src/HOL/Tools/ATP/atp_translate.ML
author blanchet
Fri, 01 Jul 2011 15:53:38 +0200
changeset 44493 a867ebb12209
parent 44491 de026aecab9b
child 44495 996b2022ff78
permissions -rw-r--r--
renamed "type_sys" to "type_enc", which is more accurate
     1 (*  Title:      HOL/Tools/ATP/atp_translate.ML
     2     Author:     Fabian Immler, TU Muenchen
     3     Author:     Makarius
     4     Author:     Jasmin Blanchette, TU Muenchen
     5 
     6 Translation of HOL to FOL for Sledgehammer.
     7 *)
     8 
     9 signature ATP_TRANSLATE =
    10 sig
    11   type 'a fo_term = 'a ATP_Problem.fo_term
    12   type connective = ATP_Problem.connective
    13   type ('a, 'b, 'c) formula = ('a, 'b, 'c) ATP_Problem.formula
    14   type format = ATP_Problem.format
    15   type formula_kind = ATP_Problem.formula_kind
    16   type 'a problem = 'a ATP_Problem.problem
    17 
    18   datatype locality =
    19     General | Helper | Extensionality | Intro | Elim | Simp | Local | Assum |
    20     Chained
    21 
    22   datatype order = First_Order | Higher_Order
    23   datatype polymorphism = Polymorphic | Monomorphic | Mangled_Monomorphic
    24   datatype type_level =
    25     All_Types | Noninf_Nonmono_Types | Fin_Nonmono_Types | Const_Arg_Types |
    26     No_Types
    27   datatype type_heaviness = Heavyweight | Lightweight
    28 
    29   datatype type_enc =
    30     Simple_Types of order * type_level |
    31     Preds of polymorphism * type_level * type_heaviness |
    32     Tags of polymorphism * type_level * type_heaviness
    33 
    34   val bound_var_prefix : string
    35   val schematic_var_prefix : string
    36   val fixed_var_prefix : string
    37   val tvar_prefix : string
    38   val tfree_prefix : string
    39   val const_prefix : string
    40   val type_const_prefix : string
    41   val class_prefix : string
    42   val skolem_const_prefix : string
    43   val old_skolem_const_prefix : string
    44   val new_skolem_const_prefix : string
    45   val type_decl_prefix : string
    46   val sym_decl_prefix : string
    47   val preds_sym_formula_prefix : string
    48   val lightweight_tags_sym_formula_prefix : string
    49   val fact_prefix : string
    50   val conjecture_prefix : string
    51   val helper_prefix : string
    52   val class_rel_clause_prefix : string
    53   val arity_clause_prefix : string
    54   val tfree_clause_prefix : string
    55   val typed_helper_suffix : string
    56   val untyped_helper_suffix : string
    57   val type_tag_idempotence_helper_name : string
    58   val predicator_name : string
    59   val app_op_name : string
    60   val type_tag_name : string
    61   val type_pred_name : string
    62   val simple_type_prefix : string
    63   val prefixed_predicator_name : string
    64   val prefixed_app_op_name : string
    65   val prefixed_type_tag_name : string
    66   val ascii_of : string -> string
    67   val unascii_of : string -> string
    68   val strip_prefix_and_unascii : string -> string -> string option
    69   val proxy_table : (string * (string * (thm * (string * string)))) list
    70   val proxify_const : string -> (string * string) option
    71   val invert_const : string -> string
    72   val unproxify_const : string -> string
    73   val new_skolem_var_name_from_const : string -> string
    74   val num_type_args : theory -> string -> int
    75   val atp_irrelevant_consts : string list
    76   val atp_schematic_consts_of : term -> typ list Symtab.table
    77   val is_locality_global : locality -> bool
    78   val type_enc_from_string : string -> type_enc
    79   val polymorphism_of_type_enc : type_enc -> polymorphism
    80   val level_of_type_enc : type_enc -> type_level
    81   val is_type_enc_virtually_sound : type_enc -> bool
    82   val is_type_enc_fairly_sound : type_enc -> bool
    83   val choose_format : format list -> type_enc -> format * type_enc
    84   val mk_aconns :
    85     connective -> ('a, 'b, 'c) formula list -> ('a, 'b, 'c) formula
    86   val unmangled_const : string -> string * string fo_term list
    87   val unmangled_const_name : string -> string
    88   val helper_table : ((string * bool) * thm list) list
    89   val factsN : string
    90   val prepare_atp_problem :
    91     Proof.context -> format -> formula_kind -> formula_kind -> type_enc -> bool
    92     -> bool -> bool -> bool -> term list -> term
    93     -> ((string * locality) * term) list
    94     -> string problem * string Symtab.table * int * int
    95        * (string * locality) list vector * int list * int Symtab.table
    96   val atp_problem_weights : string problem -> (string * real) list
    97 end;
    98 
    99 structure ATP_Translate : ATP_TRANSLATE =
   100 struct
   101 
   102 open ATP_Util
   103 open ATP_Problem
   104 
   105 type name = string * string
   106 
   107 (* experimental *)
   108 val generate_useful_info = false
   109 
   110 fun useful_isabelle_info s =
   111   if generate_useful_info then
   112     SOME (ATerm ("[]", [ATerm ("isabelle_" ^ s, [])]))
   113   else
   114     NONE
   115 
   116 val intro_info = useful_isabelle_info "intro"
   117 val elim_info = useful_isabelle_info "elim"
   118 val simp_info = useful_isabelle_info "simp"
   119 
   120 val bound_var_prefix = "B_"
   121 val schematic_var_prefix = "V_"
   122 val fixed_var_prefix = "v_"
   123 
   124 val tvar_prefix = "T_"
   125 val tfree_prefix = "t_"
   126 
   127 val const_prefix = "c_"
   128 val type_const_prefix = "tc_"
   129 val class_prefix = "cl_"
   130 
   131 val skolem_const_prefix = "Sledgehammer" ^ Long_Name.separator ^ "Sko"
   132 val old_skolem_const_prefix = skolem_const_prefix ^ "o"
   133 val new_skolem_const_prefix = skolem_const_prefix ^ "n"
   134 
   135 val type_decl_prefix = "ty_"
   136 val sym_decl_prefix = "sy_"
   137 val preds_sym_formula_prefix = "psy_"
   138 val lightweight_tags_sym_formula_prefix = "tsy_"
   139 val fact_prefix = "fact_"
   140 val conjecture_prefix = "conj_"
   141 val helper_prefix = "help_"
   142 val class_rel_clause_prefix = "clar_"
   143 val arity_clause_prefix = "arity_"
   144 val tfree_clause_prefix = "tfree_"
   145 
   146 val typed_helper_suffix = "_T"
   147 val untyped_helper_suffix = "_U"
   148 val type_tag_idempotence_helper_name = helper_prefix ^ "ti_idem"
   149 
   150 val predicator_name = "hBOOL"
   151 val app_op_name = "hAPP"
   152 val type_tag_name = "ti"
   153 val type_pred_name = "is"
   154 val simple_type_prefix = "ty_"
   155 
   156 val prefixed_predicator_name = const_prefix ^ predicator_name
   157 val prefixed_app_op_name = const_prefix ^ app_op_name
   158 val prefixed_type_tag_name = const_prefix ^ type_tag_name
   159 
   160 (* Freshness almost guaranteed! *)
   161 val sledgehammer_weak_prefix = "Sledgehammer:"
   162 
   163 (*Escaping of special characters.
   164   Alphanumeric characters are left unchanged.
   165   The character _ goes to __
   166   Characters in the range ASCII space to / go to _A to _P, respectively.
   167   Other characters go to _nnn where nnn is the decimal ASCII code.*)
   168 val upper_a_minus_space = Char.ord #"A" - Char.ord #" "
   169 
   170 fun stringN_of_int 0 _ = ""
   171   | stringN_of_int k n =
   172     stringN_of_int (k - 1) (n div 10) ^ string_of_int (n mod 10)
   173 
   174 fun ascii_of_char c =
   175   if Char.isAlphaNum c then
   176     String.str c
   177   else if c = #"_" then
   178     "__"
   179   else if #" " <= c andalso c <= #"/" then
   180     "_" ^ String.str (Char.chr (Char.ord c + upper_a_minus_space))
   181   else
   182     (* fixed width, in case more digits follow *)
   183     "_" ^ stringN_of_int 3 (Char.ord c)
   184 
   185 val ascii_of = String.translate ascii_of_char
   186 
   187 (** Remove ASCII armoring from names in proof files **)
   188 
   189 (* We don't raise error exceptions because this code can run inside a worker
   190    thread. Also, the errors are impossible. *)
   191 val unascii_of =
   192   let
   193     fun un rcs [] = String.implode(rev rcs)
   194       | un rcs [#"_"] = un (#"_" :: rcs) [] (* ERROR *)
   195         (* Three types of _ escapes: __, _A to _P, _nnn *)
   196       | un rcs (#"_" :: #"_" :: cs) = un (#"_" :: rcs) cs
   197       | un rcs (#"_" :: c :: cs) =
   198         if #"A" <= c andalso c<= #"P" then
   199           (* translation of #" " to #"/" *)
   200           un (Char.chr (Char.ord c - upper_a_minus_space) :: rcs) cs
   201         else
   202           let val digits = List.take (c :: cs, 3) handle General.Subscript => [] in
   203             case Int.fromString (String.implode digits) of
   204               SOME n => un (Char.chr n :: rcs) (List.drop (cs, 2))
   205             | NONE => un (c :: #"_" :: rcs) cs (* ERROR *)
   206           end
   207       | un rcs (c :: cs) = un (c :: rcs) cs
   208   in un [] o String.explode end
   209 
   210 (* If string s has the prefix s1, return the result of deleting it,
   211    un-ASCII'd. *)
   212 fun strip_prefix_and_unascii s1 s =
   213   if String.isPrefix s1 s then
   214     SOME (unascii_of (String.extract (s, size s1, NONE)))
   215   else
   216     NONE
   217 
   218 val proxy_table =
   219   [("c_False", (@{const_name False}, (@{thm fFalse_def},
   220        ("fFalse", @{const_name ATP.fFalse})))),
   221    ("c_True", (@{const_name True}, (@{thm fTrue_def},
   222        ("fTrue", @{const_name ATP.fTrue})))),
   223    ("c_Not", (@{const_name Not}, (@{thm fNot_def},
   224        ("fNot", @{const_name ATP.fNot})))),
   225    ("c_conj", (@{const_name conj}, (@{thm fconj_def},
   226        ("fconj", @{const_name ATP.fconj})))),
   227    ("c_disj", (@{const_name disj}, (@{thm fdisj_def},
   228        ("fdisj", @{const_name ATP.fdisj})))),
   229    ("c_implies", (@{const_name implies}, (@{thm fimplies_def},
   230        ("fimplies", @{const_name ATP.fimplies})))),
   231    ("equal", (@{const_name HOL.eq}, (@{thm fequal_def},
   232        ("fequal", @{const_name ATP.fequal}))))]
   233 
   234 val proxify_const = AList.lookup (op =) proxy_table #> Option.map (snd o snd)
   235 
   236 (* Readable names for the more common symbolic functions. Do not mess with the
   237    table unless you know what you are doing. *)
   238 val const_trans_table =
   239   [(@{type_name Product_Type.prod}, "prod"),
   240    (@{type_name Sum_Type.sum}, "sum"),
   241    (@{const_name False}, "False"),
   242    (@{const_name True}, "True"),
   243    (@{const_name Not}, "Not"),
   244    (@{const_name conj}, "conj"),
   245    (@{const_name disj}, "disj"),
   246    (@{const_name implies}, "implies"),
   247    (@{const_name HOL.eq}, "equal"),
   248    (@{const_name If}, "If"),
   249    (@{const_name Set.member}, "member"),
   250    (@{const_name Meson.COMBI}, "COMBI"),
   251    (@{const_name Meson.COMBK}, "COMBK"),
   252    (@{const_name Meson.COMBB}, "COMBB"),
   253    (@{const_name Meson.COMBC}, "COMBC"),
   254    (@{const_name Meson.COMBS}, "COMBS")]
   255   |> Symtab.make
   256   |> fold (Symtab.update o swap o snd o snd o snd) proxy_table
   257 
   258 (* Invert the table of translations between Isabelle and ATPs. *)
   259 val const_trans_table_inv =
   260   const_trans_table |> Symtab.dest |> map swap |> Symtab.make
   261 val const_trans_table_unprox =
   262   Symtab.empty
   263   |> fold (fn (_, (isa, (_, (_, atp)))) => Symtab.update (atp, isa)) proxy_table
   264 
   265 val invert_const = perhaps (Symtab.lookup const_trans_table_inv)
   266 val unproxify_const = perhaps (Symtab.lookup const_trans_table_unprox)
   267 
   268 fun lookup_const c =
   269   case Symtab.lookup const_trans_table c of
   270     SOME c' => c'
   271   | NONE => ascii_of c
   272 
   273 fun ascii_of_indexname (v, 0) = ascii_of v
   274   | ascii_of_indexname (v, i) = ascii_of v ^ "_" ^ string_of_int i
   275 
   276 fun make_bound_var x = bound_var_prefix ^ ascii_of x
   277 fun make_schematic_var v = schematic_var_prefix ^ ascii_of_indexname v
   278 fun make_fixed_var x = fixed_var_prefix ^ ascii_of x
   279 
   280 fun make_schematic_type_var (x, i) =
   281       tvar_prefix ^ (ascii_of_indexname (unprefix "'" x, i))
   282 fun make_fixed_type_var x = tfree_prefix ^ (ascii_of (unprefix "'" x))
   283 
   284 (* "HOL.eq" is mapped to the ATP's equality. *)
