src/HOL/Tools/ATP/atp_translate.ML
author blanchet
Wed, 08 Jun 2011 08:47:43 +0200
changeset 44105 a1a48c69d623
parent 44104 ab9addf5165a
child 44106 096237fe70f1
permissions -rw-r--r--
don't needlessly presimplify -- makes ATP problem preparation much faster
     1 (*  Title:      HOL/Tools/Sledgehammer/sledgehammer_atp_translate.ML
     2     Author:     Fabian Immler, TU Muenchen
     3     Author:     Makarius
     4     Author:     Jasmin Blanchette, TU Muenchen
     5 
     6 Translation of HOL to FOL for Sledgehammer.
     7 *)
     8 
     9 signature ATP_TRANSLATE =
    10 sig
    11   type 'a fo_term = 'a ATP_Problem.fo_term
    12   type connective = ATP_Problem.connective
    13   type ('a, 'b, 'c) formula = ('a, 'b, 'c) ATP_Problem.formula
    14   type format = ATP_Problem.format
    15   type formula_kind = ATP_Problem.formula_kind
    16   type 'a problem = 'a ATP_Problem.problem
    17 
    18   type name = string * string
    19 
    20   datatype type_literal =
    21     TyLitVar of name * name |
    22     TyLitFree of name * name
    23 
    24   datatype arity_literal =
    25     TConsLit of name * name * name list |
    26     TVarLit of name * name
    27 
    28   type arity_clause =
    29     {name: string,
    30      prem_lits: arity_literal list,
    31      concl_lits: arity_literal}
    32 
    33   type class_rel_clause =
    34     {name: string,
    35      subclass: name,
    36      superclass: name}
    37 
    38   datatype combterm =
    39     CombConst of name * typ * typ list |
    40     CombVar of name * typ |
    41     CombApp of combterm * combterm
    42 
    43   datatype locality = General | Intro | Elim | Simp | Local | Assum | Chained
    44 
    45   datatype polymorphism = Polymorphic | Monomorphic | Mangled_Monomorphic
    46   datatype type_level =
    47     All_Types | Nonmonotonic_Types | Finite_Types | Const_Arg_Types | No_Types
    48   datatype type_heaviness = Heavyweight | Lightweight
    49 
    50   datatype type_sys =
    51     Simple_Types of type_level |
    52     Preds of polymorphism * type_level * type_heaviness |
    53     Tags of polymorphism * type_level * type_heaviness
    54 
    55   val bound_var_prefix : string
    56   val schematic_var_prefix: string
    57   val fixed_var_prefix: string
    58   val tvar_prefix: string
    59   val tfree_prefix: string
    60   val const_prefix: string
    61   val type_const_prefix: string
    62   val class_prefix: string
    63   val skolem_const_prefix : string
    64   val old_skolem_const_prefix : string
    65   val new_skolem_const_prefix : string
    66   val type_decl_prefix : string
    67   val sym_decl_prefix : string
    68   val preds_sym_formula_prefix : string
    69   val lightweight_tags_sym_formula_prefix : string
    70   val fact_prefix : string
    71   val conjecture_prefix : string
    72   val helper_prefix : string
    73   val class_rel_clause_prefix : string
    74   val arity_clause_prefix : string
    75   val tfree_clause_prefix : string
    76   val typed_helper_suffix : string
    77   val untyped_helper_suffix : string
    78   val type_tag_idempotence_helper_name : string
    79   val predicator_name : string
    80   val app_op_name : string
    81   val type_tag_name : string
    82   val type_pred_name : string
    83   val simple_type_prefix : string
    84   val prefixed_predicator_name : string
    85   val prefixed_app_op_name : string
    86   val prefixed_type_tag_name : string
    87   val ascii_of: string -> string
    88   val unascii_of: string -> string
    89   val strip_prefix_and_unascii : string -> string -> string option
    90   val proxy_table : (string * (string * (thm * (string * string)))) list
    91   val proxify_const : string -> (string * string) option
    92   val invert_const: string -> string
    93   val unproxify_const: string -> string
    94   val make_bound_var : string -> string
    95   val make_schematic_var : string * int -> string
    96   val make_fixed_var : string -> string
    97   val make_schematic_type_var : string * int -> string
    98   val make_fixed_type_var : string -> string
    99   val make_fixed_const : string -> string
   100   val make_fixed_type_const : string -> string
   101   val make_type_class : string -> string
   102   val new_skolem_var_name_from_const : string -> string
   103   val num_type_args : theory -> string -> int
   104   val atp_irrelevant_consts : string list
   105   val atp_schematic_consts_of : term -> typ list Symtab.table
   106   val make_arity_clauses :
   107     theory -> string list -> class list -> class list * arity_clause list
   108   val make_class_rel_clauses :
   109     theory -> class list -> class list -> class_rel_clause list
   110   val combtyp_of : combterm -> typ
   111   val strip_combterm_comb : combterm -> combterm * combterm list
   112   val atyps_of : typ -> typ list
   113   val combterm_from_term :
   114     theory -> (string * typ) list -> term -> combterm * typ list
   115   val is_locality_global : locality -> bool
   116   val type_sys_from_string : string -> type_sys
   117   val polymorphism_of_type_sys : type_sys -> polymorphism
   118   val level_of_type_sys : type_sys -> type_level
   119   val is_type_sys_virtually_sound : type_sys -> bool
   120   val is_type_sys_fairly_sound : type_sys -> bool
   121   val choose_format : format list -> type_sys -> format * type_sys
   122   val mk_aconns :
   123     connective -> ('a, 'b, 'c) formula list -> ('a, 'b, 'c) formula
   124   val unmangled_const_name : string -> string
   125   val unmangled_const : string -> string * string fo_term list
   126   val helper_table : ((string * bool) * thm list) list
   127   val should_specialize_helper : type_sys -> term -> bool
   128   val tfree_classes_of_terms : term list -> string list
   129   val tvar_classes_of_terms : term list -> string list
   130   val type_constrs_of_terms : theory -> term list -> string list
   131   val prepare_atp_problem :
   132     Proof.context -> format -> formula_kind -> formula_kind -> type_sys
   133     -> bool -> bool -> term list -> term -> ((string * locality) * term) list
   134     -> string problem * string Symtab.table * int * int
   135        * (string * locality) list vector * int list * int Symtab.table
   136   val atp_problem_weights : string problem -> (string * real) list
   137 end;
   138 
   139 structure ATP_Translate : ATP_TRANSLATE =
   140 struct
   141 
   142 open ATP_Util
   143 open ATP_Problem
   144 
   145 type name = string * string
   146 
   147 (* experimental *)
