doc-src/ZF/ZF.tex
author paulson
Tue, 19 Jan 1999 11:18:11 +0100
changeset 6141 a6922171b396
parent 6121 5fe77b9b5185
child 6143 1eb364a68c54
permissions -rw-r--r--
removal of the (thm list) argument of mk_cases
     1 %% $Id$
     2 \chapter{Zermelo-Fraenkel Set Theory}
     3 \index{set theory|(}
     4 
     5 The theory~\thydx{ZF} implements Zermelo-Fraenkel set
     6 theory~\cite{halmos60,suppes72} as an extension of~\texttt{FOL}, classical
     7 first-order logic.  The theory includes a collection of derived natural
     8 deduction rules, for use with Isabelle's classical reasoner.  Much
     9 of it is based on the work of No\"el~\cite{noel}.
    10 
    11 A tremendous amount of set theory has been formally developed, including the
    12 basic properties of relations, functions, ordinals and cardinals.  Significant
    13 results have been proved, such as the Schr\"oder-Bernstein Theorem, the
    14 Wellordering Theorem and a version of Ramsey's Theorem.  \texttt{ZF} provides
    15 both the integers and the natural numbers.  General methods have been
    16 developed for solving recursion equations over monotonic functors; these have
    17 been applied to yield constructions of lists, trees, infinite lists, etc.
    18 
    19 \texttt{ZF} has a flexible package for handling inductive definitions,
    20 such as inference systems, and datatype definitions, such as lists and
    21 trees.  Moreover it handles coinductive definitions, such as
    22 bisimulation relations, and codatatype definitions, such as streams.  It
    23 provides a streamlined syntax for defining primitive recursive functions over
    24 datatypes. 
    25 
    26 Because {\ZF} is an extension of {\FOL}, it provides the same
    27 packages, namely \texttt{hyp_subst_tac}, the simplifier, and the
    28 classical reasoner.  The default simpset and claset are usually
    29 satisfactory.
    30 
    31 Published articles~\cite{paulson-set-I,paulson-set-II} describe \texttt{ZF}
    32 less formally than this chapter.  Isabelle employs a novel treatment of
    33 non-well-founded data structures within the standard {\sc zf} axioms including
    34 the Axiom of Foundation~\cite{paulson-final}.
    35 
    36 
    37 \section{Which version of axiomatic set theory?}
    38 The two main axiom systems for set theory are Bernays-G\"odel~({\sc bg})
    39 and Zermelo-Fraenkel~({\sc zf}).  Resolution theorem provers can use {\sc
    40   bg} because it is finite~\cite{boyer86,quaife92}.  {\sc zf} does not
    41 have a finite axiom system because of its Axiom Scheme of Replacement.
    42 This makes it awkward to use with many theorem provers, since instances
    43 of the axiom scheme have to be invoked explicitly.  Since Isabelle has no
    44 difficulty with axiom schemes, we may adopt either axiom system.
    45 
    46 These two theories differ in their treatment of {\bf classes}, which are
    47 collections that are `too big' to be sets.  The class of all sets,~$V$,
    48 cannot be a set without admitting Russell's Paradox.  In {\sc bg}, both
    49 classes and sets are individuals; $x\in V$ expresses that $x$ is a set.  In
    50 {\sc zf}, all variables denote sets; classes are identified with unary
    51 predicates.  The two systems define essentially the same sets and classes,
    52 with similar properties.  In particular, a class cannot belong to another
    53 class (let alone a set).
    54 
    55 Modern set theorists tend to prefer {\sc zf} because they are mainly concerned
    56 with sets, rather than classes.  {\sc bg} requires tiresome proofs that various
    57 collections are sets; for instance, showing $x\in\{x\}$ requires showing that
    58 $x$ is a set.
    59 
    60 
    61 \begin{figure} \small
    62 \begin{center}
    63 \begin{tabular}{rrr} 
    64   \it name      &\it meta-type  & \it description \\ 
    65   \cdx{Let}     & $[\alpha,\alpha\To\beta]\To\beta$ & let binder\\
    66   \cdx{0}       & $i$           & empty set\\
    67   \cdx{cons}    & $[i,i]\To i$  & finite set constructor\\
    68   \cdx{Upair}   & $[i,i]\To i$  & unordered pairing\\
    69   \cdx{Pair}    & $[i,i]\To i$  & ordered pairing\\
    70   \cdx{Inf}     & $i$   & infinite set\\
    71   \cdx{Pow}     & $i\To i$      & powerset\\
    72   \cdx{Union} \cdx{Inter} & $i\To i$    & set union/intersection \\
    73   \cdx{split}   & $[[i,i]\To i, i] \To i$ & generalized projection\\
    74   \cdx{fst} \cdx{snd}   & $i\To i$      & projections\\
    75   \cdx{converse}& $i\To i$      & converse of a relation\\
    76   \cdx{succ}    & $i\To i$      & successor\\
    77   \cdx{Collect} & $[i,i\To o]\To i$     & separation\\
    78   \cdx{Replace} & $[i, [i,i]\To o] \To i$       & replacement\\
    79   \cdx{PrimReplace} & $[i, [i,i]\To o] \To i$   & primitive replacement\\
    80   \cdx{RepFun}  & $[i, i\To i] \To i$   & functional replacement\\
    81   \cdx{Pi} \cdx{Sigma}  & $[i,i\To i]\To i$     & general product/sum\\
    82   \cdx{domain}  & $i\To i$      & domain of a relation\\
    83   \cdx{range}   & $i\To i$      & range of a relation\\
    84   \cdx{field}   & $i\To i$      & field of a relation\\
    85   \cdx{Lambda}  & $[i, i\To i]\To i$    & $\lambda$-abstraction\\
    86   \cdx{restrict}& $[i, i] \To i$        & restriction of a function\\
    87   \cdx{The}     & $[i\To o]\To i$       & definite description\\
    88   \cdx{if}      & $[o,i,i]\To i$        & conditional\\
    89   \cdx{Ball} \cdx{Bex}  & $[i, i\To o]\To o$    & bounded quantifiers
    90 \end{tabular}
    91 \end{center}
    92 \subcaption{Constants}
    93 
    94 \begin{center}
    95 \index{*"`"` symbol}
    96 \index{*"-"`"` symbol}
    97 \index{*"` symbol}\index{function applications!in \ZF}
    98 \index{*"- symbol}
    99 \index{*": symbol}
   100 \index{*"<"= symbol}
   101 \begin{tabular}{rrrr} 
   102   \it symbol  & \it meta-type & \it priority & \it description \\ 
   103   \tt ``        & $[i,i]\To i$  &  Left 90      & image \\
   104   \tt -``       & $[i,i]\To i$  &  Left 90      & inverse image \\
   105   \tt `         & $[i,i]\To i$  &  Left 90      & application \\
   106   \sdx{Int}     & $[i,i]\To i$  &  Left 70      & intersection ($\int$) \\
   107   \sdx{Un}      & $[i,i]\To i$  &  Left 65      & union ($\un$) \\
   108   \tt -         & $[i,i]\To i$  &  Left 65      & set difference ($-$) \\[1ex]
   109   \tt:          & $[i,i]\To o$  &  Left 50      & membership ($\in$) \\
   110   \tt <=        & $[i,i]\To o$  &  Left 50      & subset ($\subseteq$) 
   111 \end{tabular}
   112 \end{center}
   113 \subcaption{Infixes}
   114 \caption{Constants of {\ZF}} \label{zf-constants}
   115 \end{figure} 
   116 
   117 
   118 \section{The syntax of set theory}
   119 The language of set theory, as studied by logicians, has no constants.  The
   120 traditional axioms merely assert the existence of empty sets, unions,
   121 powersets, etc.; this would be intolerable for practical reasoning.  The
   122 Isabelle theory declares constants for primitive sets.  It also extends
   123 \texttt{FOL} with additional syntax for finite sets, ordered pairs,
   124 comprehension, general union/intersection, general sums/products, and
   125 bounded quantifiers.  In most other respects, Isabelle implements precisely
   126 Zermelo-Fraenkel set theory.
   127 
   128 Figure~\ref{zf-constants} lists the constants and infixes of~\ZF, while
   129 Figure~\ref{zf-trans} presents the syntax translations.  Finally,
   130 Figure~\ref{zf-syntax} presents the full grammar for set theory, including
   131 the constructs of \FOL.
   132 
   133 Local abbreviations can be introduced by a \texttt{let} construct whose
   134 syntax appears in Fig.\ts\ref{zf-syntax}.  Internally it is translated into
   135 the constant~\cdx{Let}.  It can be expanded by rewriting with its
   136 definition, \tdx{Let_def}.
   137 
   138 Apart from \texttt{let}, set theory does not use polymorphism.  All terms in
   139 {\ZF} have type~\tydx{i}, which is the type of individuals and has class~{\tt
   140   term}.  The type of first-order formulae, remember, is~\textit{o}.
   141 
   142 Infix operators include binary union and intersection ($A\un B$ and
   143 $A\int B$), set difference ($A-B$), and the subset and membership
   144 relations.  Note that $a$\verb|~:|$b$ is translated to $\neg(a\in b)$.  The
   145 union and intersection operators ($\bigcup A$ and $\bigcap A$) form the
   146 union or intersection of a set of sets; $\bigcup A$ means the same as
   147 $\bigcup@{x\in A}x$.  Of these operators, only $\bigcup A$ is primitive.
   148 
   149 The constant \cdx{Upair} constructs unordered pairs; thus {\tt
   150   Upair($A$,$B$)} denotes the set~$\{A,B\}$ and \texttt{Upair($A$,$A$)}
   151 denotes the singleton~$\{A\}$.  General union is used to define binary
   152 union.  The Isabelle version goes on to define the constant
   153 \cdx{cons}:
   154 \begin{eqnarray*}
   155    A\cup B              & \equiv &       \bigcup(\texttt{Upair}(A,B)) \\
   156    \texttt{cons}(a,B)      & \equiv &        \texttt{Upair}(a,a) \un B
   157 \end{eqnarray*}
   158 The $\{a@1, \ldots\}$ notation abbreviates finite sets constructed in the
   159 obvious manner using~\texttt{cons} and~$\emptyset$ (the empty set):
   160 \begin{eqnarray*}
   161  \{a,b,c\} & \equiv & \texttt{cons}(a,\texttt{cons}(b,\texttt{cons}(c,\emptyset)))
   162 \end{eqnarray*}
   163 
   164 The constant \cdx{Pair} constructs ordered pairs, as in {\tt
   165 Pair($a$,$b$)}.  Ordered pairs may also be written within angle brackets,
   166 as {\tt<$a$,$b$>}.  The $n$-tuple {\tt<$a@1$,\ldots,$a@{n-1}$,$a@n$>}
   167 abbreviates the nest of pairs\par\nobreak
   168 \centerline{\texttt{Pair($a@1$,\ldots,Pair($a@{n-1}$,$a@n$)\ldots).}}
   169 
   170 In {\ZF}, a function is a set of pairs.  A {\ZF} function~$f$ is simply an
   171 individual as far as Isabelle is concerned: its Isabelle type is~$i$, not
   172 say $i\To i$.  The infix operator~{\tt`} denotes the application of a
   173 function set to its argument; we must write~$f{\tt`}x$, not~$f(x)$.  The
   174 syntax for image is~$f{\tt``}A$ and that for inverse image is~$f{\tt-``}A$.
   175 
   176 
   177 \begin{figure} 
   178 \index{lambda abs@$\lambda$-abstractions!in \ZF}
   179 \index{*"-"> symbol}
   180 \index{*"* symbol}
   181 \begin{center} \footnotesize\tt\frenchspacing
   182 \begin{tabular}{rrr} 
   183   \it external          & \it internal  & \it description \\ 
   184   $a$ \ttilde: $b$      & \ttilde($a$ : $b$)    & \rm negated membership\\
   185   \ttlbrace$a@1$, $\ldots$, $a@n$\ttrbrace  &  cons($a@1$,$\ldots$,cons($a@n$,0)) &
   186         \rm finite set \\
   187   <$a@1$, $\ldots$, $a@{n-1}$, $a@n$> & 
   188         Pair($a@1$,\ldots,Pair($a@{n-1}$,$a@n$)\ldots) &
   189         \rm ordered $n$-tuple \\
   190   \ttlbrace$x$:$A . P[x]$\ttrbrace    &  Collect($A$,$\lambda x. P[x]$) &
   191         \rm separation \\
   192   \ttlbrace$y . x$:$A$, $Q[x,y]$\ttrbrace  &  Replace($A$,$\lambda x\,y. Q[x,y]$) &
   193         \rm replacement \\
   194   \ttlbrace$b[x] . x$:$A$\ttrbrace  &  RepFun($A$,$\lambda x. b[x]$) &
   195         \rm functional replacement \\
   196   \sdx{INT} $x$:$A . B[x]$      & Inter(\ttlbrace$B[x] . x$:$A$\ttrbrace) &
   197         \rm general intersection \\
   198   \sdx{UN}  $x$:$A . B[x]$      & Union(\ttlbrace$B[x] . x$:$A$\ttrbrace) &
   199         \rm general union \\
   200   \sdx{PROD} $x$:$A . B[x]$     & Pi($A$,$\lambda x. B[x]$) & 
   201         \rm general product \\
   202   \sdx{SUM}  $x$:$A . B[x]$     & Sigma($A$,$\lambda x. B[x]$) & 
   203         \rm general sum \\
   204   $A$ -> $B$            & Pi($A$,$\lambda x. B$) & 
   205         \rm function space \\
   206   $A$ * $B$             & Sigma($A$,$\lambda x. B$) & 
   207         \rm binary product \\
   208   \sdx{THE}  $x . P[x]$ & The($\lambda x. P[x]$) & 
   209         \rm definite description \\
   210   \sdx{lam}  $x$:$A . b[x]$     & Lambda($A$,$\lambda x. b[x]$) & 
   211         \rm $\lambda$-abstraction\\[1ex]
   212   \sdx{ALL} $x$:$A . P[x]$      & Ball($A$,$\lambda x. P[x]$) & 
   213         \rm bounded $\forall$ \\
   214   \sdx{EX}  $x$:$A . P[x]$      & Bex($A$,$\lambda x. P[x]$) & 
   215         \rm bounded $\exists$
   216 \end{tabular}
   217 \end{center}
   218 \caption{Translations for {\ZF}} \label{zf-trans}
   219 \end{figure} 
   220 
   221 
   222 \begin{figure} 
   223 \index{*let symbol}
   224 \index{*in symbol}
   225 \dquotes
   226 \[\begin{array}{rcl}
   227     term & = & \hbox{expression of type~$i$} \\
   228          & | & "let"~id~"="~term";"\dots";"~id~"="~term~"in"~term \\
   229          & | & "if"~term~"then"~term~"else"~term \\
   230          & | & "{\ttlbrace} " term\; ("," term)^* " {\ttrbrace}" \\
   231          & | & "< "  term\; ("," term)^* " >"  \\
   232          & | & "{\ttlbrace} " id ":" term " . " formula " {\ttrbrace}" \\
   233          & | & "{\ttlbrace} " id " . " id ":" term ", " formula " {\ttrbrace}" \\
   234          & | & "{\ttlbrace} " term " . " id ":" term " {\ttrbrace}" \\
   235          & | & term " `` " term \\
   236          & | & term " -`` " term \\
   237          & | & term " ` " term \\
   238          & | & term " * " term \\
   239          & | & term " Int " term \\
   240          & | & term " Un " term \\
   241          & | & term " - " term \\
   242          & | & term " -> " term \\
   243          & | & "THE~~"  id  " . " formula\\
   244          & | & "lam~~"  id ":" term " . " term \\
   245          & | & "INT~~"  id ":" term " . " term \\
   246          & | & "UN~~~"  id ":" term " . " term \\
   247          & | & "PROD~"  id ":" term " . " term \\
   248          & | & "SUM~~"  id ":" term " . " term \\[2ex]
   249  formula & = & \hbox{expression of type~$o$} \\
   250          & | & term " : " term \\
   251          & | & term " \ttilde: " term \\
   252          & | & term " <= " term \\
   253          & | & term " = " term \\
   254          & | & term " \ttilde= " term \\
   255          & | & "\ttilde\ " formula \\
   256          & | & formula " \& " formula \\
   257          & | & formula " | " formula \\
   258          & | & formula " --> " formula \\
   259          & | & formula " <-> " formula \\
   260          & | & "ALL " id ":" term " . " formula \\
   261          & | & "EX~~" id ":" term " . " formula \\
   262          & | & "ALL~" id~id^* " . " formula \\
   263          & | & "EX~~" id~id^* " . " formula \\
   264          & | & "EX!~" id~id^* " . " formula
   265   \end{array}
   266 \]
   267 \caption{Full grammar for {\ZF}} \label{zf-syntax}
   268 \end{figure} 
   269 
   270 
   271 \section{Binding operators}
   272 The constant \cdx{Collect} constructs sets by the principle of {\bf
   273   separation}.  The syntax for separation is
   274 \hbox{\tt\ttlbrace$x$:$A$.\ $P[x]$\ttrbrace}, where $P[x]$ is a formula
   275 that may contain free occurrences of~$x$.  It abbreviates the set {\tt
   276   Collect($A$,$\lambda x. P[x]$)}, which consists of all $x\in A$ that
   277 satisfy~$P[x]$.  Note that \texttt{Collect} is an unfortunate choice of
   278 name: some set theories adopt a set-formation principle, related to
   279 replacement, called collection.
   280 
   281 The constant \cdx{Replace} constructs sets by the principle of {\bf
   282   replacement}.  The syntax
   283 \hbox{\tt\ttlbrace$y$.\ $x$:$A$,$Q[x,y]$\ttrbrace} denotes the set {\tt
   284   Replace($A$,$\lambda x\,y. Q[x,y]$)}, which consists of all~$y$ such
   285 that there exists $x\in A$ satisfying~$Q[x,y]$.  The Replacement Axiom
   286 has the condition that $Q$ must be single-valued over~$A$: for
   287 all~$x\in A$ there exists at most one $y$ satisfying~$Q[x,y]$.  A
   288 single-valued binary predicate is also called a {\bf class function}.
   289 
   290 The constant \cdx{RepFun} expresses a special case of replacement,
   291 where $Q[x,y]$ has the form $y=b[x]$.  Such a $Q$ is trivially
   292 single-valued, since it is just the graph of the meta-level
   293 function~$\lambda x. b[x]$.  The resulting set consists of all $b[x]$
   294 for~$x\in A$.  This is analogous to the \ML{} functional \texttt{map},
   295 since it applies a function to every element of a set.  The syntax is
   296 \hbox{\tt\ttlbrace$b[x]$.\ $x$:$A$\ttrbrace}, which expands to {\tt
   297   RepFun($A$,$\lambda x. b[x]$)}.
   298 
   299 \index{*INT symbol}\index{*UN symbol} 
   300 General unions and intersections of indexed
   301 families of sets, namely $\bigcup@{x\in A}B[x]$ and $\bigcap@{x\in A}B[x]$,
   302 are written \hbox{\tt UN $x$:$A$.\ $B[x]$} and \hbox{\tt INT $x$:$A$.\ $B[x]$}.
   303 Their meaning is expressed using \texttt{RepFun} as
   304 \[
   305 \bigcup(\{B[x]. x\in A\}) \qquad\hbox{and}\qquad 
   306 \bigcap(\{B[x]. x\in A\}). 