   285 fun make_fixed_const @{const_name HOL.eq} = tptp_old_equal
   286   | make_fixed_const c = const_prefix ^ lookup_const c
   287 
   288 fun make_fixed_type_const c = type_const_prefix ^ lookup_const c
   289 
   290 fun make_type_class clas = class_prefix ^ ascii_of clas
   291 
   292 fun new_skolem_var_name_from_const s =
   293   let val ss = s |> space_explode Long_Name.separator in
   294     nth ss (length ss - 2)
   295   end
   296 
   297 (* The number of type arguments of a constant, zero if it's monomorphic. For
   298    (instances of) Skolem pseudoconstants, this information is encoded in the
   299    constant name. *)
   300 fun num_type_args thy s =
   301   if String.isPrefix skolem_const_prefix s then
   302     s |> space_explode Long_Name.separator |> List.last |> Int.fromString |> the
   303   else
   304     (s, Sign.the_const_type thy s) |> Sign.const_typargs thy |> length
   305 
   306 (* These are either simplified away by "Meson.presimplify" (most of the time) or
   307    handled specially via "fFalse", "fTrue", ..., "fequal". *)
   308 val atp_irrelevant_consts =
   309   [@{const_name False}, @{const_name True}, @{const_name Not},
   310    @{const_name conj}, @{const_name disj}, @{const_name implies},
   311    @{const_name HOL.eq}, @{const_name If}, @{const_name Let}]
   312 
   313 val atp_monomorph_bad_consts =
   314   atp_irrelevant_consts @
   315   (* These are ignored anyway by the relevance filter (unless they appear in
   316      higher-order places) but not by the monomorphizer. *)
   317   [@{const_name all}, @{const_name "==>"}, @{const_name "=="},
   318    @{const_name Trueprop}, @{const_name All}, @{const_name Ex},
   319    @{const_name Ex1}, @{const_name Ball}, @{const_name Bex}]
   320 
   321 fun add_schematic_const (x as (_, T)) =
   322   Monomorph.typ_has_tvars T ? Symtab.insert_list (op =) x
   323 val add_schematic_consts_of =
   324   Term.fold_aterms (fn Const (x as (s, _)) =>
   325                        not (member (op =) atp_monomorph_bad_consts s)
   326                        ? add_schematic_const x
   327                       | _ => I)
   328 fun atp_schematic_consts_of t = add_schematic_consts_of t Symtab.empty
   329 
   330 (** Definitions and functions for FOL clauses and formulas for TPTP **)
   331 
   332 (* The first component is the type class; the second is a "TVar" or "TFree". *)
   333 datatype type_literal =
   334   TyLitVar of name * name |
   335   TyLitFree of name * name
   336 
   337 
   338 (** Isabelle arities **)
   339 
   340 datatype arity_literal =
   341   TConsLit of name * name * name list |
   342   TVarLit of name * name
   343 
   344 fun gen_TVars 0 = []
   345   | gen_TVars n = ("T_" ^ string_of_int n) :: gen_TVars (n-1)
   346 
   347 val type_class = the_single @{sort type}
   348 
   349 fun add_packed_sort tvar =
   350   fold (fn s => s <> type_class ? cons (`make_type_class s, `I tvar))
   351 
   352 type arity_clause =
   353   {name : string,
   354    prem_lits : arity_literal list,
   355    concl_lits : arity_literal}
   356 
   357 (* Arity of type constructor "tcon :: (arg1, ..., argN) res" *)
   358 fun make_axiom_arity_clause (tcons, name, (cls, args)) =
   359   let
   360     val tvars = gen_TVars (length args)
   361     val tvars_srts = ListPair.zip (tvars, args)
   362   in
   363     {name = name,
   364      prem_lits = [] |> fold (uncurry add_packed_sort) tvars_srts |> map TVarLit,
   365      concl_lits = TConsLit (`make_type_class cls,
   366                             `make_fixed_type_const tcons,
   367                             tvars ~~ tvars)}
   368   end
   369 
   370 fun arity_clause _ _ (_, []) = []
   371   | arity_clause seen n (tcons, ("HOL.type", _) :: ars) =  (* ignore *)
   372     arity_clause seen n (tcons, ars)
   373   | arity_clause seen n (tcons, (ar as (class, _)) :: ars) =
   374     if member (op =) seen class then
   375       (* multiple arities for the same (tycon, class) pair *)
   376       make_axiom_arity_clause (tcons,
   377           lookup_const tcons ^ "___" ^ ascii_of class ^ "_" ^ string_of_int n,
   378           ar) ::
   379       arity_clause seen (n + 1) (tcons, ars)
   380     else
   381       make_axiom_arity_clause (tcons, lookup_const tcons ^ "___" ^
   382                                ascii_of class, ar) ::
   383       arity_clause (class :: seen) n (tcons, ars)
   384 
   385 fun multi_arity_clause [] = []
   386   | multi_arity_clause ((tcons, ars) :: tc_arlists) =
   387       arity_clause [] 1 (tcons, ars) @ multi_arity_clause tc_arlists
   388 
   389 (* Generate all pairs (tycon, class, sorts) such that tycon belongs to class in
   390    theory thy provided its arguments have the corresponding sorts. *)
   391 fun type_class_pairs thy tycons classes =
   392   let
   393     val alg = Sign.classes_of thy
   394     fun domain_sorts tycon = Sorts.mg_domain alg tycon o single
   395     fun add_class tycon class =
   396       cons (class, domain_sorts tycon class)
   397       handle Sorts.CLASS_ERROR _ => I
   398     fun try_classes tycon = (tycon, fold (add_class tycon) classes [])
   399   in map try_classes tycons end
   400 
   401 (*Proving one (tycon, class) membership may require proving others, so iterate.*)
   402 fun iter_type_class_pairs _ _ [] = ([], [])
   403   | iter_type_class_pairs thy tycons classes =
   404       let
   405         fun maybe_insert_class s =
   406           (s <> type_class andalso not (member (op =) classes s))
   407           ? insert (op =) s
   408         val cpairs = type_class_pairs thy tycons classes
   409         val newclasses =
   410           [] |> fold (fold (fold (fold maybe_insert_class) o snd) o snd) cpairs
   411         val (classes', cpairs') = iter_type_class_pairs thy tycons newclasses
   412       in (classes' @ classes, union (op =) cpairs' cpairs) end
   413 
   414 fun make_arity_clauses thy tycons =
   415   iter_type_class_pairs thy tycons ##> multi_arity_clause
   416 
   417 
   418 (** Isabelle class relations **)
   419 
   420 type class_rel_clause =
   421   {name : string,
   422    subclass : name,
   423    superclass : name}
   424 
   425 (* Generate all pairs (sub, super) such that sub is a proper subclass of super
   426    in theory "thy". *)
   427 fun class_pairs _ [] _ = []
   428   | class_pairs thy subs supers =
   429       let
   430         val class_less = Sorts.class_less (Sign.classes_of thy)
   431         fun add_super sub super = class_less (sub, super) ? cons (sub, super)
   432         fun add_supers sub = fold (add_super sub) supers
   433       in fold add_supers subs [] end
   434 
   435 fun make_class_rel_clause (sub, super) =
   436   {name = sub ^ "_" ^ super, subclass = `make_type_class sub,
   437    superclass = `make_type_class super}
   438 
   439 fun make_class_rel_clauses thy subs supers =
   440   map make_class_rel_clause (class_pairs thy subs supers)
   441 
   442 datatype combterm =
   443   CombConst of name * typ * typ list |
   444   CombVar of name * typ |
   445   CombApp of combterm * combterm
   446 
   447 fun combtyp_of (CombConst (_, T, _)) = T
   448   | combtyp_of (CombVar (_, T)) = T
   449   | combtyp_of (CombApp (t1, _)) = snd (dest_funT (combtyp_of t1))
   450 
   451 (*gets the head of a combinator application, along with the list of arguments*)
   452 fun strip_combterm_comb u =
   453   let
   454     fun stripc (CombApp (t, u), ts) = stripc (t, u :: ts)
   455       | stripc x = x
   456   in stripc (u, []) end
   457 
   458 fun atyps_of T = fold_atyps (insert (op =)) T []
   459 
   460 fun new_skolem_const_name s num_T_args =
   461   [new_skolem_const_prefix, s, string_of_int num_T_args]
   462   |> space_implode Long_Name.separator
   463 
   464 (* Converts a term (with combinators) into a combterm. Also accumulates sort
   465    infomation. *)
   466 fun combterm_from_term thy bs (P $ Q) =
   467     let
   468       val (P', P_atomics_Ts) = combterm_from_term thy bs P
   469       val (Q', Q_atomics_Ts) = combterm_from_term thy bs Q
   470     in (CombApp (P', Q'), union (op =) P_atomics_Ts Q_atomics_Ts) end
   471   | combterm_from_term thy _ (Const (c, T)) =
   472     let
   473       val tvar_list =
   474         (if String.isPrefix old_skolem_const_prefix c then
   475            [] |> Term.add_tvarsT T |> map TVar
   476          else
   477            (c, T) |> Sign.const_typargs thy)
   478       val c' = CombConst (`make_fixed_const c, T, tvar_list)
   479     in (c', atyps_of T) end
   480   | combterm_from_term _ _ (Free (v, T)) =
   481     (CombConst (`make_fixed_var v, T, []), atyps_of T)
   482   | combterm_from_term _ _ (Var (v as (s, _), T)) =
   483     (if String.isPrefix Meson_Clausify.new_skolem_var_prefix s then
   484        let
   485          val Ts = T |> strip_type |> swap |> op ::
   486          val s' = new_skolem_const_name s (length Ts)
   487        in CombConst (`make_fixed_const s', T, Ts) end
   488      else
   489        CombVar ((make_schematic_var v, s), T), atyps_of T)
   490   | combterm_from_term _ bs (Bound j) =
   491     nth bs j
   492     |> (fn (s, T) => (CombConst (`make_bound_var s, T, []), atyps_of T))
   493   | combterm_from_term _ _ (Abs _) = raise Fail "HOL clause: Abs"
   494 
   495 datatype locality =
   496   General | Helper | Extensionality | Intro | Elim | Simp | Local | Assum |
   497   Chained
   498 
   499 (* (quasi-)underapproximation of the truth *)
   500 fun is_locality_global Local = false
   501   | is_locality_global Assum = false
   502   | is_locality_global Chained = false
   503   | is_locality_global _ = true
   504 
   505 datatype order = First_Order | Higher_Order
   506 datatype polymorphism = Polymorphic | Monomorphic | Mangled_Monomorphic
   507 datatype type_level =
   508   All_Types | Noninf_Nonmono_Types | Fin_Nonmono_Types | Const_Arg_Types |
   509   No_Types
   510 datatype type_heaviness = Heavyweight | Lightweight
   511 
   512 datatype type_enc =
   513   Simple_Types of order * type_level |
   514   Preds of polymorphism * type_level * type_heaviness |
   515   Tags of polymorphism * type_level * type_heaviness
   516 
   517 fun try_unsuffixes ss s =
   518   fold (fn s' => fn NONE => try (unsuffix s') s | some => some) ss NONE
   519 
   520 fun type_enc_from_string s =
   521   (case try (unprefix "poly_") s of
   522      SOME s => (SOME Polymorphic, s)
   523    | NONE =>
   524      case try (unprefix "mono_") s of
   525        SOME s => (SOME Monomorphic, s)
   526      | NONE =>
   527        case try (unprefix "mangled_") s of
   528          SOME s => (SOME Mangled_Monomorphic, s)
   529        | NONE => (NONE, s))
   530   ||> (fn s =>
   531           (* "_query" and "_bang" are for the ASCII-challenged Metis and
   532              Mirabelle. *)
   533           case try_unsuffixes ["?", "_query"] s of
   534             SOME s => (Noninf_Nonmono_Types, s)
   535           | NONE =>
   536             case try_unsuffixes ["!", "_bang"] s of
   537               SOME s => (Fin_Nonmono_Types, s)
   538             | NONE => (All_Types, s))
   539   ||> apsnd (fn s =>
   540                 case try (unsuffix "_heavy") s of
   541                   SOME s => (Heavyweight, s)
   542                 | NONE => (Lightweight, s))
   543   |> (fn (poly, (level, (heaviness, core))) =>
   544          case (core, (poly, level, heaviness)) of
   545            ("simple", (NONE, _, Lightweight)) =>
   546            Simple_Types (First_Order, level)
   547          | ("simple_higher", (NONE, _, Lightweight)) =>
   548            Simple_Types (Higher_Order, level)
   549          | ("preds", (SOME poly, _, _)) => Preds (poly, level, heaviness)
   550          | ("tags", (SOME Polymorphic, _, _)) =>
   551            Tags (Polymorphic, level, heaviness)
   552          | ("tags", (SOME poly, _, _)) => Tags (poly, level, heaviness)
   553          | ("args", (SOME poly, All_Types (* naja *), Lightweight)) =>
   554            Preds (poly, Const_Arg_Types, Lightweight)
   555          | ("erased", (NONE, All_Types (* naja *), Lightweight)) =>
   556            Preds (Polymorphic, No_Types, Lightweight)
   557          | _ => raise Same.SAME)
   558   handle Same.SAME => error ("Unknown type system: " ^ quote s ^ ".")