   148 val generate_useful_info = false
   149 
   150 fun useful_isabelle_info s =
   151   if generate_useful_info then
   152     SOME (ATerm ("[]", [ATerm ("isabelle_" ^ s, [])]))
   153   else
   154     NONE
   155 
   156 val intro_info = useful_isabelle_info "intro"
   157 val elim_info = useful_isabelle_info "elim"
   158 val simp_info = useful_isabelle_info "simp"
   159 
   160 val bound_var_prefix = "B_"
   161 val schematic_var_prefix = "V_"
   162 val fixed_var_prefix = "v_"
   163 
   164 val tvar_prefix = "T_"
   165 val tfree_prefix = "t_"
   166 
   167 val const_prefix = "c_"
   168 val type_const_prefix = "tc_"
   169 val class_prefix = "cl_"
   170 
   171 val skolem_const_prefix = "Sledgehammer" ^ Long_Name.separator ^ "Sko"
   172 val old_skolem_const_prefix = skolem_const_prefix ^ "o"
   173 val new_skolem_const_prefix = skolem_const_prefix ^ "n"
   174 
   175 val type_decl_prefix = "ty_"
   176 val sym_decl_prefix = "sy_"
   177 val preds_sym_formula_prefix = "psy_"
   178 val lightweight_tags_sym_formula_prefix = "tsy_"
   179 val fact_prefix = "fact_"
   180 val conjecture_prefix = "conj_"
   181 val helper_prefix = "help_"
   182 val class_rel_clause_prefix = "clar_"
   183 val arity_clause_prefix = "arity_"
   184 val tfree_clause_prefix = "tfree_"
   185 
   186 val typed_helper_suffix = "_T"
   187 val untyped_helper_suffix = "_U"
   188 val type_tag_idempotence_helper_name = helper_prefix ^ "ti_idem"
   189 
   190 val predicator_name = "hBOOL"
   191 val app_op_name = "hAPP"
   192 val type_tag_name = "ti"
   193 val type_pred_name = "is"
   194 val simple_type_prefix = "ty_"
   195 
   196 val prefixed_predicator_name = const_prefix ^ predicator_name
   197 val prefixed_app_op_name = const_prefix ^ app_op_name
   198 val prefixed_type_tag_name = const_prefix ^ type_tag_name
   199 
   200 (* Freshness almost guaranteed! *)
   201 val sledgehammer_weak_prefix = "Sledgehammer:"
   202 
   203 (*Escaping of special characters.
   204   Alphanumeric characters are left unchanged.
   205   The character _ goes to __
   206   Characters in the range ASCII space to / go to _A to _P, respectively.
   207   Other characters go to _nnn where nnn is the decimal ASCII code.*)
   208 val upper_a_minus_space = Char.ord #"A" - Char.ord #" "
   209 
   210 fun stringN_of_int 0 _ = ""
   211   | stringN_of_int k n =
   212     stringN_of_int (k - 1) (n div 10) ^ string_of_int (n mod 10)
   213 
   214 fun ascii_of_char c =
   215   if Char.isAlphaNum c then
   216     String.str c
   217   else if c = #"_" then
   218     "__"
   219   else if #" " <= c andalso c <= #"/" then
   220     "_" ^ String.str (Char.chr (Char.ord c + upper_a_minus_space))
   221   else
   222     (* fixed width, in case more digits follow *)
   223     "_" ^ stringN_of_int 3 (Char.ord c)
   224 
   225 val ascii_of = String.translate ascii_of_char
   226 
   227 (** Remove ASCII armoring from names in proof files **)
   228 
   229 (* We don't raise error exceptions because this code can run inside a worker
   230    thread. Also, the errors are impossible. *)
   231 val unascii_of =
   232   let
   233     fun un rcs [] = String.implode(rev rcs)
   234       | un rcs [#"_"] = un (#"_" :: rcs) [] (* ERROR *)
   235         (* Three types of _ escapes: __, _A to _P, _nnn *)
   236       | un rcs (#"_" :: #"_" :: cs) = un (#"_"::rcs) cs
   237       | un rcs (#"_" :: c :: cs) =
   238         if #"A" <= c andalso c<= #"P" then
   239           (* translation of #" " to #"/" *)
   240           un (Char.chr (Char.ord c - upper_a_minus_space) :: rcs) cs
   241         else
   242           let val digits = List.take (c::cs, 3) handle Subscript => [] in
   243             case Int.fromString (String.implode digits) of
   244               SOME n => un (Char.chr n :: rcs) (List.drop (cs, 2))
   245             | NONE => un (c:: #"_"::rcs) cs (* ERROR *)
   246           end
   247       | un rcs (c :: cs) = un (c :: rcs) cs
   248   in un [] o String.explode end
   249 
   250 (* If string s has the prefix s1, return the result of deleting it,
   251    un-ASCII'd. *)
   252 fun strip_prefix_and_unascii s1 s =
   253   if String.isPrefix s1 s then
   254     SOME (unascii_of (String.extract (s, size s1, NONE)))
   255   else
   256     NONE
   257 
   258 val proxy_table =
   259   [("c_False", (@{const_name False}, (@{thm fFalse_def},
   260        ("fFalse", @{const_name ATP.fFalse})))),
   261    ("c_True", (@{const_name True}, (@{thm fTrue_def},
   262        ("fTrue", @{const_name ATP.fTrue})))),
   263    ("c_Not", (@{const_name Not}, (@{thm fNot_def},
   264        ("fNot", @{const_name ATP.fNot})))),
   265    ("c_conj", (@{const_name conj}, (@{thm fconj_def},
   266        ("fconj", @{const_name ATP.fconj})))),
   267    ("c_disj", (@{const_name disj}, (@{thm fdisj_def},
   268        ("fdisj", @{const_name ATP.fdisj})))),
   269    ("c_implies", (@{const_name implies}, (@{thm fimplies_def},
   270        ("fimplies", @{const_name ATP.fimplies})))),
   271    ("equal", (@{const_name HOL.eq}, (@{thm fequal_def},
   272        ("fequal", @{const_name ATP.fequal}))))]
   273 
   274 val proxify_const = AList.lookup (op =) proxy_table #> Option.map (snd o snd)
   275 
   276 (* Readable names for the more common symbolic functions. Do not mess with the
   277    table unless you know what you are doing. *)
   278 val const_trans_table =
   279   [(@{type_name Product_Type.prod}, "prod"),
   280    (@{type_name Sum_Type.sum}, "sum"),
   281    (@{const_name False}, "False"),
   282    (@{const_name True}, "True"),
   283    (@{const_name Not}, "Not"),
   284    (@{const_name conj}, "conj"),
   285    (@{const_name disj}, "disj"),
   286    (@{const_name implies}, "implies"),
   287    (@{const_name HOL.eq}, "equal"),
   288    (@{const_name If}, "If"),
   289    (@{const_name Set.member}, "member"),
   290    (@{const_name Meson.COMBI}, "COMBI"),
   291    (@{const_name Meson.COMBK}, "COMBK"),
   292    (@{const_name Meson.COMBB}, "COMBB"),
   293    (@{const_name Meson.COMBC}, "COMBC"),
   294    (@{const_name Meson.COMBS}, "COMBS")]
   295   |> Symtab.make
   296   |> fold (Symtab.update o swap o snd o snd o snd) proxy_table
   297 
   298 (* Invert the table of translations between Isabelle and ATPs. *)
   299 val const_trans_table_inv =
   300   const_trans_table |> Symtab.dest |> map swap |> Symtab.make
   301 val const_trans_table_unprox =
   302   Symtab.empty
   303   |> fold (fn (_, (isa, (_, (_, atp)))) => Symtab.update (atp, isa)) proxy_table
   304 
   305 val invert_const = perhaps (Symtab.lookup const_trans_table_inv)
