src/HOL/Tools/Sledgehammer/sledgehammer_fact.ML
author blanchet
Mon, 23 Jul 2012 15:32:30 +0200
changeset 49449 aaaec69db3db
parent 49421 b002cc16aa99
child 49452 82b9feeab1ef
permissions -rw-r--r--
ensure all calls to "mash" program are synchronous
     1 (*  Title:      HOL/Tools/Sledgehammer/sledgehammer_fact.ML
     2     Author:     Jia Meng, Cambridge University Computer Laboratory and NICTA
     3     Author:     Jasmin Blanchette, TU Muenchen
     4 
     5 Sledgehammer fact handling.
     6 *)
     7 
     8 signature SLEDGEHAMMER_FACT =
     9 sig
    10   type status = ATP_Problem_Generate.status
    11   type stature = ATP_Problem_Generate.stature
    12 
    13   type fact = ((unit -> string) * stature) * thm
    14 
    15   type fact_override =
    16     {add : (Facts.ref * Attrib.src list) list,
    17      del : (Facts.ref * Attrib.src list) list,
    18      only : bool}
    19 
    20   val ignore_no_atp : bool Config.T
    21   val instantiate_inducts : bool Config.T
    22   val no_fact_override : fact_override
    23   val fact_from_ref :
    24     Proof.context -> unit Symtab.table -> thm list -> status Termtab.table
    25     -> Facts.ref * Attrib.src list -> ((string * stature) * thm) list
    26   val is_likely_tautology_or_too_meta : thm -> bool
    27   val backquote_thm : thm -> string
    28   val clasimpset_rule_table_of : Proof.context -> status Termtab.table
    29   val maybe_instantiate_inducts :
    30     Proof.context -> term list -> term -> (((unit -> string) * 'a) * thm) list
    31     -> (((unit -> string) * 'a) * thm) list
    32   val maybe_filter_no_atps : Proof.context -> ('a * thm) list -> ('a * thm) list
    33   val all_facts_of : Proof.context -> status Termtab.table -> fact list
    34   val nearly_all_facts :
    35     Proof.context -> bool -> fact_override -> unit Symtab.table
    36     -> status Termtab.table -> thm list -> term list -> term -> fact list
    37 end;
    38 
    39 structure Sledgehammer_Fact : SLEDGEHAMMER_FACT =
    40 struct
    41 
    42 open ATP_Problem_Generate
    43 open Metis_Tactic
    44 open Sledgehammer_Util
    45 
    46 type fact = ((unit -> string) * stature) * thm
    47 
    48 type fact_override =
    49   {add : (Facts.ref * Attrib.src list) list,
    50    del : (Facts.ref * Attrib.src list) list,
    51    only : bool}
    52 
    53 val sledgehammer_prefix = "Sledgehammer" ^ Long_Name.separator
    54 
    55 (* experimental features *)
    56 val ignore_no_atp =
    57   Attrib.setup_config_bool @{binding sledgehammer_ignore_no_atp} (K false)
    58 val instantiate_inducts =
    59   Attrib.setup_config_bool @{binding sledgehammer_instantiate_inducts} (K false)
    60 
    61 val no_fact_override = {add = [], del = [], only = false}
    62 
    63 fun needs_quoting reserved s =
    64   Symtab.defined reserved s orelse
    65   exists (not o Lexicon.is_identifier) (Long_Name.explode s)
    66 
    67 fun make_name reserved multi j name =
    68   (name |> needs_quoting reserved name ? quote) ^
    69   (if multi then "(" ^ string_of_int j ^ ")" else "")
    70 
    71 fun explode_interval _ (Facts.FromTo (i, j)) = i upto j
    72   | explode_interval max (Facts.From i) = i upto i + max - 1
    73   | explode_interval _ (Facts.Single i) = [i]
    74 
    75 val backquote =
    76   raw_explode #> map (fn "`" => "\\`" | s => s) #> implode #> enclose "`" "`"
    77 
    78 (* unfolding these can yield really huge terms *)