   559 
   560 fun is_type_enc_higher_order (Simple_Types (Higher_Order, _)) = true
   561   | is_type_enc_higher_order _ = false
   562 
   563 fun polymorphism_of_type_enc (Simple_Types _) = Mangled_Monomorphic
   564   | polymorphism_of_type_enc (Preds (poly, _, _)) = poly
   565   | polymorphism_of_type_enc (Tags (poly, _, _)) = poly
   566 
   567 fun level_of_type_enc (Simple_Types (_, level)) = level
   568   | level_of_type_enc (Preds (_, level, _)) = level
   569   | level_of_type_enc (Tags (_, level, _)) = level
   570 
   571 fun heaviness_of_type_enc (Simple_Types _) = Heavyweight
   572   | heaviness_of_type_enc (Preds (_, _, heaviness)) = heaviness
   573   | heaviness_of_type_enc (Tags (_, _, heaviness)) = heaviness
   574 
   575 fun is_type_level_virtually_sound level =
   576   level = All_Types orelse level = Noninf_Nonmono_Types
   577 val is_type_enc_virtually_sound =
   578   is_type_level_virtually_sound o level_of_type_enc
   579 
   580 fun is_type_level_fairly_sound level =
   581   is_type_level_virtually_sound level orelse level = Fin_Nonmono_Types
   582 val is_type_enc_fairly_sound = is_type_level_fairly_sound o level_of_type_enc
   583 
   584 fun choose_format formats (Simple_Types (order, level)) =
   585     if member (op =) formats THF then
   586       (THF, Simple_Types (order, level))
   587     else if member (op =) formats TFF then
   588       (TFF, Simple_Types (First_Order, level))
   589     else
   590       choose_format formats (Preds (Mangled_Monomorphic, level, Heavyweight))
   591   | choose_format formats type_enc =
   592     (case hd formats of
   593        CNF_UEQ =>
   594        (CNF_UEQ, case type_enc of
   595                    Preds stuff =>
   596                    (if is_type_enc_fairly_sound type_enc then Tags else Preds)
   597                        stuff
   598                  | _ => type_enc)
   599      | format => (format, type_enc))
   600 
   601 type translated_formula =
   602   {name : string,
   603    locality : locality,
   604    kind : formula_kind,
   605    combformula : (name, typ, combterm) formula,
   606    atomic_types : typ list}
   607 
   608 fun update_combformula f ({name, locality, kind, combformula, atomic_types}
   609                           : translated_formula) =
   610   {name = name, locality = locality, kind = kind, combformula = f combformula,
   611    atomic_types = atomic_types} : translated_formula
   612 
   613 fun fact_lift f ({combformula, ...} : translated_formula) = f combformula
   614 
   615 val type_instance = Sign.typ_instance o Proof_Context.theory_of
   616 
   617 fun insert_type ctxt get_T x xs =
   618   let val T = get_T x in
   619     if exists (curry (type_instance ctxt) T o get_T) xs then xs
   620     else x :: filter_out (curry (type_instance ctxt o swap) T o get_T) xs
   621   end
   622 
   623 (* The Booleans indicate whether all type arguments should be kept. *)
   624 datatype type_arg_policy =
   625   Explicit_Type_Args of bool |
   626   Mangled_Type_Args of bool |
   627   No_Type_Args
   628 
   629 fun should_drop_arg_type_args (Simple_Types _) =
   630     false (* since TFF doesn't support overloading *)
   631   | should_drop_arg_type_args type_enc =
   632     level_of_type_enc type_enc = All_Types andalso
   633     heaviness_of_type_enc type_enc = Heavyweight
   634 
   635 fun general_type_arg_policy (Tags (_, All_Types, Heavyweight)) = No_Type_Args
   636   | general_type_arg_policy type_enc =
   637     if level_of_type_enc type_enc = No_Types then
   638       No_Type_Args
   639     else if polymorphism_of_type_enc type_enc = Mangled_Monomorphic then
   640       Mangled_Type_Args (should_drop_arg_type_args type_enc)
   641     else
   642       Explicit_Type_Args (should_drop_arg_type_args type_enc)
   643 
   644 fun type_arg_policy type_enc s =
   645   if s = @{const_name HOL.eq} orelse
   646      (s = app_op_name andalso level_of_type_enc type_enc = Const_Arg_Types) then
   647     No_Type_Args
   648   else if s = type_tag_name then
   649     (if polymorphism_of_type_enc type_enc = Mangled_Monomorphic then
   650        Mangled_Type_Args
   651      else
   652        Explicit_Type_Args) false
   653   else
   654     general_type_arg_policy type_enc
   655 
   656 (*Make literals for sorted type variables*)
   657 fun generic_add_sorts_on_type (_, []) = I
   658   | generic_add_sorts_on_type ((x, i), s :: ss) =
   659     generic_add_sorts_on_type ((x, i), ss)
   660     #> (if s = the_single @{sort HOL.type} then
   661           I
   662         else if i = ~1 then
   663           insert (op =) (TyLitFree (`make_type_class s, `make_fixed_type_var x))
   664         else
   665           insert (op =) (TyLitVar (`make_type_class s,
   666                                    (make_schematic_type_var (x, i), x))))
   667 fun add_sorts_on_tfree (TFree (s, S)) = generic_add_sorts_on_type ((s, ~1), S)
   668   | add_sorts_on_tfree _ = I
   669 fun add_sorts_on_tvar (TVar z) = generic_add_sorts_on_type z
   670   | add_sorts_on_tvar _ = I
   671 
   672 fun type_literals_for_types type_enc add_sorts_on_typ Ts =
   673   [] |> level_of_type_enc type_enc <> No_Types ? fold add_sorts_on_typ Ts
   674 
   675 fun mk_aconns c phis =
   676   let val (phis', phi') = split_last phis in
   677     fold_rev (mk_aconn c) phis' phi'
   678   end
   679 fun mk_ahorn [] phi = phi
   680   | mk_ahorn phis psi = AConn (AImplies, [mk_aconns AAnd phis, psi])
   681 fun mk_aquant _ [] phi = phi
   682   | mk_aquant q xs (phi as AQuant (q', xs', phi')) =
   683     if q = q' then AQuant (q, xs @ xs', phi') else AQuant (q, xs, phi)
   684   | mk_aquant q xs phi = AQuant (q, xs, phi)
   685 
   686 fun close_universally atom_vars phi =
   687   let
   688     fun formula_vars bounds (AQuant (_, xs, phi)) =
   689         formula_vars (map fst xs @ bounds) phi
   690       | formula_vars bounds (AConn (_, phis)) = fold (formula_vars bounds) phis
   691       | formula_vars bounds (AAtom tm) =
   692         union (op =) (atom_vars tm []
   693                       |> filter_out (member (op =) bounds o fst))
   694   in mk_aquant AForall (formula_vars [] phi []) phi end
   695 
   696 fun combterm_vars (CombApp (tm1, tm2)) = fold combterm_vars [tm1, tm2]
   697   | combterm_vars (CombConst _) = I
   698   | combterm_vars (CombVar (name, T)) = insert (op =) (name, SOME T)
   699 fun close_combformula_universally phi = close_universally combterm_vars phi
   700 
   701 fun term_vars (ATerm (name as (s, _), tms)) =
   702   is_tptp_variable s ? insert (op =) (name, NONE) #> fold term_vars tms
   703 fun close_formula_universally phi = close_universally term_vars phi
   704 
   705 val homo_infinite_type_name = @{type_name ind} (* any infinite type *)
   706 val homo_infinite_type = Type (homo_infinite_type_name, [])
   707 
   708 fun fo_term_from_typ format type_enc =
   709   let
   710     fun term (Type (s, Ts)) =
   711       ATerm (case (is_type_enc_higher_order type_enc, s) of
   712                (true, @{type_name bool}) => `I tptp_bool_type
   713              | (true, @{type_name fun}) => `I tptp_fun_type
   714              | _ => if s = homo_infinite_type_name andalso
   715                        (format = TFF orelse format = THF) then
   716                       `I tptp_individual_type
   717                     else
   718                       `make_fixed_type_const s,
   719              map term Ts)
   720     | term (TFree (s, _)) = ATerm (`make_fixed_type_var s, [])
   721     | term (TVar ((x as (s, _)), _)) =
   722       ATerm ((make_schematic_type_var x, s), [])
   723   in term end
   724 
   725 fun fo_term_for_type_arg format type_enc T =
   726   if T = dummyT then NONE else SOME (fo_term_from_typ format type_enc T)
   727 
   728 (* This shouldn't clash with anything else. *)
   729 val mangled_type_sep = "\000"
   730 
   731 fun generic_mangled_type_name f (ATerm (name, [])) = f name
   732   | generic_mangled_type_name f (ATerm (name, tys)) =
   733     f name ^ "(" ^ space_implode "," (map (generic_mangled_type_name f) tys)
   734     ^ ")"
   735 
   736 val bool_atype = AType (`I tptp_bool_type)
   737 
   738 fun make_simple_type s =
   739   if s = tptp_bool_type orelse s = tptp_fun_type orelse
   740      s = tptp_individual_type then
   741     s
   742   else
   743     simple_type_prefix ^ ascii_of s
   744 
   745 fun ho_type_from_fo_term type_enc pred_sym ary =
   746   let
   747     fun to_atype ty =
   748       AType ((make_simple_type (generic_mangled_type_name fst ty),
   749               generic_mangled_type_name snd ty))
   750     fun to_afun f1 f2 tys = AFun (f1 (hd tys), f2 (nth tys 1))
   751     fun to_fo 0 ty = if pred_sym then bool_atype else to_atype ty
   752       | to_fo ary (ATerm (_, tys)) = to_afun to_atype (to_fo (ary - 1)) tys
   753     fun to_ho (ty as ATerm ((s, _), tys)) =
   754       if s = tptp_fun_type then to_afun to_ho to_ho tys else to_atype ty
   755   in if is_type_enc_higher_order type_enc then to_ho else to_fo ary end
   756 
   757 fun mangled_type format type_enc pred_sym ary =
   758   ho_type_from_fo_term type_enc pred_sym ary
   759   o fo_term_from_typ format type_enc
   760 
   761 fun mangled_const_name format type_enc T_args (s, s') =
   762   let
   763     val ty_args = T_args |> map_filter (fo_term_for_type_arg format type_enc)
   764     fun type_suffix f g =
   765       fold_rev (curry (op ^) o g o prefix mangled_type_sep
   766                 o generic_mangled_type_name f) ty_args ""
   767   in (s ^ type_suffix fst ascii_of, s' ^ type_suffix snd I) end
   768 
   769 val parse_mangled_ident =
   770   Scan.many1 (not o member (op =) ["(", ")", ","]) >> implode