   306 val unproxify_const = perhaps (Symtab.lookup const_trans_table_unprox)
   307 
   308 fun lookup_const c =
   309   case Symtab.lookup const_trans_table c of
   310     SOME c' => c'
   311   | NONE => ascii_of c
   312 
   313 (*Remove the initial ' character from a type variable, if it is present*)
   314 fun trim_type_var s =
   315   if s <> "" andalso String.sub(s,0) = #"'" then String.extract(s,1,NONE)
   316   else raise Fail ("trim_type: Malformed type variable encountered: " ^ s)
   317 
   318 fun ascii_of_indexname (v,0) = ascii_of v
   319   | ascii_of_indexname (v,i) = ascii_of v ^ "_" ^ string_of_int i
   320 
   321 fun make_bound_var x = bound_var_prefix ^ ascii_of x
   322 fun make_schematic_var v = schematic_var_prefix ^ ascii_of_indexname v
   323 fun make_fixed_var x = fixed_var_prefix ^ ascii_of x
   324 
   325 fun make_schematic_type_var (x,i) =
   326       tvar_prefix ^ (ascii_of_indexname (trim_type_var x, i))
   327 fun make_fixed_type_var x = tfree_prefix ^ (ascii_of (trim_type_var x))
   328 
   329 (* HOL.eq MUST BE "equal" because it's built into ATPs. *)
   330 fun make_fixed_const @{const_name HOL.eq} = "equal"
   331   | make_fixed_const c = const_prefix ^ lookup_const c
   332 
   333 fun make_fixed_type_const c = type_const_prefix ^ lookup_const c
   334 
   335 fun make_type_class clas = class_prefix ^ ascii_of clas
   336 
   337 fun new_skolem_var_name_from_const s =
   338   let val ss = s |> space_explode Long_Name.separator in
   339     nth ss (length ss - 2)
   340   end
   341 
   342 (* The number of type arguments of a constant, zero if it's monomorphic. For
   343    (instances of) Skolem pseudoconstants, this information is encoded in the
   344    constant name. *)
   345 fun num_type_args thy s =
   346   if String.isPrefix skolem_const_prefix s then
   347     s |> space_explode Long_Name.separator |> List.last |> Int.fromString |> the
   348   else
   349     (s, Sign.the_const_type thy s) |> Sign.const_typargs thy |> length
   350 
   351 (* These are either simplified away by "Meson.presimplify" (most of the time) or
   352    handled specially via "fFalse", "fTrue", ..., "fequal". *)
   353 val atp_irrelevant_consts =
   354   [@{const_name False}, @{const_name True}, @{const_name Not},
   355    @{const_name conj}, @{const_name disj}, @{const_name implies},
   356    @{const_name HOL.eq}, @{const_name If}, @{const_name Let}]
   357 
   358 val atp_monomorph_bad_consts =
   359   atp_irrelevant_consts @
   360   (* These are ignored anyway by the relevance filter (unless they appear in
   361      higher-order places) but not by the monomorphizer. *)
   362   [@{const_name all}, @{const_name "==>"}, @{const_name "=="},
   363    @{const_name Trueprop}, @{const_name All}, @{const_name Ex},
   364    @{const_name Ex1}, @{const_name Ball}, @{const_name Bex}]
   365 
   366 fun add_schematic_const (x as (_, T)) =
   367   Monomorph.typ_has_tvars T ? Symtab.insert_list (op =) x
   368 val add_schematic_consts_of =
   369   Term.fold_aterms (fn Const (x as (s, _)) =>
   370                        not (member (op =) atp_monomorph_bad_consts s)
   371                        ? add_schematic_const x
   372                       | _ => I)
   373 fun atp_schematic_consts_of t = add_schematic_consts_of t Symtab.empty
   374 
   375 (** Definitions and functions for FOL clauses and formulas for TPTP **)
   376 
   377 (* The first component is the type class; the second is a "TVar" or "TFree". *)
   378 datatype type_literal =
   379   TyLitVar of name * name |
   380   TyLitFree of name * name
   381 
   382 
   383 (** Isabelle arities **)
   384 
   385 datatype arity_literal =
   386   TConsLit of name * name * name list |
   387   TVarLit of name * name
   388 
   389 fun gen_TVars 0 = []
   390   | gen_TVars n = ("T_" ^ string_of_int n) :: gen_TVars (n-1)
   391 
   392 val type_class = the_single @{sort type}
   393 
   394 fun add_packed_sort tvar =
   395   fold (fn s => s <> type_class ? cons (`make_type_class s, `I tvar))
   396 
   397 type arity_clause =
   398   {name: string,
   399    prem_lits: arity_literal list,
   400    concl_lits: arity_literal}
   401 
   402 (* Arity of type constructor "tcon :: (arg1, ..., argN) res" *)
   403 fun make_axiom_arity_clause (tcons, name, (cls, args)) =
   404   let
   405     val tvars = gen_TVars (length args)
   406     val tvars_srts = ListPair.zip (tvars, args)
   407   in
   408     {name = name,
   409      prem_lits = [] |> fold (uncurry add_packed_sort) tvars_srts |> map TVarLit,
   410      concl_lits = TConsLit (`make_type_class cls,
   411                             `make_fixed_type_const tcons,
   412                             tvars ~~ tvars)}
   413   end
   414 
   415 fun arity_clause _ _ (_, []) = []
   416   | arity_clause seen n (tcons, ("HOL.type",_)::ars) =  (*ignore*)
   417       arity_clause seen n (tcons,ars)
   418   | arity_clause seen n (tcons, (ar as (class,_)) :: ars) =
   419       if member (op =) seen class then (*multiple arities for the same tycon, class pair*)
   420           make_axiom_arity_clause (tcons, lookup_const tcons ^ "_" ^ class ^ "_" ^ string_of_int n, ar) ::
   421           arity_clause seen (n+1) (tcons,ars)
   422       else
   423           make_axiom_arity_clause (tcons, lookup_const tcons ^ "_" ^ class, ar) ::
   424           arity_clause (class::seen) n (tcons,ars)
   425 
   426 fun multi_arity_clause [] = []
   427   | multi_arity_clause ((tcons, ars) :: tc_arlists) =
   428       arity_clause [] 1 (tcons, ars) @ multi_arity_clause tc_arlists
   429 
   430 (*Generate all pairs (tycon,class,sorts) such that tycon belongs to class in theory thy
   431   provided its arguments have the corresponding sorts.*)
   432 fun type_class_pairs thy tycons classes =
   433   let
   434     val alg = Sign.classes_of thy
   435     fun domain_sorts tycon = Sorts.mg_domain alg tycon o single
   436     fun add_class tycon class =
   437       cons (class, domain_sorts tycon class)
   438       handle Sorts.CLASS_ERROR _ => I
   439     fun try_classes tycon = (tycon, fold (add_class tycon) classes [])
   440   in map try_classes tycons end
   441 
   442 (*Proving one (tycon, class) membership may require proving others, so iterate.*)
   443 fun iter_type_class_pairs _ _ [] = ([], [])
   444   | iter_type_class_pairs thy tycons classes =
   445       let
   446         fun maybe_insert_class s =
   447           (s <> type_class andalso not (member (op =) classes s))
   448           ? insert (op =) s
   449         val cpairs = type_class_pairs thy tycons classes
