src/HOL/Codatatype/Tools/bnf_def.ML
author blanchet
Tue, 11 Sep 2012 13:10:34 +0200
changeset 50292 aee77001243f
parent 50251 632f68beff2a
child 50294 2fcfc11374ed
permissions -rw-r--r--
tuning
     1 (*  Title:      HOL/Codatatype/Tools/bnf_def.ML
     2     Author:     Dmitriy Traytel, TU Muenchen
     3     Author:     Jasmin Blanchette, TU Muenchen
     4     Copyright   2012
     5 
     6 Definition of bounded natural functors.
     7 *)
     8 
     9 signature BNF_DEF =
    10 sig
    11   type BNF
    12   type nonemptiness_witness = {I: int list, wit: term, prop: thm list}
    13 
    14   val bnf_of: Proof.context -> string -> BNF option
    15   val name_of_bnf: BNF -> binding
    16   val T_of_bnf: BNF -> typ
    17   val live_of_bnf: BNF -> int
    18   val lives_of_bnf: BNF -> typ list
    19   val dead_of_bnf: BNF -> int
    20   val deads_of_bnf: BNF -> typ list
    21   val nwits_of_bnf: BNF -> int
    22 
    23   val mapN: string
    24   val setN: string
    25   val relN: string
    26   val predN: string
    27   val mk_setN: int -> string
    28   val rel_unfoldN: string
    29   val pred_unfoldN: string
    30 
    31   val map_of_bnf: BNF -> term
    32 
    33   val mk_T_of_bnf: typ list -> typ list -> BNF -> typ
    34   val mk_bd_of_bnf: typ list -> typ list -> BNF -> term
    35   val mk_map_of_bnf: typ list -> typ list -> typ list -> BNF -> term
    36   val mk_pred_of_bnf: typ list -> typ list -> typ list -> BNF -> term
    37   val mk_rel_of_bnf: typ list -> typ list -> typ list -> BNF -> term
    38   val mk_sets_of_bnf: typ list list -> typ list list -> BNF -> term list
    39   val mk_wits_of_bnf: typ list list -> typ list list -> BNF -> (int list * term) list
    40 
    41   val bd_Card_order_of_bnf: BNF -> thm
    42   val bd_Cinfinite_of_bnf: BNF -> thm
    43   val bd_Cnotzero_of_bnf: BNF -> thm
    44   val bd_card_order_of_bnf: BNF -> thm
    45   val bd_cinfinite_of_bnf: BNF -> thm
    46   val collect_set_natural_of_bnf: BNF -> thm
    47   val in_bd_of_bnf: BNF -> thm
    48   val in_cong_of_bnf: BNF -> thm
    49   val in_mono_of_bnf: BNF -> thm
    50   val in_rel_of_bnf: BNF -> thm
    51   val map_comp'_of_bnf: BNF -> thm
    52   val map_comp_of_bnf: BNF -> thm
    53   val map_cong_of_bnf: BNF -> thm
    54   val map_def_of_bnf: BNF -> thm
    55   val map_id'_of_bnf: BNF -> thm
    56   val map_id_of_bnf: BNF -> thm
    57   val map_wppull_of_bnf: BNF -> thm
    58   val map_wpull_of_bnf: BNF -> thm
    59   val pred_def_of_bnf: BNF -> thm
    60   val rel_Gr_of_bnf: BNF -> thm
    61   val rel_Id_of_bnf: BNF -> thm
    62   val rel_O_of_bnf: BNF -> thm
    63   val rel_cong_of_bnf: BNF -> thm
    64   val rel_converse_of_bnf: BNF -> thm
    65   val rel_def_of_bnf: BNF -> thm
    66   val rel_mono_of_bnf: BNF -> thm
    67   val set_bd_of_bnf: BNF -> thm list
    68   val set_defs_of_bnf: BNF -> thm list
    69   val set_natural'_of_bnf: BNF -> thm list
    70   val set_natural_of_bnf: BNF -> thm list
    71   val sets_of_bnf: BNF -> term list
    72   val wit_thms_of_bnf: BNF -> thm list
    73   val wit_thmss_of_bnf: BNF -> thm list list
    74 
    75   val mk_witness: int list * term -> thm list -> nonemptiness_witness
    76   val minimize_wits: (''a list * 'b) list -> (''a list * 'b) list
    77   val wits_of_bnf: BNF -> nonemptiness_witness list
    78 
    79   datatype const_policy = Dont_Inline | Hardly_Inline | Smart_Inline | Do_Inline
    80   datatype fact_policy =
    81     Derive_Some_Facts | Derive_All_Facts | Derive_All_Facts_Note_Most | Note_All_Facts_and_Axioms
    82   val bnf_note_all: bool Config.T
    83   val user_policy: Proof.context -> fact_policy
    84 
    85   val print_bnfs: Proof.context -> unit
    86   val bnf_def: const_policy -> (Proof.context -> fact_policy) -> (binding -> binding) ->
    87     ({prems: thm list, context: Proof.context} -> tactic) list ->
    88     ({prems: thm list, context: Proof.context} -> tactic) -> typ list option ->
    89     (((binding * term) * term list) * term) * term list -> local_theory ->
    90     BNF * local_theory
    91 
    92   val filter_refl: thm list -> thm list
    93   val bnf_def_cmd: (((binding * string) * string list) * string) * string list -> local_theory ->
    94     Proof.state
    95 end;
    96 
    97 structure BNF_Def : BNF_DEF =
    98 struct
    99 
   100 open BNF_Util
   101 open BNF_Tactics
   102 
   103 type axioms = {
   104   map_id: thm,
   105   map_comp: thm,
   106   map_cong: thm,
   107   set_natural: thm list,
   108   bd_card_order: thm,
   109   bd_cinfinite: thm,
   110   set_bd: thm list,
   111   in_bd: thm,
   112   map_wpull: thm
   113 };
   114 
   115 fun mk_axioms' ((((((((id, comp), cong), nat), c_o), cinf), set_bd), in_bd), wpull) =
   116   {map_id = id, map_comp = comp, map_cong = cong, set_natural = nat, bd_card_order = c_o,
   117    bd_cinfinite = cinf, set_bd = set_bd, in_bd = in_bd, map_wpull = wpull};
   118 
   119 fun dest_cons [] = raise Empty
   120   | dest_cons (x :: xs) = (x, xs);
   121 
   122 fun mk_axioms n thms = thms
   123   |> map the_single
   124   |> dest_cons
   125   ||>> dest_cons
   126   ||>> dest_cons
   127   ||>> chop n
   128   ||>> dest_cons
   129   ||>> dest_cons
   130   ||>> chop n
   131   ||>> dest_cons
   132   ||> the_single
   133   |> mk_axioms';
   134 
   135 fun dest_axioms {map_id, map_comp, map_cong, set_natural,
   136   bd_card_order, bd_cinfinite, set_bd, in_bd, map_wpull} =
   137   [map_id, map_comp, map_cong] @ set_natural @ [bd_card_order, bd_cinfinite] @
   138   set_bd @ [in_bd, map_wpull];
   139 
   140 fun map_axioms f
   141   {map_id = map_id, map_comp = map_comp, map_cong = map_cong, set_natural = set_natural,
   142    bd_card_order = bd_card_order, bd_cinfinite = bd_cinfinite,
   143    set_bd = set_bd, in_bd = in_bd, map_wpull = map_wpull} =
   144   {map_id = f map_id,
   145    map_comp = f map_comp,
   146    map_cong = f map_cong,
   147    set_natural = map f set_natural,
   148    bd_card_order = f bd_card_order,
   149    bd_cinfinite = f bd_cinfinite,
   150    set_bd = map f set_bd,
   151    in_bd = f in_bd,
   152    map_wpull = f map_wpull};
   153 
   154 val morph_axioms = map_axioms o Morphism.thm;
   155 
   156 type defs = {
   157   map_def: thm,
   158   set_defs: thm list,
   159   rel_def: thm,
   160   pred_def: thm
   161 }
   162 
   163 fun mk_defs map sets rel pred = {map_def = map, set_defs = sets, rel_def = rel, pred_def = pred};
   164 
   165 fun map_defs f {map_def = map, set_defs = sets, rel_def = rel, pred_def = pred} =
   166   {map_def = f map, set_defs = List.map f sets, rel_def = f rel, pred_def = f pred};
   167 
   168 val morph_defs = map_defs o Morphism.thm;
   169 
   170 type facts = {
   171   bd_Card_order: thm,
   172   bd_Cinfinite: thm,
   173   bd_Cnotzero: thm,
   174   collect_set_natural: thm lazy,
   175   in_cong: thm lazy,
   176   in_mono: thm lazy,
   177   in_rel: thm lazy,
   178   map_comp': thm lazy,