   771 
   772 fun parse_mangled_type x =
   773   (parse_mangled_ident
   774    -- Scan.optional ($$ "(" |-- Scan.optional parse_mangled_types [] --| $$ ")")
   775                     [] >> ATerm) x
   776 and parse_mangled_types x =
   777   (parse_mangled_type ::: Scan.repeat ($$ "," |-- parse_mangled_type)) x
   778 
   779 fun unmangled_type s =
   780   s |> suffix ")" |> raw_explode
   781     |> Scan.finite Symbol.stopper
   782            (Scan.error (!! (fn _ => raise Fail ("unrecognized mangled type " ^
   783                                                 quote s)) parse_mangled_type))
   784     |> fst
   785 
   786 val unmangled_const_name = space_explode mangled_type_sep #> hd
   787 fun unmangled_const s =
   788   let val ss = space_explode mangled_type_sep s in
   789     (hd ss, map unmangled_type (tl ss))
   790   end
   791 
   792 fun introduce_proxies type_enc =
   793   let
   794     fun intro top_level (CombApp (tm1, tm2)) =
   795         CombApp (intro top_level tm1, intro false tm2)
   796       | intro top_level (CombConst (name as (s, _), T, T_args)) =
   797         (case proxify_const s of
   798            SOME proxy_base =>
   799            if top_level orelse is_type_enc_higher_order type_enc then
   800              case (top_level, s) of
   801                (_, "c_False") => (`I tptp_false, [])
   802              | (_, "c_True") => (`I tptp_true, [])
   803              | (false, "c_Not") => (`I tptp_not, [])
   804              | (false, "c_conj") => (`I tptp_and, [])
   805              | (false, "c_disj") => (`I tptp_or, [])
   806              | (false, "c_implies") => (`I tptp_implies, [])
   807              | (false, s) =>
   808                if is_tptp_equal s then (`I tptp_equal, [])
   809                else (proxy_base |>> prefix const_prefix, T_args)
   810              | _ => (name, [])
   811            else
   812              (proxy_base |>> prefix const_prefix, T_args)
   813           | NONE => (name, T_args))
   814         |> (fn (name, T_args) => CombConst (name, T, T_args))
   815       | intro _ tm = tm
   816   in intro true end
   817 
   818 fun combformula_from_prop thy type_enc eq_as_iff =
   819   let
   820     fun do_term bs t atomic_types =
   821       combterm_from_term thy bs (Envir.eta_contract t)
   822       |>> (introduce_proxies type_enc #> AAtom)
   823       ||> union (op =) atomic_types
   824     fun do_quant bs q s T t' =
   825       let val s = singleton (Name.variant_list (map fst bs)) s in
   826         do_formula ((s, T) :: bs) t'
   827         #>> mk_aquant q [(`make_bound_var s, SOME T)]
   828       end
   829     and do_conn bs c t1 t2 =
   830       do_formula bs t1 ##>> do_formula bs t2 #>> uncurry (mk_aconn c)
   831     and do_formula bs t =
   832       case t of
   833         @{const Trueprop} $ t1 => do_formula bs t1
   834       | @{const Not} $ t1 => do_formula bs t1 #>> mk_anot
   835       | Const (@{const_name All}, _) $ Abs (s, T, t') =>
   836         do_quant bs AForall s T t'
   837       | Const (@{const_name Ex}, _) $ Abs (s, T, t') =>
   838         do_quant bs AExists s T t'
   839       | @{const HOL.conj} $ t1 $ t2 => do_conn bs AAnd t1 t2
   840       | @{const HOL.disj} $ t1 $ t2 => do_conn bs AOr t1 t2
   841       | @{const HOL.implies} $ t1 $ t2 => do_conn bs AImplies t1 t2
   842       | Const (@{const_name HOL.eq}, Type (_, [@{typ bool}, _])) $ t1 $ t2 =>
   843         if eq_as_iff then do_conn bs AIff t1 t2 else do_term bs t
   844       | _ => do_term bs t
   845   in do_formula [] end
   846 
   847 fun presimplify_term _ [] t = t
   848   | presimplify_term ctxt presimp_consts t =
   849     t |> exists_Const (member (op =) presimp_consts o fst) t
   850          ? (Skip_Proof.make_thm (Proof_Context.theory_of ctxt)
   851             #> Meson.presimplify ctxt
   852             #> prop_of)
   853 
   854 fun concealed_bound_name j = sledgehammer_weak_prefix ^ string_of_int j
   855 fun conceal_bounds Ts t =
   856   subst_bounds (map (Free o apfst concealed_bound_name)
   857                     (0 upto length Ts - 1 ~~ Ts), t)
   858 fun reveal_bounds Ts =
   859   subst_atomic (map (fn (j, T) => (Free (concealed_bound_name j, T), Bound j))
   860                     (0 upto length Ts - 1 ~~ Ts))
   861 
   862 fun is_fun_equality (@{const_name HOL.eq},
   863                      Type (_, [Type (@{type_name fun}, _), _])) = true
   864   | is_fun_equality _ = false
   865 
   866 fun extensionalize_term ctxt t =
   867   if exists_Const is_fun_equality t then
   868     let val thy = Proof_Context.theory_of ctxt in
   869       t |> cterm_of thy |> Meson.extensionalize_conv ctxt
   870         |> prop_of |> Logic.dest_equals |> snd
   871     end
   872   else
   873     t
   874 
   875 fun introduce_combinators_in_term ctxt kind t =
   876   let val thy = Proof_Context.theory_of ctxt in
   877     if Meson.is_fol_term thy t then
   878       t
   879     else
   880       let
   881         fun aux Ts t =
   882           case t of
   883             @{const Not} $ t1 => @{const Not} $ aux Ts t1
   884           | (t0 as Const (@{const_name All}, _)) $ Abs (s, T, t') =>
   885             t0 $ Abs (s, T, aux (T :: Ts) t')
   886           | (t0 as Const (@{const_name All}, _)) $ t1 =>
   887             aux Ts (t0 $ eta_expand Ts t1 1)
   888           | (t0 as Const (@{const_name Ex}, _)) $ Abs (s, T, t') =>
   889             t0 $ Abs (s, T, aux (T :: Ts) t')
   890           | (t0 as Const (@{const_name Ex}, _)) $ t1 =>
   891             aux Ts (t0 $ eta_expand Ts t1 1)
   892           | (t0 as @{const HOL.conj}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
   893           | (t0 as @{const HOL.disj}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
   894           | (t0 as @{const HOL.implies}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
   895           | (t0 as Const (@{const_name HOL.eq}, Type (_, [@{typ bool}, _])))
   896               $ t1 $ t2 =>
   897             t0 $ aux Ts t1 $ aux Ts t2
   898           | _ => if not (exists_subterm (fn Abs _ => true | _ => false) t) then
   899                    t
   900                  else
   901                    t |> conceal_bounds Ts
   902                      |> Envir.eta_contract
   903                      |> cterm_of thy
   904                      |> Meson_Clausify.introduce_combinators_in_cterm
   905                      |> prop_of |> Logic.dest_equals |> snd
   906                      |> reveal_bounds Ts
   907         val (t, ctxt') = Variable.import_terms true [t] ctxt |>> the_single
   908       in t |> aux [] |> singleton (Variable.export_terms ctxt' ctxt) end
   909       handle THM _ =>
   910              (* A type variable of sort "{}" will make abstraction fail. *)
   911              if kind = Conjecture then HOLogic.false_const
   912              else HOLogic.true_const
   913   end
   914 
   915 (* Metis's use of "resolve_tac" freezes the schematic variables. We simulate the
   916    same in Sledgehammer to prevent the discovery of unreplayable proofs. *)
   917 fun freeze_term t =
   918   let
   919     fun aux (t $ u) = aux t $ aux u
   920       | aux (Abs (s, T, t)) = Abs (s, T, aux t)
   921       | aux (Var ((s, i), T)) =
   922         Free (sledgehammer_weak_prefix ^ s ^ "_" ^ string_of_int i, T)
   923       | aux t = t
   924   in t |> exists_subterm is_Var t ? aux end
   925 
   926 fun preprocess_prop ctxt presimp_consts kind t =
   927   let
   928     val thy = Proof_Context.theory_of ctxt
   929     val t = t |> Envir.beta_eta_contract
   930               |> transform_elim_prop
   931               |> Object_Logic.atomize_term thy
   932     val need_trueprop = (fastype_of t = @{typ bool})
   933   in
   934     t |> need_trueprop ? HOLogic.mk_Trueprop
   935       |> Raw_Simplifier.rewrite_term thy (Meson.unfold_set_const_simps ctxt) []
   936       |> extensionalize_term ctxt
   937       |> presimplify_term ctxt presimp_consts
   938       |> perhaps (try (HOLogic.dest_Trueprop))
   939       |> introduce_combinators_in_term ctxt kind
   940   end
   941 
   942 (* making fact and conjecture formulas *)
   943 fun make_formula thy type_enc eq_as_iff name loc kind t =
   944   let
   945     val (combformula, atomic_types) =
   946       combformula_from_prop thy type_enc eq_as_iff t []
   947   in
   948     {name = name, locality = loc, kind = kind, combformula = combformula,
   949      atomic_types = atomic_types}
   950   end
   951 
   952 fun make_fact ctxt format type_enc eq_as_iff preproc presimp_consts
   953               ((name, loc), t) =
   954   let val thy = Proof_Context.theory_of ctxt in
   955     case t |> preproc ? preprocess_prop ctxt presimp_consts Axiom
   956            |> make_formula thy type_enc (eq_as_iff andalso format <> CNF) name
   957                            loc Axiom of
   958       formula as {combformula = AAtom (CombConst ((s, _), _, _)), ...} =>
   959       if s = tptp_true then NONE else SOME formula
   960     | formula => SOME formula
   961   end
   962 
   963 fun make_conjecture ctxt format prem_kind type_enc preproc presimp_consts ts =
   964   let
   965     val thy = Proof_Context.theory_of ctxt
   966     val last = length ts - 1
   967   in
   968     map2 (fn j => fn t =>
   969              let
   970                val (kind, maybe_negate) =
   971                  if j = last then
   972                    (Conjecture, I)
   973                  else
   974                    (prem_kind,
   975                     if prem_kind = Conjecture then update_combformula mk_anot
   976                     else I)
   977               in
   978                 t |> preproc ?