   450         val newclasses =
   451           [] |> fold (fold (fold (fold maybe_insert_class) o snd) o snd) cpairs
   452         val (classes', cpairs') = iter_type_class_pairs thy tycons newclasses
   453       in (union (op =) classes' classes, union (op =) cpairs' cpairs) end
   454 
   455 fun make_arity_clauses thy tycons =
   456   iter_type_class_pairs thy tycons ##> multi_arity_clause
   457 
   458 
   459 (** Isabelle class relations **)
   460 
   461 type class_rel_clause =
   462   {name: string,
   463    subclass: name,
   464    superclass: name}
   465 
   466 (*Generate all pairs (sub,super) such that sub is a proper subclass of super in theory thy.*)
   467 fun class_pairs _ [] _ = []
   468   | class_pairs thy subs supers =
   469       let
   470         val class_less = Sorts.class_less (Sign.classes_of thy)
   471         fun add_super sub super = class_less (sub, super) ? cons (sub, super)
   472         fun add_supers sub = fold (add_super sub) supers
   473       in fold add_supers subs [] end
   474 
   475 fun make_class_rel_clause (sub,super) =
   476   {name = sub ^ "_" ^ super,
   477    subclass = `make_type_class sub,
   478    superclass = `make_type_class super}
   479 
   480 fun make_class_rel_clauses thy subs supers =
   481   map make_class_rel_clause (class_pairs thy subs supers)
   482 
   483 datatype combterm =
   484   CombConst of name * typ * typ list |
   485   CombVar of name * typ |
   486   CombApp of combterm * combterm
   487 
   488 fun combtyp_of (CombConst (_, T, _)) = T
   489   | combtyp_of (CombVar (_, T)) = T
   490   | combtyp_of (CombApp (t1, _)) = snd (dest_funT (combtyp_of t1))
   491 
   492 (*gets the head of a combinator application, along with the list of arguments*)
   493 fun strip_combterm_comb u =
   494     let fun stripc (CombApp(t,u), ts) = stripc (t, u::ts)
   495         |   stripc  x =  x
   496     in stripc(u,[]) end
   497 
   498 fun atyps_of T = fold_atyps (insert (op =)) T []
   499 
   500 fun new_skolem_const_name s num_T_args =
   501   [new_skolem_const_prefix, s, string_of_int num_T_args]
   502   |> space_implode Long_Name.separator
   503 
   504 (* Converts a term (with combinators) into a combterm. Also accumulates sort
   505    infomation. *)
   506 fun combterm_from_term thy bs (P $ Q) =
   507     let
   508       val (P', P_atomics_Ts) = combterm_from_term thy bs P
   509       val (Q', Q_atomics_Ts) = combterm_from_term thy bs Q
   510     in (CombApp (P', Q'), union (op =) P_atomics_Ts Q_atomics_Ts) end
   511   | combterm_from_term thy _ (Const (c, T)) =
   512     let
   513       val tvar_list =
   514         (if String.isPrefix old_skolem_const_prefix c then
   515            [] |> Term.add_tvarsT T |> map TVar
   516          else
   517            (c, T) |> Sign.const_typargs thy)
   518       val c' = CombConst (`make_fixed_const c, T, tvar_list)
   519     in (c', atyps_of T) end
   520   | combterm_from_term _ _ (Free (v, T)) =
   521     (CombConst (`make_fixed_var v, T, []), atyps_of T)
   522   | combterm_from_term _ _ (Var (v as (s, _), T)) =
   523     (if String.isPrefix Meson_Clausify.new_skolem_var_prefix s then
   524        let
   525          val Ts = T |> strip_type |> swap |> op ::
   526          val s' = new_skolem_const_name s (length Ts)
   527        in CombConst (`make_fixed_const s', T, Ts) end
   528      else
   529        CombVar ((make_schematic_var v, s), T), atyps_of T)
   530   | combterm_from_term _ bs (Bound j) =
   531     nth bs j
   532     |> (fn (s, T) => (CombConst (`make_bound_var s, T, []), atyps_of T))
   533   | combterm_from_term _ _ (Abs _) = raise Fail "HOL clause: Abs"
   534 
   535 datatype locality = General | Intro | Elim | Simp | Local | Assum | Chained
   536 
   537 (* (quasi-)underapproximation of the truth *)
   538 fun is_locality_global Local = false
   539   | is_locality_global Assum = false
   540   | is_locality_global Chained = false
   541   | is_locality_global _ = true
   542 
   543 datatype polymorphism = Polymorphic | Monomorphic | Mangled_Monomorphic
   544 datatype type_level =
   545   All_Types | Nonmonotonic_Types | Finite_Types | Const_Arg_Types | No_Types
   546 datatype type_heaviness = Heavyweight | Lightweight
   547 
   548 datatype type_sys =
   549   Simple_Types of type_level |
   550   Preds of polymorphism * type_level * type_heaviness |
   551   Tags of polymorphism * type_level * type_heaviness
   552 
   553 fun try_unsuffixes ss s =
   554   fold (fn s' => fn NONE => try (unsuffix s') s | some => some) ss NONE
   555 
   556 fun type_sys_from_string s =
   557   (case try (unprefix "poly_") s of
   558      SOME s => (SOME Polymorphic, s)
   559    | NONE =>
   560      case try (unprefix "mono_") s of
   561        SOME s => (SOME Monomorphic, s)
   562      | NONE =>
   563        case try (unprefix "mangled_") s of
   564          SOME s => (SOME Mangled_Monomorphic, s)
   565        | NONE => (NONE, s))
   566   ||> (fn s =>
   567           (* "_query" and "_bang" are for the ASCII-challenged Mirabelle. *)
   568           case try_unsuffixes ["?", "_query"] s of
   569             SOME s => (Nonmonotonic_Types, s)
   570           | NONE =>
   571             case try_unsuffixes ["!", "_bang"] s of
   572               SOME s => (Finite_Types, s)
   573             | NONE => (All_Types, s))
   574   ||> apsnd (fn s =>
   575                 case try (unsuffix "_heavy") s of
   576                   SOME s => (Heavyweight, s)
   577                 | NONE => (Lightweight, s))
   578   |> (fn (poly, (level, (heaviness, core))) =>
   579          case (core, (poly, level, heaviness)) of
   580            ("simple", (NONE, _, Lightweight)) => Simple_Types level
   581          | ("preds", (SOME poly, _, _)) => Preds (poly, level, heaviness)
   582          | ("tags", (SOME Polymorphic, All_Types, _)) =>
   583            Tags (Polymorphic, All_Types, heaviness)
   584          | ("tags", (SOME Polymorphic, _, _)) =>
   585            (* The actual light encoding is very unsound. *)
   586            Tags (Polymorphic, level, Heavyweight)
   587          | ("tags", (SOME poly, _, _)) => Tags (poly, level, heaviness)
   588          | ("args", (SOME poly, All_Types (* naja *), Lightweight)) =>
   589            Preds (poly, Const_Arg_Types, Lightweight)
   590          | ("erased", (NONE, All_Types (* naja *), Lightweight)) =>
   591            Preds (Polymorphic, No_Types, Lightweight)
   592          | _ => raise Same.SAME)
   593   handle Same.SAME => error ("Unknown type system: " ^ quote s ^ ".")