   307 \]
   308 General sums $\sum@{x\in A}B[x]$ and products $\prod@{x\in A}B[x]$ can be
   309 constructed in set theory, where $B[x]$ is a family of sets over~$A$.  They
   310 have as special cases $A\times B$ and $A\to B$, where $B$ is simply a set.
   311 This is similar to the situation in Constructive Type Theory (set theory
   312 has `dependent sets') and calls for similar syntactic conventions.  The
   313 constants~\cdx{Sigma} and~\cdx{Pi} construct general sums and
   314 products.  Instead of \texttt{Sigma($A$,$B$)} and \texttt{Pi($A$,$B$)} we may
   315 write 
   316 \hbox{\tt SUM $x$:$A$.\ $B[x]$} and \hbox{\tt PROD $x$:$A$.\ $B[x]$}.  
   317 \index{*SUM symbol}\index{*PROD symbol}%
   318 The special cases as \hbox{\tt$A$*$B$} and \hbox{\tt$A$->$B$} abbreviate
   319 general sums and products over a constant family.\footnote{Unlike normal
   320 infix operators, {\tt*} and {\tt->} merely define abbreviations; there are
   321 no constants~\texttt{op~*} and~\hbox{\tt op~->}.} Isabelle accepts these
   322 abbreviations in parsing and uses them whenever possible for printing.
   323 
   324 \index{*THE symbol} 
   325 As mentioned above, whenever the axioms assert the existence and uniqueness
   326 of a set, Isabelle's set theory declares a constant for that set.  These
   327 constants can express the {\bf definite description} operator~$\iota
   328 x. P[x]$, which stands for the unique~$a$ satisfying~$P[a]$, if such exists.
   329 Since all terms in {\ZF} denote something, a description is always
   330 meaningful, but we do not know its value unless $P[x]$ defines it uniquely.
   331 Using the constant~\cdx{The}, we may write descriptions as {\tt
   332   The($\lambda x. P[x]$)} or use the syntax \hbox{\tt THE $x$.\ $P[x]$}.
   333 
   334 \index{*lam symbol}
   335 Function sets may be written in $\lambda$-notation; $\lambda x\in A. b[x]$
   336 stands for the set of all pairs $\pair{x,b[x]}$ for $x\in A$.  In order for
   337 this to be a set, the function's domain~$A$ must be given.  Using the
   338 constant~\cdx{Lambda}, we may express function sets as {\tt
   339 Lambda($A$,$\lambda x. b[x]$)} or use the syntax \hbox{\tt lam $x$:$A$.\ $b[x]$}.
   340 
   341 Isabelle's set theory defines two {\bf bounded quantifiers}:
   342 \begin{eqnarray*}
   343    \forall x\in A. P[x] &\hbox{abbreviates}& \forall x. x\in A\imp P[x] \\
   344    \exists x\in A. P[x] &\hbox{abbreviates}& \exists x. x\in A\conj P[x]
   345 \end{eqnarray*}
   346 The constants~\cdx{Ball} and~\cdx{Bex} are defined
   347 accordingly.  Instead of \texttt{Ball($A$,$P$)} and \texttt{Bex($A$,$P$)} we may
   348 write
   349 \hbox{\tt ALL $x$:$A$.\ $P[x]$} and \hbox{\tt EX $x$:$A$.\ $P[x]$}.
   350 
   351 
   352 %%%% ZF.thy
   353 
   354 \begin{figure}
   355 \begin{ttbox}
   356 \tdx{Let_def}            Let(s, f) == f(s)
   357 
   358 \tdx{Ball_def}           Ball(A,P) == ALL x. x:A --> P(x)
   359 \tdx{Bex_def}            Bex(A,P)  == EX x. x:A & P(x)
   360 
   361 \tdx{subset_def}         A <= B  == ALL x:A. x:B
   362 \tdx{extension}          A = B  <->  A <= B & B <= A
   363 
   364 \tdx{Union_iff}          A : Union(C) <-> (EX B:C. A:B)
   365 \tdx{Pow_iff}            A : Pow(B) <-> A <= B
   366 \tdx{foundation}         A=0 | (EX x:A. ALL y:x. ~ y:A)
   367 
   368 \tdx{replacement}        (ALL x:A. ALL y z. P(x,y) & P(x,z) --> y=z) ==>
   369                    b : PrimReplace(A,P) <-> (EX x:A. P(x,b))
   370 \subcaption{The Zermelo-Fraenkel Axioms}
   371 
   372 \tdx{Replace_def}  Replace(A,P) == 
   373                    PrimReplace(A, \%x y. (EX!z. P(x,z)) & P(x,y))
   374 \tdx{RepFun_def}   RepFun(A,f)  == {\ttlbrace}y . x:A, y=f(x)\ttrbrace
   375 \tdx{the_def}      The(P)       == Union({\ttlbrace}y . x:{\ttlbrace}0{\ttrbrace}, P(y){\ttrbrace})
   376 \tdx{if_def}       if(P,a,b)    == THE z. P & z=a | ~P & z=b
   377 \tdx{Collect_def}  Collect(A,P) == {\ttlbrace}y . x:A, x=y & P(x){\ttrbrace}
   378 \tdx{Upair_def}    Upair(a,b)   == 
   379                  {\ttlbrace}y. x:Pow(Pow(0)), (x=0 & y=a) | (x=Pow(0) & y=b){\ttrbrace}
   380 \subcaption{Consequences of replacement}
   381 
   382 \tdx{Inter_def}    Inter(A) == {\ttlbrace}x:Union(A) . ALL y:A. x:y{\ttrbrace}
   383 \tdx{Un_def}       A Un  B  == Union(Upair(A,B))
   384 \tdx{Int_def}      A Int B  == Inter(Upair(A,B))
   385 \tdx{Diff_def}     A - B    == {\ttlbrace}x:A . x~:B{\ttrbrace}
   386 \subcaption{Union, intersection, difference}
   387 \end{ttbox}
   388 \caption{Rules and axioms of {\ZF}} \label{zf-rules}
   389 \end{figure}
   390 
   391 
   392 \begin{figure}
   393 \begin{ttbox}
   394 \tdx{cons_def}     cons(a,A) == Upair(a,a) Un A
   395 \tdx{succ_def}     succ(i) == cons(i,i)
   396 \tdx{infinity}     0:Inf & (ALL y:Inf. succ(y): Inf)
   397 \subcaption{Finite and infinite sets}
   398 
   399 \tdx{Pair_def}       <a,b>      == {\ttlbrace}{\ttlbrace}a,a{\ttrbrace}, {\ttlbrace}a,b{\ttrbrace}{\ttrbrace}
   400 \tdx{split_def}      split(c,p) == THE y. EX a b. p=<a,b> & y=c(a,b)
   401 \tdx{fst_def}        fst(A)     == split(\%x y. x, p)
   402 \tdx{snd_def}        snd(A)     == split(\%x y. y, p)
   403 \tdx{Sigma_def}      Sigma(A,B) == UN x:A. UN y:B(x). {\ttlbrace}<x,y>{\ttrbrace}
   404 \subcaption{Ordered pairs and Cartesian products}
   405 
   406 \tdx{converse_def}   converse(r) == {\ttlbrace}z. w:r, EX x y. w=<x,y> & z=<y,x>{\ttrbrace}
   407 \tdx{domain_def}     domain(r)   == {\ttlbrace}x. w:r, EX y. w=<x,y>{\ttrbrace}
   408 \tdx{range_def}      range(r)    == domain(converse(r))
   409 \tdx{field_def}      field(r)    == domain(r) Un range(r)
   410 \tdx{image_def}      r `` A      == {\ttlbrace}y : range(r) . EX x:A. <x,y> : r{\ttrbrace}
   411 \tdx{vimage_def}     r -`` A     == converse(r)``A
   412 \subcaption{Operations on relations}
   413 
   414 \tdx{lam_def}    Lambda(A,b) == {\ttlbrace}<x,b(x)> . x:A{\ttrbrace}
   415 \tdx{apply_def}  f`a         == THE y. <a,y> : f
   416 \tdx{Pi_def}     Pi(A,B) == {\ttlbrace}f: Pow(Sigma(A,B)). ALL x:A. EX! y. <x,y>: f{\ttrbrace}
   417 \tdx{restrict_def}   restrict(f,A) == lam x:A. f`x
   418 \subcaption{Functions and general product}
   419 \end{ttbox}
   420 \caption{Further definitions of {\ZF}} \label{zf-defs}
   421 \end{figure}
   422 
   423 
   424 
   425 \section{The Zermelo-Fraenkel axioms}
   426 The axioms appear in Fig.\ts \ref{zf-rules}.  They resemble those
   427 presented by Suppes~\cite{suppes72}.  Most of the theory consists of
   428 definitions.  In particular, bounded quantifiers and the subset relation
   429 appear in other axioms.  Object-level quantifiers and implications have
   430 been replaced by meta-level ones wherever possible, to simplify use of the
   431 axioms.  See the file \texttt{ZF/ZF.thy} for details.
   432 
   433 The traditional replacement axiom asserts
   434 \[ y \in \texttt{PrimReplace}(A,P) \bimp (\exists x\in A. P(x,y)) \]
   435 subject to the condition that $P(x,y)$ is single-valued for all~$x\in A$.
   436 The Isabelle theory defines \cdx{Replace} to apply
   437 \cdx{PrimReplace} to the single-valued part of~$P$, namely
   438 \[ (\exists!z. P(x,z)) \conj P(x,y). \]
   439 Thus $y\in \texttt{Replace}(A,P)$ if and only if there is some~$x$ such that
   440 $P(x,-)$ holds uniquely for~$y$.  Because the equivalence is unconditional,
   441 \texttt{Replace} is much easier to use than \texttt{PrimReplace}; it defines the
   442 same set, if $P(x,y)$ is single-valued.  The nice syntax for replacement
   443 expands to \texttt{Replace}.
   444 
   445 Other consequences of replacement include functional replacement
   446 (\cdx{RepFun}) and definite descriptions (\cdx{The}).
   447 Axioms for separation (\cdx{Collect}) and unordered pairs
   448 (\cdx{Upair}) are traditionally assumed, but they actually follow
   449 from replacement~\cite[pages 237--8]{suppes72}.
   450 
   451 The definitions of general intersection, etc., are straightforward.  Note
   452 the definition of \texttt{cons}, which underlies the finite set notation.
   453 The axiom of infinity gives us a set that contains~0 and is closed under
   454 successor (\cdx{succ}).  Although this set is not uniquely defined,
   455 the theory names it (\cdx{Inf}) in order to simplify the
   456 construction of the natural numbers.
   457                                              
   458 Further definitions appear in Fig.\ts\ref{zf-defs}.  Ordered pairs are
   459 defined in the standard way, $\pair{a,b}\equiv\{\{a\},\{a,b\}\}$.  Recall
   460 that \cdx{Sigma}$(A,B)$ generalizes the Cartesian product of two
   461 sets.  It is defined to be the union of all singleton sets
   462 $\{\pair{x,y}\}$, for $x\in A$ and $y\in B(x)$.  This is a typical usage of
   463 general union.
   464 
   465 The projections \cdx{fst} and~\cdx{snd} are defined in terms of the
   466 generalized projection \cdx{split}.  The latter has been borrowed from
   467 Martin-L\"of's Type Theory, and is often easier to use than \cdx{fst}
   468 and~\cdx{snd}.
   469 
   470 Operations on relations include converse, domain, range, and image.  The
   471 set ${\tt Pi}(A,B)$ generalizes the space of functions between two sets.
   472 Note the simple definitions of $\lambda$-abstraction (using
   473 \cdx{RepFun}) and application (using a definite description).  The
   474 function \cdx{restrict}$(f,A)$ has the same values as~$f$, but only
   475 over the domain~$A$.
   476 
   477 
   478 %%%% zf.ML
   479 
   480 \begin{figure}
   481 \begin{ttbox}
   482 \tdx{ballI}       [| !!x. x:A ==> P(x) |] ==> ALL x:A. P(x)
   483 \tdx{bspec}       [| ALL x:A. P(x);  x: A |] ==> P(x)
   484 \tdx{ballE}       [| ALL x:A. P(x);  P(x) ==> Q;  ~ x:A ==> Q |] ==> Q
   485 
   486 \tdx{ball_cong}   [| A=A';  !!x. x:A' ==> P(x) <-> P'(x) |] ==> 
   487             (ALL x:A. P(x)) <-> (ALL x:A'. P'(x))
   488 
   489 \tdx{bexI}        [| P(x);  x: A |] ==> EX x:A. P(x)
   490 \tdx{bexCI}       [| ALL x:A. ~P(x) ==> P(a);  a: A |] ==> EX x:A. P(x)
   491 \tdx{bexE}        [| EX x:A. P(x);  !!x. [| x:A; P(x) |] ==> Q |] ==> Q
   492 
   493 \tdx{bex_cong}    [| A=A';  !!x. x:A' ==> P(x) <-> P'(x) |] ==> 
   494             (EX x:A. P(x)) <-> (EX x:A'. P'(x))
   495 \subcaption{Bounded quantifiers}
   496 
   497 \tdx{subsetI}       (!!x. x:A ==> x:B) ==> A <= B
   498 \tdx{subsetD}       [| A <= B;  c:A |] ==> c:B
   499 \tdx{subsetCE}      [| A <= B;  ~(c:A) ==> P;  c:B ==> P |] ==> P
   500 \tdx{subset_refl}   A <= A
   501 \tdx{subset_trans}  [| A<=B;  B<=C |] ==> A<=C
   502 
   503 \tdx{equalityI}     [| A <= B;  B <= A |] ==> A = B
   504 \tdx{equalityD1}    A = B ==> A<=B
   505 \tdx{equalityD2}    A = B ==> B<=A
   506 \tdx{equalityE}     [| A = B;  [| A<=B; B<=A |] ==> P |]  ==>  P
   507 \subcaption{Subsets and extensionality}
   508 
   509 \tdx{emptyE}          a:0 ==> P
   510 \tdx{empty_subsetI}   0 <= A
   511 \tdx{equals0I}        [| !!y. y:A ==> False |] ==> A=0
   512 \tdx{equals0D}        [| A=0;  a:A |] ==> P
   513 
   514 \tdx{PowI}            A <= B ==> A : Pow(B)
   515 \tdx{PowD}            A : Pow(B)  ==>  A<=B
   516 \subcaption{The empty set; power sets}
   517 \end{ttbox}
   518 \caption{Basic derived rules for {\ZF}} \label{zf-lemmas1}
   519 \end{figure}
   520 
   521 
   522 \section{From basic lemmas to function spaces}
   523 Faced with so many definitions, it is essential to prove lemmas.  Even
   524 trivial theorems like $A \int B = B \int A$ would be difficult to
   525 prove from the definitions alone.  Isabelle's set theory derives many
   526 rules using a natural deduction style.  Ideally, a natural deduction
   527 rule should introduce or eliminate just one operator, but this is not
   528 always practical.  For most operators, we may forget its definition
   529 and use its derived rules instead.
   530 
   531 \subsection{Fundamental lemmas}
   532 Figure~\ref{zf-lemmas1} presents the derived rules for the most basic
   533 operators.  The rules for the bounded quantifiers resemble those for the
   534 ordinary quantifiers, but note that \tdx{ballE} uses a negated assumption
   535 in the style of Isabelle's classical reasoner.  The \rmindex{congruence
   536   rules} \tdx{ball_cong} and \tdx{bex_cong} are required by Isabelle's
   537 simplifier, but have few other uses.  Congruence rules must be specially
   538 derived for all binding operators, and henceforth will not be shown.
   539 
   540 Figure~\ref{zf-lemmas1} also shows rules for the subset and equality
   541 relations (proof by extensionality), and rules about the empty set and the
   542 power set operator.
   543 
   544 Figure~\ref{zf-lemmas2} presents rules for replacement and separation.
   545 The rules for \cdx{Replace} and \cdx{RepFun} are much simpler than
   546 comparable rules for \texttt{PrimReplace} would be.  The principle of
   547 separation is proved explicitly, although most proofs should use the
   548 natural deduction rules for \texttt{Collect}.  The elimination rule
   549 \tdx{CollectE} is equivalent to the two destruction rules
   550 \tdx{CollectD1} and \tdx{CollectD2}, but each rule is suited to
   551 particular circumstances.  Although too many rules can be confusing, there
   552 is no reason to aim for a minimal set of rules.  See the file
   553 \texttt{ZF/ZF.ML} for a complete listing.
   554 
   555 Figure~\ref{zf-lemmas3} presents rules for general union and intersection.
   556 The empty intersection should be undefined.  We cannot have
   557 $\bigcap(\emptyset)=V$ because $V$, the universal class, is not a set.  All
   558 expressions denote something in {\ZF} set theory; the definition of
   559 intersection implies $\bigcap(\emptyset)=\emptyset$, but this value is
   560 arbitrary.  The rule \tdx{InterI} must have a premise to exclude
   561 the empty intersection.  Some of the laws governing intersections require
   562 similar premises.