   179   map_id': thm lazy,
   180   map_wppull: thm lazy,
   181   rel_cong: thm lazy,
   182   rel_mono: thm lazy,
   183   rel_Id: thm lazy,
   184   rel_Gr: thm lazy,
   185   rel_converse: thm lazy,
   186   rel_O: thm lazy,
   187   set_natural': thm lazy list
   188 };
   189 
   190 fun mk_facts bd_Card_order bd_Cinfinite bd_Cnotzero
   191     collect_set_natural in_cong in_mono in_rel map_comp' map_id' map_wppull
   192     rel_cong rel_mono rel_Id rel_Gr rel_converse rel_O set_natural' = {
   193   bd_Card_order = bd_Card_order,
   194   bd_Cinfinite = bd_Cinfinite,
   195   bd_Cnotzero = bd_Cnotzero,
   196   collect_set_natural = collect_set_natural,
   197   in_cong = in_cong,
   198   in_mono = in_mono,
   199   in_rel = in_rel,
   200   map_comp' = map_comp',
   201   map_id' = map_id',
   202   map_wppull = map_wppull,
   203   rel_cong = rel_cong,
   204   rel_mono = rel_mono,
   205   rel_Id = rel_Id,
   206   rel_Gr = rel_Gr,
   207   rel_converse = rel_converse,
   208   rel_O = rel_O,
   209   set_natural' = set_natural'};
   210 
   211 fun map_facts f {
   212   bd_Card_order,
   213   bd_Cinfinite,
   214   bd_Cnotzero,
   215   collect_set_natural,
   216   in_cong,
   217   in_mono,
   218   in_rel,
   219   map_comp',
   220   map_id',
   221   map_wppull,
   222   rel_cong,
   223   rel_mono,
   224   rel_Id,
   225   rel_Gr,
   226   rel_converse,
   227   rel_O,
   228   set_natural'} =
   229   {bd_Card_order = f bd_Card_order,
   230     bd_Cinfinite = f bd_Cinfinite,
   231     bd_Cnotzero = f bd_Cnotzero,
   232     collect_set_natural = Lazy.map f collect_set_natural,
   233     in_cong = Lazy.map f in_cong,
   234     in_mono = Lazy.map f in_mono,
   235     in_rel = Lazy.map f in_rel,
   236     map_comp' = Lazy.map f map_comp',
   237     map_id' = Lazy.map f map_id',
   238     map_wppull = Lazy.map f map_wppull,
   239     rel_cong = Lazy.map f rel_cong,
   240     rel_mono = Lazy.map f rel_mono,
   241     rel_Id = Lazy.map f rel_Id,
   242     rel_Gr = Lazy.map f rel_Gr,
   243     rel_converse = Lazy.map f rel_converse,
   244     rel_O = Lazy.map f rel_O,
   245     set_natural' = map (Lazy.map f) set_natural'};
   246 
   247 val morph_facts = map_facts o Morphism.thm;
   248 
   249 type nonemptiness_witness = {
   250   I: int list,
   251   wit: term,
   252   prop: thm list
   253 };
   254 
   255 fun mk_witness (I, wit) prop = {I = I, wit = wit, prop = prop};
   256 fun map_witness f g {I, wit, prop} = {I = I, wit = f wit, prop = map g prop};
   257 fun morph_witness phi = map_witness (Morphism.term phi) (Morphism.thm phi);
   258 
   259 datatype BNF = BNF of {
   260   name: binding,
   261   T: typ,
   262   live: int,
   263   lives: typ list, (*source type variables of map, only for composition*)
   264   lives': typ list, (*target type variables of map, only for composition*)
   265   dead: int,
   266   deads: typ list, (*only for composition*)
   267   map: term,
   268   sets: term list,
   269   bd: term,
   270   axioms: axioms,
   271   defs: defs,
   272   facts: facts,
   273   nwits: int,
   274   wits: nonemptiness_witness list,
   275   rel: term,
   276   pred: term
   277 };
   278 
   279 (* getters *)
   280 
   281 fun rep_bnf (BNF bnf) = bnf;
   282 val name_of_bnf = #name o rep_bnf;
   283 val T_of_bnf = #T o rep_bnf;
   284 fun mk_T_of_bnf Ds Ts bnf =
   285   let val bnf_rep = rep_bnf bnf
   286   in Term.typ_subst_atomic ((#deads bnf_rep ~~ Ds) @ (#lives bnf_rep ~~ Ts)) (#T bnf_rep) end;
   287 val live_of_bnf = #live o rep_bnf;
   288 val lives_of_bnf = #lives o rep_bnf;
   289 val dead_of_bnf = #dead o rep_bnf;
   290 val deads_of_bnf = #deads o rep_bnf;
   291 val axioms_of_bnf = #axioms o rep_bnf;
   292 val facts_of_bnf = #facts o rep_bnf;
   293 val nwits_of_bnf = #nwits o rep_bnf;
   294 val wits_of_bnf = #wits o rep_bnf;
   295 
   296 (*terms*)
   297 val map_of_bnf = #map o rep_bnf;
   298 val sets_of_bnf = #sets o rep_bnf;
   299 fun mk_map_of_bnf Ds Ts Us bnf =
   300   let val bnf_rep = rep_bnf bnf;
   301   in
   302     Term.subst_atomic_types
   303       ((#deads bnf_rep ~~ Ds) @ (#lives bnf_rep ~~ Ts) @ (#lives' bnf_rep ~~ Us)) (#map bnf_rep)
   304   end;
   305 fun mk_sets_of_bnf Dss Tss bnf =
   306   let val bnf_rep = rep_bnf bnf;
   307   in
   308     map2 (fn (Ds, Ts) => Term.subst_atomic_types
   309       ((#deads bnf_rep ~~ Ds) @ (#lives bnf_rep ~~ Ts))) (Dss ~~ Tss) (#sets bnf_rep)
   310   end;
   311 val bd_of_bnf = #bd o rep_bnf;
   312 fun mk_bd_of_bnf Ds Ts bnf =
   313   let val bnf_rep = rep_bnf bnf;
   314   in Term.subst_atomic_types ((#deads bnf_rep ~~ Ds) @ (#lives bnf_rep ~~ Ts)) (#bd bnf_rep) end;
   315 fun mk_wits_of_bnf Dss Tss bnf =
   316   let
   317     val bnf_rep = rep_bnf bnf;
   318     val wits = map (fn x => (#I x, #wit x)) (#wits bnf_rep);
   319   in
   320     map2 (fn (Ds, Ts) => apsnd (Term.subst_atomic_types
   321       ((#deads bnf_rep ~~ Ds) @ (#lives bnf_rep ~~ Ts)))) (Dss ~~ Tss) wits
   322   end;
   323 val rel_of_bnf = #rel o rep_bnf;
   324 fun mk_rel_of_bnf Ds Ts Us bnf =
   325   let val bnf_rep = rep_bnf bnf;
   326   in
   327     Term.subst_atomic_types
   328       ((#deads bnf_rep ~~ Ds) @ (#lives bnf_rep ~~ Ts) @ (#lives' bnf_rep ~~ Us)) (#rel bnf_rep)
   329   end;
   330 val pred_of_bnf = #pred o rep_bnf;
   331 fun mk_pred_of_bnf Ds Ts Us bnf =
   332   let val bnf_rep = rep_bnf bnf;
   333   in
   334     Term.subst_atomic_types
   335       ((#deads bnf_rep ~~ Ds) @ (#lives bnf_rep ~~ Ts) @ (#lives' bnf_rep ~~ Us)) (#pred bnf_rep)
   336   end;
   337 
   338 (*thms*)
   339 val bd_card_order_of_bnf = #bd_card_order o #axioms o rep_bnf;
   340 val bd_cinfinite_of_bnf = #bd_cinfinite o #axioms o rep_bnf;
   341 val bd_Card_order_of_bnf = #bd_Card_order o #facts o rep_bnf;
   342 val bd_Cinfinite_of_bnf = #bd_Cinfinite o #facts o rep_bnf;
   343 val bd_Cnotzero_of_bnf = #bd_Cnotzero o #facts o rep_bnf;
   344 val collect_set_natural_of_bnf = Lazy.force o #collect_set_natural o #facts o rep_bnf;
   345 val in_bd_of_bnf = #in_bd o #axioms o rep_bnf;
   346 val in_cong_of_bnf = Lazy.force o #in_cong o #facts o rep_bnf;
   347 val in_mono_of_bnf = Lazy.force o #in_mono o #facts o rep_bnf;
   348 val in_rel_of_bnf = Lazy.force o #in_rel o #facts o rep_bnf;
   349 val map_def_of_bnf = #map_def o #defs o rep_bnf;
   350 val map_id_of_bnf = #map_id o #axioms o rep_bnf;
   351 val map_id'_of_bnf = Lazy.force o #map_id' o #facts o rep_bnf;
   352 val map_comp_of_bnf = #map_comp o #axioms o rep_bnf;
   353 val map_comp'_of_bnf = Lazy.force o #map_comp' o #facts o rep_bnf;
   354 val map_cong_of_bnf = #map_cong o #axioms o rep_bnf;
   355 val map_wppull_of_bnf = Lazy.force o #map_wppull o #facts o rep_bnf;
   356 val map_wpull_of_bnf = #map_wpull o #axioms o rep_bnf;
   357 val pred_def_of_bnf = #pred_def o #defs o rep_bnf;
   358 val rel_cong_of_bnf = Lazy.force o #rel_cong o #facts o rep_bnf;
   359 val rel_mono_of_bnf = Lazy.force o #rel_mono o #facts o rep_bnf;
