B) : C}
  2667 {\out  2. !!x B. [| C <= D; x : B; B : C |] ==> x : ?B2(x,B)}
  2668 \end{ttbox}
  2669 The rest is routine.  Observe how~$\Var{B2}(x,B)$ is instantiated.
  2670 \begin{ttbox}
  2671 by (assume_tac 1);
  2672 {\out Level 5}
  2673 {\out C <= D ==> Union(C) <= Union(D)}
  2674 {\out  1. !!x B. [| C <= D; x : B; B : C |] ==> x : B}
  2675 by (assume_tac 1);
  2676 {\out Level 6}
  2677 {\out C <= D ==> Union(C) <= Union(D)}
  2678 {\out No subgoals!}
  2679 \end{ttbox}
  2680 Again, \ttindex{Blast_tac} can prove the theorem in one step.
  2681 \begin{ttbox}
  2682 by (Blast_tac 1);
  2683 {\out Depth = 0}
  2684 {\out Depth = 1}
  2685 {\out Depth = 2}
  2686 {\out Level 1}
  2687 {\out C <= D ==> Union(C) <= Union(D)}
  2688 {\out No subgoals!}
  2689 \end{ttbox}
  2690 
  2691 The file \texttt{ZF/equalities.ML} has many similar proofs.  Reasoning about
  2692 general intersection can be difficult because of its anomalous behaviour on
  2693 the empty set.  However, \ttindex{Blast_tac} copes well with these.  Here is
  2694 a typical example, borrowed from Devlin~\cite[page 12]{devlin79}:
  2695 \begin{ttbox}
  2696 a:C ==> (INT x:C. A(x) Int B(x)) = (INT x:C. A(x)) Int (INT x:C. B(x))
  2697 \end{ttbox}
  2698 In traditional notation this is
  2699 \[ a\in C \,\Imp\, \inter@{x\in C} \Bigl(A(x) \int B(x)\Bigr) =        
  2700        \Bigl(\inter@{x\in C} A(x)\Bigr)  \int  
  2701        \Bigl(\inter@{x\in C} B(x)\Bigr)  \]
  2702 
  2703 \section{Low-level reasoning about functions}
  2704 The derived rules \texttt{lamI}, \texttt{lamE}, \texttt{lam_type}, \texttt{beta}
  2705 and \texttt{eta} support reasoning about functions in a
  2706 $\lambda$-calculus style.  This is generally easier than regarding
  2707 functions as sets of ordered pairs.  But sometimes we must look at the
  2708 underlying representation, as in the following proof
  2709 of~\tdx{fun_disjoint_apply1}.  This states that if $f$ and~$g$ are
  2710 functions with disjoint domains~$A$ and~$C$, and if $a\in A$, then
  2711 $(f\un g)`a = f`a$:
  2712 \begin{ttbox}
  2713 Goal "[| a:A;  f: A->B;  g: C->D;  A Int C = 0 |] ==>  \ttback
  2714 \ttback    (f Un g)`a = f`a";
  2715 {\out Level 0}
  2716 {\out [| a : A; f : A -> B; g : C -> D; A Int C = 0 |]}
  2717 {\out ==> (f Un g) ` a = f ` a}
  2718 {\out  1. [| a : A; f : A -> B; g : C -> D; A Int C = 0 |]}
  2719 {\out     ==> (f Un g) ` a = f ` a}
  2720 \end{ttbox}
  2721 Using \tdx{apply_equality}, we reduce the equality to reasoning about
  2722 ordered pairs.  The second subgoal is to verify that $f\un g$ is a function.