   563 
   564 
   565 %the [p] gives better page breaking for the book
   566 \begin{figure}[p]
   567 \begin{ttbox}
   568 \tdx{ReplaceI}      [| x: A;  P(x,b);  !!y. P(x,y) ==> y=b |] ==> 
   569               b : {\ttlbrace}y. x:A, P(x,y){\ttrbrace}
   570 
   571 \tdx{ReplaceE}      [| b : {\ttlbrace}y. x:A, P(x,y){\ttrbrace};  
   572                  !!x. [| x: A;  P(x,b);  ALL y. P(x,y)-->y=b |] ==> R 
   573               |] ==> R
   574 
   575 \tdx{RepFunI}       [| a : A |] ==> f(a) : {\ttlbrace}f(x). x:A{\ttrbrace}
   576 \tdx{RepFunE}       [| b : {\ttlbrace}f(x). x:A{\ttrbrace};  
   577                  !!x.[| x:A;  b=f(x) |] ==> P |] ==> P
   578 
   579 \tdx{separation}     a : {\ttlbrace}x:A. P(x){\ttrbrace} <-> a:A & P(a)
   580 \tdx{CollectI}       [| a:A;  P(a) |] ==> a : {\ttlbrace}x:A. P(x){\ttrbrace}
   581 \tdx{CollectE}       [| a : {\ttlbrace}x:A. P(x){\ttrbrace};  [| a:A; P(a) |] ==> R |] ==> R
   582 \tdx{CollectD1}      a : {\ttlbrace}x:A. P(x){\ttrbrace} ==> a:A
   583 \tdx{CollectD2}      a : {\ttlbrace}x:A. P(x){\ttrbrace} ==> P(a)
   584 \end{ttbox}
   585 \caption{Replacement and separation} \label{zf-lemmas2}
   586 \end{figure}
   587 
   588 
   589 \begin{figure}
   590 \begin{ttbox}
   591 \tdx{UnionI}    [| B: C;  A: B |] ==> A: Union(C)
   592 \tdx{UnionE}    [| A : Union(C);  !!B.[| A: B;  B: C |] ==> R |] ==> R
   593 
   594 \tdx{InterI}    [| !!x. x: C ==> A: x;  c:C |] ==> A : Inter(C)
   595 \tdx{InterD}    [| A : Inter(C);  B : C |] ==> A : B
   596 \tdx{InterE}    [| A : Inter(C);  A:B ==> R;  ~ B:C ==> R |] ==> R
   597 
   598 \tdx{UN_I}      [| a: A;  b: B(a) |] ==> b: (UN x:A. B(x))
   599 \tdx{UN_E}      [| b : (UN x:A. B(x));  !!x.[| x: A;  b: B(x) |] ==> R 
   600           |] ==> R
   601 
   602 \tdx{INT_I}     [| !!x. x: A ==> b: B(x);  a: A |] ==> b: (INT x:A. B(x))
   603 \tdx{INT_E}     [| b : (INT x:A. B(x));  a: A |] ==> b : B(a)
   604 \end{ttbox}
   605 \caption{General union and intersection} \label{zf-lemmas3}
   606 \end{figure}
   607 
   608 
   609 %%% upair.ML
   610 
   611 \begin{figure}
   612 \begin{ttbox}
   613 \tdx{pairing}      a:Upair(b,c) <-> (a=b | a=c)
   614 \tdx{UpairI1}      a : Upair(a,b)
   615 \tdx{UpairI2}      b : Upair(a,b)
   616 \tdx{UpairE}       [| a : Upair(b,c);  a = b ==> P;  a = c ==> P |] ==> P
   617 \end{ttbox}
   618 \caption{Unordered pairs} \label{zf-upair1}
   619 \end{figure}
   620 
   621 
   622 \begin{figure}
   623 \begin{ttbox}
   624 \tdx{UnI1}         c : A ==> c : A Un B
   625 \tdx{UnI2}         c : B ==> c : A Un B
   626 \tdx{UnCI}         (~c : B ==> c : A) ==> c : A Un B
   627 \tdx{UnE}          [| c : A Un B;  c:A ==> P;  c:B ==> P |] ==> P
   628 
   629 \tdx{IntI}         [| c : A;  c : B |] ==> c : A Int B
   630 \tdx{IntD1}        c : A Int B ==> c : A
   631 \tdx{IntD2}        c : A Int B ==> c : B
   632 \tdx{IntE}         [| c : A Int B;  [| c:A; c:B |] ==> P |] ==> P
   633 
   634 \tdx{DiffI}        [| c : A;  ~ c : B |] ==> c : A - B
   635 \tdx{DiffD1}       c : A - B ==> c : A
   636 \tdx{DiffD2}       c : A - B ==> c ~: B
   637 \tdx{DiffE}        [| c : A - B;  [| c:A; ~ c:B |] ==> P |] ==> P
   638 \end{ttbox}
   639 \caption{Union, intersection, difference} \label{zf-Un}
   640 \end{figure}
   641 
   642 
   643 \begin{figure}
   644 \begin{ttbox}
   645 \tdx{consI1}       a : cons(a,B)
   646 \tdx{consI2}       a : B ==> a : cons(b,B)
   647 \tdx{consCI}       (~ a:B ==> a=b) ==> a: cons(b,B)
   648 \tdx{consE}        [| a : cons(b,A);  a=b ==> P;  a:A ==> P |] ==> P
   649 
   650 \tdx{singletonI}   a : {\ttlbrace}a{\ttrbrace}
   651 \tdx{singletonE}   [| a : {\ttlbrace}b{\ttrbrace}; a=b ==> P |] ==> P
   652 \end{ttbox}
   653 \caption{Finite and singleton sets} \label{zf-upair2}
   654 \end{figure}
   655 
   656 
   657 \begin{figure}
   658 \begin{ttbox}
   659 \tdx{succI1}       i : succ(i)
   660 \tdx{succI2}       i : j ==> i : succ(j)
   661 \tdx{succCI}       (~ i:j ==> i=j) ==> i: succ(j)
   662 \tdx{succE}        [| i : succ(j);  i=j ==> P;  i:j ==> P |] ==> P
   663 \tdx{succ_neq_0}   [| succ(n)=0 |] ==> P
   664 \tdx{succ_inject}  succ(m) = succ(n) ==> m=n
   665 \end{ttbox}
   666 \caption{The successor function} \label{zf-succ}
   667 \end{figure}
   668 
   669 
   670 \begin{figure}
   671 \begin{ttbox}
   672 \tdx{the_equality}     [| P(a);  !!x. P(x) ==> x=a |] ==> (THE x. P(x)) = a
   673 \tdx{theI}             EX! x. P(x) ==> P(THE x. P(x))
   674 
   675 \tdx{if_P}              P ==> (if P then a else b) = a
   676 \tdx{if_not_P}         ~P ==> (if P then a else b) = b
   677 
   678 \tdx{mem_asym}         [| a:b;  b:a |] ==> P
   679 \tdx{mem_irrefl}       a:a ==> P
   680 \end{ttbox}
   681 \caption{Descriptions; non-circularity} \label{zf-the}
   682 \end{figure}
   683 
   684 
   685 \subsection{Unordered pairs and finite sets}
   686 Figure~\ref{zf-upair1} presents the principle of unordered pairing, along
   687 with its derived rules.  Binary union and intersection are defined in terms
   688 of ordered pairs (Fig.\ts\ref{zf-Un}).  Set difference is also included.  The
   689 rule \tdx{UnCI} is useful for classical reasoning about unions,
   690 like \texttt{disjCI}\@; it supersedes \tdx{UnI1} and
   691 \tdx{UnI2}, but these rules are often easier to work with.  For
   692 intersection and difference we have both elimination and destruction rules.
   693 Again, there is no reason to provide a minimal rule set.
   694 
   695 Figure~\ref{zf-upair2} is concerned with finite sets: it presents rules
   696 for~\texttt{cons}, the finite set constructor, and rules for singleton
   697 sets.  Figure~\ref{zf-succ} presents derived rules for the successor
   698 function, which is defined in terms of~\texttt{cons}.  The proof that {\tt
   699   succ} is injective appears to require the Axiom of Foundation.
   700 
   701 Definite descriptions (\sdx{THE}) are defined in terms of the singleton
   702 set~$\{0\}$, but their derived rules fortunately hide this
   703 (Fig.\ts\ref{zf-the}).  The rule~\tdx{theI} is difficult to apply
   704 because of the two occurrences of~$\Var{P}$.  However,
   705 \tdx{the_equality} does not have this problem and the files contain
   706 many examples of its use.
   707 
   708 Finally, the impossibility of having both $a\in b$ and $b\in a$
   709 (\tdx{mem_asym}) is proved by applying the Axiom of Foundation to
   710 the set $\{a,b\}$.  The impossibility of $a\in a$ is a trivial consequence.
   711 
   712 See the file \texttt{ZF/upair.ML} for full proofs of the rules discussed in
   713 this section.
   714 
   715 
   716 %%% subset.ML
   717 
   718 \begin{figure}
   719 \begin{ttbox}
   720 \tdx{Union_upper}       B:A ==> B <= Union(A)
   721 \tdx{Union_least}       [| !!x. x:A ==> x<=C |] ==> Union(A) <= C
   722 
   723 \tdx{Inter_lower}       B:A ==> Inter(A) <= B
   724 \tdx{Inter_greatest}    [| a:A;  !!x. x:A ==> C<=x |] ==> C <= Inter(A)
   725 
   726 \tdx{Un_upper1}         A <= A Un B
   727 \tdx{Un_upper2}         B <= A Un B
   728 \tdx{Un_least}          [| A<=C;  B<=C |] ==> A Un B <= C
   729 
   730 \tdx{Int_lower1}        A Int B <= A
   731 \tdx{Int_lower2}        A Int B <= B
   732 \tdx{Int_greatest}      [| C<=A;  C<=B |] ==> C <= A Int B
   733 
   734 \tdx{Diff_subset}       A-B <= A
   735 \tdx{Diff_contains}     [| C<=A;  C Int B = 0 |] ==> C <= A-B
   736 
   737 \tdx{Collect_subset}    Collect(A,P) <= A
   738 \end{ttbox}
   739 \caption{Subset and lattice properties} \label{zf-subset}
   740 \end{figure}
   741 
   742 
   743 \subsection{Subset and lattice properties}
   744 The subset relation is a complete lattice.  Unions form least upper bounds;
   745 non-empty intersections form greatest lower bounds.  Figure~\ref{zf-subset}
   746 shows the corresponding rules.  A few other laws involving subsets are
   747 included.  Proofs are in the file \texttt{ZF/subset.ML}.
   748 
   749 Reasoning directly about subsets often yields clearer proofs than
   750 reasoning about the membership relation.  Section~\ref{sec:ZF-pow-example}
   751 below presents an example of this, proving the equation ${{\tt Pow}(A)\cap
   752   {\tt Pow}(B)}= {\tt Pow}(A\cap B)$.
   753 
   754 %%% pair.ML
   755 
   756 \begin{figure}
   757 \begin{ttbox}
   758 \tdx{Pair_inject1}    <a,b> = <c,d> ==> a=c
   759 \tdx{Pair_inject2}    <a,b> = <c,d> ==> b=d
   760 \tdx{Pair_inject}     [| <a,b> = <c,d>;  [| a=c; b=d |] ==> P |] ==> P
   761 \tdx{Pair_neq_0}      <a,b>=0 ==> P
   762 
   763 \tdx{fst_conv}        fst(<a,b>) = a
   764 \tdx{snd_conv}        snd(<a,b>) = b
   765 \tdx{split}           split(\%x y. c(x,y), <a,b>) = c(a,b)
   766 
   767 \tdx{SigmaI}          [| a:A;  b:B(a) |] ==> <a,b> : Sigma(A,B)
   768 
   769 \tdx{SigmaE}          [| c: Sigma(A,B);  
   770                    !!x y.[| x:A; y:B(x); c=<x,y> |] ==> P |] ==> P
   771 
   772 \tdx{SigmaE2}         [| <a,b> : Sigma(A,B);    
   773                    [| a:A;  b:B(a) |] ==> P   |] ==> P
   774 \end{ttbox}
   775 \caption{Ordered pairs; projections; general sums} \label{zf-pair}
   776 \end{figure}
   777 
   778 
   779 \subsection{Ordered pairs} \label{sec:pairs}
   780 
   781 Figure~\ref{zf-pair} presents the rules governing ordered pairs,
   782 projections and general sums.  File \texttt{ZF/pair.ML} contains the
   783 full (and tedious) proof that $\{\{a\},\{a,b\}\}$ functions as an ordered
   784 pair.  This property is expressed as two destruction rules,
   785 \tdx{Pair_inject1} and \tdx{Pair_inject2}, and equivalently
   786 as the elimination rule \tdx{Pair_inject}.
   787 
   788 The rule \tdx{Pair_neq_0} asserts $\pair{a,b}\neq\emptyset$.  This
   789 is a property of $\{\{a\},\{a,b\}\}$, and need not hold for other 
   790 encodings of ordered pairs.  The non-standard ordered pairs mentioned below
   791 satisfy $\pair{\emptyset;\emptyset}=\emptyset$.
   792 
   793 The natural deduction rules \tdx{SigmaI} and \tdx{SigmaE}
   794 assert that \cdx{Sigma}$(A,B)$ consists of all pairs of the form
   795 $\pair{x,y}$, for $x\in A$ and $y\in B(x)$.  The rule \tdx{SigmaE2}
   796 merely states that $\pair{a,b}\in \texttt{Sigma}(A,B)$ implies $a\in A$ and
   797 $b\in B(a)$.
   798 
   799 In addition, it is possible to use tuples as patterns in abstractions:
   800 \begin{center}
   801 {\tt\%<$x$,$y$>. $t$} \quad stands for\quad \texttt{split(\%$x$ $y$.\ $t$)}
   802 \end{center}
   803 Nested patterns are translated recursively:
   804 {\tt\%<$x$,$y$,$z$>. $t$} $\leadsto$ {\tt\%<$x$,<$y$,$z$>>. $t$} $\leadsto$
   805 \texttt{split(\%$x$.\%<$y$,$z$>. $t$)} $\leadsto$ \texttt{split(\%$x$. split(\%$y$
   806   $z$.\ $t$))}.  The reverse translation is performed upon printing.
   807 \begin{warn}
   808   The translation between patterns and \texttt{split} is performed automatically
   809   by the parser and printer.  Thus the internal and external form of a term
   810   may differ, which affects proofs.  For example the term {\tt
   811     (\%<x,y>.<y,x>)<a,b>} requires the theorem \texttt{split} to rewrite to
   812   {\tt<b,a>}.
   813 \end{warn}
   814 In addition to explicit $\lambda$-abstractions, patterns can be used in any
   815 variable binding construct which is internally described by a
   816 $\lambda$-abstraction.  Here are some important examples:
   817 \begin{description}
   818 \item[Let:] \texttt{let {\it pattern} = $t$ in $u$}
   819 \item[Choice:] \texttt{THE~{\it pattern}~.~$P$}
   820 \item[Set operations:] \texttt{UN~{\it pattern}:$A$.~$B$}
   821 \item[Comprehension:] \texttt{{\ttlbrace}~{\it pattern}:$A$~.~$P$~{\ttrbrace}}
   822 \end{description}
   823 
   824 
   825 %%% domrange.ML
   826 
   827 \begin{figure}
   828 \begin{ttbox}
   829 \tdx{domainI}        <a,b>: r ==> a : domain(r)
   830 \tdx{domainE}        [| a : domain(r);  !!y. <a,y>: r ==> P |] ==> P
   831 \tdx{domain_subset}  domain(Sigma(A,B)) <= A
   832 
   833 \tdx{rangeI}         <a,b>: r ==> b : range(r)
   834 \tdx{rangeE}         [| b : range(r);  !!x. <x,b>: r ==> P |] ==> P
   835 \tdx{range_subset}   range(A*B) <= B
   836 
   837 \tdx{fieldI1}        <a,b>: r ==> a : field(r)
   838 \tdx{fieldI2}        <a,b>: r ==> b : field(r)
   839 \tdx{fieldCI}        (~ <c,a>:r ==> <a,b>: r) ==> a : field(r)
   840 
   841 \tdx{fieldE}         [| a : field(r);  
   842                   !!x. <a,x>: r ==> P;  
   843                   !!x. <x,a>: r ==> P      
   844                |] ==> P
   845 
   846 \tdx{field_subset}   field(A*A) <= A
   847 \end{ttbox}
   848 \caption{Domain, range and field of a relation} \label{zf-domrange}
   849 \end{figure}
   850 
   851 \begin{figure}
   852 \begin{ttbox}
   853 \tdx{imageI}         [| <a,b>: r;  a:A |] ==> b : r``A
   854 \tdx{imageE}         [| b: r``A;  !!x.[| <x,b>: r;  x:A |] ==> P |] ==> P
   855 
   856 \tdx{vimageI}        [| <a,b>: r;  b:B |] ==> a : r-``B
   857 \tdx{vimageE}        [| a: r-``B;  !!x.[| <a,x>: r;  x:B |] ==> P |] ==> P
   858 \end{ttbox}
   859 \caption{Image and inverse image} \label{zf-domrange2}
   860 \end{figure}
   861 
   862 
   863 \subsection{Relations}
   864 Figure~\ref{zf-domrange} presents rules involving relations, which are sets
   865 of ordered pairs.  The converse of a relation~$r$ is the set of all pairs
   866 $\pair{y,x}$ such that $\pair{x,y}\in r$; if $r$ is a function, then
   867 {\cdx{converse}$(r)$} is its inverse.  The rules for the domain
   868 operation, namely \tdx{domainI} and~\tdx{domainE}, assert that
   869 \cdx{domain}$(r)$ consists of all~$x$ such that $r$ contains
   870 some pair of the form~$\pair{x,y}$.  The range operation is similar, and
   871 the field of a relation is merely the union of its domain and range.  
   872 
   873 Figure~\ref{zf-domrange2} presents rules for images and inverse images.
   874 Note that these operations are generalisations of range and domain,
   875 respectively.  See the file \texttt{ZF/domrange.ML} for derivations of the
   876 rules.
   877 
   878 
   879 %%% func.ML
   880 
   881 \begin{figure}
   882 \begin{ttbox}
   883 \tdx{fun_is_rel}      f: Pi(A,B) ==> f <= Sigma(A,B)
   884 
   885 \tdx{apply_equality}  [| <a,b>: f;  f: Pi(A,B) |] ==> f`a = b
   886 \tdx{apply_equality2} [| <a,b>: f;  <a,c>: f;  f: Pi(A,B) |] ==> b=c
   887 
   888 \tdx{apply_type}      [| f: Pi(A,B);  a:A |] ==> f`a : B(a)
   889 \tdx{apply_Pair}      [| f: Pi(A,B);  a:A |] ==> <a,f`a>: f
   890 \tdx{apply_iff}       f: Pi(A,B) ==> <a,b>: f <-> a:A & f`a = b
   891 
   892 \tdx{fun_extension}   [| f : Pi(A,B);  g: Pi(A,D);
   893                    !!x. x:A ==> f`x = g`x     |] ==> f=g
   894 
   895 \tdx{domain_type}     [| <a,b> : f;  f: Pi(A,B) |] ==> a : A
   896 \tdx{range_type}      [| <a,b> : f;  f: Pi(A,B) |] ==> b : B(a)
   897 
   898 \tdx{Pi_type}         [| f: A->C;  !!x. x:A ==> f`x: B(x) |] ==> f: Pi(A,B)
   899 \tdx{domain_of_fun}   f: Pi(A,B) ==> domain(f)=A
   900 \tdx{range_of_fun}    f: Pi(A,B) ==> f: A->range(f)
   901 
   902 \tdx{restrict}        a : A ==> restrict(f,A) ` a = f`a
   903 \tdx{restrict_type}   [| !!x. x:A ==> f`x: B(x) |] ==> 
   904                 restrict(f,A) : Pi(A,B)
   905 \end{ttbox}
   906 \caption{Functions} \label{zf-func1}
   907 \end{figure}
   908 
   909 
   910 \begin{figure}
   911 \begin{ttbox}
   912 \tdx{lamI}         a:A ==> <a,b(a)> : (lam x:A. b(x))
   913 \tdx{lamE}         [| p: (lam x:A. b(x));  !!x.[| x:A; p=<x,b(x)> |] ==> P 
   914              |] ==>  P
   915 
   916 \tdx{lam_type}     [| !!x. x:A ==> b(x): B(x) |] ==> (lam x:A. b(x)) : Pi(A,B)
   917 
   918 \tdx{beta}         a : A ==> (lam x:A. b(x)) ` a = b(a)
   919 \tdx{eta}          f : Pi(A,B) ==> (lam x:A. f`x) = f
   920 \end{ttbox}
   921 \caption{$\lambda$-abstraction} \label{zf-lam}
   922 \end{figure}
   923 
   924 
   925 \begin{figure}
   926 \begin{ttbox}
   927 \tdx{fun_empty}            0: 0->0
   928 \tdx{fun_single}           {\ttlbrace}<a,b>{\ttrbrace} : {\ttlbrace}a{\ttrbrace} -> {\ttlbrace}b{\ttrbrace}
   929 
   930 \tdx{fun_disjoint_Un}      [| f: A->B;  g: C->D;  A Int C = 0  |] ==>  
   931                      (f Un g) : (A Un C) -> (B Un D)
   932 
   933 \tdx{fun_disjoint_apply1}  [| a:A;  f: A->B;  g: C->D;  A Int C = 0 |] ==>  
   934                      (f Un g)`a = f`a
   935 
   936 \tdx{fun_disjoint_apply2}  [| c:C;  f: A->B;  g: C->D;  A Int C = 0 |] ==>  
   937                      (f Un g)`c = g`c
   938 \end{ttbox}
   939 \caption{Constructing functions from smaller sets} \label{zf-func2}
   940 \end{figure}
   941 
   942 
   943 \subsection{Functions}
   944 Functions, represented by graphs, are notoriously difficult to reason
   945 about.  The file \texttt{ZF/func.ML} derives many rules, which overlap more
   946 than they ought.  This section presents the more important rules.