   594 
   595 fun polymorphism_of_type_sys (Simple_Types _) = Mangled_Monomorphic
   596   | polymorphism_of_type_sys (Preds (poly, _, _)) = poly
   597   | polymorphism_of_type_sys (Tags (poly, _, _)) = poly
   598 
   599 fun level_of_type_sys (Simple_Types level) = level
   600   | level_of_type_sys (Preds (_, level, _)) = level
   601   | level_of_type_sys (Tags (_, level, _)) = level
   602 
   603 fun heaviness_of_type_sys (Simple_Types _) = Heavyweight
   604   | heaviness_of_type_sys (Preds (_, _, heaviness)) = heaviness
   605   | heaviness_of_type_sys (Tags (_, _, heaviness)) = heaviness
   606 
   607 fun is_type_level_virtually_sound level =
   608   level = All_Types orelse level = Nonmonotonic_Types
   609 val is_type_sys_virtually_sound =
   610   is_type_level_virtually_sound o level_of_type_sys
   611 
   612 fun is_type_level_fairly_sound level =
   613   is_type_level_virtually_sound level orelse level = Finite_Types
   614 val is_type_sys_fairly_sound = is_type_level_fairly_sound o level_of_type_sys
   615 
   616 fun is_setting_higher_order THF (Simple_Types _) = true
   617   | is_setting_higher_order _ _ = false
   618 
   619 fun choose_format formats (Simple_Types level) =
   620     if member (op =) formats THF then (THF, Simple_Types level)
   621     else if member (op =) formats TFF then (TFF, Simple_Types level)
   622     else choose_format formats (Preds (Mangled_Monomorphic, level, Heavyweight))
   623   | choose_format formats type_sys =
   624     (case hd formats of
   625        CNF_UEQ =>
   626        (CNF_UEQ, case type_sys of
   627                    Preds stuff =>
   628                    (if is_type_sys_fairly_sound type_sys then Preds else Tags)
   629                        stuff
   630                  | _ => type_sys)
   631      | format => (format, type_sys))
   632 
   633 type translated_formula =
   634   {name: string,
   635    locality: locality,
   636    kind: formula_kind,
   637    combformula: (name, typ, combterm) formula,
   638    atomic_types: typ list}
   639 
   640 fun update_combformula f ({name, locality, kind, combformula, atomic_types}
   641                           : translated_formula) =
   642   {name = name, locality = locality, kind = kind, combformula = f combformula,
   643    atomic_types = atomic_types} : translated_formula
   644 
   645 fun fact_lift f ({combformula, ...} : translated_formula) = f combformula
   646 
   647 val type_instance = Sign.typ_instance o Proof_Context.theory_of
   648 
   649 fun insert_type ctxt get_T x xs =
   650   let val T = get_T x in
   651     if exists (curry (type_instance ctxt) T o get_T) xs then xs
   652     else x :: filter_out (curry (type_instance ctxt o swap) T o get_T) xs
   653   end
   654 
   655 (* The Booleans indicate whether all type arguments should be kept. *)
   656 datatype type_arg_policy =
   657   Explicit_Type_Args of bool |
   658   Mangled_Type_Args of bool |
   659   No_Type_Args
   660 
   661 fun should_drop_arg_type_args (Simple_Types _) =
   662     false (* since TFF doesn't support overloading *)
   663   | should_drop_arg_type_args type_sys =
   664     level_of_type_sys type_sys = All_Types andalso
   665     heaviness_of_type_sys type_sys = Heavyweight
   666 
   667 fun general_type_arg_policy (Tags (_, All_Types, Heavyweight)) = No_Type_Args
   668   | general_type_arg_policy type_sys =
   669     if level_of_type_sys type_sys = No_Types then
   670       No_Type_Args
   671     else if polymorphism_of_type_sys type_sys = Mangled_Monomorphic then
   672       Mangled_Type_Args (should_drop_arg_type_args type_sys)
   673     else
   674       Explicit_Type_Args (should_drop_arg_type_args type_sys)
   675 
   676 fun type_arg_policy type_sys s =
   677   if s = @{const_name HOL.eq} orelse
   678      (s = app_op_name andalso level_of_type_sys type_sys = Const_Arg_Types) then
   679     No_Type_Args
   680   else if s = type_tag_name then
   681     Explicit_Type_Args false
   682   else
   683     general_type_arg_policy type_sys
   684 
   685 (*Make literals for sorted type variables*)
   686 fun generic_add_sorts_on_type (_, []) = I
   687   | generic_add_sorts_on_type ((x, i), s :: ss) =
   688     generic_add_sorts_on_type ((x, i), ss)
   689     #> (if s = the_single @{sort HOL.type} then
   690           I
   691         else if i = ~1 then
   692           insert (op =) (TyLitFree (`make_type_class s, `make_fixed_type_var x))
   693         else
   694           insert (op =) (TyLitVar (`make_type_class s,
   695                                    (make_schematic_type_var (x, i), x))))
   696 fun add_sorts_on_tfree (TFree (s, S)) = generic_add_sorts_on_type ((s, ~1), S)
   697   | add_sorts_on_tfree _ = I
   698 fun add_sorts_on_tvar (TVar z) = generic_add_sorts_on_type z
   699   | add_sorts_on_tvar _ = I
   700 
   701 fun type_literals_for_types type_sys add_sorts_on_typ Ts =
   702   [] |> level_of_type_sys type_sys <> No_Types ? fold add_sorts_on_typ Ts
   703 
   704 fun mk_aconns c phis =
   705   let val (phis', phi') = split_last phis in
   706     fold_rev (mk_aconn c) phis' phi'
   707   end
   708 fun mk_ahorn [] phi = phi
   709   | mk_ahorn phis psi = AConn (AImplies, [mk_aconns AAnd phis, psi])
   710 fun mk_aquant _ [] phi = phi
   711   | mk_aquant q xs (phi as AQuant (q', xs', phi')) =
   712     if q = q' then AQuant (q, xs @ xs', phi') else AQuant (q, xs, phi)
   713   | mk_aquant q xs phi = AQuant (q, xs, phi)
   714 
   715 fun close_universally atom_vars phi =
   716   let
   717     fun formula_vars bounds (AQuant (_, xs, phi)) =
   718         formula_vars (map fst xs @ bounds) phi
   719       | formula_vars bounds (AConn (_, phis)) = fold (formula_vars bounds) phis
   720       | formula_vars bounds (AAtom tm) =
   721         union (op =) (atom_vars tm []
   722                       |> filter_out (member (op =) bounds o fst))
   723   in mk_aquant AForall (formula_vars [] phi []) phi end
   724 
   725 fun combterm_vars (CombApp (tm1, tm2)) = fold combterm_vars [tm1, tm2]
   726   | combterm_vars (CombConst _) = I
   727   | combterm_vars (CombVar (name, T)) = insert (op =) (name, SOME T)
   728 fun close_combformula_universally phi = close_universally combterm_vars phi
   729 
   730 fun term_vars (ATerm (name as (s, _), tms)) =