  2723 To save space, the assumptions will be abbreviated below.
  2724 \begin{ttbox}
  2725 by (resolve_tac [apply_equality] 1);
  2726 {\out Level 1}
  2727 {\out [| \ldots |] ==> (f Un g) ` a = f ` a}
  2728 {\out  1. [| \ldots |] ==> <a,f ` a> : f Un g}
  2729 {\out  2. [| \ldots |] ==> f Un g : (PROD x:?A. ?B(x))}
  2730 \end{ttbox}
  2731 We must show that the pair belongs to~$f$ or~$g$; by~\tdx{UnI1} we
  2732 choose~$f$:
  2733 \begin{ttbox}
  2734 by (resolve_tac [UnI1] 1);
  2735 {\out Level 2}
  2736 {\out [| \ldots |] ==> (f Un g) ` a = f ` a}
  2737 {\out  1. [| \ldots |] ==> <a,f ` a> : f}
  2738 {\out  2. [| \ldots |] ==> f Un g : (PROD x:?A. ?B(x))}
  2739 \end{ttbox}
  2740 To show $\pair{a,f`a}\in f$ we use \tdx{apply_Pair}, which is
  2741 essentially the converse of \tdx{apply_equality}:
  2742 \begin{ttbox}
  2743 by (resolve_tac [apply_Pair] 1);
  2744 {\out Level 3}
  2745 {\out [| \ldots |] ==> (f Un g) ` a = f ` a}
  2746 {\out  1. [| \ldots |] ==> f : (PROD x:?A2. ?B2(x))}
  2747 {\out  2. [| \ldots |] ==> a : ?A2}
  2748 {\out  3. [| \ldots |] ==> f Un g : (PROD x:?A. ?B(x))}
  2749 \end{ttbox}
  2750 Using the assumptions $f\in A\to B$ and $a\in A$, we solve the two subgoals
  2751 from \tdx{apply_Pair}.  Recall that a $\Pi$-set is merely a generalized
  2752 function space, and observe that~{\tt?A2} is instantiated to~\texttt{A}.
  2753 \begin{ttbox}
  2754 by (assume_tac 1);
  2755 {\out Level 4}
  2756 {\out [| \ldots |] ==> (f Un g) ` a = f ` a}
  2757 {\out  1. [| \ldots |] ==> a : A}
  2758 {\out  2. [| \ldots |] ==> f Un g : (PROD x:?A. ?B(x))}
  2759 by (assume_tac 1);
  2760 {\out Level 5}
  2761 {\out [| \ldots |] ==> (f Un g) ` a = f ` a}
  2762 {\out  1. [| \ldots |] ==> f Un g : (PROD x:?A. ?B(x))}
  2763 \end{ttbox}
  2764 To construct functions of the form $f\un g$, we apply
  2765 \tdx{fun_disjoint_Un}:
  2766 \begin{ttbox}
  2767 by (resolve_tac [fun_disjoint_Un] 1);
  2768 {\out Level 6}
  2769 {\out [| \ldots |] ==> (f Un g) ` a = f ` a}
  2770 {\out  1. [| \ldots |] ==> f : ?A3 -> ?B3}
  2771 {\out  2. [| \ldots |] ==> g : ?C3 -> ?D3}
  2772 {\out  3. [| \ldots |] ==> ?A3 Int ?C3 = 0}
  2773 \end{ttbox}
  2774 The remaining subgoals are instances of the assumptions.  Again, observe how
  2775 unknowns are instantiated:
  2776 \begin{ttbox}
  2777 by (assume_tac 1);
  2778 {\out Level 7}
  2779 {\out [| \ldots |] ==> (f Un g) ` a = f ` a}
  2780 {\out  1. [| \ldots |] ==> g : ?C3 -> ?D3}
  2781 {\out  2. [| \ldots |] ==> A Int ?C3 = 0}
  2782 by (assume_tac 1);
  2783 {\out Level 8}
  2784 {\out [| \ldots |] ==> (f Un g) ` a = f ` a}
  2785 {\out  1. [| \ldots |] ==> A Int C = 0}
  2786 by (assume_tac 1);
  2787 {\out Level 9}
  2788 {\out [| \ldots |] ==> (f Un g) ` a = f ` a}
  2789 {\out No subgoals!}
  2790 \end{ttbox}
  2791 See the files \texttt{ZF/func.ML} and \texttt{ZF/WF.ML} for more
  2792 examples of reasoning about functions.
  2793 
  2794 \index{set theory|)}