   979                      (preprocess_prop ctxt presimp_consts kind #> freeze_term)
   980                   |> make_formula thy type_enc (format <> CNF) (string_of_int j)
   981                                   Local kind
   982                   |> maybe_negate
   983               end)
   984          (0 upto last) ts
   985   end
   986 
   987 (** Finite and infinite type inference **)
   988 
   989 fun deep_freeze_atyp (TVar (_, S)) = TFree ("v", S)
   990   | deep_freeze_atyp T = T
   991 val deep_freeze_type = map_atyps deep_freeze_atyp
   992 
   993 (* Finite types such as "unit", "bool", "bool * bool", and "bool => bool" are
   994    dangerous because their "exhaust" properties can easily lead to unsound ATP
   995    proofs. On the other hand, all HOL infinite types can be given the same
   996    models in first-order logic (via Löwenheim-Skolem). *)
   997 
   998 fun should_encode_type ctxt (nonmono_Ts as _ :: _) _ T =
   999     exists (curry (type_instance ctxt) (deep_freeze_type T)) nonmono_Ts
  1000   | should_encode_type _ _ All_Types _ = true
  1001   | should_encode_type ctxt _ Fin_Nonmono_Types T =
  1002     is_type_surely_finite ctxt false T
  1003   | should_encode_type _ _ _ _ = false
  1004 
  1005 fun should_predicate_on_type ctxt nonmono_Ts (Preds (_, level, heaviness))
  1006                              should_predicate_on_var T =
  1007     (heaviness = Heavyweight orelse should_predicate_on_var ()) andalso
  1008     should_encode_type ctxt nonmono_Ts level T
  1009   | should_predicate_on_type _ _ _ _ _ = false
  1010 
  1011 fun is_var_or_bound_var (CombConst ((s, _), _, _)) =
  1012     String.isPrefix bound_var_prefix s
  1013   | is_var_or_bound_var (CombVar _) = true
  1014   | is_var_or_bound_var _ = false
  1015 
  1016 datatype tag_site =
  1017   Top_Level of bool option |
  1018   Eq_Arg of bool option |
  1019   Elsewhere
  1020 
  1021 fun should_tag_with_type _ _ _ (Top_Level _) _ _ = false
  1022   | should_tag_with_type ctxt nonmono_Ts (Tags (poly, level, heaviness)) site
  1023                          u T =
  1024     (case heaviness of
  1025        Heavyweight => should_encode_type ctxt nonmono_Ts level T
  1026      | Lightweight =>
  1027        case (site, is_var_or_bound_var u) of
  1028          (Eq_Arg pos, true) =>
  1029          (* The first disjunct prevents a subtle soundness issue explained in
  1030             Blanchette's Ph.D. thesis. See also
  1031             "formula_lines_for_lightweight_tags_sym_decl". *)
  1032          (pos <> SOME false andalso poly = Polymorphic andalso
  1033           level <> All_Types andalso heaviness = Lightweight andalso
  1034           exists (fn T' => type_instance ctxt (T', T)) nonmono_Ts) orelse
  1035          should_encode_type ctxt nonmono_Ts level T
  1036        | _ => false)
  1037   | should_tag_with_type _ _ _ _ _ _ = false
  1038 
  1039 fun homogenized_type ctxt nonmono_Ts level =
  1040   let
  1041     val should_encode = should_encode_type ctxt nonmono_Ts level
  1042     fun homo 0 T = if should_encode T then T else homo_infinite_type
  1043       | homo ary (Type (@{type_name fun}, [T1, T2])) =
  1044         homo 0 T1 --> homo (ary - 1) T2
  1045       | homo _ _ = raise Fail "expected function type"
  1046   in homo end
  1047 
  1048 (** "hBOOL" and "hAPP" **)
  1049 
  1050 type sym_info =
  1051   {pred_sym : bool, min_ary : int, max_ary : int, types : typ list}
  1052 
  1053 fun add_combterm_syms_to_table ctxt explicit_apply =
  1054   let
  1055     fun consider_var_arity const_T var_T max_ary =
  1056       let
  1057         fun iter ary T =
  1058           if ary = max_ary orelse type_instance ctxt (var_T, T) orelse
  1059              type_instance ctxt (T, var_T) then
  1060             ary
  1061           else
  1062             iter (ary + 1) (range_type T)
  1063       in iter 0 const_T end
  1064     fun add_var_or_bound_var T (accum as ((bool_vars, fun_var_Ts), sym_tab)) =
  1065       if explicit_apply = NONE andalso
  1066          (can dest_funT T orelse T = @{typ bool}) then
  1067         let
  1068           val bool_vars' = bool_vars orelse body_type T = @{typ bool}
  1069           fun repair_min_arity {pred_sym, min_ary, max_ary, types} =
  1070             {pred_sym = pred_sym andalso not bool_vars',
  1071              min_ary = fold (fn T' => consider_var_arity T' T) types min_ary,
  1072              max_ary = max_ary, types = types}
  1073           val fun_var_Ts' =
  1074             fun_var_Ts |> can dest_funT T ? insert_type ctxt I T
  1075         in
  1076           if bool_vars' = bool_vars andalso
  1077              pointer_eq (fun_var_Ts', fun_var_Ts) then
  1078             accum
  1079           else
  1080             ((bool_vars', fun_var_Ts'), Symtab.map (K repair_min_arity) sym_tab)
  1081         end
  1082       else
  1083         accum
  1084     fun add top_level tm (accum as ((bool_vars, fun_var_Ts), sym_tab)) =
  1085       let val (head, args) = strip_combterm_comb tm in
  1086         (case head of
  1087            CombConst ((s, _), T, _) =>
  1088            if String.isPrefix bound_var_prefix s then
  1089              add_var_or_bound_var T accum
  1090            else
  1091              let val ary = length args in
  1092                ((bool_vars, fun_var_Ts),
  1093                 case Symtab.lookup sym_tab s of
  1094                   SOME {pred_sym, min_ary, max_ary, types} =>
  1095                   let
  1096                     val pred_sym =
  1097                       pred_sym andalso top_level andalso not bool_vars
  1098                     val types' = types |> insert_type ctxt I T
  1099                     val min_ary =
  1100                       if is_some explicit_apply orelse
  1101                          pointer_eq (types', types) then
  1102                         min_ary
  1103                       else
  1104                         fold (consider_var_arity T) fun_var_Ts min_ary
  1105                   in
  1106                     Symtab.update (s, {pred_sym = pred_sym,
  1107                                        min_ary = Int.min (ary, min_ary),
  1108                                        max_ary = Int.max (ary, max_ary),
  1109                                        types = types'})
  1110                                   sym_tab
  1111                   end
  1112                 | NONE =>
  1113                   let
  1114                     val pred_sym = top_level andalso not bool_vars
  1115                     val min_ary =
  1116                       case explicit_apply of
  1117                         SOME true => 0
  1118                       | SOME false => ary
  1119                       | NONE => fold (consider_var_arity T) fun_var_Ts ary
  1120                   in
  1121                     Symtab.update_new (s, {pred_sym = pred_sym,
  1122                                            min_ary = min_ary, max_ary = ary,
  1123                                            types = [T]})
  1124                                       sym_tab
  1125                   end)
  1126              end
  1127          | CombVar (_, T) => add_var_or_bound_var T accum
  1128          | _ => accum)
  1129         |> fold (add false) args
  1130       end
  1131   in add true end
  1132 fun add_fact_syms_to_table ctxt explicit_apply =
  1133   fact_lift (formula_fold NONE
  1134                           (K (add_combterm_syms_to_table ctxt explicit_apply)))
  1135 
  1136 val default_sym_tab_entries : (string * sym_info) list =
  1137   (prefixed_predicator_name,
  1138    {pred_sym = true, min_ary = 1, max_ary = 1, types = []}) ::
  1139   ([tptp_false, tptp_true]
  1140    |> map (rpair {pred_sym = true, min_ary = 0, max_ary = 0, types = []})) @
  1141   ([tptp_equal, tptp_old_equal]
  1142    |> map (rpair {pred_sym = true, min_ary = 2, max_ary = 2, types = []}))
  1143 
  1144 fun sym_table_for_facts ctxt explicit_apply facts =
  1145   ((false, []), Symtab.empty)
  1146   |> fold (add_fact_syms_to_table ctxt explicit_apply) facts |> snd
  1147   |> fold Symtab.update default_sym_tab_entries
  1148 
  1149 fun min_arity_of sym_tab s =
  1150   case Symtab.lookup sym_tab s of
  1151     SOME ({min_ary, ...} : sym_info) => min_ary
  1152   | NONE =>
  1153     case strip_prefix_and_unascii const_prefix s of
  1154       SOME s =>
  1155       let val s = s |> unmangled_const_name |> invert_const in
  1156         if s = predicator_name then 1
  1157         else if s = app_op_name then 2
  1158         else if s = type_pred_name then 1
  1159         else 0
  1160       end
  1161     | NONE => 0
  1162 
  1163 (* True if the constant ever appears outside of the top-level position in
  1164    literals, or if it appears with different arities (e.g., because of different
  1165    type instantiations). If false, the constant always receives all of its
  1166    arguments and is used as a predicate. *)
  1167 fun is_pred_sym sym_tab s =
  1168   case Symtab.lookup sym_tab s of
  1169     SOME ({pred_sym, min_ary, max_ary, ...} : sym_info) =>
  1170     pred_sym andalso min_ary = max_ary
  1171   | NONE => false
  1172 
  1173 val predicator_combconst =
  1174   CombConst (`make_fixed_const predicator_name, @{typ "bool => bool"}, [])
  1175 fun predicator tm = CombApp (predicator_combconst, tm)
  1176 
  1177 fun introduce_predicators_in_combterm sym_tab tm =
  1178   case strip_combterm_comb tm of
  1179     (CombConst ((s, _), _, _), _) =>
  1180     if is_pred_sym sym_tab s then tm else predicator tm
  1181   | _ => predicator tm
  1182 
  1183 fun list_app head args = fold (curry (CombApp o swap)) args head
  1184 
  1185 val app_op = `make_fixed_const app_op_name
  1186 
  1187 fun explicit_app arg head =
  1188   let
  1189     val head_T = combtyp_of head
  1190     val (arg_T, res_T) = dest_funT head_T
  1191     val explicit_app =
  1192       CombConst (app_op, head_T --> head_T, [arg_T, res_T])
  1193   in list_app explicit_app [head, arg] end
  1194 fun list_explicit_app head args = fold explicit_app args head
  1195 
  1196 fun introduce_explicit_apps_in_combterm sym_tab =
  1197   let
  1198     fun aux tm =
  1199       case strip_combterm_comb tm of
  1200         (head as CombConst ((s, _), _, _), args) =>
  1201         args |> map aux
  1202              |> chop (min_arity_of sym_tab s)
  1203              |>> list_app head
  1204              |-> list_explicit_app
  1205       | (head, args) => list_explicit_app head (map aux args)
  1206   in aux end
  1207 
  1208 fun chop_fun 0 T = ([], T)
  1209   | chop_fun n (Type (@{type_name fun}, [dom_T, ran_T])) =
  1210     chop_fun (n - 1) ran_T |>> cons dom_T
  1211   | chop_fun _ _ = raise Fail "unexpected non-function"
  1212 
  1213 fun filter_type_args _ _ _ [] = []
  1214   | filter_type_args thy s arity T_args =
  1215     let
  1216       (* will throw "TYPE" for pseudo-constants *)
  1217       val U = if s = app_op_name then
  1218                 @{typ "('a => 'b) => 'a => 'b"} |> Logic.varifyT_global
  1219               else
  1220                 s |> Sign.the_const_type thy
  1221     in
  1222       case Term.add_tvarsT (U |> chop_fun arity |> snd) [] of
  1223         [] => []
  1224       | res_U_vars =>
  1225         let val U_args = (s, U) |> Sign.const_typargs thy in
  1226           U_args ~~ T_args
  1227           |> map (fn (U, T) =>
  1228                      if member (op =) res_U_vars (dest_TVar U) then T
  1229                      else dummyT)
  1230         end
  1231     end
  1232     handle TYPE _ => T_args
  1233 
  1234 fun enforce_type_arg_policy_in_combterm ctxt format type_enc =
  1235   let
  1236     val thy = Proof_Context.theory_of ctxt
  1237     fun aux arity (CombApp (tm1, tm2)) =
  1238         CombApp (aux (arity + 1) tm1, aux 0 tm2)
  1239       | aux arity (CombConst (name as (s, _), T, T_args)) =
  1240         (case strip_prefix_and_unascii const_prefix s of
  1241            NONE => (name, T_args)
  1242          | SOME s'' =>
  1243            let
  1244              val s'' = invert_const s''
  1245              fun filtered_T_args false = T_args
  1246                | filtered_T_args true = filter_type_args thy s'' arity T_args
  1247            in
  1248              case type_arg_policy type_enc s'' of
  1249                Explicit_Type_Args drop_args =>
  1250                (name, filtered_T_args drop_args)
  1251              | Mangled_Type_Args drop_args =>
  1252                (mangled_const_name format type_enc (filtered_T_args drop_args)
  1253                                    name, [])
  1254              | No_Type_Args => (name, [])
  1255            end)
  1256         |> (fn (name, T_args) => CombConst (name, T, T_args))
  1257       | aux _ tm = tm
  1258   in aux 0 end
  1259 
  1260 fun repair_combterm ctxt format type_enc sym_tab =
  1261   not (is_type_enc_higher_order type_enc)
  1262   ? (introduce_explicit_apps_in_combterm sym_tab
  1263      #> introduce_predicators_in_combterm sym_tab)
  1264   #> enforce_type_arg_policy_in_combterm ctxt format type_enc
  1265 fun repair_fact ctxt format type_enc sym_tab =
  1266   update_combformula (formula_map
  1267       (repair_combterm ctxt format type_enc sym_tab))
  1268 
  1269 (** Helper facts **)
  1270 
  1271 (* The Boolean indicates that a fairly sound type encoding is needed. *)
  1272 val helper_table =
  1273   [(("COMBI", false), @{thms Meson.COMBI_def}),
  1274    (("COMBK", false), @{thms Meson.COMBK_def}),
  1275    (("COMBB", false), @{thms Meson.COMBB_def}),
  1276    (("COMBC", false), @{thms Meson.COMBC_def}),
  1277    (("COMBS", false), @{thms Meson.COMBS_def}),
  1278    (("fequal", true),
  1279     (* This is a lie: Higher-order equality doesn't need a sound type encoding.