   731   is_tptp_variable s ? insert (op =) (name, NONE) #> fold term_vars tms
   732 fun close_formula_universally phi = close_universally term_vars phi
   733 
   734 val homo_infinite_type_name = @{type_name ind} (* any infinite type *)
   735 val homo_infinite_type = Type (homo_infinite_type_name, [])
   736 
   737 fun fo_term_from_typ format type_sys =
   738   let
   739     fun term (Type (s, Ts)) =
   740       ATerm (case (is_setting_higher_order format type_sys, s) of
   741                (true, @{type_name bool}) => `I tptp_bool_type
   742              | (true, @{type_name fun}) => `I tptp_fun_type
   743              | _ => if s = homo_infinite_type_name andalso
   744                        (format = TFF orelse format = THF) then
   745                       `I tptp_individual_type
   746                     else
   747                       `make_fixed_type_const s,
   748              map term Ts)
   749     | term (TFree (s, _)) = ATerm (`make_fixed_type_var s, [])
   750     | term (TVar ((x as (s, _)), _)) =
   751       ATerm ((make_schematic_type_var x, s), [])
   752   in term end
   753 
   754 (* This shouldn't clash with anything else. *)
   755 val mangled_type_sep = "\000"
   756 
   757 fun generic_mangled_type_name f (ATerm (name, [])) = f name
   758   | generic_mangled_type_name f (ATerm (name, tys)) =
   759     f name ^ "(" ^ space_implode "," (map (generic_mangled_type_name f) tys)
   760     ^ ")"
   761 
   762 val bool_atype = AType (`I tptp_bool_type)
   763 
   764 fun make_simple_type s =
   765   if s = tptp_bool_type orelse s = tptp_fun_type orelse
   766      s = tptp_individual_type then
   767     s
   768   else
   769     simple_type_prefix ^ ascii_of s
   770 
   771 fun ho_type_from_fo_term format type_sys pred_sym ary =
   772   let
   773     fun to_atype ty =
   774       AType ((make_simple_type (generic_mangled_type_name fst ty),
   775               generic_mangled_type_name snd ty))
   776     fun to_afun f1 f2 tys = AFun (f1 (hd tys), f2 (nth tys 1))
   777     fun to_fo 0 ty = if pred_sym then bool_atype else to_atype ty
   778       | to_fo ary (ATerm (_, tys)) = to_afun to_atype (to_fo (ary - 1)) tys
   779     fun to_ho (ty as ATerm ((s, _), tys)) =
   780       if s = tptp_fun_type then to_afun to_ho to_ho tys else to_atype ty
   781   in if is_setting_higher_order format type_sys then to_ho else to_fo ary end
   782 
   783 fun mangled_type format type_sys pred_sym ary =
   784   ho_type_from_fo_term format type_sys pred_sym ary
   785   o fo_term_from_typ format type_sys
   786 
   787 fun mangled_const_name format type_sys T_args (s, s') =
   788   let
   789     val ty_args = map (fo_term_from_typ format type_sys) T_args
   790     fun type_suffix f g =
   791       fold_rev (curry (op ^) o g o prefix mangled_type_sep
   792                 o generic_mangled_type_name f) ty_args ""
   793   in (s ^ type_suffix fst ascii_of, s' ^ type_suffix snd I) end
   794 
   795 val parse_mangled_ident =
   796   Scan.many1 (not o member (op =) ["(", ")", ","]) >> implode
   797 
   798 fun parse_mangled_type x =
   799   (parse_mangled_ident
   800    -- Scan.optional ($$ "(" |-- Scan.optional parse_mangled_types [] --| $$ ")")
   801                     [] >> ATerm) x
   802 and parse_mangled_types x =
   803   (parse_mangled_type ::: Scan.repeat ($$ "," |-- parse_mangled_type)) x
   804 
   805 fun unmangled_type s =
   806   s |> suffix ")" |> raw_explode
   807     |> Scan.finite Symbol.stopper
   808            (Scan.error (!! (fn _ => raise Fail ("unrecognized mangled type " ^
   809                                                 quote s)) parse_mangled_type))
   810     |> fst
   811 
   812 val unmangled_const_name = space_explode mangled_type_sep #> hd
   813 fun unmangled_const s =
   814   let val ss = space_explode mangled_type_sep s in
   815     (hd ss, map unmangled_type (tl ss))
   816   end
   817 
   818 fun introduce_proxies format type_sys =
   819   let
   820     fun intro top_level (CombApp (tm1, tm2)) =
   821         CombApp (intro top_level tm1, intro false tm2)
   822       | intro top_level (CombConst (name as (s, _), T, T_args)) =
   823         (case proxify_const s of
   824            SOME proxy_base =>
   825            if top_level orelse is_setting_higher_order format type_sys then
   826              case (top_level, s) of
   827                (_, "c_False") => (`I tptp_false, [])
   828              | (_, "c_True") => (`I tptp_true, [])
   829              | (false, "c_Not") => (`I tptp_not, [])
   830              | (false, "c_conj") => (`I tptp_and, [])
   831              | (false, "c_disj") => (`I tptp_or, [])
   832              | (false, "c_implies") => (`I tptp_implies, [])
   833              | (false, s) =>
   834                if is_tptp_equal s then (`I tptp_equal, [])
   835                else (proxy_base |>> prefix const_prefix, T_args)
   836              | _ => (name, [])
   837            else
   838              (proxy_base |>> prefix const_prefix, T_args)
   839           | NONE => (name, T_args))
   840         |> (fn (name, T_args) => CombConst (name, T, T_args))
   841       | intro _ tm = tm
   842   in intro true end
   843 
   844 fun combformula_from_prop thy format type_sys eq_as_iff =
   845   let
   846     fun do_term bs t atomic_types =
   847       combterm_from_term thy bs (Envir.eta_contract t)
   848       |>> (introduce_proxies format type_sys #> AAtom)
   849       ||> union (op =) atomic_types
   850     fun do_quant bs q s T t' =
   851       let val s = Name.variant (map fst bs) s in
   852         do_formula ((s, T) :: bs) t'
   853         #>> mk_aquant q [(`make_bound_var s, SOME T)]
   854       end
   855     and do_conn bs c t1 t2 =
   856       do_formula bs t1 ##>> do_formula bs t2 #>> uncurry (mk_aconn c)
   857     and do_formula bs t =
   858       case t of
   859         @{const Trueprop} $ t1 => do_formula bs t1
   860       | @{const Not} $ t1 => do_formula bs t1 #>> mk_anot
   861       | Const (@{const_name All}, _) $ Abs (s, T, t') =>
   862         do_quant bs AForall s T t'
   863       | Const (@{const_name Ex}, _) $ Abs (s, T, t') =>
   864         do_quant bs AExists s T t'
   865       | @{const HOL.conj} $ t1 $ t2 => do_conn bs AAnd t1 t2