    79 val risky_defs = @{thms Bit0_def Bit1_def}
    80 
    81 fun is_rec_eq lhs = Term.exists_subterm (curry (op =) (head_of lhs))
    82 fun is_rec_def (@{const Trueprop} $ t) = is_rec_def t
    83   | is_rec_def (@{const ==>} $ _ $ t2) = is_rec_def t2
    84   | is_rec_def (Const (@{const_name "=="}, _) $ t1 $ t2) = is_rec_eq t1 t2
    85   | is_rec_def (Const (@{const_name HOL.eq}, _) $ t1 $ t2) = is_rec_eq t1 t2
    86   | is_rec_def _ = false
    87 
    88 fun is_assum assms th = exists (fn ct => prop_of th aconv term_of ct) assms
    89 fun is_chained chained = member Thm.eq_thm_prop chained
    90 
    91 fun scope_of_thm global assms chained th =
    92   if is_chained chained th then Chained
    93   else if global then Global
    94   else if is_assum assms th then Assum
    95   else Local
    96 
    97 val may_be_induction =
    98   exists_subterm (fn Var (_, Type (@{type_name fun}, [_, T])) =>
    99                      body_type T = @{typ bool}
   100                    | _ => false)
   101 
   102 fun status_of_thm css name th =
   103   (* FIXME: use structured name *)
   104   if (String.isSubstring ".induct" name orelse
   105       String.isSubstring ".inducts" name) andalso
   106      may_be_induction (prop_of th) then
   107     Induction
   108   else case Termtab.lookup css (prop_of th) of
   109     SOME status => status
   110   | NONE => General
   111 
   112 fun stature_of_thm global assms chained css name th =
   113   (scope_of_thm global assms chained th, status_of_thm css name th)
   114 
   115 fun fact_from_ref ctxt reserved chained css (xthm as (xref, args)) =
   116   let
   117     val ths = Attrib.eval_thms ctxt [xthm]
   118     val bracket =
   119       map (enclose "[" "]" o Pretty.str_of o Args.pretty_src ctxt) args
   120       |> implode
   121     fun nth_name j =
   122       case xref of
   123         Facts.Fact s => backquote s ^ bracket
   124       | Facts.Named (("", _), _) => "[" ^ bracket ^ "]"
   125       | Facts.Named ((name, _), NONE) =>
   126         make_name reserved (length ths > 1) (j + 1) name ^ bracket
   127       | Facts.Named ((name, _), SOME intervals) =>
   128         make_name reserved true
   129                  (nth (maps (explode_interval (length ths)) intervals) j) name ^
   130         bracket
   131     fun add_nth th (j, rest) =
   132       let val name = nth_name j in
   133         (j + 1, ((name, stature_of_thm false [] chained css name th), th)
   134                 :: rest)
   135       end
   136   in (0, []) |> fold add_nth ths |> snd end
   137 
   138 (* Reject theorems with names like "List.filter.filter_list_def" or
   139   "Accessible_Part.acc.defs", as these are definitions arising from packages. *)
   140 fun is_package_def a =
   141   let val names = Long_Name.explode a in
   142     (length names > 2 andalso not (hd names = "local") andalso
   143      String.isSuffix "_def" a) orelse String.isSuffix "_defs" a
   144   end
   145 
   146 (* FIXME: put other record thms here, or declare as "no_atp" *)
   147 fun multi_base_blacklist ctxt ho_atp =
   148   ["defs", "select_defs", "update_defs", "split", "splits", "split_asm",
   149    "cases", "ext_cases", "eq.simps", "eq.refl", "nchotomy", "case_cong",
   150    "weak_case_cong"]
   151   |> not (ho_atp orelse (Config.get ctxt instantiate_inducts)) ?
   152         append ["induct", "inducts"]
   153   |> map (prefix ".")