   947 
   948 Figure~\ref{zf-func1} presents the basic properties of \cdx{Pi}$(A,B)$,
   949 the generalized function space.  For example, if $f$ is a function and
   950 $\pair{a,b}\in f$, then $f`a=b$ (\tdx{apply_equality}).  Two functions
   951 are equal provided they have equal domains and deliver equals results
   952 (\tdx{fun_extension}).
   953 
   954 By \tdx{Pi_type}, a function typing of the form $f\in A\to C$ can be
   955 refined to the dependent typing $f\in\prod@{x\in A}B(x)$, given a suitable
   956 family of sets $\{B(x)\}@{x\in A}$.  Conversely, by \tdx{range_of_fun},
   957 any dependent typing can be flattened to yield a function type of the form
   958 $A\to C$; here, $C={\tt range}(f)$.
   959 
   960 Among the laws for $\lambda$-abstraction, \tdx{lamI} and \tdx{lamE}
   961 describe the graph of the generated function, while \tdx{beta} and
   962 \tdx{eta} are the standard conversions.  We essentially have a
   963 dependently-typed $\lambda$-calculus (Fig.\ts\ref{zf-lam}).
   964 
   965 Figure~\ref{zf-func2} presents some rules that can be used to construct
   966 functions explicitly.  We start with functions consisting of at most one
   967 pair, and may form the union of two functions provided their domains are
   968 disjoint.  
   969 
   970 
   971 \begin{figure}
   972 \begin{ttbox}
   973 \tdx{Int_absorb}         A Int A = A
   974 \tdx{Int_commute}        A Int B = B Int A
   975 \tdx{Int_assoc}          (A Int B) Int C  =  A Int (B Int C)
   976 \tdx{Int_Un_distrib}     (A Un B) Int C  =  (A Int C) Un (B Int C)
   977 
   978 \tdx{Un_absorb}          A Un A = A
   979 \tdx{Un_commute}         A Un B = B Un A
   980 \tdx{Un_assoc}           (A Un B) Un C  =  A Un (B Un C)
   981 \tdx{Un_Int_distrib}     (A Int B) Un C  =  (A Un C) Int (B Un C)
   982 
   983 \tdx{Diff_cancel}        A-A = 0
   984 \tdx{Diff_disjoint}      A Int (B-A) = 0
   985 \tdx{Diff_partition}     A<=B ==> A Un (B-A) = B
   986 \tdx{double_complement}  [| A<=B; B<= C |] ==> (B - (C-A)) = A
   987 \tdx{Diff_Un}            A - (B Un C) = (A-B) Int (A-C)
   988 \tdx{Diff_Int}           A - (B Int C) = (A-B) Un (A-C)
   989 
   990 \tdx{Union_Un_distrib}   Union(A Un B) = Union(A) Un Union(B)
   991 \tdx{Inter_Un_distrib}   [| a:A;  b:B |] ==> 
   992                    Inter(A Un B) = Inter(A) Int Inter(B)
   993 
   994 \tdx{Int_Union_RepFun}   A Int Union(B) = (UN C:B. A Int C)
   995 
   996 \tdx{Un_Inter_RepFun}    b:B ==> 
   997                    A Un Inter(B) = (INT C:B. A Un C)
   998 
   999 \tdx{SUM_Un_distrib1}    (SUM x:A Un B. C(x)) = 
  1000                    (SUM x:A. C(x)) Un (SUM x:B. C(x))
  1001 
  1002 \tdx{SUM_Un_distrib2}    (SUM x:C. A(x) Un B(x)) =
  1003                    (SUM x:C. A(x))  Un  (SUM x:C. B(x))
  1004 
  1005 \tdx{SUM_Int_distrib1}   (SUM x:A Int B. C(x)) =
  1006                    (SUM x:A. C(x)) Int (SUM x:B. C(x))
  1007 
  1008 \tdx{SUM_Int_distrib2}   (SUM x:C. A(x) Int B(x)) =
  1009                    (SUM x:C. A(x)) Int (SUM x:C. B(x))
  1010 \end{ttbox}
  1011 \caption{Equalities} \label{zf-equalities}
  1012 \end{figure}
  1013 
  1014 
  1015 \begin{figure}
  1016 %\begin{constants} 
  1017 %  \cdx{1}       & $i$           &       & $\{\emptyset\}$       \\
  1018 %  \cdx{bool}    & $i$           &       & the set $\{\emptyset,1\}$     \\
  1019 %  \cdx{cond}   & $[i,i,i]\To i$ &       & conditional for \texttt{bool}    \\
  1020 %  \cdx{not}    & $i\To i$       &       & negation for \texttt{bool}       \\
  1021 %  \sdx{and}    & $[i,i]\To i$   & Left 70 & conjunction for \texttt{bool}  \\
  1022 %  \sdx{or}     & $[i,i]\To i$   & Left 65 & disjunction for \texttt{bool}  \\
  1023 %  \sdx{xor}    & $[i,i]\To i$   & Left 65 & exclusive-or for \texttt{bool}
  1024 %\end{constants}
  1025 %
  1026 \begin{ttbox}
  1027 \tdx{bool_def}       bool == {\ttlbrace}0,1{\ttrbrace}
  1028 \tdx{cond_def}       cond(b,c,d) == if b=1 then c else d
  1029 \tdx{not_def}        not(b)  == cond(b,0,1)
  1030 \tdx{and_def}        a and b == cond(a,b,0)
  1031 \tdx{or_def}         a or b  == cond(a,1,b)
  1032 \tdx{xor_def}        a xor b == cond(a,not(b),b)
  1033 
  1034 \tdx{bool_1I}        1 : bool
  1035 \tdx{bool_0I}        0 : bool
  1036 \tdx{boolE}          [| c: bool;  c=1 ==> P;  c=0 ==> P |] ==> P
  1037 \tdx{cond_1}         cond(1,c,d) = c
  1038 \tdx{cond_0}         cond(0,c,d) = d
  1039 \end{ttbox}
  1040 \caption{The booleans} \label{zf-bool}
  1041 \end{figure}
  1042 
  1043 
  1044 \section{Further developments}
  1045 The next group of developments is complex and extensive, and only
  1046 highlights can be covered here.  It involves many theories and ML files of
  1047 proofs. 
  1048 
  1049 Figure~\ref{zf-equalities} presents commutative, associative, distributive,
  1050 and idempotency laws of union and intersection, along with other equations.
  1051 See file \texttt{ZF/equalities.ML}.
  1052 
  1053 Theory \thydx{Bool} defines $\{0,1\}$ as a set of booleans, with the usual
  1054 operators including a conditional (Fig.\ts\ref{zf-bool}).  Although {\ZF} is a
  1055 first-order theory, you can obtain the effect of higher-order logic using
  1056 \texttt{bool}-valued functions, for example.  The constant~\texttt{1} is
  1057 translated to \texttt{succ(0)}.
  1058 
  1059 \begin{figure}
  1060 \index{*"+ symbol}
  1061 \begin{constants}
  1062   \it symbol    & \it meta-type & \it priority & \it description \\ 
  1063   \tt +         & $[i,i]\To i$  &  Right 65     & disjoint union operator\\
  1064   \cdx{Inl}~~\cdx{Inr}  & $i\To i$      &       & injections\\
  1065   \cdx{case}    & $[i\To i,i\To i, i]\To i$ &   & conditional for $A+B$
  1066 \end{constants}
  1067 \begin{ttbox}
  1068 \tdx{sum_def}        A+B == {\ttlbrace}0{\ttrbrace}*A Un {\ttlbrace}1{\ttrbrace}*B
  1069 \tdx{Inl_def}        Inl(a) == <0,a>
  1070 \tdx{Inr_def}        Inr(b) == <1,b>
  1071 \tdx{case_def}       case(c,d,u) == split(\%y z. cond(y, d(z), c(z)), u)
  1072 
  1073 \tdx{sum_InlI}       a : A ==> Inl(a) : A+B
  1074 \tdx{sum_InrI}       b : B ==> Inr(b) : A+B
  1075 
  1076 \tdx{Inl_inject}     Inl(a)=Inl(b) ==> a=b
  1077 \tdx{Inr_inject}     Inr(a)=Inr(b) ==> a=b
  1078 \tdx{Inl_neq_Inr}    Inl(a)=Inr(b) ==> P
  1079 
  1080 \tdx{sumE2}   u: A+B ==> (EX x. x:A & u=Inl(x)) | (EX y. y:B & u=Inr(y))
  1081 
  1082 \tdx{case_Inl}       case(c,d,Inl(a)) = c(a)
  1083 \tdx{case_Inr}       case(c,d,Inr(b)) = d(b)
  1084 \end{ttbox}
  1085 \caption{Disjoint unions} \label{zf-sum}
  1086 \end{figure}
  1087 
  1088 
  1089 Theory \thydx{Sum} defines the disjoint union of two sets, with
  1090 injections and a case analysis operator (Fig.\ts\ref{zf-sum}).  Disjoint
  1091 unions play a role in datatype definitions, particularly when there is
  1092 mutual recursion~\cite{paulson-set-II}.
  1093 
  1094 \begin{figure}
  1095 \begin{ttbox}
  1096 \tdx{QPair_def}       <a;b> == a+b
  1097 \tdx{qsplit_def}      qsplit(c,p)  == THE y. EX a b. p=<a;b> & y=c(a,b)
  1098 \tdx{qfsplit_def}     qfsplit(R,z) == EX x y. z=<x;y> & R(x,y)
  1099 \tdx{qconverse_def}   qconverse(r) == {\ttlbrace}z. w:r, EX x y. w=<x;y> & z=<y;x>{\ttrbrace}
  1100 \tdx{QSigma_def}      QSigma(A,B)  == UN x:A. UN y:B(x). {\ttlbrace}<x;y>{\ttrbrace}
  1101 
  1102 \tdx{qsum_def}        A <+> B      == ({\ttlbrace}0{\ttrbrace} <*> A) Un ({\ttlbrace}1{\ttrbrace} <*> B)
  1103 \tdx{QInl_def}        QInl(a)      == <0;a>
  1104 \tdx{QInr_def}        QInr(b)      == <1;b>
  1105 \tdx{qcase_def}       qcase(c,d)   == qsplit(\%y z. cond(y, d(z), c(z)))
  1106 \end{ttbox}
  1107 \caption{Non-standard pairs, products and sums} \label{zf-qpair}
  1108 \end{figure}
  1109 
  1110 Theory \thydx{QPair} defines a notion of ordered pair that admits
  1111 non-well-founded tupling (Fig.\ts\ref{zf-qpair}).  Such pairs are written
  1112 {\tt<$a$;$b$>}.  It also defines the eliminator \cdx{qsplit}, the
  1113 converse operator \cdx{qconverse}, and the summation operator
  1114 \cdx{QSigma}.  These are completely analogous to the corresponding
  1115 versions for standard ordered pairs.  The theory goes on to define a
  1116 non-standard notion of disjoint sum using non-standard pairs.  All of these
  1117 concepts satisfy the same properties as their standard counterparts; in
  1118 addition, {\tt<$a$;$b$>} is continuous.  The theory supports coinductive
  1119 definitions, for example of infinite lists~\cite{paulson-final}.
  1120 
  1121 \begin{figure}
  1122 \begin{ttbox}
  1123 \tdx{bnd_mono_def}   bnd_mono(D,h) == 
  1124                  h(D)<=D & (ALL W X. W<=X --> X<=D --> h(W) <= h(X))
  1125 
  1126 \tdx{lfp_def}        lfp(D,h) == Inter({\ttlbrace}X: Pow(D). h(X) <= X{\ttrbrace})
  1127 \tdx{gfp_def}        gfp(D,h) == Union({\ttlbrace}X: Pow(D). X <= h(X){\ttrbrace})
  1128 
  1129 
  1130 \tdx{lfp_lowerbound} [| h(A) <= A;  A<=D |] ==> lfp(D,h) <= A
  1131 
  1132 \tdx{lfp_subset}     lfp(D,h) <= D
  1133 
  1134 \tdx{lfp_greatest}   [| bnd_mono(D,h);  
  1135                   !!X. [| h(X) <= X;  X<=D |] ==> A<=X 
  1136                |] ==> A <= lfp(D,h)
  1137 
  1138 \tdx{lfp_Tarski}     bnd_mono(D,h) ==> lfp(D,h) = h(lfp(D,h))
  1139 
  1140 \tdx{induct}         [| a : lfp(D,h);  bnd_mono(D,h);
  1141                   !!x. x : h(Collect(lfp(D,h),P)) ==> P(x)
  1142                |] ==> P(a)
  1143 
  1144 \tdx{lfp_mono}       [| bnd_mono(D,h);  bnd_mono(E,i);
  1145                   !!X. X<=D ==> h(X) <= i(X)  
  1146                |] ==> lfp(D,h) <= lfp(E,i)
  1147 
  1148 \tdx{gfp_upperbound} [| A <= h(A);  A<=D |] ==> A <= gfp(D,h)
  1149 
  1150 \tdx{gfp_subset}     gfp(D,h) <= D
  1151 
  1152 \tdx{gfp_least}      [| bnd_mono(D,h);  
  1153                   !!X. [| X <= h(X);  X<=D |] ==> X<=A
  1154                |] ==> gfp(D,h) <= A
  1155 
  1156 \tdx{gfp_Tarski}     bnd_mono(D,h) ==> gfp(D,h) = h(gfp(D,h))
  1157 
  1158 \tdx{coinduct}       [| bnd_mono(D,h); a: X; X <= h(X Un gfp(D,h)); X <= D 
  1159                |] ==> a : gfp(D,h)
  1160 
  1161 \tdx{gfp_mono}       [| bnd_mono(D,h);  D <= E;
  1162                   !!X. X<=D ==> h(X) <= i(X)  
  1163                |] ==> gfp(D,h) <= gfp(E,i)
  1164 \end{ttbox}
  1165 \caption{Least and greatest fixedpoints} \label{zf-fixedpt}
  1166 \end{figure}
  1167 
  1168 The Knaster-Tarski Theorem states that every monotone function over a
  1169 complete lattice has a fixedpoint.  Theory \thydx{Fixedpt} proves the
  1170 Theorem only for a particular lattice, namely the lattice of subsets of a
  1171 set (Fig.\ts\ref{zf-fixedpt}).  The theory defines least and greatest
  1172 fixedpoint operators with corresponding induction and coinduction rules.
  1173 These are essential to many definitions that follow, including the natural
  1174 numbers and the transitive closure operator.  The (co)inductive definition
  1175 package also uses the fixedpoint operators~\cite{paulson-CADE}.  See
  1176 Davey and Priestley~\cite{davey&priestley} for more on the Knaster-Tarski
  1177 Theorem and my paper~\cite{paulson-set-II} for discussion of the Isabelle
  1178 proofs.
  1179 
  1180 Monotonicity properties are proved for most of the set-forming operations:
  1181 union, intersection, Cartesian product, image, domain, range, etc.  These
  1182 are useful for applying the Knaster-Tarski Fixedpoint Theorem.  The proofs
  1183 themselves are trivial applications of Isabelle's classical reasoner.  See
  1184 file \texttt{ZF/mono.ML}.
  1185 
  1186 
  1187 \begin{figure}
  1188 \begin{constants} 
  1189   \it symbol  & \it meta-type & \it priority & \it description \\ 
  1190   \sdx{O}       & $[i,i]\To i$  &  Right 60     & composition ($\circ$) \\
  1191   \cdx{id}      & $i\To i$      &       & identity function \\
  1192   \cdx{inj}     & $[i,i]\To i$  &       & injective function space\\
  1193   \cdx{surj}    & $[i,i]\To i$  &       & surjective function space\\
  1194   \cdx{bij}     & $[i,i]\To i$  &       & bijective function space
  1195 \end{constants}
  1196 
  1197 \begin{ttbox}
  1198 \tdx{comp_def}  r O s     == {\ttlbrace}xz : domain(s)*range(r) . 
  1199                         EX x y z. xz=<x,z> & <x,y>:s & <y,z>:r{\ttrbrace}
  1200 \tdx{id_def}    id(A)     == (lam x:A. x)
  1201 \tdx{inj_def}   inj(A,B)  == {\ttlbrace} f: A->B. ALL w:A. ALL x:A. f`w=f`x --> w=x {\ttrbrace}
  1202 \tdx{surj_def}  surj(A,B) == {\ttlbrace} f: A->B . ALL y:B. EX x:A. f`x=y {\ttrbrace}
  1203 \tdx{bij_def}   bij(A,B)  == inj(A,B) Int surj(A,B)
  1204 
  1205 
  1206 \tdx{left_inverse}     [| f: inj(A,B);  a: A |] ==> converse(f)`(f`a) = a
  1207 \tdx{right_inverse}    [| f: inj(A,B);  b: range(f) |] ==> 
  1208                  f`(converse(f)`b) = b
  1209 
  1210 \tdx{inj_converse_inj} f: inj(A,B) ==> converse(f): inj(range(f), A)
  1211 \tdx{bij_converse_bij} f: bij(A,B) ==> converse(f): bij(B,A)
  1212 
  1213 \tdx{comp_type}        [| s<=A*B;  r<=B*C |] ==> (r O s) <= A*C
  1214 \tdx{comp_assoc}       (r O s) O t = r O (s O t)
  1215 
  1216 \tdx{left_comp_id}     r<=A*B ==> id(B) O r = r
  1217 \tdx{right_comp_id}    r<=A*B ==> r O id(A) = r
  1218 
  1219 \tdx{comp_func}        [| g:A->B; f:B->C |] ==> (f O g):A->C
  1220 \tdx{comp_func_apply}  [| g:A->B; f:B->C; a:A |] ==> (f O g)`a = f`(g`a)
  1221 
  1222 \tdx{comp_inj}         [| g:inj(A,B);  f:inj(B,C)  |] ==> (f O g):inj(A,C)
  1223 \tdx{comp_surj}        [| g:surj(A,B); f:surj(B,C) |] ==> (f O g):surj(A,C)
  1224 \tdx{comp_bij}         [| g:bij(A,B); f:bij(B,C) |] ==> (f O g):bij(A,C)
  1225 
  1226 \tdx{left_comp_inverse}     f: inj(A,B) ==> converse(f) O f = id(A)
  1227 \tdx{right_comp_inverse}    f: surj(A,B) ==> f O converse(f) = id(B)
  1228 
  1229 \tdx{bij_disjoint_Un}   
  1230     [| f: bij(A,B);  g: bij(C,D);  A Int C = 0;  B Int D = 0 |] ==> 
  1231     (f Un g) : bij(A Un C, B Un D)
  1232 
  1233 \tdx{restrict_bij}  [| f:inj(A,B);  C<=A |] ==> restrict(f,C): bij(C, f``C)
  1234 \end{ttbox}
  1235 \caption{Permutations} \label{zf-perm}
  1236 \end{figure}
  1237 
  1238 The theory \thydx{Perm} is concerned with permutations (bijections) and
  1239 related concepts.  These include composition of relations, the identity
  1240 relation, and three specialized function spaces: injective, surjective and
  1241 bijective.  Figure~\ref{zf-perm} displays many of their properties that
  1242 have been proved.  These results are fundamental to a treatment of
  1243 equipollence and cardinality.