  1280        However, this is done so for backward compatibility: Including the
  1281        equality helpers by default in Metis breaks a few existing proofs. *)
  1282     @{thms fequal_def [THEN Meson.iff_to_disjD, THEN conjunct1]
  1283            fequal_def [THEN Meson.iff_to_disjD, THEN conjunct2]}),
  1284    (("fFalse", false), [@{lemma "~ fFalse" by (unfold fFalse_def) fast}]),
  1285    (("fFalse", true), @{thms True_or_False}),
  1286    (("fTrue", false), [@{lemma "fTrue" by (unfold fTrue_def) fast}]),
  1287    (("fTrue", true), @{thms True_or_False}),
  1288    (("fNot", false),
  1289     @{thms fNot_def [THEN Meson.iff_to_disjD, THEN conjunct1]
  1290            fNot_def [THEN Meson.iff_to_disjD, THEN conjunct2]}),
  1291    (("fconj", false),
  1292     @{lemma "~ P | ~ Q | fconj P Q" "~ fconj P Q | P" "~ fconj P Q | Q"
  1293         by (unfold fconj_def) fast+}),
  1294    (("fdisj", false),
  1295     @{lemma "~ P | fdisj P Q" "~ Q | fdisj P Q" "~ fdisj P Q | P | Q"
  1296         by (unfold fdisj_def) fast+}),
  1297    (("fimplies", false),
  1298     @{lemma "P | fimplies P Q" "~ Q | fimplies P Q" "~ fimplies P Q | ~ P | Q"
  1299         by (unfold fimplies_def) fast+}),
  1300    (("If", true), @{thms if_True if_False True_or_False})]
  1301   |> map (apsnd (map zero_var_indexes))
  1302 
  1303 val type_tag = `make_fixed_const type_tag_name
  1304 
  1305 fun type_tag_idempotence_fact () =
  1306   let
  1307     fun var s = ATerm (`I s, [])
  1308     fun tag tm = ATerm (type_tag, [var "T", tm])
  1309     val tagged_a = tag (var "A")
  1310   in
  1311     Formula (type_tag_idempotence_helper_name, Axiom,
  1312              AAtom (ATerm (`I tptp_equal, [tag tagged_a, tagged_a]))
  1313              |> close_formula_universally, simp_info, NONE)
  1314   end
  1315 
  1316 fun should_specialize_helper type_enc t =
  1317   case general_type_arg_policy type_enc of
  1318     Mangled_Type_Args _ => not (null (Term.hidden_polymorphism t))
  1319   | _ => false
  1320 
  1321 fun helper_facts_for_sym ctxt format type_enc (s, {types, ...} : sym_info) =
  1322   case strip_prefix_and_unascii const_prefix s of
  1323     SOME mangled_s =>
  1324     let
  1325       val thy = Proof_Context.theory_of ctxt
  1326       val unmangled_s = mangled_s |> unmangled_const_name
  1327       fun dub_and_inst needs_fairly_sound (th, j) =
  1328         ((unmangled_s ^ "_" ^ string_of_int j ^
  1329           (if mangled_s = unmangled_s then "" else "_" ^ ascii_of mangled_s) ^
  1330           (if needs_fairly_sound then typed_helper_suffix
  1331            else untyped_helper_suffix),
  1332           Helper),
  1333          let val t = th |> prop_of in
  1334            t |> should_specialize_helper type_enc t
  1335                 ? (case types of
  1336                      [T] => specialize_type thy (invert_const unmangled_s, T)
  1337                    | _ => I)
  1338          end)
  1339       val make_facts =
  1340         map_filter (make_fact ctxt format type_enc false false [])
  1341       val fairly_sound = is_type_enc_fairly_sound type_enc
  1342     in
  1343       helper_table
  1344       |> maps (fn ((helper_s, needs_fairly_sound), ths) =>
  1345                   if helper_s <> unmangled_s orelse
  1346                      (needs_fairly_sound andalso not fairly_sound) then
  1347                     []
  1348                   else
  1349                     ths ~~ (1 upto length ths)
  1350                     |> map (dub_and_inst needs_fairly_sound)
  1351                     |> make_facts)
  1352     end
  1353   | NONE => []
  1354 fun helper_facts_for_sym_table ctxt format type_enc sym_tab =
  1355   Symtab.fold_rev (append o helper_facts_for_sym ctxt format type_enc) sym_tab
  1356                   []
  1357 
  1358 (***************************************************************)
  1359 (* Type Classes Present in the Axiom or Conjecture Clauses     *)
  1360 (***************************************************************)
  1361 
  1362 fun set_insert (x, s) = Symtab.update (x, ()) s
  1363 
  1364 fun add_classes (sorts, cset) = List.foldl set_insert cset (flat sorts)
  1365 
  1366 (* Remove this trivial type class (FIXME: similar code elsewhere) *)
  1367 fun delete_type cset = Symtab.delete_safe (the_single @{sort HOL.type}) cset
  1368 
  1369 fun classes_of_terms get_Ts =
  1370   map (map snd o get_Ts)
  1371   #> List.foldl add_classes Symtab.empty
  1372   #> delete_type #> Symtab.keys
  1373 
  1374 val tfree_classes_of_terms = classes_of_terms OldTerm.term_tfrees
  1375 val tvar_classes_of_terms = classes_of_terms OldTerm.term_tvars
  1376 
  1377 fun fold_type_constrs f (Type (s, Ts)) x =
  1378     fold (fold_type_constrs f) Ts (f (s, x))
  1379   | fold_type_constrs _ _ x = x
  1380 
  1381 (*Type constructors used to instantiate overloaded constants are the only ones needed.*)
  1382 fun add_type_constrs_in_term thy =
  1383   let
  1384     fun add (Const (@{const_name Meson.skolem}, _) $ _) = I
  1385       | add (t $ u) = add t #> add u
  1386       | add (Const (x as (s, _))) =
  1387         if String.isPrefix skolem_const_prefix s then I
  1388         else x |> Sign.const_typargs thy |> fold (fold_type_constrs set_insert)
  1389       | add (Abs (_, _, u)) = add u
  1390       | add _ = I
  1391   in add end
  1392 
  1393 fun type_constrs_of_terms thy ts =
  1394   Symtab.keys (fold (add_type_constrs_in_term thy) ts Symtab.empty)
  1395 
  1396 fun translate_formulas ctxt format prem_kind type_enc preproc hyp_ts concl_t
  1397                        facts =
  1398   let
  1399     val thy = Proof_Context.theory_of ctxt
  1400     val fact_ts = facts |> map snd
  1401     val presimp_consts = Meson.presimplified_consts ctxt
  1402     val make_fact = make_fact ctxt format type_enc true preproc presimp_consts
  1403     val (facts, fact_names) =
  1404       facts |> map (fn (name, t) => (name, t) |> make_fact |> rpair name)
  1405             |> map_filter (try (apfst the))
  1406             |> ListPair.unzip
  1407     (* Remove existing facts from the conjecture, as this can dramatically
  1408        boost an ATP's performance (for some reason). *)
  1409     val hyp_ts =
  1410       hyp_ts
  1411       |> map (fn t => if member (op aconv) fact_ts t then @{prop True} else t)
  1412     val goal_t = Logic.list_implies (hyp_ts, concl_t)
  1413     val all_ts = goal_t :: fact_ts
  1414     val subs = tfree_classes_of_terms all_ts
  1415     val supers = tvar_classes_of_terms all_ts
  1416     val tycons = type_constrs_of_terms thy all_ts
  1417     val conjs =
  1418       hyp_ts @ [concl_t]
  1419       |> make_conjecture ctxt format prem_kind type_enc preproc presimp_consts
  1420     val (supers', arity_clauses) =
  1421       if level_of_type_enc type_enc = No_Types then ([], [])
  1422       else make_arity_clauses thy tycons supers
  1423     val class_rel_clauses = make_class_rel_clauses thy subs supers'
  1424   in
  1425     (fact_names |> map single, (conjs, facts, class_rel_clauses, arity_clauses))
  1426   end
  1427 
  1428 fun fo_literal_from_type_literal (TyLitVar (class, name)) =
  1429     (true, ATerm (class, [ATerm (name, [])]))
  1430   | fo_literal_from_type_literal (TyLitFree (class, name)) =
  1431     (true, ATerm (class, [ATerm (name, [])]))
  1432 
  1433 fun formula_from_fo_literal (pos, t) = AAtom t |> not pos ? mk_anot
  1434 
  1435 val type_pred = `make_fixed_const type_pred_name
  1436 
  1437 fun type_pred_combterm ctxt format type_enc T tm =
  1438   CombApp (CombConst (type_pred, T --> @{typ bool}, [T])
  1439            |> enforce_type_arg_policy_in_combterm ctxt format type_enc, tm)
  1440 
  1441 fun is_var_positively_naked_in_term _ (SOME false) _ accum = accum
  1442   | is_var_positively_naked_in_term name _ (ATerm ((s, _), tms)) accum =
  1443     accum orelse (is_tptp_equal s andalso member (op =) tms (ATerm (name, [])))
  1444 fun should_predicate_on_var_in_formula pos phi (SOME true) name =
  1445     formula_fold pos (is_var_positively_naked_in_term name) phi false
  1446   | should_predicate_on_var_in_formula _ _ _ _ = true
  1447 
  1448 fun mk_const_aterm format type_enc x T_args args =
  1449   ATerm (x, map_filter (fo_term_for_type_arg format type_enc) T_args @ args)
  1450 
  1451 fun tag_with_type ctxt format nonmono_Ts type_enc pos T tm =
  1452   CombConst (type_tag, T --> T, [T])
  1453   |> enforce_type_arg_policy_in_combterm ctxt format type_enc
  1454   |> term_from_combterm ctxt format nonmono_Ts type_enc (Top_Level pos)
  1455   |> (fn ATerm (s, tms) => ATerm (s, tms @ [tm]))
  1456 and term_from_combterm ctxt format nonmono_Ts type_enc =
  1457   let
  1458     fun aux site u =
  1459       let
  1460         val (head, args) = strip_combterm_comb u
  1461         val (x as (s, _), T_args) =
  1462           case head of
  1463             CombConst (name, _, T_args) => (name, T_args)
  1464           | CombVar (name, _) => (name, [])
  1465           | CombApp _ => raise Fail "impossible \"CombApp\""
  1466         val (pos, arg_site) =
  1467           case site of
  1468             Top_Level pos =>
  1469             (pos, if is_tptp_equal s then Eq_Arg pos else Elsewhere)
  1470           | Eq_Arg pos => (pos, Elsewhere)
  1471           | Elsewhere => (NONE, Elsewhere)
  1472         val t = mk_const_aterm format type_enc x T_args
  1473                     (map (aux arg_site) args)
  1474         val T = combtyp_of u
  1475       in
  1476         t |> (if should_tag_with_type ctxt nonmono_Ts type_enc site u T then
  1477                 tag_with_type ctxt format nonmono_Ts type_enc pos T
  1478               else
  1479                 I)
  1480       end
  1481   in aux end
  1482 and formula_from_combformula ctxt format nonmono_Ts type_enc
  1483                              should_predicate_on_var =
  1484   let
  1485     fun do_term pos =
  1486       term_from_combterm ctxt format nonmono_Ts type_enc (Top_Level pos)
  1487     val do_bound_type =
  1488       case type_enc of
  1489         Simple_Types (_, level) =>
  1490         homogenized_type ctxt nonmono_Ts level 0
  1491         #> mangled_type format type_enc false 0 #> SOME
  1492       | _ => K NONE
  1493     fun do_out_of_bound_type pos phi universal (name, T) =
  1494       if should_predicate_on_type ctxt nonmono_Ts type_enc
  1495              (fn () => should_predicate_on_var pos phi universal name) T then
  1496         CombVar (name, T)
  1497         |> type_pred_combterm ctxt format type_enc T
  1498         |> do_term pos |> AAtom |> SOME
  1499       else
  1500         NONE
  1501     fun do_formula pos (AQuant (q, xs, phi)) =
  1502         let
  1503           val phi = phi |> do_formula pos
  1504           val universal = Option.map (q = AExists ? not) pos
  1505         in
  1506           AQuant (q, xs |> map (apsnd (fn NONE => NONE