   154 
   155 val max_lambda_nesting = 3 (*only applies if not ho_atp*)
   156 
   157 fun term_has_too_many_lambdas max (t1 $ t2) =
   158     exists (term_has_too_many_lambdas max) [t1, t2]
   159   | term_has_too_many_lambdas max (Abs (_, _, t)) =
   160     max = 0 orelse term_has_too_many_lambdas (max - 1) t
   161   | term_has_too_many_lambdas _ _ = false
   162 
   163 (* Don't count nested lambdas at the level of formulas, since they are
   164    quantifiers. *)
   165 fun formula_has_too_many_lambdas true _ _ = false (*i.e. ho_atp*)
   166   | formula_has_too_many_lambdas _ Ts (Abs (_, T, t)) =
   167       formula_has_too_many_lambdas false (T :: Ts) t
   168   | formula_has_too_many_lambdas _ Ts t =
   169     if member (op =) [HOLogic.boolT, propT] (fastype_of1 (Ts, t)) then
   170       exists (formula_has_too_many_lambdas false Ts) (#2 (strip_comb t))
   171     else
   172       term_has_too_many_lambdas max_lambda_nesting t
   173 
   174 (* The max apply depth of any "metis" call in "Metis_Examples" (on 2007-10-31)
   175    was 11. *)
   176 val max_apply_depth = 15
   177 
   178 fun apply_depth (f $ t) = Int.max (apply_depth f, apply_depth t + 1)
   179   | apply_depth (Abs (_, _, t)) = apply_depth t
   180   | apply_depth _ = 0
   181 
   182 fun is_formula_too_complex ho_atp t =
   183   apply_depth t > max_apply_depth orelse formula_has_too_many_lambdas ho_atp [] t
   184 
   185 (* FIXME: Extend to "Meson" and "Metis" *)
   186 val exists_sledgehammer_const =
   187   exists_Const (fn (s, _) => String.isPrefix sledgehammer_prefix s)
   188 
   189 (* FIXME: make more reliable *)
   190 val exists_low_level_class_const =
   191   exists_Const (fn (s, _) =>
   192      s = @{const_name equal_class.equal} orelse
   193      String.isSubstring (Long_Name.separator ^ "class" ^ Long_Name.separator) s)
   194 
   195 fun is_metastrange_theorem th =
   196   case head_of (concl_of th) of
   197     Const (s, _) => (s <> @{const_name Trueprop} andalso
   198                      s <> @{const_name "=="})
   199   | _ => false
   200 
   201 fun is_that_fact th =
   202   String.isSuffix (Long_Name.separator ^ Obtain.thatN) (Thm.get_name_hint th)
   203   andalso exists_subterm (fn Free (s, _) => s = Name.skolem Auto_Bind.thesisN
   204                            | _ => false) (prop_of th)
   205 
   206 fun is_theorem_bad_for_atps ho_atp thm =
   207   is_metastrange_theorem thm orelse
   208   let val t = prop_of thm in
   209     is_formula_too_complex ho_atp t orelse exists_type type_has_top_sort t orelse
   210     exists_sledgehammer_const t orelse exists_low_level_class_const t orelse
   211     is_that_fact thm
   212   end
   213 
   214 fun is_likely_tautology_or_too_meta th =
   215   let
   216     val is_boring_const = member (op =) atp_widely_irrelevant_consts
   217     fun is_boring_bool t =
   218       not (exists_Const (not o is_boring_const o fst) t) orelse
   219       exists_type (exists_subtype (curry (op =) @{typ prop})) t
   220     fun is_boring_prop (@{const Trueprop} $ t) = is_boring_bool t
   221       | is_boring_prop (@{const "==>"} $ t $ u) =
   222         is_boring_prop t andalso is_boring_prop u
   223       | is_boring_prop (Const (@{const_name all}, _) $ (Abs (_, _, t)) $ u) =
   224         is_boring_prop t andalso is_boring_prop u
   225       | is_boring_prop (Const (@{const_name "=="}, _) $ t $ u) =
   226         is_boring_bool t andalso is_boring_bool u
   227       | is_boring_prop _ = true
   228   in
   229     is_boring_prop (prop_of th) andalso not (Thm.eq_thm_prop (@{thm ext}, th))
   230   end
   231 
   232 fun hackish_string_for_term thy t =
   233   Print_Mode.setmp (filter (curry (op =) Symbol.xsymbolsN)