   360 val rel_def_of_bnf = #rel_def o #defs o rep_bnf;
   361 val rel_Id_of_bnf = Lazy.force o #rel_Id o #facts o rep_bnf;
   362 val rel_Gr_of_bnf = Lazy.force o #rel_Gr o #facts o rep_bnf;
   363 val rel_converse_of_bnf = Lazy.force o #rel_converse o #facts o rep_bnf;
   364 val rel_O_of_bnf = Lazy.force o #rel_O o #facts o rep_bnf;
   365 val set_bd_of_bnf = #set_bd o #axioms o rep_bnf;
   366 val set_defs_of_bnf = #set_defs o #defs o rep_bnf;
   367 val set_natural_of_bnf = #set_natural o #axioms o rep_bnf;
   368 val set_natural'_of_bnf = map Lazy.force o #set_natural' o #facts o rep_bnf;
   369 val wit_thms_of_bnf = maps #prop o wits_of_bnf;
   370 val wit_thmss_of_bnf = map #prop o wits_of_bnf;
   371 
   372 fun mk_bnf name T live lives lives' dead deads map sets bd axioms defs facts wits rel pred =
   373   BNF {name = name, T = T,
   374        live = live, lives = lives, lives' = lives', dead = dead, deads = deads,
   375        map = map, sets = sets, bd = bd,
   376        axioms = axioms, defs = defs, facts = facts,
   377        nwits = length wits, wits = wits, rel = rel, pred = pred};
   378 
   379 fun morph_bnf phi (BNF {name = name, T = T, live = live, lives = lives, lives' = lives',
   380   dead = dead, deads = deads, map = map, sets = sets, bd = bd,
   381   axioms = axioms, defs = defs, facts = facts,
   382   nwits = nwits, wits = wits, rel = rel, pred = pred}) =
   383   BNF {name = Morphism.binding phi name, T = Morphism.typ phi T,
   384     live = live, lives = List.map (Morphism.typ phi) lives,
   385     lives' = List.map (Morphism.typ phi) lives',
   386     dead = dead, deads = List.map (Morphism.typ phi) deads,
   387     map = Morphism.term phi map, sets = List.map (Morphism.term phi) sets,
   388     bd = Morphism.term phi bd,
   389     axioms = morph_axioms phi axioms,
   390     defs = morph_defs phi defs,
   391     facts = morph_facts phi facts,
   392     nwits = nwits,
   393     wits = List.map (morph_witness phi) wits,
   394     rel = Morphism.term phi rel, pred = Morphism.term phi pred};
   395 
   396 fun eq_bnf (BNF {T = T1, live = live1, dead = dead1, ...},
   397   BNF {T = T2, live = live2, dead = dead2, ...}) =
   398   Type.could_unify (T1, T2) andalso live1 = live2 andalso dead1 = dead2;
   399 
   400 structure Data = Generic_Data
   401 (
   402   type T = BNF Symtab.table;
   403   val empty = Symtab.empty;
   404   val extend = I;
   405   val merge = Symtab.merge (eq_bnf);
   406 );
   407 
   408 val bnf_of = Symtab.lookup o Data.get o Context.Proof;
   409 
   410 
   411 
   412 (* Utilities *)
   413 
   414 fun normalize_set insts instA set =
   415   let
   416     val (T, T') = dest_funT (fastype_of set);
   417     val A = fst (Term.dest_TVar (HOLogic.dest_setT T'));
   418     val params = Term.add_tvar_namesT T [];
   419   in Term.subst_TVars ((A :: params) ~~ (instA :: insts)) set end;
   420 
   421 fun normalize_rel ctxt instTs instA instB rel =
   422   let
   423     val thy = Proof_Context.theory_of ctxt;
   424     val tyenv =
   425       Sign.typ_match thy (fastype_of rel, Library.foldr (op -->) (instTs, mk_relT (instA, instB)))
   426         Vartab.empty;
   427   in Envir.subst_term (tyenv, Vartab.empty) rel end;
   428 
   429 fun normalize_pred ctxt instTs instA instB pred =
   430   let
   431     val thy = Proof_Context.theory_of ctxt;
   432     val tyenv =
   433       Sign.typ_match thy (fastype_of pred,
   434         Library.foldr (op -->) (instTs, instA --> instB --> HOLogic.boolT)) Vartab.empty;
   435   in Envir.subst_term (tyenv, Vartab.empty) pred end;
   436 
   437 fun normalize_wit insts CA As wit =
   438   let
   439     fun strip_param (Ts, T as Type (@{type_name fun}, [T1, T2])) =
   440         if Type.raw_instance (CA, T) then (Ts, T) else strip_param (T1 :: Ts, T2)
   441       | strip_param x = x;
   442     val (Ts, T) = strip_param ([], fastype_of wit);
   443     val subst = Term.add_tvar_namesT T [] ~~ insts;
   444     fun find y = find_index (fn x => x = y) As;
   445   in
   446     (map (find o Term.typ_subst_TVars subst) (rev Ts), Term.subst_TVars subst wit)
   447   end;
   448 
   449 fun minimize_wits wits =
   450  let
   451    fun minimize done [] = done
   452      | minimize done ((I, wit) :: todo) =
   453        if exists (fn (J, _) => subset (op =) (J, I)) (done @ todo)
   454        then minimize done todo
   455        else minimize ((I, wit) :: done) todo;
   456  in minimize [] wits end;
   457 
   458 fun unfold_defs_tac lthy defs mk_tac context = Local_Defs.unfold_tac lthy defs THEN mk_tac context;
   459 
   460 
   461 
   462 (* Names *)
   463 
   464 fun nonzero_string_of_int 0 = ""
   465   | nonzero_string_of_int n = string_of_int n;
   466 
   467 val mapN = "map";
   468 val setN = "set";
   469 fun mk_setN i = setN ^ nonzero_string_of_int i;
   470 val bdN = "bd";
   471 val witN = "wit";
   472 fun mk_witN i = witN ^ nonzero_string_of_int i;
   473 val relN = "rel";
   474 val predN = "pred";
   475 val rel_unfoldN = relN ^ "_unfold";
   476 val pred_unfoldN = predN ^ "_unfold";
   477 
   478 val bd_card_orderN = "bd_card_order";
   479 val bd_cinfiniteN = "bd_cinfinite";
   480 val bd_Card_orderN = "bd_Card_order";
   481 val bd_CinfiniteN = "bd_Cinfinite";
   482 val bd_CnotzeroN = "bd_Cnotzero";
   483 val collect_set_naturalN = "collect_set_natural";
   484 val in_bdN = "in_bd";
   485 val in_congN = "in_cong";
   486 val in_monoN = "in_mono";
   487 val in_relN = "in_rel";
   488 val map_idN = "map_id";
   489 val map_id'N = "map_id'";
   490 val map_compN = "map_comp";
   491 val map_comp'N = "map_comp'";
   492 val map_congN = "map_cong";
   493 val map_wppullN = "map_wppull";
   494 val map_wpullN = "map_wpull";
   495 val rel_congN = "rel_cong";
   496 val rel_IdN = "rel_Id";
   497 val rel_GrN = "rel_Gr";
   498 val rel_converseN = "rel_converse";
   499 val rel_ON = "rel_comp";
   500 val set_naturalN = "set_natural";
   501 val set_natural'N = "set_natural'";
   502 val set_bdN = "set_bd";
   503 
   504 datatype const_policy = Dont_Inline | Hardly_Inline | Smart_Inline | Do_Inline;
   505 
   506 datatype fact_policy =
   507   Derive_Some_Facts | Derive_All_Facts | Derive_All_Facts_Note_Most | Note_All_Facts_and_Axioms;
   508 
   509 val bnf_note_all = Attrib.setup_config_bool @{binding bnf_note_all} (K false);
   510 
   511 fun user_policy ctxt =
   512   if Config.get ctxt bnf_note_all then Note_All_Facts_and_Axioms else Derive_All_Facts_Note_Most;
   513 
   514 val smart_max_inline_size = 25; (*FUDGE*)
   515 
   516 val no_def = Drule.reflexive_thm;
   517 val no_fact = refl;
   518 
   519 fun is_reflexive th =
   520   let val t = Thm.prop_of th;
   521   in
   522     op aconv (Logic.dest_equals t)
   523     handle TERM _ => op aconv (HOLogic.dest_eq (HOLogic.dest_Trueprop t))
   524       handle TERM _ => false
   525   end;
   526 
   527 val filter_refl = filter_out is_reflexive;
   528 
   529 
   530 
   531 (* Define new BNFs *)