  1244 
  1245 \begin{figure}\small
  1246 \index{#*@{\tt\#*} symbol}
  1247 \index{*div symbol}
  1248 \index{*mod symbol}
  1249 \index{#+@{\tt\#+} symbol}
  1250 \index{#-@{\tt\#-} symbol}
  1251 \begin{constants}
  1252   \it symbol  & \it meta-type & \it priority & \it description \\ 
  1253   \cdx{nat}     & $i$                   &       & set of natural numbers \\
  1254   \cdx{nat_case}& $[i,i\To i,i]\To i$     &     & conditional for $nat$\\
  1255   \tt \#*       & $[i,i]\To i$  &  Left 70      & multiplication \\
  1256   \tt div       & $[i,i]\To i$  &  Left 70      & division\\
  1257   \tt mod       & $[i,i]\To i$  &  Left 70      & modulus\\
  1258   \tt \#+       & $[i,i]\To i$  &  Left 65      & addition\\
  1259   \tt \#-       & $[i,i]\To i$  &  Left 65      & subtraction
  1260 \end{constants}
  1261 
  1262 \begin{ttbox}
  1263 \tdx{nat_def}  nat == lfp(lam r: Pow(Inf). {\ttlbrace}0{\ttrbrace} Un {\ttlbrace}succ(x). x:r{\ttrbrace}
  1264 
  1265 \tdx{mod_def}  m mod n == transrec(m, \%j f. if j:n then j else f`(j#-n))
  1266 \tdx{div_def}  m div n == transrec(m, \%j f. if j:n then 0 else succ(f`(j#-n)))
  1267 
  1268 \tdx{nat_case_def}  nat_case(a,b,k) == 
  1269               THE y. k=0 & y=a | (EX x. k=succ(x) & y=b(x))
  1270 
  1271 \tdx{nat_0I}        0 : nat
  1272 \tdx{nat_succI}     n : nat ==> succ(n) : nat
  1273 
  1274 \tdx{nat_induct}        
  1275     [| n: nat;  P(0);  !!x. [| x: nat;  P(x) |] ==> P(succ(x)) 
  1276     |] ==> P(n)
  1277 
  1278 \tdx{nat_case_0}    nat_case(a,b,0) = a
  1279 \tdx{nat_case_succ} nat_case(a,b,succ(m)) = b(m)
  1280 
  1281 \tdx{add_0}        0 #+ n = n
  1282 \tdx{add_succ}     succ(m) #+ n = succ(m #+ n)
  1283 
  1284 \tdx{mult_type}     [| m:nat;  n:nat |] ==> m #* n : nat
  1285 \tdx{mult_0}        0 #* n = 0
  1286 \tdx{mult_succ}     succ(m) #* n = n #+ (m #* n)
  1287 \tdx{mult_commute}  [| m:nat; n:nat |] ==> m #* n = n #* m
  1288 \tdx{add_mult_dist} [| m:nat; k:nat |] ==> (m #+ n) #* k = (m #* k){\thinspace}#+{\thinspace}(n #* k)
  1289 \tdx{mult_assoc}
  1290     [| m:nat;  n:nat;  k:nat |] ==> (m #* n) #* k = m #* (n #* k)
  1291 \tdx{mod_quo_equality}
  1292     [| 0:n;  m:nat;  n:nat |] ==> (m div n)#*n #+ m mod n = m
  1293 \end{ttbox}
  1294 \caption{The natural numbers} \label{zf-nat}
  1295 \end{figure}
  1296 
  1297 Theory \thydx{Nat} defines the natural numbers and mathematical
  1298 induction, along with a case analysis operator.  The set of natural
  1299 numbers, here called \texttt{nat}, is known in set theory as the ordinal~$\omega$.
  1300 
  1301 Theory \thydx{Arith} develops arithmetic on the natural numbers
  1302 (Fig.\ts\ref{zf-nat}).  Addition, multiplication and subtraction are defined
  1303 by primitive recursion.  Division and remainder are defined by repeated
  1304 subtraction, which requires well-founded recursion; the termination argument
  1305 relies on the divisor's being non-zero.  Many properties are proved:
  1306 commutative, associative and distributive laws, identity and cancellation
  1307 laws, etc.  The most interesting result is perhaps the theorem $a \bmod b +
  1308 (a/b)\times b = a$.
  1309 
  1310 Theory \thydx{Univ} defines a `universe' $\texttt{univ}(A)$, which is used by
  1311 the datatype package.  This set contains $A$ and the
  1312 natural numbers.  Vitally, it is closed under finite products: ${\tt
  1313   univ}(A)\times{\tt univ}(A)\subseteq{\tt univ}(A)$.  This theory also
  1314 defines the cumulative hierarchy of axiomatic set theory, which
  1315 traditionally is written $V@\alpha$ for an ordinal~$\alpha$.  The
  1316 `universe' is a simple generalization of~$V@\omega$.
  1317 
  1318 Theory \thydx{QUniv} defines a `universe' ${\tt quniv}(A)$, which is used by
  1319 the datatype package to construct codatatypes such as streams.  It is
  1320 analogous to ${\tt univ}(A)$ (and is defined in terms of it) but is closed
  1321 under the non-standard product and sum.
  1322 
  1323 Theory \texttt{Finite} (Figure~\ref{zf-fin}) defines the finite set operator;
  1324 ${\tt Fin}(A)$ is the set of all finite sets over~$A$.  The theory employs
  1325 Isabelle's inductive definition package, which proves various rules
  1326 automatically.  The induction rule shown is stronger than the one proved by
  1327 the package.  The theory also defines the set of all finite functions
  1328 between two given sets.
  1329 
  1330 \begin{figure}
  1331 \begin{ttbox}
  1332 \tdx{Fin.emptyI}      0 : Fin(A)
  1333 \tdx{Fin.consI}       [| a: A;  b: Fin(A) |] ==> cons(a,b) : Fin(A)
  1334 
  1335 \tdx{Fin_induct}
  1336     [| b: Fin(A);
  1337        P(0);
  1338        !!x y. [| x: A;  y: Fin(A);  x~:y;  P(y) |] ==> P(cons(x,y))
  1339     |] ==> P(b)
  1340 
  1341 \tdx{Fin_mono}        A<=B ==> Fin(A) <= Fin(B)
  1342 \tdx{Fin_UnI}         [| b: Fin(A);  c: Fin(A) |] ==> b Un c : Fin(A)
  1343 \tdx{Fin_UnionI}      C : Fin(Fin(A)) ==> Union(C) : Fin(A)
  1344 \tdx{Fin_subset}      [| c<=b;  b: Fin(A) |] ==> c: Fin(A)
  1345 \end{ttbox}
  1346 \caption{The finite set operator} \label{zf-fin}
  1347 \end{figure}
  1348 
  1349 \begin{figure}
  1350 \begin{constants}
  1351   \it symbol  & \it meta-type & \it priority & \it description \\ 
  1352   \cdx{list}    & $i\To i$      && lists over some set\\
  1353   \cdx{list_case} & $[i, [i,i]\To i, i] \To i$  && conditional for $list(A)$ \\
  1354   \cdx{map}     & $[i\To i, i] \To i$   &       & mapping functional\\
  1355   \cdx{length}  & $i\To i$              &       & length of a list\\
  1356   \cdx{rev}     & $i\To i$              &       & reverse of a list\\
  1357   \tt \at       & $[i,i]\To i$  &  Right 60     & append for lists\\
  1358   \cdx{flat}    & $i\To i$   &                  & append of list of lists
  1359 \end{constants}
  1360 
  1361 \underscoreon %%because @ is used here
  1362 \begin{ttbox}
  1363 \tdx{NilI}            Nil : list(A)
  1364 \tdx{ConsI}           [| a: A;  l: list(A) |] ==> Cons(a,l) : list(A)
  1365 
  1366 \tdx{List.induct}
  1367     [| l: list(A);
  1368        P(Nil);
  1369        !!x y. [| x: A;  y: list(A);  P(y) |] ==> P(Cons(x,y))
  1370     |] ==> P(l)
  1371 
  1372 \tdx{Cons_iff}        Cons(a,l)=Cons(a',l') <-> a=a' & l=l'
  1373 \tdx{Nil_Cons_iff}    ~ Nil=Cons(a,l)
  1374 
  1375 \tdx{list_mono}       A<=B ==> list(A) <= list(B)
  1376 
  1377 \tdx{map_ident}       l: list(A) ==> map(\%u. u, l) = l
  1378 \tdx{map_compose}     l: list(A) ==> map(h, map(j,l)) = map(\%u. h(j(u)), l)
  1379 \tdx{map_app_distrib} xs: list(A) ==> map(h, xs@ys) = map(h,xs) @ map(h,ys)
  1380 \tdx{map_type}
  1381     [| l: list(A);  !!x. x: A ==> h(x): B |] ==> map(h,l) : list(B)
  1382 \tdx{map_flat}
  1383     ls: list(list(A)) ==> map(h, flat(ls)) = flat(map(map(h),ls))
  1384 \end{ttbox}
  1385 \caption{Lists} \label{zf-list}
  1386 \end{figure}
  1387 
  1388 
  1389 Figure~\ref{zf-list} presents the set of lists over~$A$, ${\tt list}(A)$.  The
  1390 definition employs Isabelle's datatype package, which defines the introduction
  1391 and induction rules automatically, as well as the constructors, case operator
  1392 (\verb|list_case|) and recursion operator.  The theory then defines the usual
  1393 list functions by primitive recursion.  See theory \texttt{List}.
  1394 
  1395 
  1396 \section{Simplification and classical reasoning}
  1397 
  1398 {\ZF} inherits simplification from {\FOL} but adopts it for set theory.  The
  1399 extraction of rewrite rules takes the {\ZF} primitives into account.  It can
  1400 strip bounded universal quantifiers from a formula; for example, ${\forall
  1401   x\in A. f(x)=g(x)}$ yields the conditional rewrite rule $x\in A \Imp
  1402 f(x)=g(x)$.  Given $a\in\{x\in A. P(x)\}$ it extracts rewrite rules from $a\in
  1403 A$ and~$P(a)$.  It can also break down $a\in A\int B$ and $a\in A-B$.
  1404 
  1405 Simplification tactics tactics such as \texttt{Asm_simp_tac} and
  1406 \texttt{Full_simp_tac} use the default simpset (\texttt{simpset()}), which
  1407 works for most purposes.  A small simplification set for set theory is
  1408 called~\ttindexbold{ZF_ss}, and you can even use \ttindex{FOL_ss} as a minimal
  1409 starting point.  \texttt{ZF_ss} contains congruence rules for all the binding
  1410 operators of {\ZF}\@.  It contains all the conversion rules, such as
  1411 \texttt{fst} and \texttt{snd}, as well as the rewrites shown in
  1412 Fig.\ts\ref{zf-simpdata}.  See the file \texttt{ZF/simpdata.ML} for a fuller
  1413 list.
  1414 
  1415 As for the classical reasoner, tactics such as \texttt{Blast_tac} and {\tt
  1416   Best_tac} refer to the default claset (\texttt{claset()}).  This works for
  1417 most purposes.  Named clasets include \ttindexbold{ZF_cs} (basic set theory)
  1418 and \ttindexbold{le_cs} (useful for reasoning about the relations $<$ and
  1419 $\le$).  You can use \ttindex{FOL_cs} as a minimal basis for building your own
  1420 clasets.  See \iflabelundefined{chap:classical}{the {\em Reference Manual\/}}%
  1421 {Chap.\ts\ref{chap:classical}} for more discussion of classical proof methods.
  1422 
  1423 
  1424 \begin{figure}
  1425 \begin{eqnarray*}
  1426   a\in \emptyset        & \bimp &  \bot\\
  1427   a \in A \un B      & \bimp &  a\in A \disj a\in B\\
  1428   a \in A \int B      & \bimp &  a\in A \conj a\in B\\
  1429   a \in A-B             & \bimp &  a\in A \conj \neg (a\in B)\\
  1430   \pair{a,b}\in {\tt Sigma}(A,B)
  1431                         & \bimp &  a\in A \conj b\in B(a)\\
  1432   a \in {\tt Collect}(A,P)      & \bimp &  a\in A \conj P(a)\\
  1433   (\forall x \in \emptyset. P(x)) & \bimp &  \top\\
  1434   (\forall x \in A. \top)       & \bimp &  \top
  1435 \end{eqnarray*}
  1436 \caption{Some rewrite rules for set theory} \label{zf-simpdata}
  1437 \end{figure}
  1438 
  1439 
  1440 \section{Datatype definitions}
  1441 \label{sec:ZF:datatype}
  1442 \index{*datatype|(}
  1443 
  1444 The \ttindex{datatype} definition package of \ZF\ constructs inductive
  1445 datatypes similar to those of \ML.  It can also construct coinductive
  1446 datatypes (codatatypes), which are non-well-founded structures such as
  1447 streams.  It defines the set using a fixed-point construction and proves
  1448 induction rules, as well as theorems for recursion and case combinators.  It
  1449 supplies mechanisms for reasoning about freeness.  The datatype package can
  1450 handle both mutual and indirect recursion.
  1451 
  1452 
  1453 \subsection{Basics}
  1454 \label{subsec:datatype:basics}
  1455 
  1456 A \texttt{datatype} definition has the following form:
  1457 \[
  1458 \begin{array}{llcl}
  1459 \mathtt{datatype} & t@1(A@1,\ldots,A@h) & = &
  1460   constructor^1@1 ~\mid~ \ldots ~\mid~ constructor^1@{k@1} \\
  1461  & & \vdots \\
  1462 \mathtt{and} & t@n(A@1,\ldots,A@h) & = &
  1463   constructor^n@1~ ~\mid~ \ldots ~\mid~ constructor^n@{k@n}
  1464 \end{array}
  1465 \]
  1466 Here $t@1$, \ldots,~$t@n$ are identifiers and $A@1$, \ldots,~$A@h$ are
  1467 variables: the datatype's parameters.  Each constructor specification has the
  1468 form \dquotesoff
  1469 \[ C \hbox{\tt~( } \hbox{\tt"} x@1 \hbox{\tt:} T@1 \hbox{\tt"},\;
  1470                    \ldots,\;
  1471                    \hbox{\tt"} x@m \hbox{\tt:} T@m \hbox{\tt"}
  1472      \hbox{\tt~)}
  1473 \]
  1474 Here $C$ is the constructor name, and variables $x@1$, \ldots,~$x@m$ are the
  1475 constructor arguments, belonging to the sets $T@1$, \ldots, $T@m$,
  1476 respectively.  Typically each $T@j$ is either a constant set, a datatype
  1477 parameter (one of $A@1$, \ldots, $A@h$) or a recursive occurrence of one of
  1478 the datatypes, say $t@i(A@1,\ldots,A@h)$.  More complex possibilities exist,
  1479 but they are much harder to realize.  Often, additional information must be
  1480 supplied in the form of theorems.
  1481 
  1482 A datatype can occur recursively as the argument of some function~$F$.  This
  1483 is called a {\em nested} (or \emph{indirect}) occurrence.  It is only allowed
  1484 if the datatype package is given a theorem asserting that $F$ is monotonic.
  1485 If the datatype has indirect occurrences, then Isabelle/ZF does not support
  1486 recursive function definitions.
  1487 
  1488 A simple example of a datatype is \texttt{list}, which is built-in, and is
  1489 defined by
  1490 \begin{ttbox}
  1491 consts     list :: i=>i
  1492 datatype  "list(A)" = Nil | Cons ("a:A", "l: list(A)")
  1493 \end{ttbox}
  1494 Note that the datatype operator must be declared as a constant first.
  1495 However, the package declares the constructors.  Here, \texttt{Nil} gets type
  1496 $i$ and \texttt{Cons} gets type $[i,i]\To i$.
  1497 
  1498 Trees and forests can be modelled by the mutually recursive datatype
  1499 definition
  1500 \begin{ttbox}
  1501 consts     tree, forest, tree_forest :: i=>i
  1502 datatype  "tree(A)"   = Tcons ("a: A",  "f: forest(A)")
  1503 and       "forest(A)" = Fnil  |  Fcons ("t: tree(A)",  "f: forest(A)")
  1504 \end{ttbox}
  1505 Here $\texttt{tree}(A)$ is the set of trees over $A$, $\texttt{forest}(A)$ is
  1506 the set of forests over $A$, and  $\texttt{tree_forest}(A)$ is the union of
  1507 the previous two sets.  All three operators must be declared first.
  1508 
  1509 The datatype \texttt{term}, which is defined by
  1510 \begin{ttbox}
  1511 consts     term :: i=>i
  1512 datatype  "term(A)" = Apply ("a: A", "l: list(term(A))")
  1513   monos "[list_mono]"
  1514 \end{ttbox}
  1515 is an example of nested recursion.  (The theorem \texttt{list_mono} is proved
  1516 in file \texttt{List.ML}, and the \texttt{term} example is devaloped in theory
  1517 \thydx{ex/Term}.)
  1518 
  1519 \subsubsection{Freeness of the constructors}
  1520 
  1521 Constructors satisfy {\em freeness} properties.  Constructions are distinct,
  1522 for example $\texttt{Nil}\not=\texttt{Cons}(a,l)$, and they are injective, for
  1523 example $\texttt{Cons}(a,l)=\texttt{Cons}(a',l') \bimp a=a' \conj l=l'$.
  1524 Because the number of freeness is quadratic in the number of constructors, the
  1525 datatype package does not prove them, but instead provides several means of
  1526 proving them dynamically.  For the \texttt{list} datatype, freeness reasoning
  1527 can be done in two ways: by simplifying with the theorems
  1528 \texttt{list.free_iffs} or by invoking the classical reasoner with
  1529 \texttt{list.free_SEs} as safe elimination rules.  Occasionally this exposes
  1530 the underlying representation of some constructor, which can be rectified
  1531 using the command \hbox{\tt fold_tac list.con_defs}.
  1532 
  1533 \subsubsection{Structural induction}
  1534 
  1535 The datatype package also provides structural induction rules.  For datatypes
  1536 without mutual or nested recursion, the rule has the form exemplified by
  1537 \texttt{list.induct} in Fig.\ts\ref{zf-list}.  For mutually recursive
  1538 datatypes, the induction rule is supplied in two forms.  Consider datatype
  1539 \texttt{TF}.  The rule \texttt{tree_forest.induct} performs induction over a
  1540 single predicate~\texttt{P}, which is presumed to be defined for both trees
  1541 and forests:
  1542 \begin{ttbox}
  1543 [| x : tree_forest(A);
  1544    !!a f. [| a : A; f : forest(A); P(f) |] ==> P(Tcons(a, f)); P(Fnil);
  1545    !!f t. [| t : tree(A); P(t); f : forest(A); P(f) |]
  1546           ==> P(Fcons(t, f)) 
  1547 |] ==> P(x)
  1548 \end{ttbox}
  1549 The rule \texttt{tree_forest.mutual_induct} performs induction over two
  1550 distinct predicates, \texttt{P_tree} and \texttt{P_forest}.
  1551 \begin{ttbox}
  1552 [| !!a f.