   234                    (print_mode_value ())) (Syntax.string_of_term_global thy) t
   235   |> String.translate (fn c => if Char.isPrint c then str c else "")
   236   |> simplify_spaces
   237 
   238 (* This is a terrible hack. Free variables are sometimes coded as "M__" when
   239    they are displayed as "M" and we want to avoid clashes with these. But
   240    sometimes it's even worse: "Ma__" encodes "M". So we simply reserve all
   241    prefixes of all free variables. In the worse case scenario, where the fact
   242    won't be resolved correctly, the user can fix it manually, e.g., by naming
   243    the fact in question. Ideally we would need nothing of it, but backticks
   244    simply don't work with schematic variables. *)
   245 fun all_prefixes_of s =
   246   map (fn i => String.extract (s, 0, SOME i)) (1 upto size s - 1)
   247 
   248 fun close_form t =
   249   (t, [] |> Term.add_free_names t |> maps all_prefixes_of)
   250   |> fold (fn ((s, i), T) => fn (t', taken) =>
   251               let val s' = singleton (Name.variant_list taken) s in
   252                 ((if fastype_of t' = HOLogic.boolT then HOLogic.all_const
   253                   else Logic.all_const) T
   254                  $ Abs (s', T, abstract_over (Var ((s, i), T), t')),
   255                  s' :: taken)
   256               end)
   257           (Term.add_vars t [] |> sort_wrt (fst o fst))
   258   |> fst
   259 
   260 fun backquote_term thy t =
   261   t |> close_form
   262     |> hackish_string_for_term thy
   263     |> backquote
   264 
   265 fun backquote_thm th = backquote_term (theory_of_thm th) (prop_of th)
   266 
   267 fun clasimpset_rule_table_of ctxt =
   268   let
   269     val thy = Proof_Context.theory_of ctxt
   270     val atomize = HOLogic.mk_Trueprop o Object_Logic.atomize_term thy
   271     fun add stature normalizers get_th =
   272       fold (fn rule =>
   273                let
   274                  val th = rule |> get_th
   275                  val t =
   276                    th |> Thm.maxidx_of th > 0 ? zero_var_indexes |> prop_of
   277                in
   278                  fold (fn normalize => Termtab.update (normalize t, stature))
   279                       (I :: normalizers)
   280                end)
   281     val {safeIs, (* safeEs, *) hazIs, (* hazEs, *) ...} =
   282       ctxt |> claset_of |> Classical.rep_cs
   283     val intros = Item_Net.content safeIs @ Item_Net.content hazIs
   284 (* Add once it is used:
   285     val elims =
   286       Item_Net.content safeEs @ Item_Net.content hazEs
   287       |> map Classical.classical_rule
   288 *)
   289     val simps = ctxt |> simpset_of |> dest_ss |> #simps
   290     val specs = ctxt |> Spec_Rules.get
   291     val (rec_defs, nonrec_defs) =
   292       specs |> filter (curry (op =) Spec_Rules.Equational o fst)
   293             |> maps (snd o snd)
   294             |> filter_out (member Thm.eq_thm_prop risky_defs)
   295             |> List.partition (is_rec_def o prop_of)
   296     val spec_intros =
   297       specs |> filter (member (op =) [Spec_Rules.Inductive,
   298                                       Spec_Rules.Co_Inductive] o fst)
   299             |> maps (snd o snd)
   300   in
   301     Termtab.empty |> add Simp [atomize] snd simps
   302                   |> add Simp [] I rec_defs
   303                   |> add Def [] I nonrec_defs
   304 (* Add once it is used:
   305                   |> add Elim [] I elims
   306 *)
   307                   |> add Intro [] I intros
   308                   |> add Inductive [] I spec_intros
   309   end
   310 
   311 fun uniquify xs =
   312   Termtab.fold (cons o snd)