   532 
   533 fun prepare_def const_policy mk_fact_policy qualify prep_term Ds_opt
   534   ((((raw_b, raw_map), raw_sets), raw_bd_Abs), raw_wits) no_defs_lthy =
   535   let
   536     val fact_policy = mk_fact_policy no_defs_lthy;
   537     val b = qualify raw_b;
   538     val live = length raw_sets;
   539     val nwits = length raw_wits;
   540 
   541     val map_rhs = prep_term no_defs_lthy raw_map;
   542     val set_rhss = map (prep_term no_defs_lthy) raw_sets;
   543     val (bd_rhsT, bd_rhs) = (case prep_term no_defs_lthy raw_bd_Abs of
   544       Abs (_, T, t) => (T, t)
   545     | _ => error "Bad bound constant");
   546     val wit_rhss = map (prep_term no_defs_lthy) raw_wits;
   547 
   548     val map_bind_def = (fn () => Binding.suffix_name ("_" ^ mapN) b, map_rhs);
   549     val set_binds_defs =
   550       let
   551         val bs = if live = 1 then [fn () => Binding.suffix_name ("_" ^ setN) b]
   552           else map (fn i => fn () => Binding.suffix_name ("_" ^ mk_setN i) b) (1 upto live)
   553       in map2 pair bs set_rhss end;
   554     val bd_bind_def = (fn () => Binding.suffix_name ("_" ^ bdN) b, bd_rhs);
   555     val wit_binds_defs =
   556       let
   557         val bs = if nwits = 1 then [fn () => Binding.suffix_name ("_" ^ witN) b]
   558           else map (fn i => fn () => Binding.suffix_name ("_" ^ mk_witN i) b) (1 upto nwits);
   559       in map2 pair bs wit_rhss end;
   560 
   561     fun maybe_define needed_for_extra_facts (b, rhs) lthy =
   562       let
   563         val inline =
   564           (not needed_for_extra_facts orelse fact_policy = Derive_Some_Facts) andalso
   565           (case const_policy of
   566             Dont_Inline => false
   567           | Hardly_Inline => Term.is_Free rhs orelse Term.is_Const rhs
   568           | Smart_Inline => Term.size_of_term rhs <= smart_max_inline_size
   569           | Do_Inline => true)
   570       in
   571         if inline then
   572           ((rhs, no_def), lthy)
   573         else
   574           let val b = b () in
   575             apfst (apsnd snd) (Local_Theory.define ((b, NoSyn), ((Thm.def_binding b, []), rhs))
   576               lthy)
   577           end
   578       end;
   579     fun maybe_restore lthy0 lthy = lthy |> not (pointer_eq (lthy0, lthy)) ? Local_Theory.restore;
   580 
   581     val (((((bnf_map_term, raw_map_def),
   582       (bnf_set_terms, raw_set_defs)),
   583       (bnf_bd_term, raw_bd_def)),
   584       (bnf_wit_terms, raw_wit_defs)), (lthy', lthy)) =
   585         no_defs_lthy
   586         |> maybe_define false map_bind_def
   587         ||>> apfst split_list o fold_map (maybe_define false) set_binds_defs
   588         ||>> maybe_define false bd_bind_def
   589         ||>> apfst split_list o fold_map (maybe_define false) wit_binds_defs
   590         ||> `(maybe_restore no_defs_lthy);
   591 
   592     (*transforms defined frees into consts (and more)*)
   593     val phi = Proof_Context.export_morphism lthy lthy';
   594 
   595     val bnf_map_def = Morphism.thm phi raw_map_def;
   596     val bnf_set_defs = map (Morphism.thm phi) raw_set_defs;
   597     val bnf_bd_def = Morphism.thm phi raw_bd_def;
   598     val bnf_wit_defs = map (Morphism.thm phi) raw_wit_defs;
   599 
   600     val one_step_defs = filter_refl (bnf_map_def :: bnf_bd_def :: bnf_set_defs @ bnf_wit_defs);
   601 
   602     val _ = case map_filter (try dest_Free)
   603         (bnf_map_term :: bnf_set_terms @ [bnf_bd_term] @ bnf_wit_terms) of
   604         [] => ()
   605       | frees => Proof_Display.print_consts true lthy (K false) frees;
   606 
   607     val bnf_map = Morphism.term phi bnf_map_term;
   608 
   609     fun iter_split ((Ts, T1), T2) = if length Ts < live then error "Bad map function"
   610       else if length Ts = live then ((Ts, T1), T2)
   611       else iter_split (split_last Ts, T1 --> T2);
   612 
   613     (*TODO: handle errors*)
   614     (*simple shape analysis of a map function*)
   615     val (((alphas, betas), CA), _) =
   616       apfst (apfst (map_split dest_funT))
   617         (iter_split (apfst split_last (strip_type (fastype_of bnf_map))));
   618 
   619     val CA_params = map TVar (Term.add_tvarsT CA []);
   620 
   621     val bnf_sets = map2 (normalize_set CA_params) alphas (map (Morphism.term phi) bnf_set_terms);
   622     val bdT = Morphism.typ phi bd_rhsT;
   623     val bnf_bd =
   624       Term.subst_TVars (Term.add_tvar_namesT bdT [] ~~ CA_params) (Morphism.term phi bnf_bd_term);
   625     val bnf_wits = map (normalize_wit CA_params CA alphas o Morphism.term phi) bnf_wit_terms;
   626 
   627     (*TODO: assert Ds = (TVars of bnf_map) \ (alphas @ betas) as sets*)
   628     val deads = (case Ds_opt of
   629       NONE => subtract (op =) (alphas @ betas) (map TVar (Term.add_tvars bnf_map []))
   630     | SOME Ds => map (Morphism.typ phi) Ds);
   631     val dead = length deads;
   632 
   633     (*FIXME: check DUP here, not in after_qed*)
   634     val key =
   635       (case (CA, Binding.eq_name (qualify b, b)) of
   636         (Type (C, _), True) => C
   637       | _ => Name_Space.full_name Name_Space.default_naming b);
   638 
   639     (*TODO: further checks of type of bnf_map*)
   640     (*TODO: check types of bnf_sets*)
   641     (*TODO: check type of bnf_bd*)
   642 
   643     val ((((((((((As', Bs'), Cs), Ds), B1Ts), B2Ts), domTs), ranTs), ranTs'), ranTs''),
   644       (Ts, T)) = lthy'
   645       |> mk_TFrees live
   646       ||>> mk_TFrees live
   647       ||>> mk_TFrees live
   648       ||>> mk_TFrees dead
   649       ||>> mk_TFrees live
   650       ||>> mk_TFrees live
   651       ||>> mk_TFrees live
   652       ||>> mk_TFrees live
   653       ||>> mk_TFrees live
   654       ||>> mk_TFrees live
   655       ||> fst o mk_TFrees 1
   656       ||> the_single
   657       ||> `(replicate live);
   658 
   659     fun mk_bnf_map As' Bs' =
   660       Term.subst_atomic_types ((deads ~~ Ds) @ (alphas ~~ As') @ (betas ~~ Bs')) bnf_map;
   661     fun mk_bnf_t As' t =
   662       Term.subst_atomic_types ((deads ~~ Ds) @ (alphas ~~ As')) t;
   663     fun mk_bnf_T As' T =
   664       Term.typ_subst_atomic ((deads ~~ Ds) @ (alphas ~~ As')) T;
   665 
   666     val (setRTs, RTs) = map_split (`HOLogic.mk_setT o HOLogic.mk_prodT) (As' ~~ Bs');
   667     val setRTsAsCs = map (HOLogic.mk_setT o HOLogic.mk_prodT) (As' ~~ Cs);
   668     val setRTsBsCs = map (HOLogic.mk_setT o HOLogic.mk_prodT) (Bs' ~~ Cs);
   669     val setRT's = map (HOLogic.mk_setT o HOLogic.mk_prodT) (Bs' ~~ As');
   670     val self_setRTs = map (HOLogic.mk_setT o HOLogic.mk_prodT) (As' ~~ As');
   671     val QTs = map2 (fn T => fn U => T --> U --> HOLogic.boolT) As' Bs';
   672 
   673     val bnf_map_AsAs = mk_bnf_map As' As';
   674     val bnf_map_AsBs = mk_bnf_map As' Bs';
   675     val bnf_map_AsCs = mk_bnf_map As' Cs;
   676     val bnf_map_BsCs = mk_bnf_map Bs' Cs;
   677     val bnf_sets_As = map (mk_bnf_t As') bnf_sets;