  1553       [| a : A; f : forest(A); P_forest(f) |] ==> P_tree(Tcons(a, f));
  1554    P_forest(Fnil);
  1555    !!f t. [| t : tree(A); P_tree(t); f : forest(A); P_forest(f) |]
  1556           ==> P_forest(Fcons(t, f)) 
  1557 |] ==> (ALL za. za : tree(A) --> P_tree(za)) &
  1558     (ALL za. za : forest(A) --> P_forest(za))
  1559 \end{ttbox}
  1560 
  1561 For datatypes with nested recursion, such as the \texttt{term} example from
  1562 above, things are a bit more complicated.  The rule \texttt{term.induct}
  1563 refers to the monotonic operator, \texttt{list}:
  1564 \begin{ttbox}
  1565 [| x : term(A);
  1566    !!a l. [| a : A; l : list(Collect(term(A), P)) |] ==> P(Apply(a, l)) 
  1567 |] ==> P(x)
  1568 \end{ttbox}
  1569 The file \texttt{ex/Term.ML} derives two higher-level induction rules, one of
  1570 which is particularly useful for proving equations:
  1571 \begin{ttbox}
  1572 [| t : term(A);
  1573    !!x zs. [| x : A; zs : list(term(A)); map(f, zs) = map(g, zs) |]
  1574            ==> f(Apply(x, zs)) = g(Apply(x, zs)) 
  1575 |] ==> f(t) = g(t)  
  1576 \end{ttbox}
  1577 How this can be generalized to other nested datatypes is a matter for future
  1578 research.
  1579 
  1580 
  1581 \subsubsection{The \texttt{case} operator}
  1582 
  1583 The package defines an operator for performing case analysis over the
  1584 datatype.  For \texttt{list}, it is called \texttt{list_case} and satisfies
  1585 the equations
  1586 \begin{ttbox}
  1587 list_case(f_Nil, f_Cons, []) = f_Nil
  1588 list_case(f_Nil, f_Cons, Cons(a, l)) = f_Cons(a, l)
  1589 \end{ttbox}
  1590 Here \texttt{f_Nil} is the value to return if the argument is \texttt{Nil} and
  1591 \texttt{f_Cons} is a function that computes the value to return if the
  1592 argument has the form $\texttt{Cons}(a,l)$.  The function can be expressed as
  1593 an abstraction, over patterns if desired (\S\ref{sec:pairs}).
  1594 
  1595 For mutually recursive datatypes, there is a single \texttt{case} operator.
  1596 In the tree/forest example, the constant \texttt{tree_forest_case} handles all
  1597 of the constructors of the two datatypes.
  1598 
  1599 
  1600 
  1601 
  1602 \subsection{Defining datatypes}
  1603 
  1604 The theory syntax for datatype definitions is shown in
  1605 Fig.~\ref{datatype-grammar}.  In order to be well-formed, a datatype
  1606 definition has to obey the rules stated in the previous section.  As a result
  1607 the theory is extended with the new types, the constructors, and the theorems
  1608 listed in the previous section.  The quotation marks are necessary because
  1609 they enclose general Isabelle formul\ae.
  1610 
  1611 \begin{figure}
  1612 \begin{rail}
  1613 datatype : ( 'datatype' | 'codatatype' ) datadecls;
  1614 
  1615 datadecls: ( '"' id arglist '"' '=' (constructor + '|') ) + 'and'
  1616          ;
  1617 constructor : name ( () | consargs )  ( () | ( '(' mixfix ')' ) )
  1618          ;
  1619 consargs : '(' ('"' var ':' term '"' + ',') ')'
  1620          ;
  1621 \end{rail}
  1622 \caption{Syntax of datatype declarations}
  1623 \label{datatype-grammar}
  1624 \end{figure}
  1625 
  1626 Codatatypes are declared like datatypes and are identical to them in every
  1627 respect except that they have a coinduction rule instead of an induction rule.
  1628 Note that while an induction rule has the effect of limiting the values
  1629 contained in the set, a coinduction rule gives a way of constructing new
  1630 values of the set.
  1631 
  1632 Most of the theorems about datatypes become part of the default simpset.  You
  1633 never need to see them again because the simplifier applies them
  1634 automatically.  Add freeness properties (\texttt{free_iffs}) to the simpset
  1635 when you want them.  Induction or exhaustion are usually invoked by hand,
  1636 usually via these special-purpose tactics:
  1637 \begin{ttdescription}
  1638 \item[\ttindexbold{induct_tac} {\tt"}$x${\tt"} $i$] applies structural
  1639   induction on variable $x$ to subgoal $i$, provided the type of $x$ is a
  1640   datatype.  The induction variable should not occur among other assumptions
  1641   of the subgoal.
  1642 \end{ttdescription}
  1643 In some cases, induction is overkill and a case distinction over all
  1644 constructors of the datatype suffices.
  1645 \begin{ttdescription}
  1646 \item[\ttindexbold{exhaust_tac} {\tt"}$x${\tt"} $i$]
  1647  performs an exhaustive case analysis for the variable~$x$.
  1648 \end{ttdescription}
  1649 
  1650 Both tactics can only be applied to a variable, whose typing must be given in
  1651 some assumption, for example the assumption \texttt{x:\ list(A)}.  The tactics
  1652 also work for the natural numbers (\texttt{nat}) and disjoint sums, although
  1653 these sets were not defined using the datatype package.  (Disjoint sums are
  1654 not recursive, so only \texttt{exhaust_tac} is available.)
  1655 
  1656 \bigskip
  1657 Here are some more details for the technically minded.  Processing the
  1658 theory file produces an \ML\ structure which, in addition to the usual
  1659 components, contains a structure named $t$ for each datatype $t$ defined in
  1660 the file.  Each structure $t$ contains the following elements:
  1661 \begin{ttbox}
  1662 val intrs         : thm list  \textrm{the introduction rules}
  1663 val elim          : thm       \textrm{the elimination (case analysis) rule}
  1664 val induct        : thm       \textrm{the standard induction rule}
  1665 val mutual_induct : thm       \textrm{the mutual induction rule, or \texttt{True}}
  1666 val case_eqns     : thm list  \textrm{equations for the case operator}
  1667 val recursor_eqns : thm list  \textrm{equations for the recursor}
  1668 val con_defs      : thm list  \textrm{definitions of the case operator and constructors}
  1669 val free_iffs     : thm list  \textrm{logical equivalences for proving freeness}
  1670 val free_SEs      : thm list  \textrm{elimination rules for proving freeness}
  1671 val mk_free       : string -> thm  \textrm{A function for proving freeness theorems}
  1672 val mk_cases      : string -> thm  \textrm{case analysis, see below}
  1673 val defs          : thm list  \textrm{definitions of operators}
  1674 val bnd_mono      : thm list  \textrm{monotonicity property}
  1675 val dom_subset    : thm list  \textrm{inclusion in `bounding set'}
  1676 \end{ttbox}
  1677 Furthermore there is the theorem $C$\texttt{_I} for every constructor~$C$; for
  1678 example, the \texttt{list} datatype's introduction rules are bound to the
  1679 identifiers \texttt{Nil_I} and \texttt{Cons_I}.
  1680 
  1681 For a codatatype, the component \texttt{coinduct} is the coinduction rule,
  1682 replacing the \texttt{induct} component.
  1683 
  1684 See the theories \texttt{ex/Ntree} and \texttt{ex/Brouwer} for examples of
  1685 infinitely branching datatypes.  See theory \texttt{ex/LList} for an example
  1686 of a codatatype.  Some of these theories illustrate the use of additional,
  1687 undocumented features of the datatype package.  Datatype definitions are
  1688 reduced to inductive definitions, and the advanced features should be
  1689 understood in that light.
  1690 
  1691 
  1692 \subsection{Examples}
  1693 
  1694 \subsubsection{The datatype of binary trees}
  1695 
  1696 Let us define the set $\texttt{bt}(A)$ of binary trees over~$A$.  The theory
  1697 must contain these lines:
  1698 \begin{ttbox}
  1699 consts   bt :: i=>i
  1700 datatype "bt(A)"  =  Lf  |  Br ("a: A",  "t1: bt(A)",  "t2: bt(A)")
  1701 \end{ttbox}
  1702 After loading the theory, we can prove, for example, that no tree equals its
  1703 left branch.  To ease the induction, we state the goal using quantifiers.
  1704 \begin{ttbox}
  1705 Goal "l : bt(A) ==> ALL x r. Br(x,l,r) ~= l";
  1706 {\out Level 0}
  1707 {\out l : bt(A) ==> ALL x r. Br(x, l, r) ~= l}
  1708 {\out  1. l : bt(A) ==> ALL x r. Br(x, l, r) ~= l}
  1709 \end{ttbox}
  1710 This can be proved by the structural induction tactic:
  1711 \begin{ttbox}
  1712 by (induct_tac "l" 1);
  1713 {\out Level 1}
  1714 {\out l : bt(A) ==> ALL x r. Br(x, l, r) ~= l}
  1715 {\out  1. ALL x r. Br(x, Lf, r) ~= Lf}
  1716 {\out  2. !!a t1 t2.}
  1717 {\out        [| a : A; t1 : bt(A); ALL x r. Br(x, t1, r) ~= t1; t2 : bt(A);}
  1718 {\out           ALL x r. Br(x, t2, r) ~= t2 |]}
  1719 {\out        ==> ALL x r. Br(x, Br(a, t1, t2), r) ~= Br(a, t1, t2)}
  1720 \end{ttbox}
  1721 Both subgoals are proved using the simplifier.  Tactic
  1722 \texttt{asm_full_simp_tac} is used, rewriting the assumptions.
  1723 This is because simplification using the freeness properties can unfold the
  1724 definition of constructor~\texttt{Br}, so we arrange that all occurrences are
  1725 unfolded. 
  1726 \begin{ttbox}
  1727 by (ALLGOALS (asm_full_simp_tac (simpset() addsimps bt.free_iffs)));
  1728 {\out Level 2}
  1729 {\out l : bt(A) ==> ALL x r. Br(x, l, r) ~= l}
  1730 {\out No subgoals!}
  1731 \end{ttbox}
  1732 To remove the quantifiers from the induction formula, we save the theorem using
  1733 \ttindex{qed_spec_mp}.
  1734 \begin{ttbox}
  1735 qed_spec_mp "Br_neq_left";
  1736 {\out val Br_neq_left = "?l : bt(?A) ==> Br(?x, ?l, ?r) ~= ?l" : thm}
  1737 \end{ttbox}
  1738 
  1739 When there are only a few constructors, we might prefer to prove the freenness
  1740 theorems for each constructor.  This is trivial, using the function given us
  1741 for that purpose:
  1742 \begin{ttbox}
  1743 val Br_iff = bt.mk_free "Br(a,l,r)=Br(a',l',r') <-> a=a' & l=l' & r=r'";
  1744 {\out val Br_iff =}
  1745 {\out   "Br(?a, ?l, ?r) = Br(?a', ?l', ?r') <->}
  1746 {\out                     ?a = ?a' & ?l = ?l' & ?r = ?r'" : thm}
  1747 \end{ttbox}
  1748 
  1749 The purpose of \ttindex{mk_cases} is to generate instances of the elimination
  1750 (case analysis) rule that have been simplified using freeness reasoning.  For
  1751 example, this instance of the elimination rule propagates type-checking
  1752 information from the premise $\texttt{Br}(a,l,r)\in\texttt{bt}(A)$:
  1753 \begin{ttbox}
  1754 val BrE = bt.mk_cases "Br(a,l,r) : bt(A)";
  1755 {\out val BrE =}
  1756 {\out   "[| Br(?a, ?l, ?r) : bt(?A);}
  1757 {\out       [| ?a : ?A; ?l : bt(?A); ?r : bt(?A) |] ==> ?Q |] ==> ?Q" : thm}
  1758 \end{ttbox}
  1759 
  1760 
  1761 \subsubsection{Mixfix syntax in datatypes}
  1762 
  1763 Mixfix syntax is sometimes convenient.  The theory \texttt{ex/PropLog} makes a
  1764 deep embedding of propositional logic:
  1765 \begin{ttbox}
  1766 consts     prop :: i
  1767 datatype  "prop" = Fls
  1768                  | Var ("n: nat")                ("#_" [100] 100)
  1769                  | "=>" ("p: prop", "q: prop")   (infixr 90)
  1770 \end{ttbox}
  1771 The second constructor has a special $\#n$ syntax, while the third constructor
  1772 is an infixed arrow.
  1773 
  1774 
  1775 \subsubsection{A giant enumeration type}
  1776 
  1777 This example shows a datatype that consists of 60 constructors:
  1778 \begin{ttbox}
  1779 consts  enum :: i
  1780 datatype
  1781   "enum" = C00 | C01 | C02 | C03 | C04 | C05 | C06 | C07 | C08 | C09
  1782          | C10 | C11 | C12 | C13 | C14 | C15 | C16 | C17 | C18 | C19
  1783          | C20 | C21 | C22 | C23 | C24 | C25 | C26 | C27 | C28 | C29
  1784          | C30 | C31 | C32 | C33 | C34 | C35 | C36 | C37 | C38 | C39
  1785          | C40 | C41 | C42 | C43 | C44 | C45 | C46 | C47 | C48 | C49
  1786          | C50 | C51 | C52 | C53 | C54 | C55 | C56 | C57 | C58 | C59
  1787 end
  1788 \end{ttbox}
  1789 The datatype package scales well.  Even though all properties are proved
  1790 rather than assumed, full processing of this definition takes under 15 seconds
  1791 (on a 300 MHz Pentium).  The constructors have a balanced representation,
  1792 essentially binary notation, so freeness properties can be proved fast.
  1793 \begin{ttbox}
  1794 Goal "C00 ~= C01";
  1795 by (simp_tac (simpset() addsimps enum.free_iffs) 1);
  1796 \end{ttbox}
  1797 You need not derive such inequalities explicitly.  The simplifier will dispose
  1798 of them automatically, given the theorem list \texttt{free_iffs}.
  1799 
  1800 \index{*datatype|)}
  1801 
  1802 
  1803 \subsection{Recursive function definitions}\label{sec:ZF:recursive}
  1804 \index{recursive functions|see{recursion}}
  1805 \index{*primrec|(}
  1806 
  1807 Datatypes come with a uniform way of defining functions, {\bf primitive
  1808   recursion}.  Such definitions rely on the recursion operator defined by the
  1809 datatype package.  Isabelle proves the desired recursion equations as
  1810 theorems.
  1811 
  1812 In principle, one could introduce primitive recursive functions by asserting
  1813 their reduction rules as new axioms.  Here is a dangerous way of defining the
  1814 append function for lists:
  1815 \begin{ttbox}\slshape
  1816 consts  "\at" :: [i,i]=>i                        (infixr 60)
  1817 rules 
  1818    app_Nil   "[] \at ys = ys"
  1819    app_Cons  "(Cons(a,l)) \at ys = Cons(a, l \at ys)"
  1820 \end{ttbox}
  1821 Asserting axioms brings the danger of accidentally asserting nonsense.  It
  1822 should be avoided at all costs!
  1823 
  1824 The \ttindex{primrec} declaration is a safe means of defining primitive
  1825 recursive functions on datatypes:
  1826 \begin{ttbox}
  1827 consts  "\at" :: [i,i]=>i                        (infixr 60)
  1828 primrec 
  1829    "[] \at ys = ys"
  1830    "(Cons(a,l)) \at ys = Cons(a, l \at ys)"
  1831 \end{ttbox}
  1832 Isabelle will now check that the two rules do indeed form a primitive
  1833 recursive definition.  For example, the declaration
  1834 \begin{ttbox}
  1835 primrec
  1836    "[] \at ys = us"
  1837 \end{ttbox}
  1838 is rejected with an error message ``\texttt{Extra variables on rhs}''.
  1839 
  1840 
  1841 \subsubsection{Syntax of recursive definitions}
  1842 
  1843 The general form of a primitive recursive definition is
  1844 \begin{ttbox}
  1845 primrec
  1846     {\it reduction rules}
  1847 \end{ttbox}
  1848 where \textit{reduction rules} specify one or more equations of the form
  1849 \[ f \, x@1 \, \dots \, x@m \, (C \, y@1 \, \dots \, y@k) \, z@1 \,
  1850 \dots \, z@n = r \] such that $C$ is a constructor of the datatype, $r$
  1851 contains only the free variables on the left-hand side, and all recursive
  1852 calls in $r$ are of the form $f \, \dots \, y@i \, \dots$ for some $i$.  
  1853 There must be at most one reduction rule for each constructor.  The order is
  1854 immaterial.  For missing constructors, the function is defined to return zero.
  1855 
  1856 All reduction rules are added to the default simpset.
  1857 If you would like to refer to some rule by name, then you must prefix
  1858 the rule with an identifier.  These identifiers, like those in the
  1859 \texttt{rules} section of a theory, will be visible at the \ML\ level.
  1860 
  1861 The reduction rules for {\tt\at} become part of the default simpset, which
  1862 leads to short proof scripts:
  1863 \begin{ttbox}\underscoreon
  1864 Goal "xs: list(A) ==> (xs @ ys) @ zs = xs @ (ys @ zs)";
  1865 by (induct\_tac "xs" 1);
  1866 by (ALLGOALS Asm\_simp\_tac);
  1867 \end{ttbox}
  1868 
  1869 You can even use the \texttt{primrec} form with non-recursive datatypes and
  1870 with codatatypes.  Recursion is not allowed, but it provides a convenient
  1871 syntax for defining functions by cases.
  1872 
  1873 
  1874 \subsubsection{Example: varying arguments}
  1875 
  1876 All arguments, other than the recursive one, must be the same in each equation
  1877 and in each recursive call.  To get around this restriction, use explict
  1878 $\lambda$-abstraction and function application.  Here is an example, drawn
  1879 from the theory \texttt{Resid/Substitution}.  The type of redexes is declared
  1880 as follows:
  1881 \begin{ttbox}
  1882 consts  redexes :: i
  1883 datatype
  1884   "redexes" = Var ("n: nat")            
  1885             | Fun ("t: redexes")
  1886             | App ("b:bool" ,"f:redexes" , "a:redexes")
  1887 \end{ttbox}
  1888 
  1889 The function \texttt{lift} takes a second argument, $k$, which varies in
  1890 recursive calls.
  1891 \begin{ttbox}
  1892 primrec
  1893   "lift(Var(i)) = (lam k:nat. if i<k then Var(i) else Var(succ(i)))"
  1894   "lift(Fun(t)) = (lam k:nat. Fun(lift(t) ` succ(k)))"
  1895   "lift(App(b,f,a)) = (lam k:nat. App(b, lift(f)`k, lift(a)`k))"
  1896 \end{ttbox}
  1897 Now \texttt{lift(r)`k} satisfies the required recursion equations.
  1898 
  1899 \index{recursion!primitive|)}
  1900 \index{*primrec|)}
  1901 
  1902 
  1903 \section{Inductive and coinductive definitions}
  1904 \index{*inductive|(}
  1905 \index{*coinductive|(}
  1906 
  1907 An {\bf inductive definition} specifies the least set~$R$ closed under given
  1908 rules.  (Applying a rule to elements of~$R$ yields a result within~$R$.)  For
  1909 example, a structural operational semantics is an inductive definition of an
  1910 evaluation relation.  Dually, a {\bf coinductive definition} specifies the
  1911 greatest set~$R$ consistent with given rules.  (Every element of~$R$ can be
  1912 seen as arising by applying a rule to elements of~$R$.)  An important example
  1913 is using bisimulation relations to formalise equivalence of processes and
  1914 infinite data structures.