  1507                                         | SOME T => do_bound_type T)),
  1508                   (if q = AForall then mk_ahorn else fold_rev (mk_aconn AAnd))
  1509                       (map_filter
  1510                            (fn (_, NONE) => NONE
  1511                              | (s, SOME T) =>
  1512                                do_out_of_bound_type pos phi universal (s, T))
  1513                            xs)
  1514                       phi)
  1515         end
  1516       | do_formula pos (AConn conn) = aconn_map pos do_formula conn
  1517       | do_formula pos (AAtom tm) = AAtom (do_term pos tm)
  1518   in do_formula end
  1519 
  1520 fun bound_tvars type_enc Ts =
  1521   mk_ahorn (map (formula_from_fo_literal o fo_literal_from_type_literal)
  1522                 (type_literals_for_types type_enc add_sorts_on_tvar Ts))
  1523 
  1524 (* Each fact is given a unique fact number to avoid name clashes (e.g., because
  1525    of monomorphization). The TPTP explicitly forbids name clashes, and some of
  1526    the remote provers might care. *)
  1527 fun formula_line_for_fact ctxt format prefix encode freshen pos nonmono_Ts
  1528         type_enc (j, {name, locality, kind, combformula, atomic_types}) =
  1529   (prefix ^ (if freshen then string_of_int j ^ "_" else "") ^ encode name,
  1530    kind,
  1531    combformula
  1532    |> close_combformula_universally
  1533    |> formula_from_combformula ctxt format nonmono_Ts type_enc
  1534                                should_predicate_on_var_in_formula
  1535                                (if pos then SOME true else NONE)
  1536    |> bound_tvars type_enc atomic_types
  1537    |> close_formula_universally,
  1538    NONE,
  1539    case locality of
  1540      Intro => intro_info
  1541    | Elim => elim_info
  1542    | Simp => simp_info
  1543    | _ => NONE)
  1544   |> Formula
  1545 
  1546 fun formula_line_for_class_rel_clause ({name, subclass, superclass, ...}
  1547                                        : class_rel_clause) =
  1548   let val ty_arg = ATerm (`I "T", []) in
  1549     Formula (class_rel_clause_prefix ^ ascii_of name, Axiom,
  1550              AConn (AImplies, [AAtom (ATerm (subclass, [ty_arg])),
  1551                                AAtom (ATerm (superclass, [ty_arg]))])
  1552              |> close_formula_universally, intro_info, NONE)
  1553   end
  1554 
  1555 fun fo_literal_from_arity_literal (TConsLit (c, t, args)) =
  1556     (true, ATerm (c, [ATerm (t, map (fn arg => ATerm (arg, [])) args)]))
  1557   | fo_literal_from_arity_literal (TVarLit (c, sort)) =
  1558     (false, ATerm (c, [ATerm (sort, [])]))
  1559 
  1560 fun formula_line_for_arity_clause ({name, prem_lits, concl_lits, ...}
  1561                                    : arity_clause) =
  1562   Formula (arity_clause_prefix ^ name, Axiom,
  1563            mk_ahorn (map (formula_from_fo_literal o apfst not
  1564                           o fo_literal_from_arity_literal) prem_lits)
  1565                     (formula_from_fo_literal
  1566                          (fo_literal_from_arity_literal concl_lits))
  1567            |> close_formula_universally, intro_info, NONE)
  1568 
  1569 fun formula_line_for_conjecture ctxt format nonmono_Ts type_enc
  1570         ({name, kind, combformula, atomic_types, ...} : translated_formula) =
  1571   Formula (conjecture_prefix ^ name, kind,
  1572            formula_from_combformula ctxt format nonmono_Ts type_enc
  1573                should_predicate_on_var_in_formula (SOME false)
  1574                (close_combformula_universally combformula)
  1575            |> bound_tvars type_enc atomic_types
  1576            |> close_formula_universally, NONE, NONE)
  1577 
  1578 fun free_type_literals type_enc ({atomic_types, ...} : translated_formula) =
  1579   atomic_types |> type_literals_for_types type_enc add_sorts_on_tfree
  1580                |> map fo_literal_from_type_literal
  1581 
  1582 fun formula_line_for_free_type j lit =
  1583   Formula (tfree_clause_prefix ^ string_of_int j, Hypothesis,
  1584            formula_from_fo_literal lit, NONE, NONE)
  1585 fun formula_lines_for_free_types type_enc facts =
  1586   let
  1587     val litss = map (free_type_literals type_enc) facts
  1588     val lits = fold (union (op =)) litss []
  1589   in map2 formula_line_for_free_type (0 upto length lits - 1) lits end
  1590 
  1591 (** Symbol declarations **)
  1592 
  1593 fun should_declare_sym type_enc pred_sym s =
  1594   is_tptp_user_symbol s andalso not (String.isPrefix bound_var_prefix s) andalso
  1595   (case type_enc of
  1596      Simple_Types _ => true
  1597    | Tags (_, _, Lightweight) => true
  1598    | _ => not pred_sym)
  1599 
  1600 fun sym_decl_table_for_facts ctxt type_enc repaired_sym_tab (conjs, facts) =
  1601   let
  1602     fun add_combterm in_conj tm =
  1603       let val (head, args) = strip_combterm_comb tm in
  1604         (case head of
  1605            CombConst ((s, s'), T, T_args) =>
  1606            let val pred_sym = is_pred_sym repaired_sym_tab s in
  1607              if should_declare_sym type_enc pred_sym s then
  1608                Symtab.map_default (s, [])
  1609                    (insert_type ctxt #3 (s', T_args, T, pred_sym, length args,
  1610                                          in_conj))
  1611              else
  1612                I
  1613            end
  1614          | _ => I)
  1615         #> fold (add_combterm in_conj) args
  1616       end
  1617     fun add_fact in_conj =
  1618       fact_lift (formula_fold NONE (K (add_combterm in_conj)))
  1619   in
  1620     Symtab.empty
  1621     |> is_type_enc_fairly_sound type_enc
  1622        ? (fold (add_fact true) conjs #> fold (add_fact false) facts)
  1623   end
  1624 
  1625 (* This inference is described in section 2.3 of Claessen et al.'s "Sorting it
  1626    out with monotonicity" paper presented at CADE 2011. *)
  1627 fun add_combterm_nonmonotonic_types _ _ _ _ (SOME false) _ = I
  1628   | add_combterm_nonmonotonic_types ctxt level sound locality _
  1629         (CombApp (CombApp (CombConst ((s, _), Type (_, [T, _]), _), tm1),
  1630                            tm2)) =
  1631     (is_tptp_equal s andalso exists is_var_or_bound_var [tm1, tm2] andalso
  1632      (case level of
  1633         Noninf_Nonmono_Types =>
  1634         not (is_locality_global locality) orelse
  1635         not (is_type_surely_infinite ctxt sound T)
  1636       | Fin_Nonmono_Types => is_type_surely_finite ctxt false T
  1637       | _ => true)) ? insert_type ctxt I (deep_freeze_type T)
  1638   | add_combterm_nonmonotonic_types _ _ _ _ _ _ = I
  1639 fun add_fact_nonmonotonic_types ctxt level sound
  1640         ({kind, locality, combformula, ...} : translated_formula) =
  1641   formula_fold (SOME (kind <> Conjecture))
  1642                (add_combterm_nonmonotonic_types ctxt level sound locality)
  1643                combformula
  1644 fun nonmonotonic_types_for_facts ctxt type_enc sound facts =
  1645   let val level = level_of_type_enc type_enc in
  1646     if level = Noninf_Nonmono_Types orelse level = Fin_Nonmono_Types then
  1647       [] |> fold (add_fact_nonmonotonic_types ctxt level sound) facts
  1648          (* We must add "bool" in case the helper "True_or_False" is added
  1649             later. In addition, several places in the code rely on the list of
  1650             nonmonotonic types not being empty. *)
  1651          |> insert_type ctxt I @{typ bool}
  1652     else
  1653       []
  1654   end
  1655 
  1656 fun decl_line_for_sym ctxt format nonmono_Ts type_enc s
  1657                       (s', T_args, T, pred_sym, ary, _) =
  1658   let
  1659     val (T_arg_Ts, level) =
  1660       case type_enc of
  1661         Simple_Types (_, level) => ([], level)
  1662       | _ => (replicate (length T_args) homo_infinite_type, No_Types)
  1663   in
  1664     Decl (sym_decl_prefix ^ s, (s, s'),
  1665           (T_arg_Ts ---> (T |> homogenized_type ctxt nonmono_Ts level ary))
  1666           |> mangled_type format type_enc pred_sym (length T_arg_Ts + ary))
  1667   end
  1668 
  1669 fun formula_line_for_preds_sym_decl ctxt format conj_sym_kind nonmono_Ts
  1670         poly_nonmono_Ts type_enc n s j (s', T_args, T, _, ary, in_conj) =
  1671   let
  1672     val (kind, maybe_negate) =
  1673       if in_conj then (conj_sym_kind, conj_sym_kind = Conjecture ? mk_anot)
  1674       else (Axiom, I)
  1675     val (arg_Ts, res_T) = chop_fun ary T
  1676     val num_args = length arg_Ts
  1677     val bound_names =
  1678       1 upto num_args |> map (`I o make_bound_var o string_of_int)
  1679     val bounds =
  1680       bound_names ~~ arg_Ts |> map (fn (name, T) => CombConst (name, T, []))
  1681     val sym_needs_arg_types = n > 1 orelse exists (curry (op =) dummyT) T_args
  1682     fun should_keep_arg_type T =
  1683       sym_needs_arg_types orelse
  1684       not (should_predicate_on_type ctxt nonmono_Ts type_enc (K false) T)
  1685     val bound_Ts =
  1686       arg_Ts |> map (fn T => if should_keep_arg_type T then SOME T else NONE)
  1687   in
  1688     Formula (preds_sym_formula_prefix ^ s ^
  1689              (if n > 1 then "_" ^ string_of_int j else ""), kind,
  1690              CombConst ((s, s'), T, T_args)
  1691              |> fold (curry (CombApp o swap)) bounds
  1692              |> type_pred_combterm ctxt format type_enc res_T
  1693              |> AAtom |> mk_aquant AForall (bound_names ~~ bound_Ts)
  1694              |> formula_from_combformula ctxt format poly_nonmono_Ts type_enc
  1695                                          (K (K (K (K true)))) (SOME true)
  1696              |> n > 1 ? bound_tvars type_enc (atyps_of T)
  1697              |> close_formula_universally
  1698              |> maybe_negate,
  1699              intro_info, NONE)
  1700   end
  1701 
  1702 fun formula_lines_for_lightweight_tags_sym_decl ctxt format conj_sym_kind
  1703         poly_nonmono_Ts type_enc n s
  1704         (j, (s', T_args, T, pred_sym, ary, in_conj)) =
  1705   let
  1706     val ident_base =
  1707       lightweight_tags_sym_formula_prefix ^ s ^
  1708       (if n > 1 then "_" ^ string_of_int j else "")
  1709     val (kind, maybe_negate) =
  1710       if in_conj then (conj_sym_kind, conj_sym_kind = Conjecture ? mk_anot)
  1711       else (Axiom, I)
  1712     val (arg_Ts, res_T) = chop_fun ary T
  1713     val bound_names =
  1714       1 upto length arg_Ts |> map (`I o make_bound_var o string_of_int)
  1715     val bounds = bound_names |> map (fn name => ATerm (name, []))
  1716     val cst = mk_const_aterm format type_enc (s, s') T_args
  1717     val atomic_Ts = atyps_of T
  1718     fun eq tms =
  1719       (if pred_sym then AConn (AIff, map AAtom tms)
  1720        else AAtom (ATerm (`I tptp_equal, tms)))
  1721       |> bound_tvars type_enc atomic_Ts