   313                (fold (Termtab.update o `(prop_of o snd)) xs Termtab.empty) []
   314 
   315 fun struct_induct_rule_on th =
   316   case Logic.strip_horn (prop_of th) of
   317     (prems, @{const Trueprop}
   318             $ ((p as Var ((p_name, 0), _)) $ (a as Var (_, ind_T)))) =>
   319     if not (is_TVar ind_T) andalso length prems > 1 andalso
   320        exists (exists_subterm (curry (op aconv) p)) prems andalso
   321        not (exists (exists_subterm (curry (op aconv) a)) prems) then
   322       SOME (p_name, ind_T)
   323     else
   324       NONE
   325   | _ => NONE
   326 
   327 fun instantiate_induct_rule ctxt concl_prop p_name ((name, stature), th) ind_x =
   328   let
   329     val thy = Proof_Context.theory_of ctxt
   330     fun varify_noninducts (t as Free (s, T)) =
   331         if (s, T) = ind_x orelse can dest_funT T then t else Var ((s, 0), T)
   332       | varify_noninducts t = t
   333     val p_inst =
   334       concl_prop |> map_aterms varify_noninducts |> close_form
   335                  |> lambda (Free ind_x)
   336                  |> hackish_string_for_term thy
   337   in
   338     ((fn () => name () ^ "[where " ^ p_name ^ " = " ^ quote p_inst ^ "]",
   339       stature), th |> read_instantiate ctxt [((p_name, 0), p_inst)])
   340   end
   341 
   342 fun type_match thy (T1, T2) =
   343   (Sign.typ_match thy (T2, T1) Vartab.empty; true)
   344   handle Type.TYPE_MATCH => false
   345 
   346 fun instantiate_if_induct_rule ctxt stmt stmt_xs (ax as (_, th)) =
   347   case struct_induct_rule_on th of
   348     SOME (p_name, ind_T) =>
   349     let val thy = Proof_Context.theory_of ctxt in
   350       stmt_xs |> filter (fn (_, T) => type_match thy (T, ind_T))
   351               |> map_filter (try (instantiate_induct_rule ctxt stmt p_name ax))
   352     end
   353   | NONE => [ax]
   354 
   355 fun external_frees t =
   356   [] |> Term.add_frees t |> filter_out (can Name.dest_internal o fst)
   357 
   358 fun maybe_instantiate_inducts ctxt hyp_ts concl_t =
   359   if Config.get ctxt instantiate_inducts then
   360     let
   361       val thy = Proof_Context.theory_of ctxt
   362       val ind_stmt =
   363         (hyp_ts |> filter_out (null o external_frees), concl_t)
   364         |> Logic.list_implies |> Object_Logic.atomize_term thy
   365       val ind_stmt_xs = external_frees ind_stmt
   366     in maps (instantiate_if_induct_rule ctxt ind_stmt ind_stmt_xs) end
   367   else
   368     I
   369 
   370 fun maybe_filter_no_atps ctxt =
   371   not (Config.get ctxt ignore_no_atp) ? filter_out (No_ATPs.member ctxt o snd)
   372 
   373 fun all_facts ctxt ho_atp reserved add_ths chained css =
   374   let
   375     val thy = Proof_Context.theory_of ctxt
   376     val global_facts = Global_Theory.facts_of thy
   377     val local_facts = Proof_Context.facts_of ctxt
   378     val named_locals = local_facts |> Facts.dest_static []
   379     val assms = Assumption.all_assms_of ctxt
   380     fun is_good_unnamed_local th =
   381       not (Thm.has_name_hint th) andalso
   382       forall (fn (_, ths) => not (member Thm.eq_thm_prop ths th)) named_locals
   383     val unnamed_locals =
   384       union Thm.eq_thm_prop (Facts.props local_facts) chained
   385       |> filter is_good_unnamed_local |> map (pair "" o single)
   386     val full_space =
   387       Name_Space.merge (Facts.space_of global_facts, Facts.space_of local_facts)
   388     fun add_facts global foldx facts =
   389       foldx (fn (name0, ths) =>
   390         if name0 <> "" andalso
   391            forall (not o member Thm.eq_thm_prop add_ths) ths andalso
   392            (Facts.is_concealed facts name0 orelse