  1915 
  1916 A theory file may contain any number of inductive and coinductive
  1917 definitions.  They may be intermixed with other declarations; in
  1918 particular, the (co)inductive sets {\bf must} be declared separately as
  1919 constants, and may have mixfix syntax or be subject to syntax translations.
  1920 
  1921 Each (co)inductive definition adds definitions to the theory and also
  1922 proves some theorems.  Each definition creates an \ML\ structure, which is a
  1923 substructure of the main theory structure.
  1924 This package is described in detail in a separate paper,%
  1925 \footnote{It appeared in CADE~\cite{paulson-CADE}; a longer version is
  1926   distributed with Isabelle as \emph{A Fixedpoint Approach to 
  1927  (Co)Inductive and (Co)Datatype Definitions}.}  %
  1928 which you might refer to for background information.
  1929 
  1930 
  1931 \subsection{The syntax of a (co)inductive definition}
  1932 An inductive definition has the form
  1933 \begin{ttbox}
  1934 inductive
  1935   domains    {\it domain declarations}
  1936   intrs      {\it introduction rules}
  1937   monos      {\it monotonicity theorems}
  1938   con_defs   {\it constructor definitions}
  1939   type_intrs {\it introduction rules for type-checking}
  1940   type_elims {\it elimination rules for type-checking}
  1941 \end{ttbox}
  1942 A coinductive definition is identical, but starts with the keyword
  1943 {\tt coinductive}.  
  1944 
  1945 The {\tt monos}, {\tt con\_defs}, {\tt type\_intrs} and {\tt type\_elims}
  1946 sections are optional.  If present, each is specified either as a list of
  1947 identifiers or as a string.  If the latter, then the string must be a valid
  1948 \textsc{ml} expression of type {\tt thm list}.  The string is simply inserted
  1949 into the {\tt _thy.ML} file; if it is ill-formed, it will trigger \textsc{ml}
  1950 error messages.  You can then inspect the file on the temporary directory.
  1951 
  1952 \begin{description}
  1953 \item[\it domain declarations] consist of one or more items of the form
  1954   {\it string\/}~{\tt <=}~{\it string}, associating each recursive set with
  1955   its domain.  (The domain is some existing set that is large enough to
  1956   hold the new set being defined.)
  1957 
  1958 \item[\it introduction rules] specify one or more introduction rules in
  1959   the form {\it ident\/}~{\it string}, where the identifier gives the name of
  1960   the rule in the result structure.
  1961 
  1962 \item[\it monotonicity theorems] are required for each operator applied to
  1963   a recursive set in the introduction rules.  There \textbf{must} be a theorem
  1964   of the form $A\subseteq B\Imp M(A)\subseteq M(B)$, for each premise $t\in M(R_i)$
  1965   in an introduction rule!
  1966 
  1967 \item[\it constructor definitions] contain definitions of constants
  1968   appearing in the introduction rules.  The (co)datatype package supplies
  1969   the constructors' definitions here.  Most (co)inductive definitions omit
  1970   this section; one exception is the primitive recursive functions example;
  1971   see theory \texttt{ex/Primrec}.
  1972   
  1973 \item[\it type\_intrs] consists of introduction rules for type-checking the
  1974   definition: for demonstrating that the new set is included in its domain.
  1975   (The proof uses depth-first search.)
  1976 
  1977 \item[\it type\_elims] consists of elimination rules for type-checking the
  1978   definition.  They are presumed to be safe and are applied as often as
  1979   possible prior to the {\tt type\_intrs} search.
  1980 \end{description}
  1981 
  1982 The package has a few restrictions:
  1983 \begin{itemize}
  1984 \item The theory must separately declare the recursive sets as
  1985   constants.
  1986 
  1987 \item The names of the recursive sets must be identifiers, not infix
  1988 operators.  
  1989 
  1990 \item Side-conditions must not be conjunctions.  However, an introduction rule
  1991 may contain any number of side-conditions.
  1992 
  1993 \item Side-conditions of the form $x=t$, where the variable~$x$ does not
  1994   occur in~$t$, will be substituted through the rule \verb|mutual_induct|.
  1995 \end{itemize}
  1996 
  1997 
  1998 \subsection{Example of an inductive definition}
  1999 
  2000 Two declarations, included in a theory file, define the finite powerset
  2001 operator.  First we declare the constant~\texttt{Fin}.  Then we declare it
  2002 inductively, with two introduction rules:
  2003 \begin{ttbox}
  2004 consts  Fin :: i=>i
  2005 
  2006 inductive
  2007   domains   "Fin(A)" <= "Pow(A)"
  2008   intrs
  2009     emptyI  "0 : Fin(A)"
  2010     consI   "[| a: A;  b: Fin(A) |] ==> cons(a,b) : Fin(A)"
  2011   type_intrs empty_subsetI, cons_subsetI, PowI
  2012   type_elims "[make_elim PowD]"
  2013 \end{ttbox}
  2014 The resulting theory structure contains a substructure, called~\texttt{Fin}.
  2015 It contains the \texttt{Fin}$~A$ introduction rules as the list
  2016 \texttt{Fin.intrs}, and also individually as \texttt{Fin.emptyI} and
  2017 \texttt{Fin.consI}.  The induction rule is \texttt{Fin.induct}.
  2018 
  2019 The chief problem with making (co)inductive definitions involves type-checking
  2020 the rules.  Sometimes, additional theorems need to be supplied under
  2021 \texttt{type_intrs} or \texttt{type_elims}.  If the package fails when trying
  2022 to prove your introduction rules, then set the flag \ttindexbold{trace_induct}
  2023 to \texttt{true} and try again.  (See the manual \emph{A Fixedpoint Approach
  2024   \ldots} for more discussion of type-checking.)
  2025 
  2026 In the example above, $\texttt{Pow}(A)$ is given as the domain of
  2027 $\texttt{Fin}(A)$, for obviously every finite subset of~$A$ is a subset
  2028 of~$A$.  However, the inductive definition package can only prove that given a
  2029 few hints.
  2030 Here is the output that results (with the flag set) when the
  2031 \texttt{type_intrs} and \texttt{type_elims} are omitted from the inductive
  2032 definition above:
  2033 \begin{ttbox}
  2034 Inductive definition Finite.Fin
  2035 Fin(A) ==
  2036 lfp(Pow(A),
  2037     \%X. {z: Pow(A) . z = 0 | (EX a b. z = cons(a, b) & a : A & b : X)})
  2038   Proving monotonicity...
  2039 \ttbreak
  2040   Proving the introduction rules...
  2041 The typechecking subgoal:
  2042 0 : Fin(A)
  2043  1. 0 : Pow(A)
  2044 \ttbreak
  2045 The subgoal after monos, type_elims:
  2046 0 : Fin(A)
  2047  1. 0 : Pow(A)
  2048 *** prove_goal: tactic failed
  2049 \end{ttbox}
  2050 We see the need to supply theorems to let the package prove
  2051 $\emptyset\in\texttt{Pow}(A)$.  Restoring the \texttt{type_intrs} but not the
  2052 \texttt{type_elims}, we again get an error message:
  2053 \begin{ttbox}
  2054 The typechecking subgoal:
  2055 0 : Fin(A)
  2056  1. 0 : Pow(A)
  2057 \ttbreak
  2058 The subgoal after monos, type_elims:
  2059 0 : Fin(A)
  2060  1. 0 : Pow(A)
  2061 \ttbreak
  2062 The typechecking subgoal:
  2063 cons(a, b) : Fin(A)
  2064  1. [| a : A; b : Fin(A) |] ==> cons(a, b) : Pow(A)
  2065 \ttbreak
  2066 The subgoal after monos, type_elims:
  2067 cons(a, b) : Fin(A)
  2068  1. [| a : A; b : Pow(A) |] ==> cons(a, b) : Pow(A)
  2069 *** prove_goal: tactic failed
  2070 \end{ttbox}
  2071 The first rule has been type-checked, but the second one has failed.  The
  2072 simplest solution to such problems is to prove the failed subgoal separately
  2073 and to supply it under \texttt{type_intrs}.  The solution actually used is
  2074 to supply, under \texttt{type_elims}, a rule that changes
  2075 $b\in\texttt{Pow}(A)$ to $b\subseteq A$; together with \texttt{cons_subsetI}
  2076 and \texttt{PowI}, it is enough to complete the type-checking.
  2077 
  2078 
  2079 
  2080 \subsection{Further examples}
  2081 
  2082 An inductive definition may involve arbitrary monotonic operators.  Here is a
  2083 standard example: the accessible part of a relation.  Note the use
  2084 of~\texttt{Pow} in the introduction rule and the corresponding mention of the
  2085 rule \verb|Pow_mono| in the \texttt{monos} list.  If the desired rule has a
  2086 universally quantified premise, usually the effect can be obtained using
  2087 \texttt{Pow}.
  2088 \begin{ttbox}
  2089 consts  acc :: i=>i
  2090 inductive
  2091   domains "acc(r)" <= "field(r)"
  2092   intrs
  2093     vimage  "[| r-``{a}: Pow(acc(r)); a: field(r) |] ==> a: acc(r)"
  2094   monos      Pow_mono
  2095 \end{ttbox}
  2096 
  2097 Finally, here is a coinductive definition.  It captures (as a bisimulation)
  2098 the notion of equality on lazy lists, which are first defined as a codatatype:
  2099 \begin{ttbox}
  2100 consts  llist :: i=>i
  2101 codatatype  "llist(A)" = LNil | LCons ("a: A", "l: llist(A)")
  2102 \ttbreak
  2103 
  2104 consts  lleq :: i=>i
  2105 coinductive
  2106   domains "lleq(A)" <= "llist(A) * llist(A)"
  2107   intrs
  2108     LNil  "<LNil, LNil> : lleq(A)"
  2109     LCons "[| a:A; <l,l'>: lleq(A) |] 
  2110            ==> <LCons(a,l), LCons(a,l')>: lleq(A)"
  2111   type_intrs  "llist.intrs"
  2112 \end{ttbox}
  2113 This use of \texttt{type_intrs} is typical: the relation concerns the
  2114 codatatype \texttt{llist}, so naturally the introduction rules for that
  2115 codatatype will be required for type-checking the rules.
  2116 
  2117 The Isabelle distribution contains many other inductive definitions.  Simple
  2118 examples are collected on subdirectory \texttt{ZF/ex}.  The directory
  2119 \texttt{Coind} and the theory \texttt{ZF/ex/LList} contain coinductive
  2120 definitions.  Larger examples may be found on other subdirectories of
  2121 \texttt{ZF}, such as \texttt{IMP}, and \texttt{Resid}.
  2122 
  2123 
  2124 \subsection{The result structure}
  2125 
  2126 Each (co)inductive set defined in a theory file generates an \ML\ substructure
  2127 having the same name.  The the substructure contains the following elements:
  2128 
  2129 \begin{ttbox}
  2130 val intrs         : thm list  \textrm{the introduction rules}
  2131 val elim          : thm       \textrm{the elimination (case analysis) rule}
  2132 val mk_cases      : string -> thm  \textrm{case analysis, see below}
  2133 val induct        : thm       \textrm{the standard induction rule}
  2134 val mutual_induct : thm       \textrm{the mutual induction rule, or \texttt{True}}
  2135 val defs          : thm list  \textrm{definitions of operators}
  2136 val bnd_mono      : thm list  \textrm{monotonicity property}
  2137 val dom_subset    : thm list  \textrm{inclusion in `bounding set'}
  2138 \end{ttbox}
  2139 Furthermore there is the theorem $C$\texttt{_I} for every constructor~$C$; for
  2140 example, the \texttt{list} datatype's introduction rules are bound to the
  2141 identifiers \texttt{Nil_I} and \texttt{Cons_I}.
  2142 
  2143 For a codatatype, the component \texttt{coinduct} is the coinduction rule,
  2144 replacing the \texttt{induct} component.
  2145 
  2146 Recall that \ttindex{mk_cases} generates simplified instances of the
  2147 elimination (case analysis) rule.  It is as useful for inductive definitions
  2148 as it is for datatypes.  There are many examples in the theory
  2149 \texttt{ex/Comb}, which is discussed at length
  2150 elsewhere~\cite{paulson-generic}.  The theory first defines the datatype
  2151 \texttt{comb} of combinators:
  2152 \begin{ttbox}
  2153 consts comb :: i
  2154 datatype  "comb" = K
  2155                  | S
  2156                  | "#" ("p: comb", "q: comb")   (infixl 90)
  2157 \end{ttbox}
  2158 The theory goes on to define contraction and parallel contraction
  2159 inductively.  Then the file \texttt{ex/Comb.ML} defines special cases of
  2160 contraction using \texttt{mk_cases}:
  2161 \begin{ttbox}
  2162 val K_contractE = contract.mk_cases "K -1-> r";
  2163 {\out val K_contractE = "K -1-> ?r ==> ?Q" : thm}
  2164 \end{ttbox}
  2165 We can read this as saying that the combinator \texttt{K} cannot reduce to
  2166 anything.  Similar elimination rules for \texttt{S} and application are also
  2167 generated and are supplied to the classical reasoner.  Note that
  2168 \texttt{comb.con_defs} is given to \texttt{mk_cases} to allow freeness
  2169 reasoning on datatype \texttt{comb}.
  2170 
  2171 \index{*coinductive|)} \index{*inductive|)}
  2172 
  2173 
  2174 
  2175 
  2176 \section{The outer reaches of set theory}
  2177 
  2178 The constructions of the natural numbers and lists use a suite of
  2179 operators for handling recursive function definitions.  I have described
  2180 the developments in detail elsewhere~\cite{paulson-set-II}.  Here is a brief
  2181 summary:
  2182 \begin{itemize}
  2183   \item Theory \texttt{Trancl} defines the transitive closure of a relation
  2184     (as a least fixedpoint).
  2185 
  2186   \item Theory \texttt{WF} proves the Well-Founded Recursion Theorem, using an
  2187     elegant approach of Tobias Nipkow.  This theorem permits general
  2188     recursive definitions within set theory.
  2189 
  2190   \item Theory \texttt{Ord} defines the notions of transitive set and ordinal
  2191     number.  It derives transfinite induction.  A key definition is {\bf
  2192       less than}: $i<j$ if and only if $i$ and $j$ are both ordinals and
  2193     $i\in j$.  As a special case, it includes less than on the natural
  2194     numbers.
  2195     
  2196   \item Theory \texttt{Epsilon} derives $\varepsilon$-induction and
  2197     $\varepsilon$-recursion, which are generalisations of transfinite
  2198     induction and recursion.  It also defines \cdx{rank}$(x)$, which
  2199     is the least ordinal $\alpha$ such that $x$ is constructed at
  2200     stage $\alpha$ of the cumulative hierarchy (thus $x\in
  2201     V@{\alpha+1}$).
  2202 \end{itemize}
  2203 
  2204 Other important theories lead to a theory of cardinal numbers.  They have
  2205 not yet been written up anywhere.  Here is a summary:
  2206 \begin{itemize}
  2207 \item Theory \texttt{Rel} defines the basic properties of relations, such as
  2208   (ir)reflexivity, (a)symmetry, and transitivity.
  2209 
  2210 \item Theory \texttt{EquivClass} develops a theory of equivalence
  2211   classes, not using the Axiom of Choice.
  2212 
  2213 \item Theory \texttt{Order} defines partial orderings, total orderings and
  2214   wellorderings.
  2215 
  2216 \item Theory \texttt{OrderArith} defines orderings on sum and product sets.
  2217   These can be used to define ordinal arithmetic and have applications to
  2218   cardinal arithmetic.
  2219 
  2220 \item Theory \texttt{OrderType} defines order types.  Every wellordering is
  2221   equivalent to a unique ordinal, which is its order type.
  2222 
  2223 \item Theory \texttt{Cardinal} defines equipollence and cardinal numbers.
  2224  
  2225 \item Theory \texttt{CardinalArith} defines cardinal addition and
  2226   multiplication, and proves their elementary laws.  It proves that there
  2227   is no greatest cardinal.  It also proves a deep result, namely
  2228   $\kappa\otimes\kappa=\kappa$ for every infinite cardinal~$\kappa$; see
  2229   Kunen~\cite[page 29]{kunen80}.  None of these results assume the Axiom of
  2230   Choice, which complicates their proofs considerably.  
  2231 \end{itemize}
  2232 
  2233 The following developments involve the Axiom of Choice (AC):
  2234 \begin{itemize}
  2235 \item Theory \texttt{AC} asserts the Axiom of Choice and proves some simple
  2236   equivalent forms.
  2237 
  2238 \item Theory \texttt{Zorn} proves Hausdorff's Maximal Principle, Zorn's Lemma
  2239   and the Wellordering Theorem, following Abrial and
  2240   Laffitte~\cite{abrial93}.
  2241 
  2242 \item Theory \verb|Cardinal_AC| uses AC to prove simplified theorems about
  2243   the cardinals.  It also proves a theorem needed to justify
  2244   infinitely branching datatype declarations: if $\kappa$ is an infinite
  2245   cardinal and $|X(\alpha)| \le \kappa$ for all $\alpha<\kappa$ then
  2246   $|\union\sb{\alpha<\kappa} X(\alpha)| \le \kappa$.
  2247 
  2248 \item Theory \texttt{InfDatatype} proves theorems to justify infinitely
  2249   branching datatypes.  Arbitrary index sets are allowed, provided their
  2250   cardinalities have an upper bound.  The theory also justifies some
  2251   unusual cases of finite branching, involving the finite powerset operator
  2252   and the finite function space operator.
  2253 \end{itemize}
  2254 
  2255 
  2256 
  2257 \section{The examples directories}
  2258 Directory \texttt{HOL/IMP} contains a mechanised version of a semantic
  2259 equivalence proof taken from Winskel~\cite{winskel93}.  It formalises the
  2260 denotational and operational semantics of a simple while-language, then
  2261 proves the two equivalent.  It contains several datatype and inductive
  2262 definitions, and demonstrates their use.
  2263 
  2264 The directory \texttt{ZF/ex} contains further developments in {\ZF} set
  2265 theory.  Here is an overview; see the files themselves for more details.  I
  2266 describe much of this material in other
  2267 publications~\cite{paulson-set-I,paulson-set-II,paulson-CADE}. 
  2268 \begin{itemize}
  2269 \item File \texttt{misc.ML} contains miscellaneous examples such as
  2270   Cantor's Theorem, the Schr\"oder-Bernstein Theorem and the `Composition
  2271   of homomorphisms' challenge~\cite{boyer86}.
  2272 
  2273 \item Theory \texttt{Ramsey} proves the finite exponent 2 version of
  2274   Ramsey's Theorem, following Basin and Kaufmann's
  2275   presentation~\cite{basin91}.
  2276 
  2277 \item Theory \texttt{Integ} develops a theory of the integers as
  2278   equivalence classes of pairs of natural numbers.
  2279 
  2280 \item Theory \texttt{Primrec} develops some computation theory.  It
  2281   inductively defines the set of primitive recursive functions and presents a
  2282   proof that Ackermann's function is not primitive recursive.
  2283 
  2284 \item Theory \texttt{Primes} defines the Greatest Common Divisor of two
  2285   natural numbers and and the ``divides'' relation.