   866       | @{const HOL.disj} $ t1 $ t2 => do_conn bs AOr t1 t2
   867       | @{const HOL.implies} $ t1 $ t2 => do_conn bs AImplies t1 t2
   868       | Const (@{const_name HOL.eq}, Type (_, [@{typ bool}, _])) $ t1 $ t2 =>
   869         if eq_as_iff then do_conn bs AIff t1 t2 else do_term bs t
   870       | _ => do_term bs t
   871   in do_formula [] end
   872 
   873 fun presimplify_term _ [] t = t
   874   | presimplify_term ctxt presimp_consts t =
   875     t |> exists_Const (member (op =) presimp_consts o fst) t
   876          ? (Skip_Proof.make_thm (Proof_Context.theory_of ctxt)
   877             #> Meson.presimplify ctxt
   878             #> prop_of)
   879 
   880 fun concealed_bound_name j = sledgehammer_weak_prefix ^ string_of_int j
   881 fun conceal_bounds Ts t =
   882   subst_bounds (map (Free o apfst concealed_bound_name)
   883                     (0 upto length Ts - 1 ~~ Ts), t)
   884 fun reveal_bounds Ts =
   885   subst_atomic (map (fn (j, T) => (Free (concealed_bound_name j, T), Bound j))
   886                     (0 upto length Ts - 1 ~~ Ts))
   887 
   888 fun extensionalize_term ctxt t =
   889   let val thy = Proof_Context.theory_of ctxt in
   890     t |> cterm_of thy |> Meson.extensionalize_conv ctxt
   891       |> prop_of |> Logic.dest_equals |> snd
   892   end
   893 
   894 fun introduce_combinators_in_term ctxt kind t =
   895   let val thy = Proof_Context.theory_of ctxt in
   896     if Meson.is_fol_term thy t then
   897       t
   898     else
   899       let
   900         fun aux Ts t =
   901           case t of
   902             @{const Not} $ t1 => @{const Not} $ aux Ts t1
   903           | (t0 as Const (@{const_name All}, _)) $ Abs (s, T, t') =>
   904             t0 $ Abs (s, T, aux (T :: Ts) t')
   905           | (t0 as Const (@{const_name All}, _)) $ t1 =>
   906             aux Ts (t0 $ eta_expand Ts t1 1)
   907           | (t0 as Const (@{const_name Ex}, _)) $ Abs (s, T, t') =>
   908             t0 $ Abs (s, T, aux (T :: Ts) t')
   909           | (t0 as Const (@{const_name Ex}, _)) $ t1 =>
   910             aux Ts (t0 $ eta_expand Ts t1 1)
   911           | (t0 as @{const HOL.conj}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
   912           | (t0 as @{const HOL.disj}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
   913           | (t0 as @{const HOL.implies}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
   914           | (t0 as Const (@{const_name HOL.eq}, Type (_, [@{typ bool}, _])))
   915               $ t1 $ t2 =>
   916             t0 $ aux Ts t1 $ aux Ts t2
   917           | _ => if not (exists_subterm (fn Abs _ => true | _ => false) t) then
   918                    t
   919                  else
   920                    t |> conceal_bounds Ts
   921                      |> Envir.eta_contract
   922                      |> cterm_of thy
   923                      |> Meson_Clausify.introduce_combinators_in_cterm
   924                      |> prop_of |> Logic.dest_equals |> snd
   925                      |> reveal_bounds Ts
   926         val (t, ctxt') = Variable.import_terms true [t] ctxt |>> the_single
   927       in t |> aux [] |> singleton (Variable.export_terms ctxt' ctxt) end
   928       handle THM _ =>
   929              (* A type variable of sort "{}" will make abstraction fail. *)
   930              if kind = Conjecture then HOLogic.false_const
   931              else HOLogic.true_const
   932   end
   933 
   934 (* Metis's use of "resolve_tac" freezes the schematic variables. We simulate the
   935    same in Sledgehammer to prevent the discovery of unreplayable proofs. *)
   936 fun freeze_term t =
   937   let
   938     fun aux (t $ u) = aux t $ aux u
   939       | aux (Abs (s, T, t)) = Abs (s, T, aux t)
   940       | aux (Var ((s, i), T)) =
   941         Free (sledgehammer_weak_prefix ^ s ^ "_" ^ string_of_int i, T)
   942       | aux t = t
   943   in t |> exists_subterm is_Var t ? aux end
   944 
   945 fun preprocess_prop ctxt presimp_consts kind t =
   946   let
   947     val thy = Proof_Context.theory_of ctxt
   948     val t = t |> Envir.beta_eta_contract
   949               |> transform_elim_prop
   950               |> Object_Logic.atomize_term thy
   951     val need_trueprop = (fastype_of t = @{typ bool})
   952   in
   953     t |> need_trueprop ? HOLogic.mk_Trueprop
   954       |> Raw_Simplifier.rewrite_term thy (Meson.unfold_set_const_simps ctxt) []
   955       |> extensionalize_term ctxt
   956       |> presimplify_term ctxt presimp_consts
   957       |> perhaps (try (HOLogic.dest_Trueprop))
   958       |> introduce_combinators_in_term ctxt kind
   959   end
   960 
   961 (* making fact and conjecture formulas *)
   962 fun make_formula thy format type_sys eq_as_iff name loc kind t =
   963   let
   964     val (combformula, atomic_types) =
   965       combformula_from_prop thy format type_sys eq_as_iff t []
   966   in
   967     {name = name, locality = loc, kind = kind, combformula = combformula,
   968      atomic_types = atomic_types}
   969   end
   970 
   971 fun make_fact ctxt format type_sys keep_trivial eq_as_iff preproc presimp_consts
   972               ((name, loc), t) =
   973   let val thy = Proof_Context.theory_of ctxt in
   974     case (keep_trivial,
   975           t |> preproc ? preprocess_prop ctxt presimp_consts Axiom
   976             |> make_formula thy format type_sys eq_as_iff name loc Axiom) of
   977       (false,
   978        formula as {combformula = AAtom (CombConst ((s, _), _, _)), ...}) =>
   979       if s = tptp_true then NONE else SOME formula
   980     | (_, formula) => SOME formula
   981   end
   982 
   983 fun make_conjecture ctxt format prem_kind type_sys preproc presimp_consts ts =
   984   let
   985     val thy = Proof_Context.theory_of ctxt
   986     val last = length ts - 1
   987   in
   988     map2 (fn j => fn t =>
   989              let
   990                val (kind, maybe_negate) =
   991                  if j = last then
   992                    (Conjecture, I)
   993                  else
   994                    (prem_kind,
   995                     if prem_kind = Conjecture then update_combformula mk_anot
   996                     else I)
   997               in
   998                 t |> preproc ?