   393             not (can (Proof_Context.get_thms ctxt) name0) orelse
   394             (not (Config.get ctxt ignore_no_atp) andalso
   395              is_package_def name0) orelse
   396             exists (fn s => String.isSuffix s name0)
   397                    (multi_base_blacklist ctxt ho_atp)) then
   398           I
   399         else
   400           let
   401             val multi = length ths > 1
   402             fun check_thms a =
   403               case try (Proof_Context.get_thms ctxt) a of
   404                 NONE => false
   405               | SOME ths' => eq_list Thm.eq_thm_prop (ths, ths')
   406           in
   407             pair 1
   408             #> fold (fn th => fn (j, (multis, unis)) =>
   409                         (j + 1,
   410                          if not (member Thm.eq_thm_prop add_ths th) andalso
   411                             is_theorem_bad_for_atps ho_atp th then
   412                            (multis, unis)
   413                          else
   414                            let
   415                              val new =
   416                                (((fn () =>
   417                                      if name0 = "" then
   418                                        backquote_thm th
   419                                      else
   420                                        [Facts.extern ctxt facts name0,
   421                                         Name_Space.extern ctxt full_space name0]
   422                                        |> find_first check_thms
   423                                        |> the_default name0
   424                                        |> make_name reserved multi j),
   425                                   stature_of_thm global assms chained css name0
   426                                                  th), th)
   427                            in
   428                              if multi then (new :: multis, unis)
   429                              else (multis, new :: unis)
   430                            end)) ths
   431             #> snd
   432           end)
   433   in
   434     (* The single-name theorems go after the multiple-name ones, so that single
   435        names are preferred when both are available. *)
   436     ([], []) |> add_facts false fold local_facts (unnamed_locals @ named_locals)
   437              |> add_facts true Facts.fold_static global_facts global_facts
   438              |> op @
   439   end
   440 
   441 fun all_facts_of ctxt css =
   442   all_facts ctxt false Symtab.empty [] [] css
   443   |> rev (* partly restore the original order of facts, for MaSh *)
   444 
   445 fun nearly_all_facts ctxt ho_atp {add, del, only} reserved css chained hyp_ts
   446                      concl_t =
   447   if only andalso null add then
   448     []
   449   else
   450     let
   451       val chained =
   452         chained
   453         |> maps (fn th => insert Thm.eq_thm_prop (zero_var_indexes th) [th])
   454     in
   455       (if only then
   456          maps (map (fn ((name, stature), th) => ((K name, stature), th))
   457                o fact_from_ref ctxt reserved chained css) add
   458        else
   459          let val (add, del) = pairself (Attrib.eval_thms ctxt) (add, del) in
   460            all_facts ctxt ho_atp reserved add chained css
   461            |> filter_out (is_likely_tautology_or_too_meta o snd)
   462            |> filter_out (member Thm.eq_thm_prop del o snd)
   463            |> maybe_filter_no_atps ctxt
   464            |> uniquify
   465          end)
   466       |> maybe_instantiate_inducts ctxt hyp_ts concl_t
   467     end
   468 
   469 end;