  2286 
  2287 \item Theory \texttt{Bin} defines a datatype for two's complement binary
  2288   integers, then proves rewrite rules to perform binary arithmetic.  For
  2289   instance, $1359\times {-}2468 = {-}3354012$ takes under 14 seconds.
  2290 
  2291 \item Theory \texttt{BT} defines the recursive data structure ${\tt
  2292     bt}(A)$, labelled binary trees.
  2293 
  2294 \item Theory \texttt{Term} defines a recursive data structure for terms
  2295   and term lists.  These are simply finite branching trees.
  2296 
  2297 \item Theory \texttt{TF} defines primitives for solving mutually
  2298   recursive equations over sets.  It constructs sets of trees and forests
  2299   as an example, including induction and recursion rules that handle the
  2300   mutual recursion.
  2301 
  2302 \item Theory \texttt{Prop} proves soundness and completeness of
  2303   propositional logic~\cite{paulson-set-II}.  This illustrates datatype
  2304   definitions, inductive definitions, structural induction and rule
  2305   induction.
  2306 
  2307 \item Theory \texttt{ListN} inductively defines the lists of $n$
  2308   elements~\cite{paulin92}.
  2309 
  2310 \item Theory \texttt{Acc} inductively defines the accessible part of a
  2311   relation~\cite{paulin92}.
  2312 
  2313 \item Theory \texttt{Comb} defines the datatype of combinators and
  2314   inductively defines contraction and parallel contraction.  It goes on to
  2315   prove the Church-Rosser Theorem.  This case study follows Camilleri and
  2316   Melham~\cite{camilleri92}.
  2317 
  2318 \item Theory \texttt{LList} defines lazy lists and a coinduction
  2319   principle for proving equations between them.
  2320 \end{itemize}
  2321 
  2322 
  2323 \section{A proof about powersets}\label{sec:ZF-pow-example}
  2324 To demonstrate high-level reasoning about subsets, let us prove the
  2325 equation ${{\tt Pow}(A)\cap {\tt Pow}(B)}= {\tt Pow}(A\cap B)$.  Compared
  2326 with first-order logic, set theory involves a maze of rules, and theorems
  2327 have many different proofs.  Attempting other proofs of the theorem might
  2328 be instructive.  This proof exploits the lattice properties of
  2329 intersection.  It also uses the monotonicity of the powerset operation,
  2330 from \texttt{ZF/mono.ML}:
  2331 \begin{ttbox}
  2332 \tdx{Pow_mono}      A<=B ==> Pow(A) <= Pow(B)
  2333 \end{ttbox}
  2334 We enter the goal and make the first step, which breaks the equation into
  2335 two inclusions by extensionality:\index{*equalityI theorem}
  2336 \begin{ttbox}
  2337 Goal "Pow(A Int B) = Pow(A) Int Pow(B)";
  2338 {\out Level 0}
  2339 {\out Pow(A Int B) = Pow(A) Int Pow(B)}
  2340 {\out  1. Pow(A Int B) = Pow(A) Int Pow(B)}
  2341 \ttbreak
  2342 by (resolve_tac [equalityI] 1);
  2343 {\out Level 1}
  2344 {\out Pow(A Int B) = Pow(A) Int Pow(B)}
  2345 {\out  1. Pow(A Int B) <= Pow(A) Int Pow(B)}
  2346 {\out  2. Pow(A) Int Pow(B) <= Pow(A Int B)}
  2347 \end{ttbox}
  2348 Both inclusions could be tackled straightforwardly using \texttt{subsetI}.
  2349 A shorter proof results from noting that intersection forms the greatest
  2350 lower bound:\index{*Int_greatest theorem}
  2351 \begin{ttbox}
  2352 by (resolve_tac [Int_greatest] 1);
  2353 {\out Level 2}
  2354 {\out Pow(A Int B) = Pow(A) Int Pow(B)}
  2355 {\out  1. Pow(A Int B) <= Pow(A)}
  2356 {\out  2. Pow(A Int B) <= Pow(B)}
  2357 {\out  3. Pow(A) Int Pow(B) <= Pow(A Int B)}
  2358 \end{ttbox}
  2359 Subgoal~1 follows by applying the monotonicity of \texttt{Pow} to $A\int
  2360 B\subseteq A$; subgoal~2 follows similarly:
  2361 \index{*Int_lower1 theorem}\index{*Int_lower2 theorem}
  2362 \begin{ttbox}
  2363 by (resolve_tac [Int_lower1 RS Pow_mono] 1);
  2364 {\out Level 3}
  2365 {\out Pow(A Int B) = Pow(A) Int Pow(B)}
  2366 {\out  1. Pow(A Int B) <= Pow(B)}
  2367 {\out  2. Pow(A) Int Pow(B) <= Pow(A Int B)}
  2368 \ttbreak
  2369 by (resolve_tac [Int_lower2 RS Pow_mono] 1);
  2370 {\out Level 4}
  2371 {\out Pow(A Int B) = Pow(A) Int Pow(B)}
  2372 {\out  1. Pow(A) Int Pow(B) <= Pow(A Int B)}
  2373 \end{ttbox}
  2374 We are left with the opposite inclusion, which we tackle in the
  2375 straightforward way:\index{*subsetI theorem}
  2376 \begin{ttbox}
  2377 by (resolve_tac [subsetI] 1);
  2378 {\out Level 5}
  2379 {\out Pow(A Int B) = Pow(A) Int Pow(B)}
  2380 {\out  1. !!x. x : Pow(A) Int Pow(B) ==> x : Pow(A Int B)}
  2381 \end{ttbox}
  2382 The subgoal is to show $x\in {\tt Pow}(A\cap B)$ assuming $x\in{\tt
  2383 Pow}(A)\cap {\tt Pow}(B)$; eliminating this assumption produces two
  2384 subgoals.  The rule \tdx{IntE} treats the intersection like a conjunction
  2385 instead of unfolding its definition.
  2386 \begin{ttbox}
  2387 by (eresolve_tac [IntE] 1);
  2388 {\out Level 6}
  2389 {\out Pow(A Int B) = Pow(A) Int Pow(B)}
  2390 {\out  1. !!x. [| x : Pow(A); x : Pow(B) |] ==> x : Pow(A Int B)}
  2391 \end{ttbox}
  2392 The next step replaces the \texttt{Pow} by the subset
  2393 relation~($\subseteq$).\index{*PowI theorem}
  2394 \begin{ttbox}
  2395 by (resolve_tac [PowI] 1);
  2396 {\out Level 7}
  2397 {\out Pow(A Int B) = Pow(A) Int Pow(B)}
  2398 {\out  1. !!x. [| x : Pow(A); x : Pow(B) |] ==> x <= A Int B}
  2399 \end{ttbox}
  2400 We perform the same replacement in the assumptions.  This is a good
  2401 demonstration of the tactic \ttindex{dresolve_tac}:\index{*PowD theorem}
  2402 \begin{ttbox}
  2403 by (REPEAT (dresolve_tac [PowD] 1));
  2404 {\out Level 8}
  2405 {\out Pow(A Int B) = Pow(A) Int Pow(B)}
  2406 {\out  1. !!x. [| x <= A; x <= B |] ==> x <= A Int B}
  2407 \end{ttbox}
  2408 The assumptions are that $x$ is a lower bound of both $A$ and~$B$, but
  2409 $A\int B$ is the greatest lower bound:\index{*Int_greatest theorem}
  2410 \begin{ttbox}
  2411 by (resolve_tac [Int_greatest] 1);
  2412 {\out Level 9}
  2413 {\out Pow(A Int B) = Pow(A) Int Pow(B)}
  2414 {\out  1. !!x. [| x <= A; x <= B |] ==> x <= A}
  2415 {\out  2. !!x. [| x <= A; x <= B |] ==> x <= B}
  2416 \end{ttbox}
  2417 To conclude the proof, we clear up the trivial subgoals:
  2418 \begin{ttbox}
  2419 by (REPEAT (assume_tac 1));
  2420 {\out Level 10}
  2421 {\out Pow(A Int B) = Pow(A) Int Pow(B)}
  2422 {\out No subgoals!}
  2423 \end{ttbox}
  2424 \medskip
  2425 We could have performed this proof in one step by applying
  2426 \ttindex{Blast_tac}.  Let us
  2427 go back to the start:
  2428 \begin{ttbox}
  2429 choplev 0;
  2430 {\out Level 0}
  2431 {\out Pow(A Int B) = Pow(A) Int Pow(B)}
  2432 {\out  1. Pow(A Int B) = Pow(A) Int Pow(B)}
  2433 by (Blast_tac 1);
  2434 {\out Depth = 0}
  2435 {\out Depth = 1}
  2436 {\out Depth = 2}
  2437 {\out Depth = 3}
  2438 {\out Level 1}
  2439 {\out Pow(A Int B) = Pow(A) Int Pow(B)}
  2440 {\out No subgoals!}
  2441 \end{ttbox}
  2442 Past researchers regarded this as a difficult proof, as indeed it is if all
  2443 the symbols are replaced by their definitions.
  2444 \goodbreak
  2445 
  2446 \section{Monotonicity of the union operator}
  2447 For another example, we prove that general union is monotonic:
  2448 ${C\subseteq D}$ implies $\bigcup(C)\subseteq \bigcup(D)$.  To begin, we
  2449 tackle the inclusion using \tdx{subsetI}:
  2450 \begin{ttbox}
  2451 Goal "C<=D ==> Union(C) <= Union(D)";
  2452 {\out Level 0}
  2453 {\out C <= D ==> Union(C) <= Union(D)}
  2454 {\out  1. C <= D ==> Union(C) <= Union(D)}
  2455 \ttbreak
  2456 by (resolve_tac [subsetI] 1);
  2457 {\out Level 1}
  2458 {\out C <= D ==> Union(C) <= Union(D)}
  2459 {\out  1. !!x. [| C <= D; x : Union(C) |] ==> x : Union(D)}
  2460 \end{ttbox}
  2461 Big union is like an existential quantifier --- the occurrence in the
  2462 assumptions must be eliminated early, since it creates parameters.
  2463 \index{*UnionE theorem}
  2464 \begin{ttbox}
  2465 by (eresolve_tac [UnionE] 1);
  2466 {\out Level 2}
  2467 {\out C <= D ==> Union(C) <= Union(D)}
  2468 {\out  1. !!x B. [| C <= D; x : B; B : C |] ==> x : Union(D)}
  2469 \end{ttbox}
  2470 Now we may apply \tdx{UnionI}, which creates an unknown involving the
  2471 parameters.  To show $x\in \bigcup(D)$ it suffices to show that $x$ belongs
  2472 to some element, say~$\Var{B2}(x,B)$, of~$D$.
  2473 \begin{ttbox}
  2474 by (resolve_tac [UnionI] 1);
  2475 {\out Level 3}
  2476 {\out C <= D ==> Union(C) <= Union(D)}
  2477 {\out  1. !!x B. [| C <= D; x : B; B : C |] ==> ?B2(x,B) : D}
  2478 {\out  2. !!x B. [| C <= D; x : B; B : C |] ==> x : ?B2(x,B)}
  2479 \end{ttbox}
  2480 Combining \tdx{subsetD} with the assumption $C\subseteq D$ yields 
  2481 $\Var{a}\in C \Imp \Var{a}\in D$, which reduces subgoal~1.  Note that
  2482 \texttt{eresolve_tac} has removed that assumption.
  2483 \begin{ttbox}
  2484 by (eresolve_tac [subsetD] 1);
  2485 {\out Level 4}
  2486 {\out C <= D ==> Union(C) <= Union(D)}
  2487 {\out  1. !!x B. [| x : B; B : C |] ==> ?B2(x,B) : C}
  2488 {\out  2. !!x B. [| C <= D; x : B; B : C |] ==> x : ?B2(x,B)}
  2489 \end{ttbox}
  2490 The rest is routine.  Observe how~$\Var{B2}(x,B)$ is instantiated.
  2491 \begin{ttbox}
  2492 by (assume_tac 1);
  2493 {\out Level 5}
  2494 {\out C <= D ==> Union(C) <= Union(D)}
  2495 {\out  1. !!x B. [| C <= D; x : B; B : C |] ==> x : B}
  2496 by (assume_tac 1);
  2497 {\out Level 6}
  2498 {\out C <= D ==> Union(C) <= Union(D)}
  2499 {\out No subgoals!}
  2500 \end{ttbox}
  2501 Again, \ttindex{Blast_tac} can prove the theorem in one step.
  2502 \begin{ttbox}
  2503 by (Blast_tac 1);
  2504 {\out Depth = 0}
  2505 {\out Depth = 1}
  2506 {\out Depth = 2}
  2507 {\out Level 1}
  2508 {\out C <= D ==> Union(C) <= Union(D)}
  2509 {\out No subgoals!}
  2510 \end{ttbox}
  2511 
  2512 The file \texttt{ZF/equalities.ML} has many similar proofs.  Reasoning about
  2513 general intersection can be difficult because of its anomalous behaviour on
  2514 the empty set.  However, \ttindex{Blast_tac} copes well with these.  Here is
  2515 a typical example, borrowed from Devlin~\cite[page 12]{devlin79}:
  2516 \begin{ttbox}
  2517 a:C ==> (INT x:C. A(x) Int B(x)) = (INT x:C. A(x)) Int (INT x:C. B(x))
  2518 \end{ttbox}
  2519 In traditional notation this is
  2520 \[ a\in C \,\Imp\, \inter@{x\in C} \Bigl(A(x) \int B(x)\Bigr) =        
  2521        \Bigl(\inter@{x\in C} A(x)\Bigr)  \int  
  2522        \Bigl(\inter@{x\in C} B(x)\Bigr)  \]
  2523 
  2524 \section{Low-level reasoning about functions}
  2525 The derived rules \texttt{lamI}, \texttt{lamE}, \texttt{lam_type}, \texttt{beta}
  2526 and \texttt{eta} support reasoning about functions in a
  2527 $\lambda$-calculus style.  This is generally easier than regarding
  2528 functions as sets of ordered pairs.  But sometimes we must look at the
  2529 underlying representation, as in the following proof
  2530 of~\tdx{fun_disjoint_apply1}.  This states that if $f$ and~$g$ are
  2531 functions with disjoint domains~$A$ and~$C$, and if $a\in A$, then
  2532 $(f\un g)`a = f`a$:
  2533 \begin{ttbox}
  2534 Goal "[| a:A;  f: A->B;  g: C->D;  A Int C = 0 |] ==>  \ttback
  2535 \ttback    (f Un g)`a = f`a";
  2536 {\out Level 0}
  2537 {\out [| a : A; f : A -> B; g : C -> D; A Int C = 0 |]}
  2538 {\out ==> (f Un g) ` a = f ` a}
  2539 {\out  1. [| a : A; f : A -> B; g : C -> D; A Int C = 0 |]}
  2540 {\out     ==> (f Un g) ` a = f ` a}
  2541 \end{ttbox}
  2542 Using \tdx{apply_equality}, we reduce the equality to reasoning about
  2543 ordered pairs.  The second subgoal is to verify that $f\un g$ is a function.
  2544 To save space, the assumptions will be abbreviated below.
  2545 \begin{ttbox}
  2546 by (resolve_tac [apply_equality] 1);
  2547 {\out Level 1}
  2548 {\out [| \ldots |] ==> (f Un g) ` a = f ` a}
  2549 {\out  1. [| \ldots |] ==> <a,f ` a> : f Un g}
  2550 {\out  2. [| \ldots |] ==> f Un g : (PROD x:?A. ?B(x))}
  2551 \end{ttbox}
  2552 We must show that the pair belongs to~$f$ or~$g$; by~\tdx{UnI1} we
  2553 choose~$f$:
  2554 \begin{ttbox}
  2555 by (resolve_tac [UnI1] 1);
  2556 {\out Level 2}
  2557 {\out [| \ldots |] ==> (f Un g) ` a = f ` a}
  2558 {\out  1. [| \ldots |] ==> <a,f ` a> : f}
  2559 {\out  2. [| \ldots |] ==> f Un g : (PROD x:?A. ?B(x))}
  2560 \end{ttbox}
  2561 To show $\pair{a,f`a}\in f$ we use \tdx{apply_Pair}, which is
  2562 essentially the converse of \tdx{apply_equality}:
  2563 \begin{ttbox}
  2564 by (resolve_tac [apply_Pair] 1);
  2565 {\out Level 3}
  2566 {\out [| \ldots |] ==> (f Un g) ` a = f ` a}
  2567 {\out  1. [| \ldots |] ==> f : (PROD x:?A2. ?B2(x))}
  2568 {\out  2. [| \ldots |] ==> a : ?A2}
  2569 {\out  3. [| \ldots |] ==> f Un g : (PROD x:?A. ?B(x))}
  2570 \end{ttbox}
  2571 Using the assumptions $f\in A\to B$ and $a\in A$, we solve the two subgoals
  2572 from \tdx{apply_Pair}.  Recall that a $\Pi$-set is merely a generalized
  2573 function space, and observe that~{\tt?A2} is instantiated to~\texttt{A}.
  2574 \begin{ttbox}
  2575 by (assume_tac 1);
  2576 {\out Level 4}
  2577 {\out [| \ldots |] ==> (f Un g) ` a = f ` a}
  2578 {\out  1. [| \ldots |] ==> a : A}
  2579 {\out  2. [| \ldots |] ==> f Un g : (PROD x:?A. ?B(x))}
  2580 by (assume_tac 1);
  2581 {\out Level 5}
  2582 {\out [| \ldots |] ==> (f Un g) ` a = f ` a}
  2583 {\out  1. [| \ldots |] ==> f Un g : (PROD x:?A. ?B(x))}
  2584 \end{ttbox}
  2585 To construct functions of the form $f\un g$, we apply
  2586 \tdx{fun_disjoint_Un}:
  2587 \begin{ttbox}
  2588 by (resolve_tac [fun_disjoint_Un] 1);
  2589 {\out Level 6}
  2590 {\out [| \ldots |] ==> (f Un g) ` a = f ` a}
  2591 {\out  1. [| \ldots |] ==> f : ?A3 -> ?B3}
  2592 {\out  2. [| \ldots |] ==> g : ?C3 -> ?D3}
  2593 {\out  3. [| \ldots |] ==> ?A3 Int ?C3 = 0}
  2594 \end{ttbox}
  2595 The remaining subgoals are instances of the assumptions.  Again, observe how
  2596 unknowns are instantiated:
  2597 \begin{ttbox}
  2598 by (assume_tac 1);
  2599 {\out Level 7}
  2600 {\out [| \ldots |] ==> (f Un g) ` a = f ` a}
  2601 {\out  1. [| \ldots |] ==> g : ?C3 -> ?D3}
  2602 {\out  2. [| \ldots |] ==> A Int ?C3 = 0}
  2603 by (assume_tac 1);
  2604 {\out Level 8}
  2605 {\out [| \ldots |] ==> (f Un g) ` a = f ` a}
  2606 {\out  1. [| \ldots |] ==> A Int C = 0}
  2607 by (assume_tac 1);
  2608 {\out Level 9}
  2609 {\out [| \ldots |] ==> (f Un g) ` a = f ` a}
  2610 {\out No subgoals!}
  2611 \end{ttbox}
  2612 See the files \texttt{ZF/func.ML} and \texttt{ZF/WF.ML} for more
  2613 examples of reasoning about functions.
  2614 
  2615 \index{set theory|)}