   678     val bnf_sets_Bs = map (mk_bnf_t Bs') bnf_sets;
   679     val bnf_bd_As = mk_bnf_t As' bnf_bd;
   680     val bnf_wit_As = map (apsnd (mk_bnf_t As')) bnf_wits;
   681     val CA' = mk_bnf_T As' CA;
   682     val CB' = mk_bnf_T Bs' CA;
   683     val CC' = mk_bnf_T Cs CA;
   684     val CRs' = mk_bnf_T RTs CA;
   685 
   686     val ((((((((((((((((((((((((fs, fs_copy), gs), hs), (x, x')), (y, y')), (z, z')), zs), As),
   687       As_copy), Xs), B1s), B2s), f1s), f2s), e1s), e2s), p1s), p2s), bs),
   688       (Rs, Rs')), Rs_copy), Ss), (Qs, Qs')), _) = lthy'
   689       |> mk_Frees "f" (map2 (curry (op -->)) As' Bs')
   690       ||>> mk_Frees "f" (map2 (curry (op -->)) As' Bs')
   691       ||>> mk_Frees "g" (map2 (curry (op -->)) Bs' Cs)
   692       ||>> mk_Frees "h" (map2 (curry (op -->)) As' Ts)
   693       ||>> yield_singleton (apfst (op ~~) oo mk_Frees' "x") CA'
   694       ||>> yield_singleton (apfst (op ~~) oo mk_Frees' "y") CB'
   695       ||>> yield_singleton (apfst (op ~~) oo mk_Frees' "z") CRs'
   696       ||>> mk_Frees "z" As'
   697       ||>> mk_Frees "A" (map HOLogic.mk_setT As')
   698       ||>> mk_Frees "A" (map HOLogic.mk_setT As')
   699       ||>> mk_Frees "A" (map HOLogic.mk_setT domTs)
   700       ||>> mk_Frees "B1" (map HOLogic.mk_setT B1Ts)
   701       ||>> mk_Frees "B2" (map HOLogic.mk_setT B2Ts)
   702       ||>> mk_Frees "f1" (map2 (curry (op -->)) B1Ts ranTs)
   703       ||>> mk_Frees "f2" (map2 (curry (op -->)) B2Ts ranTs)
   704       ||>> mk_Frees "e1" (map2 (curry (op -->)) B1Ts ranTs')
   705       ||>> mk_Frees "e2" (map2 (curry (op -->)) B2Ts ranTs'')
   706       ||>> mk_Frees "p1" (map2 (curry (op -->)) domTs B1Ts)
   707       ||>> mk_Frees "p2" (map2 (curry (op -->)) domTs B2Ts)
   708       ||>> mk_Frees "b" As'
   709       ||>> mk_Frees' "R" setRTs
   710       ||>> mk_Frees "R" setRTs
   711       ||>> mk_Frees "S" setRTsBsCs
   712       ||>> mk_Frees' "Q" QTs;
   713 
   714     val goal_map_id =
   715       let
   716         val bnf_map_app_id = Term.list_comb (bnf_map_AsAs, map HOLogic.id_const As');
   717       in
   718         HOLogic.mk_Trueprop
   719           (HOLogic.mk_eq (bnf_map_app_id, HOLogic.id_const CA'))
   720       end;
   721 
   722     val goal_map_comp =
   723       let
   724         val bnf_map_app_comp = Term.list_comb (bnf_map_AsCs, map2 (curry HOLogic.mk_comp) gs fs);
   725         val comp_bnf_map_app = HOLogic.mk_comp
   726           (Term.list_comb (bnf_map_BsCs, gs),
   727            Term.list_comb (bnf_map_AsBs, fs));
   728       in
   729         fold_rev Logic.all (fs @ gs) (mk_Trueprop_eq (bnf_map_app_comp, comp_bnf_map_app))
   730       end;
   731 
   732     val goal_map_cong =
   733       let
   734         fun mk_prem z set f f_copy =
   735           Logic.all z (Logic.mk_implies
   736             (HOLogic.mk_Trueprop (HOLogic.mk_mem (z, set $ x)),
   737             mk_Trueprop_eq (f $ z, f_copy $ z)));
   738         val prems = map4 mk_prem zs bnf_sets_As fs fs_copy;
   739         val eq = HOLogic.mk_eq (Term.list_comb (bnf_map_AsBs, fs) $ x,
   740           Term.list_comb (bnf_map_AsBs, fs_copy) $ x);
   741       in
   742         fold_rev Logic.all (x :: fs @ fs_copy)
   743           (Logic.list_implies (prems, HOLogic.mk_Trueprop eq))
   744       end;
   745 
   746     val goal_set_naturals =
   747       let
   748         fun mk_goal setA setB f =
   749           let
   750             val set_comp_map =
   751               HOLogic.mk_comp (setB, Term.list_comb (bnf_map_AsBs, fs));
   752             val image_comp_set = HOLogic.mk_comp (mk_image f, setA);
   753           in
   754             fold_rev Logic.all fs (mk_Trueprop_eq (set_comp_map, image_comp_set))
   755           end;
   756       in
   757         map3 mk_goal bnf_sets_As bnf_sets_Bs fs
   758       end;
   759 
   760     val goal_card_order_bd = HOLogic.mk_Trueprop (mk_card_order bnf_bd_As);
   761 
   762     val goal_cinfinite_bd = HOLogic.mk_Trueprop (mk_cinfinite bnf_bd_As);
   763 
   764     val goal_set_bds =
   765       let
   766         fun mk_goal set =
   767           Logic.all x (HOLogic.mk_Trueprop (mk_ordLeq (mk_card_of (set $ x)) bnf_bd_As));
   768       in
   769         map mk_goal bnf_sets_As
   770       end;
   771 
   772     val goal_in_bd =
   773       let
   774         val bd = mk_cexp
   775           (if live = 0 then ctwo
   776             else mk_csum (Library.foldr1 (uncurry mk_csum) (map mk_card_of As)) ctwo)
   777           bnf_bd_As;
   778       in
   779         fold_rev Logic.all As
   780           (HOLogic.mk_Trueprop (mk_ordLeq (mk_card_of (mk_in As bnf_sets_As CA')) bd))
   781       end;
   782 
   783     val goal_map_wpull =
   784       let
   785         val prems = map HOLogic.mk_Trueprop
   786           (map8 mk_wpull Xs B1s B2s f1s f2s (replicate live NONE) p1s p2s);
   787         val CX = mk_bnf_T domTs CA;
   788         val CB1 = mk_bnf_T B1Ts CA;
   789         val CB2 = mk_bnf_T B2Ts CA;
   790         val bnf_sets_CX = map2 (normalize_set (map (mk_bnf_T domTs) CA_params)) domTs bnf_sets;
   791         val bnf_sets_CB1 = map2 (normalize_set (map (mk_bnf_T B1Ts) CA_params)) B1Ts bnf_sets;
   792         val bnf_sets_CB2 = map2 (normalize_set (map (mk_bnf_T B2Ts) CA_params)) B2Ts bnf_sets;
   793         val bnf_map_app_f1 = Term.list_comb (mk_bnf_map B1Ts ranTs, f1s);
   794         val bnf_map_app_f2 = Term.list_comb (mk_bnf_map B2Ts ranTs, f2s);
   795         val bnf_map_app_p1 = Term.list_comb (mk_bnf_map domTs B1Ts, p1s);
   796         val bnf_map_app_p2 = Term.list_comb (mk_bnf_map domTs B2Ts, p2s);
   797 
   798         val map_wpull = mk_wpull (mk_in Xs bnf_sets_CX CX)
   799           (mk_in B1s bnf_sets_CB1 CB1) (mk_in B2s bnf_sets_CB2 CB2)
   800           bnf_map_app_f1 bnf_map_app_f2 NONE bnf_map_app_p1 bnf_map_app_p2;
   801       in
   802         fold_rev Logic.all (Xs @ B1s @ B2s @ f1s @ f2s @ p1s @ p2s)
   803           (Logic.list_implies (prems, HOLogic.mk_Trueprop map_wpull))
   804       end;
   805 
   806     val goals =
   807       [goal_map_id, goal_map_comp, goal_map_cong] @ goal_set_naturals @
   808       [goal_card_order_bd, goal_cinfinite_bd] @ goal_set_bds @
   809       [goal_in_bd, goal_map_wpull];
   810 
   811     fun mk_wit_goals (I, wit) =
   812       let
   813         val xs = map (nth bs) I;
   814         fun wit_goal i =
   815           let
   816             val z = nth zs i;
   817             val set_wit = nth bnf_sets_As i $ Term.list_comb (wit, xs);
   818             val concl = HOLogic.mk_Trueprop
   819               (if member (op =) I i then HOLogic.mk_eq (z, nth bs i)
   820               else @{term False});
   821           in
   822             fold_rev Logic.all (z :: xs)
   823               (Logic.mk_implies (HOLogic.mk_Trueprop (HOLogic.mk_mem (z, set_wit)), concl))
   824           end;
   825       in
   826         map wit_goal (0 upto live - 1)