  1722       |> close_formula_universally
  1723       |> maybe_negate
  1724     (* See also "should_tag_with_type". *)
  1725     fun should_encode T =
  1726       should_encode_type ctxt poly_nonmono_Ts All_Types T orelse
  1727       (case type_enc of
  1728          Tags (Polymorphic, level, Lightweight) =>
  1729          level <> All_Types andalso Monomorph.typ_has_tvars T
  1730        | _ => false)
  1731     val tag_with = tag_with_type ctxt format poly_nonmono_Ts type_enc NONE
  1732     val add_formula_for_res =
  1733       if should_encode res_T then
  1734         cons (Formula (ident_base ^ "_res", kind,
  1735                        eq [tag_with res_T (cst bounds), cst bounds],
  1736                        simp_info, NONE))
  1737       else
  1738         I
  1739     fun add_formula_for_arg k =
  1740       let val arg_T = nth arg_Ts k in
  1741         if should_encode arg_T then
  1742           case chop k bounds of
  1743             (bounds1, bound :: bounds2) =>
  1744             cons (Formula (ident_base ^ "_arg" ^ string_of_int (k + 1), kind,
  1745                            eq [cst (bounds1 @ tag_with arg_T bound :: bounds2),
  1746                                cst bounds],
  1747                            simp_info, NONE))
  1748           | _ => raise Fail "expected nonempty tail"
  1749         else
  1750           I
  1751       end
  1752   in
  1753     [] |> not pred_sym ? add_formula_for_res
  1754        |> fold add_formula_for_arg (ary - 1 downto 0)
  1755   end
  1756 
  1757 fun result_type_of_decl (_, _, T, _, ary, _) = chop_fun ary T |> snd
  1758 
  1759 fun problem_lines_for_sym_decls ctxt format conj_sym_kind nonmono_Ts
  1760                                 poly_nonmono_Ts type_enc (s, decls) =
  1761   case type_enc of
  1762     Simple_Types _ =>
  1763     decls |> map (decl_line_for_sym ctxt format nonmono_Ts type_enc s)
  1764   | Preds _ =>
  1765     let
  1766       val decls =
  1767         case decls of
  1768           decl :: (decls' as _ :: _) =>
  1769           let val T = result_type_of_decl decl in
  1770             if forall (curry (type_instance ctxt o swap) T
  1771                        o result_type_of_decl) decls' then
  1772               [decl]
  1773             else
  1774               decls
  1775           end
  1776         | _ => decls
  1777       val n = length decls
  1778       val decls =
  1779         decls |> filter (should_predicate_on_type ctxt poly_nonmono_Ts type_enc
  1780                                                   (K true)
  1781                          o result_type_of_decl)
  1782     in
  1783       (0 upto length decls - 1, decls)
  1784       |-> map2 (formula_line_for_preds_sym_decl ctxt format conj_sym_kind
  1785                    nonmono_Ts poly_nonmono_Ts type_enc n s)
  1786     end
  1787   | Tags (_, _, heaviness) =>
  1788     (case heaviness of
  1789        Heavyweight => []
  1790      | Lightweight =>
  1791        let val n = length decls in
  1792          (0 upto n - 1 ~~ decls)
  1793          |> maps (formula_lines_for_lightweight_tags_sym_decl ctxt format
  1794                       conj_sym_kind poly_nonmono_Ts type_enc n s)
  1795        end)
  1796 
  1797 fun problem_lines_for_sym_decl_table ctxt format conj_sym_kind nonmono_Ts
  1798                                      poly_nonmono_Ts type_enc sym_decl_tab =
  1799   sym_decl_tab
  1800   |> Symtab.dest
  1801   |> sort_wrt fst
  1802   |> rpair []
  1803   |-> fold_rev (append o problem_lines_for_sym_decls ctxt format conj_sym_kind
  1804                              nonmono_Ts poly_nonmono_Ts type_enc)
  1805 
  1806 fun needs_type_tag_idempotence (Tags (poly, level, heaviness)) =
  1807     poly <> Mangled_Monomorphic andalso
  1808     ((level = All_Types andalso heaviness = Lightweight) orelse
  1809      level = Noninf_Nonmono_Types orelse level = Fin_Nonmono_Types)
  1810   | needs_type_tag_idempotence _ = false
  1811 
  1812 fun offset_of_heading_in_problem _ [] j = j
  1813   | offset_of_heading_in_problem needle ((heading, lines) :: problem) j =
  1814     if heading = needle then j
  1815     else offset_of_heading_in_problem needle problem (j + length lines)
  1816 
  1817 val implicit_declsN = "Should-be-implicit typings"
  1818 val explicit_declsN = "Explicit typings"
  1819 val factsN = "Relevant facts"
  1820 val class_relsN = "Class relationships"
  1821 val aritiesN = "Arities"
  1822 val helpersN = "Helper facts"
  1823 val conjsN = "Conjectures"
  1824 val free_typesN = "Type variables"
  1825 
  1826 val explicit_apply = NONE (* for experimental purposes *)
  1827 
  1828 fun prepare_atp_problem ctxt format conj_sym_kind prem_kind type_enc sound
  1829         exporter readable_names preproc hyp_ts concl_t facts =
  1830   let
  1831     val (format, type_enc) = choose_format [format] type_enc
  1832     val (fact_names, (conjs, facts, class_rel_clauses, arity_clauses)) =
  1833       translate_formulas ctxt format prem_kind type_enc preproc hyp_ts concl_t
  1834                          facts
  1835     val sym_tab = conjs @ facts |> sym_table_for_facts ctxt explicit_apply
  1836     val nonmono_Ts =
  1837       conjs @ facts |> nonmonotonic_types_for_facts ctxt type_enc sound
  1838     val repair = repair_fact ctxt format type_enc sym_tab
  1839     val (conjs, facts) = (conjs, facts) |> pairself (map repair)
  1840     val repaired_sym_tab =
  1841       conjs @ facts |> sym_table_for_facts ctxt (SOME false)
  1842     val helpers =
  1843       repaired_sym_tab |> helper_facts_for_sym_table ctxt format type_enc
  1844                        |> map repair
  1845     val poly_nonmono_Ts =
  1846       if null nonmono_Ts orelse nonmono_Ts = [@{typ bool}] orelse
  1847          polymorphism_of_type_enc type_enc <> Polymorphic then
  1848         nonmono_Ts
  1849       else
  1850         [TVar (("'a", 0), HOLogic.typeS)]
  1851     val sym_decl_lines =
  1852       (conjs, helpers @ facts)
  1853       |> sym_decl_table_for_facts ctxt type_enc repaired_sym_tab
  1854       |> problem_lines_for_sym_decl_table ctxt format conj_sym_kind nonmono_Ts
  1855                                                poly_nonmono_Ts type_enc
  1856     val helper_lines =
  1857       0 upto length helpers - 1 ~~ helpers
  1858       |> map (formula_line_for_fact ctxt format helper_prefix I false true
  1859                                     poly_nonmono_Ts type_enc)
  1860       |> (if needs_type_tag_idempotence type_enc then
  1861             cons (type_tag_idempotence_fact ())
  1862           else
  1863             I)
  1864     (* Reordering these might confuse the proof reconstruction code or the SPASS
  1865        FLOTTER hack. *)
  1866     val problem =
  1867       [(explicit_declsN, sym_decl_lines),
  1868        (factsN,
  1869         map (formula_line_for_fact ctxt format fact_prefix ascii_of
  1870                                    (not exporter) (not exporter) nonmono_Ts
  1871                                    type_enc)
  1872             (0 upto length facts - 1 ~~ facts)),
  1873        (class_relsN, map formula_line_for_class_rel_clause class_rel_clauses),
  1874        (aritiesN, map formula_line_for_arity_clause arity_clauses),
  1875        (helpersN, helper_lines),
  1876        (conjsN,
  1877         map (formula_line_for_conjecture ctxt format nonmono_Ts type_enc)
  1878             conjs),
  1879        (free_typesN, formula_lines_for_free_types type_enc (facts @ conjs))]
  1880     val problem =
  1881       problem
  1882       |> (case format of
  1883             CNF => ensure_cnf_problem
  1884           | CNF_UEQ => filter_cnf_ueq_problem
  1885           | _ => I)
  1886       |> (if is_format_typed format then
  1887             declare_undeclared_syms_in_atp_problem type_decl_prefix
  1888                                                    implicit_declsN
  1889           else
  1890             I)
  1891     val (problem, pool) = problem |> nice_atp_problem readable_names
  1892     val helpers_offset = offset_of_heading_in_problem helpersN problem 0
  1893     val typed_helpers =
  1894       map_filter (fn (j, {name, ...}) =>
  1895                      if String.isSuffix typed_helper_suffix name then SOME j
  1896                      else NONE)
  1897                  ((helpers_offset + 1 upto helpers_offset + length helpers)
  1898                   ~~ helpers)
  1899     fun add_sym_arity (s, {min_ary, ...} : sym_info) =
  1900       if min_ary > 0 then
  1901         case strip_prefix_and_unascii const_prefix s of
  1902           SOME s => Symtab.insert (op =) (s, min_ary)
  1903         | NONE => I
  1904       else
  1905         I
  1906   in
  1907     (problem,
  1908      case pool of SOME the_pool => snd the_pool | NONE => Symtab.empty,
  1909      offset_of_heading_in_problem conjsN problem 0,
  1910      offset_of_heading_in_problem factsN problem 0,
  1911      fact_names |> Vector.fromList,
  1912      typed_helpers,
  1913      Symtab.empty |> Symtab.fold add_sym_arity sym_tab)
  1914   end
  1915 
  1916 (* FUDGE *)
  1917 val conj_weight = 0.0
  1918 val hyp_weight = 0.1
  1919 val fact_min_weight = 0.2
  1920 val fact_max_weight = 1.0
  1921 val type_info_default_weight = 0.8
  1922 
  1923 fun add_term_weights weight (ATerm (s, tms)) =
  1924   is_tptp_user_symbol s ? Symtab.default (s, weight)
  1925   #> fold (add_term_weights weight) tms
  1926 fun add_problem_line_weights weight (Formula (_, _, phi, _, _)) =
  1927     formula_fold NONE (K (add_term_weights weight)) phi
  1928   | add_problem_line_weights _ _ = I
  1929 
  1930 fun add_conjectures_weights [] = I
  1931   | add_conjectures_weights conjs =
  1932     let val (hyps, conj) = split_last conjs in
  1933       add_problem_line_weights conj_weight conj
  1934       #> fold (add_problem_line_weights hyp_weight) hyps
  1935     end
  1936 
  1937 fun add_facts_weights facts =
  1938   let
  1939     val num_facts = length facts
  1940     fun weight_of j =
  1941       fact_min_weight + (fact_max_weight - fact_min_weight) * Real.fromInt j
  1942                         / Real.fromInt num_facts
  1943   in
  1944     map weight_of (0 upto num_facts - 1) ~~ facts
  1945     |> fold (uncurry add_problem_line_weights)
  1946   end
  1947 
  1948 (* Weights are from 0.0 (most important) to 1.0 (least important). *)
  1949 fun atp_problem_weights problem =
  1950   let val get = these o AList.lookup (op =) problem in
  1951     Symtab.empty
  1952     |> add_conjectures_weights (get free_typesN @ get conjsN)
  1953     |> add_facts_weights (get factsN)
  1954     |> fold (fold (add_problem_line_weights type_info_default_weight) o get)
  1955             [explicit_declsN, class_relsN, aritiesN]
  1956     |> Symtab.dest
  1957     |> sort (prod_ord Real.compare string_ord o pairself swap)
  1958   end
  1959 
  1960 end;