   827       end;
   828 
   829     val wit_goalss = map mk_wit_goals bnf_wit_As;
   830 
   831     fun after_qed thms lthy =
   832       let
   833         val (axioms, wit_thms) = apfst (mk_axioms live) (chop (length goals) thms);
   834 
   835         val bd_Card_order = #bd_card_order axioms RS @{thm conjunct2[OF card_order_on_Card_order]};
   836         val bd_Cinfinite = @{thm conjI} OF [#bd_cinfinite axioms, bd_Card_order];
   837         val bd_Cnotzero = bd_Cinfinite RS @{thm Cinfinite_Cnotzero};
   838 
   839         fun mk_lazy f = if fact_policy <> Derive_Some_Facts then Lazy.value (f ()) else Lazy.lazy f;
   840 
   841         fun mk_collect_set_natural () =
   842           let
   843             val defT = mk_bnf_T Ts CA --> HOLogic.mk_setT T;
   844             val collect_map = HOLogic.mk_comp
   845               (mk_collect (map (mk_bnf_t Ts) bnf_sets) defT,
   846               Term.list_comb (mk_bnf_map As' Ts, hs));
   847             val image_collect = mk_collect
   848               (map2 (fn h => fn set => HOLogic.mk_comp (mk_image h, set)) hs bnf_sets_As)
   849               defT;
   850             (*collect {set1 ... setm} o map f1 ... fm = collect {f1` o set1 ... fm` o setm}*)
   851             val goal = fold_rev Logic.all hs (mk_Trueprop_eq (collect_map, image_collect));
   852           in
   853             Skip_Proof.prove lthy [] [] goal
   854               (fn {context = ctxt, ...} => mk_collect_set_natural_tac ctxt (#set_natural axioms))
   855             |> Thm.close_derivation
   856           end;
   857 
   858         val collect_set_natural = mk_lazy mk_collect_set_natural;
   859 
   860         fun mk_in_mono () =
   861           let
   862             val prems_mono = map2 (HOLogic.mk_Trueprop oo mk_subset) As As_copy;
   863             val goal_in_mono =
   864               fold_rev Logic.all (As @ As_copy)
   865                 (Logic.list_implies (prems_mono, HOLogic.mk_Trueprop
   866                   (mk_subset (mk_in As bnf_sets_As CA') (mk_in As_copy bnf_sets_As CA'))));
   867           in
   868             Skip_Proof.prove lthy [] [] goal_in_mono (K (mk_in_mono_tac live))
   869             |> Thm.close_derivation
   870           end;
   871 
   872         val in_mono = mk_lazy mk_in_mono;
   873 
   874         fun mk_in_cong () =
   875           let
   876             val prems_cong = map2 (HOLogic.mk_Trueprop oo curry HOLogic.mk_eq) As As_copy;
   877             val goal_in_cong =
   878               fold_rev Logic.all (As @ As_copy)
   879                 (Logic.list_implies (prems_cong, HOLogic.mk_Trueprop
   880                   (HOLogic.mk_eq (mk_in As bnf_sets_As CA', mk_in As_copy bnf_sets_As CA'))));
   881           in
   882             Skip_Proof.prove lthy [] [] goal_in_cong (K ((TRY o hyp_subst_tac THEN' rtac refl) 1))
   883             |> Thm.close_derivation
   884           end;
   885 
   886         val in_cong = mk_lazy mk_in_cong;
   887 
   888         val map_id' = mk_lazy (fn () => mk_id' (#map_id axioms));
   889         val map_comp' = mk_lazy (fn () => mk_comp' (#map_comp axioms));
   890 
   891         val set_natural' =
   892           map (fn thm => mk_lazy (fn () => mk_set_natural' thm)) (#set_natural axioms);
   893 
   894         (* relator *)
   895 
   896         (*%R1 .. Rn. Gr (in R1 .. Rn) (map fst .. fst)^-1 O Gr (in R1 .. Rn) (map snd .. snd)*)
   897         val rel_rhs =
   898           let
   899             val map1 = Term.list_comb (mk_bnf_map RTs As', map fst_const RTs);
   900             val map2 = Term.list_comb (mk_bnf_map RTs Bs', map snd_const RTs);
   901             val bnf_in = mk_in Rs (map (mk_bnf_t RTs) bnf_sets) CRs';
   902           in
   903             fold_rev Term.absfree Rs'
   904               (mk_rel_comp (mk_converse (mk_Gr bnf_in map1), mk_Gr bnf_in map2))
   905           end;
   906         val rel_bind_def = (fn () => Binding.suffix_name ("_" ^ relN) b, rel_rhs);
   907 
   908         val ((bnf_rel_term, raw_rel_def), (lthy, lthy_old)) =
   909           lthy
   910           |> maybe_define true rel_bind_def
   911           ||> `(maybe_restore lthy);
   912 
   913         (*transforms defined frees into consts*)
   914         val phi = Proof_Context.export_morphism lthy_old lthy;
   915         val bnf_rel = Morphism.term phi bnf_rel_term;
   916 
   917         fun mk_bnf_rel setRTs CA' CB' = normalize_rel lthy setRTs CA' CB' bnf_rel;
   918 
   919         val relAsBs = mk_bnf_rel setRTs CA' CB';
   920         val bnf_rel_def = Morphism.thm phi raw_rel_def;
   921         val rel_def_unabs =
   922           if fact_policy <> Derive_Some_Facts then
   923             mk_unabs_def live (bnf_rel_def RS meta_eq_to_obj_eq)
   924           else
   925             no_fact;
   926 
   927         val pred_rhs = fold absfree (y' :: x' :: rev Qs') (HOLogic.mk_mem (HOLogic.mk_prod (x, y),
   928           Term.list_comb (relAsBs, map3 (fn Q => fn T => fn U =>
   929             HOLogic.Collect_const (HOLogic.mk_prodT (T, U)) $ HOLogic.mk_split Q)
   930             Qs As' Bs')));
   931         val pred_bind_def = (fn () => Binding.suffix_name ("_" ^ predN) b, pred_rhs);
   932 
   933         val ((bnf_pred_term, raw_pred_def), (lthy, lthy_old)) =
   934           lthy
   935           |> maybe_define true pred_bind_def
   936           ||> `(maybe_restore lthy);
   937 
   938         (*transforms defined frees into consts*)
   939         val phi = Proof_Context.export_morphism lthy_old lthy;
   940         val bnf_pred = Morphism.term phi bnf_pred_term;
   941 
   942         fun mk_bnf_pred QTs CA' CB' = normalize_pred lthy QTs CA' CB' bnf_pred;
   943 
   944         val pred = mk_bnf_pred QTs CA' CB';
   945         val bnf_pred_def = Morphism.thm phi raw_pred_def;
   946         val pred_def_unabs =
   947           if fact_policy <> Derive_Some_Facts then
   948             mk_unabs_def (live + 2) (bnf_pred_def RS meta_eq_to_obj_eq)
   949           else
   950             no_fact;
   951 
   952         fun mk_map_wppull () =
   953           let
   954             val prems = if live = 0 then [] else
   955               [HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj
   956                 (map8 mk_wpull Xs B1s B2s f1s f2s (map SOME (e1s ~~ e2s)) p1s p2s))];
   957             val CX = mk_bnf_T domTs CA;
   958             val CB1 = mk_bnf_T B1Ts CA;
   959             val CB2 = mk_bnf_T B2Ts CA;
   960             val bnf_sets_CX =
   961               map2 (normalize_set (map (mk_bnf_T domTs) CA_params)) domTs bnf_sets;
   962             val bnf_sets_CB1 =
   963               map2 (normalize_set (map (mk_bnf_T B1Ts) CA_params)) B1Ts bnf_sets;
   964             val bnf_sets_CB2 =
   965               map2 (normalize_set (map (mk_bnf_T B2Ts) CA_params)) B2Ts bnf_sets;
   966             val bnf_map_app_f1 = Term.list_comb (mk_bnf_map B1Ts ranTs, f1s);
   967             val bnf_map_app_f2 = Term.list_comb (mk_bnf_map B2Ts ranTs, f2s);
   968             val bnf_map_app_e1 = Term.list_comb (mk_bnf_map B1Ts ranTs', e1s);
   969             val bnf_map_app_e2 = Term.list_comb (mk_bnf_map B2Ts ranTs'', e2s);
   970             val bnf_map_app_p1 = Term.list_comb (mk_bnf_map domTs B1Ts, p1s);
   971             val bnf_map_app_p2 = Term.list_comb (mk_bnf_map domTs B2Ts, p2s);
   972 
   973             val concl = mk_wpull (mk_in Xs bnf_sets_CX CX)
   974               (mk_in B1s bnf_sets_CB1 CB1) (mk_in B2s bnf_sets_CB2 CB2)
   975               bnf_map_app_f1 bnf_map_app_f2 (SOME (bnf_map_app_e1, bnf_map_app_e2))
   976               bnf_map_app_p1 bnf_map_app_p2;
   977 
   978             val goal =
   979               fold_rev Logic.all (Xs @ B1s @ B2s @ f1s @ f2s @ e1s @ e2s @ p1s @ p2s)
   980                 (Logic.list_implies (prems, HOLogic.mk_Trueprop concl))
   981           in
   982             Skip_Proof.prove lthy [] [] goal
   983               (fn _ => mk_map_wppull_tac (#map_id axioms) (#map_cong axioms)
   984                 (#map_wpull axioms) (Lazy.force map_comp') (map Lazy.force set_natural'))
   985             |> Thm.close_derivation
   986           end;
   987 
   988         val map_wppull = mk_lazy mk_map_wppull;
   989 
   990         fun mk_rel_Gr () =
   991           let
   992             val lhs = Term.list_comb (relAsBs, map2 mk_Gr As fs);
   993             val rhs = mk_Gr (mk_in As bnf_sets_As CA') (Term.list_comb (bnf_map_AsBs, fs));
   994             val goal = fold_rev Logic.all (As @ fs) (mk_Trueprop_eq (lhs, rhs));
   995           in
   996             Skip_Proof.prove lthy [] [] goal
   997               (mk_rel_Gr_tac bnf_rel_def (#map_id axioms) (#map_cong axioms)
   998                 (#map_wpull axioms) (Lazy.force in_cong) (Lazy.force map_id')
   999                 (Lazy.force map_comp') (map Lazy.force set_natural'))
  1000             |> Thm.close_derivation
  1001           end;
  1002 
  1003         val rel_Gr = mk_lazy mk_rel_Gr;
  1004 
  1005         fun mk_rel_prems f = map2 (HOLogic.mk_Trueprop oo f) Rs Rs_copy
  1006         fun mk_rel_concl f = HOLogic.mk_Trueprop
  1007           (f (Term.list_comb (relAsBs, Rs), Term.list_comb (relAsBs, Rs_copy)));
  1008 
  1009         fun mk_rel_mono () =
  1010           let
  1011             val mono_prems = mk_rel_prems mk_subset;
  1012             val mono_concl = mk_rel_concl (uncurry mk_subset);
  1013           in
  1014             Skip_Proof.prove lthy [] []
  1015               (fold_rev Logic.all (Rs @ Rs_copy) (Logic.list_implies (mono_prems, mono_concl)))
  1016               (mk_rel_mono_tac bnf_rel_def (Lazy.force in_mono))
  1017             |> Thm.close_derivation
  1018           end;
  1019 
  1020         fun mk_rel_cong () =
  1021           let
  1022             val cong_prems = mk_rel_prems (curry HOLogic.mk_eq);
  1023             val cong_concl = mk_rel_concl HOLogic.mk_eq;
  1024           in
  1025             Skip_Proof.prove lthy [] []
  1026               (fold_rev Logic.all (Rs @ Rs_copy) (Logic.list_implies (cong_prems, cong_concl)))
  1027               (fn _ => (TRY o hyp_subst_tac THEN' rtac refl) 1)
  1028             |> Thm.close_derivation
  1029           end;
  1030 
  1031         val rel_mono = mk_lazy mk_rel_mono;
  1032         val rel_cong = mk_lazy mk_rel_cong;
  1033 
  1034         fun mk_rel_Id () =
  1035           let val relAsAs = mk_bnf_rel self_setRTs CA' CA' in
  1036             Skip_Proof.prove lthy [] []
  1037               (HOLogic.mk_Trueprop
  1038                 (HOLogic.mk_eq (Term.list_comb (relAsAs, map Id_const As'), Id_const CA')))
  1039               (mk_rel_Id_tac live (Lazy.force rel_Gr) (#map_id axioms))
  1040             |> Thm.close_derivation
  1041           end;
  1042 
  1043         val rel_Id = mk_lazy mk_rel_Id;
  1044 
  1045         fun mk_rel_converse () =
  1046           let
  1047             val relBsAs = mk_bnf_rel setRT's CB' CA';
  1048             val lhs = Term.list_comb (relBsAs, map mk_converse Rs);
  1049             val rhs = mk_converse (Term.list_comb (relAsBs, Rs));
  1050             val le_goal = fold_rev Logic.all Rs (HOLogic.mk_Trueprop (mk_subset lhs rhs));
  1051             val le_thm = Skip_Proof.prove lthy [] [] le_goal
  1052               (mk_rel_converse_le_tac bnf_rel_def (Lazy.force rel_Id) (#map_cong axioms)
  1053                 (Lazy.force map_comp') (map Lazy.force set_natural'))
  1054               |> Thm.close_derivation
  1055             val goal = fold_rev Logic.all Rs (mk_Trueprop_eq (lhs, rhs));
  1056           in
  1057             Skip_Proof.prove lthy [] [] goal (fn _ => mk_rel_converse_tac le_thm)
  1058             |> Thm.close_derivation
  1059           end;
  1060 
  1061         val rel_converse = mk_lazy mk_rel_converse;
  1062 
  1063         fun mk_rel_O () =
  1064           let
  1065             val relAsCs = mk_bnf_rel setRTsAsCs CA' CC';
  1066             val relBsCs = mk_bnf_rel setRTsBsCs CB' CC';
  1067             val lhs = Term.list_comb (relAsCs, map2 (curry mk_rel_comp) Rs Ss);
  1068             val rhs = mk_rel_comp (Term.list_comb (relAsBs, Rs), Term.list_comb (relBsCs, Ss));
  1069             val goal = fold_rev Logic.all (Rs @ Ss) (mk_Trueprop_eq (lhs, rhs));
  1070           in
  1071             Skip_Proof.prove lthy [] [] goal
  1072               (mk_rel_O_tac bnf_rel_def (Lazy.force rel_Id) (#map_cong axioms)
  1073                 (Lazy.force map_wppull) (Lazy.force map_comp') (map Lazy.force set_natural'))
  1074             |> Thm.close_derivation
  1075           end;
  1076 
  1077         val rel_O = mk_lazy mk_rel_O;
  1078 
  1079         fun mk_in_rel () =
  1080           let
  1081             val bnf_in = mk_in Rs (map (mk_bnf_t RTs) bnf_sets) CRs';
  1082             val map1 = Term.list_comb (mk_bnf_map RTs As', map fst_const RTs);
  1083             val map2 = Term.list_comb (mk_bnf_map RTs Bs', map snd_const RTs);
  1084             val map_fst_eq = HOLogic.mk_eq (map1 $ z, x);
  1085             val map_snd_eq = HOLogic.mk_eq (map2 $ z, y);
  1086             val lhs = HOLogic.mk_mem (HOLogic.mk_prod (x, y), Term.list_comb (relAsBs, Rs));
  1087             val rhs =
  1088               HOLogic.mk_exists (fst z', snd z', HOLogic.mk_conj (HOLogic.mk_mem (z, bnf_in),
  1089                 HOLogic.mk_conj (map_fst_eq, map_snd_eq)));
  1090             val goal =
  1091               fold_rev Logic.all (x :: y :: Rs) (mk_Trueprop_eq (lhs, rhs));
  1092           in
  1093             Skip_Proof.prove lthy [] [] goal (mk_in_rel_tac bnf_rel_def (length bnf_sets))
  1094             |> Thm.close_derivation
  1095           end;
  1096 
  1097         val in_rel = mk_lazy mk_in_rel;
  1098 
  1099         val defs = mk_defs bnf_map_def bnf_set_defs rel_def_unabs pred_def_unabs;
  1100 
  1101         val facts = mk_facts bd_Card_order bd_Cinfinite bd_Cnotzero collect_set_natural
  1102           in_cong in_mono in_rel map_comp' map_id' map_wppull
  1103           rel_cong rel_mono rel_Id rel_Gr rel_converse rel_O set_natural';
  1104 
  1105         val wits = map2 mk_witness bnf_wits wit_thms;
  1106 
  1107         val bnf_rel = Term.subst_atomic_types
  1108           ((Ds ~~ deads) @ (As' ~~ alphas) @ (Bs' ~~ betas)) relAsBs;
  1109         val bnf_pred = Term.subst_atomic_types
  1110           ((Ds ~~ deads) @ (As' ~~ alphas) @ (Bs' ~~ betas)) pred;
  1111 
  1112         val bnf = mk_bnf b CA live alphas betas dead deads bnf_map bnf_sets bnf_bd axioms defs facts
  1113           wits bnf_rel bnf_pred;
  1114       in
  1115         (bnf, lthy
  1116           |> (if fact_policy = Note_All_Facts_and_Axioms then
  1117                 let
  1118                   val witNs = if length wits = 1 then [witN] else map mk_witN (1 upto length wits);
  1119                   val notes =
  1120                     [(bd_card_orderN, [#bd_card_order axioms]),
  1121                     (bd_cinfiniteN, [#bd_cinfinite axioms]),
  1122                     (bd_Card_orderN, [#bd_Card_order facts]),
  1123                     (bd_CinfiniteN, [#bd_Cinfinite facts]),
  1124                     (bd_CnotzeroN, [#bd_Cnotzero facts]),
  1125                     (collect_set_naturalN, [Lazy.force (#collect_set_natural facts)]),
  1126                     (in_bdN, [#in_bd axioms]),
  1127                     (in_monoN, [Lazy.force (#in_mono facts)]),
  1128                     (in_relN, [Lazy.force (#in_rel facts)]),
  1129                     (map_compN, [#map_comp axioms]),
  1130                     (map_idN, [#map_id axioms]),
  1131                     (map_wpullN, [#map_wpull axioms]),
  1132                     (set_naturalN, #set_natural axioms),
  1133                     (set_bdN, #set_bd axioms)] @
  1134                     map2 pair witNs wit_thms
  1135                     |> map (fn (thmN, thms) =>
  1136                       ((qualify (Binding.qualify true (Binding.name_of b) (Binding.name thmN)), []),
  1137                       [(thms, [])]));
  1138                 in
  1139                   Local_Theory.notes notes #> snd
  1140                 end
  1141               else
  1142                 I)
  1143           |> (if fact_policy = Note_All_Facts_and_Axioms orelse
  1144                  fact_policy = Derive_All_Facts_Note_Most then
  1145                 let
  1146                   val notes =
  1147                     [(map_congN, [#map_cong axioms]),
  1148                     (rel_IdN, [Lazy.force (#rel_Id facts)]),
  1149                     (rel_GrN, [Lazy.force (#rel_Gr facts)]),
  1150                     (rel_converseN, [Lazy.force (#rel_converse facts)]),
  1151                     (rel_ON, [Lazy.force (#rel_O facts)]),
  1152                     (map_id'N, [Lazy.force (#map_id' facts)]),
  1153                     (map_comp'N, [Lazy.force (#map_comp' facts)]),
  1154                     (set_natural'N, map Lazy.force (#set_natural' facts))]
  1155                     |> map (fn (thmN, thms) =>
  1156                       ((qualify (Binding.qualify true (Binding.name_of b) (Binding.name thmN)), []),
  1157                       [(thms, [])]));
  1158                 in
  1159                   Local_Theory.notes notes #> snd
  1160                   #> Local_Theory.declaration {syntax = false, pervasive = true}
  1161                     (fn phi => Data.map (Symtab.update_new (key, morph_bnf phi bnf)))
  1162                 end
  1163               else
  1164                 I))
  1165       end;
  1166   in
  1167     (goals, wit_goalss, after_qed, lthy', one_step_defs)
  1168   end;
  1169 
  1170 fun bnf_def const_policy fact_policy qualify tacs wit_tac Ds =
  1171   (fn (goals, wit_goalss, after_qed, lthy, defs) =>
  1172   let
  1173     val wits_tac = K (TRYALL Goal.conjunction_tac) THEN' unfold_defs_tac lthy defs wit_tac;
  1174     val wit_goals = wit_goalss |> map Logic.mk_conjunction_balanced;
  1175     val wit_goal = Logic.mk_conjunction_balanced wit_goals;
  1176     val wit_thms =
  1177       Skip_Proof.prove lthy [] [] wit_goal wits_tac
  1178       |> Conjunction.elim_balanced (length wit_goals)
  1179       |> map2 (Conjunction.elim_balanced o length) wit_goalss
  1180       |> map (map (Thm.close_derivation o Thm.forall_elim_vars 0))
  1181   in
  1182     map2 (Thm.close_derivation oo Skip_Proof.prove lthy [] [])
  1183       goals (map (unfold_defs_tac lthy defs) tacs)
  1184     |> (fn thms => after_qed (map single thms @ wit_thms) lthy)
  1185   end) oo prepare_def const_policy fact_policy qualify
  1186   (singleton o Type_Infer_Context.infer_types) Ds;
  1187 
  1188 val bnf_def_cmd = (fn (goals, wit_goals, after_qed, lthy, defs) =>
  1189   Proof.unfolding ([[(defs, [])]])
  1190     (Proof.theorem NONE (snd oo after_qed)
  1191       (map (single o rpair []) goals @ map (map (rpair [])) wit_goals) lthy)) oo
  1192   prepare_def Do_Inline user_policy I Syntax.read_term NONE;
  1193 
  1194 fun print_bnfs ctxt =
  1195   let
  1196     fun pretty_set sets i = Pretty.block
  1197       [Pretty.str (mk_setN (i + 1) ^ ":"), Pretty.brk 1,
  1198           Pretty.quote (Syntax.pretty_term ctxt (nth sets i))];
  1199 
  1200     fun pretty_bnf (key, BNF {T = T, map = map, sets = sets, bd = bd,
  1201       live = live, lives = lives, dead = dead, deads = deads, ...}) =
  1202       Pretty.big_list
  1203         (Pretty.string_of (Pretty.block [Pretty.str key, Pretty.str ":", Pretty.brk 1,
  1204           Pretty.quote (Syntax.pretty_typ ctxt T)]))
  1205         ([Pretty.block [Pretty.str "live:", Pretty.brk 1, Pretty.str (string_of_int live),
  1206             Pretty.brk 3, Pretty.list "[" "]" (List.map (Syntax.pretty_typ ctxt) lives)],
  1207           Pretty.block [Pretty.str "dead:", Pretty.brk 1, Pretty.str (string_of_int dead),
  1208             Pretty.brk 3, Pretty.list "[" "]" (List.map (Syntax.pretty_typ ctxt) deads)],
  1209           Pretty.block [Pretty.str (mapN ^ ":"), Pretty.brk 1,
  1210             Pretty.quote (Syntax.pretty_term ctxt map)]] @
  1211           List.map (pretty_set sets) (0 upto length sets - 1) @
  1212           [Pretty.block [Pretty.str (bdN ^ ":"), Pretty.brk 1,
  1213             Pretty.quote (Syntax.pretty_term ctxt bd)]]);
  1214   in
  1215     Pretty.big_list "BNFs:" (map pretty_bnf (Symtab.dest (Data.get (Context.Proof ctxt))))
  1216     |> Pretty.writeln
  1217   end;
  1218 
  1219 val _ =
  1220   Outer_Syntax.improper_command @{command_spec "print_bnfs"} "print all BNFs"
  1221     (Scan.succeed (Toplevel.keep (print_bnfs o Toplevel.context_of)));
  1222 
  1223 val _ =
  1224   Outer_Syntax.local_theory_to_proof @{command_spec "bnf_def"} "define a BNF for an existing type"
  1225     (((Parse.binding --| @{keyword "="}) -- Parse.term --
  1226        (@{keyword "["} |-- Parse.list Parse.term --| @{keyword "]"}) -- Parse.term --
  1227        (@{keyword "["} |-- Parse.list Parse.term --| @{keyword "]"})) >> bnf_def_cmd);
  1228 
  1229 end;