   999                      (preprocess_prop ctxt presimp_consts kind #> freeze_term)
  1000                   |> make_formula thy format type_sys (format <> CNF)
  1001                                   (string_of_int j) General kind
  1002                   |> maybe_negate
  1003               end)
  1004          (0 upto last) ts
  1005   end
  1006 
  1007 (** Finite and infinite type inference **)
  1008 
  1009 fun deep_freeze_atyp (TVar (_, S)) = TFree ("v", S)
  1010   | deep_freeze_atyp T = T
  1011 val deep_freeze_type = map_atyps deep_freeze_atyp
  1012 
  1013 (* Finite types such as "unit", "bool", "bool * bool", and "bool => bool" are
  1014    dangerous because their "exhaust" properties can easily lead to unsound ATP
  1015    proofs. On the other hand, all HOL infinite types can be given the same
  1016    models in first-order logic (via Löwenheim-Skolem). *)
  1017 
  1018 fun should_encode_type ctxt (nonmono_Ts as _ :: _) _ T =
  1019     exists (curry (type_instance ctxt) (deep_freeze_type T)) nonmono_Ts
  1020   | should_encode_type _ _ All_Types _ = true
  1021   | should_encode_type ctxt _ Finite_Types T = is_type_surely_finite ctxt T
  1022   | should_encode_type _ _ _ _ = false
  1023 
  1024 fun should_predicate_on_type ctxt nonmono_Ts (Preds (_, level, heaviness))
  1025                              should_predicate_on_var T =
  1026     (heaviness = Heavyweight orelse should_predicate_on_var ()) andalso
  1027     should_encode_type ctxt nonmono_Ts level T
  1028   | should_predicate_on_type _ _ _ _ _ = false
  1029 
  1030 fun is_var_or_bound_var (CombConst ((s, _), _, _)) =
  1031     String.isPrefix bound_var_prefix s
  1032   | is_var_or_bound_var (CombVar _) = true
  1033   | is_var_or_bound_var _ = false
  1034 
  1035 datatype tag_site = Top_Level | Eq_Arg | Elsewhere
  1036 
  1037 fun should_tag_with_type _ _ _ Top_Level _ _ = false
  1038   | should_tag_with_type ctxt nonmono_Ts (Tags (_, level, heaviness)) site u T =
  1039     (case heaviness of
  1040        Heavyweight => should_encode_type ctxt nonmono_Ts level T
  1041      | Lightweight =>
  1042        case (site, is_var_or_bound_var u) of
  1043          (Eq_Arg, true) => should_encode_type ctxt nonmono_Ts level T
  1044        | _ => false)
  1045   | should_tag_with_type _ _ _ _ _ _ = false
  1046 
  1047 fun homogenized_type ctxt nonmono_Ts level =
  1048   let
  1049     val should_encode = should_encode_type ctxt nonmono_Ts level
  1050     fun homo 0 T = if should_encode T then T else homo_infinite_type
  1051       | homo ary (Type (@{type_name fun}, [T1, T2])) =
  1052         homo 0 T1 --> homo (ary - 1) T2
  1053       | homo _ _ = raise Fail "expected function type"
  1054   in homo end
  1055 
  1056 (** "hBOOL" and "hAPP" **)
  1057 
  1058 type sym_info =
  1059   {pred_sym : bool, min_ary : int, max_ary : int, types : typ list}
  1060 
  1061 fun add_combterm_syms_to_table ctxt explicit_apply =
  1062   let
  1063     fun consider_var_arity const_T var_T max_ary =
  1064       let
  1065         fun iter ary T =
  1066           if ary = max_ary orelse type_instance ctxt (var_T, T) orelse
  1067              type_instance ctxt (T, var_T) then
  1068             ary
  1069           else
  1070             iter (ary + 1) (range_type T)
  1071       in iter 0 const_T end
  1072     fun add_var_or_bound_var T (accum as ((bool_vars, fun_var_Ts), sym_tab)) =
  1073       if explicit_apply = NONE andalso
  1074          (can dest_funT T orelse T = @{typ bool}) then
  1075         let
  1076           val bool_vars' = bool_vars orelse body_type T = @{typ bool}
  1077           fun repair_min_arity {pred_sym, min_ary, max_ary, types} =
  1078             {pred_sym = pred_sym andalso not bool_vars',
  1079              min_ary = fold (fn T' => consider_var_arity T' T) types min_ary,
  1080              max_ary = max_ary, types = types}
  1081           val fun_var_Ts' =
  1082             fun_var_Ts |> can dest_funT T ? insert_type ctxt I T
  1083         in
  1084           if bool_vars' = bool_vars andalso
  1085              pointer_eq (fun_var_Ts', fun_var_Ts) then
  1086             accum
  1087           else
  1088             ((bool_vars', fun_var_Ts'), Symtab.map (K repair_min_arity) sym_tab)
  1089         end
  1090       else
  1091         accum
  1092     fun add top_level tm (accum as ((bool_vars, fun_var_Ts), sym_tab)) =
  1093       let val (head, args) = strip_combterm_comb tm in
  1094         (case head of
  1095            CombConst ((s, _), T, _) =>
  1096            if String.isPrefix bound_var_prefix s then
  1097              add_var_or_bound_var T accum
  1098            else
  1099              let val ary = length args in
  1100                ((bool_vars, fun_var_Ts),
  1101                 case Symtab.lookup sym_tab s of
  1102                   SOME {pred_sym, min_ary, max_ary, types} =>
  1103                   let
  1104                     val pred_sym =
  1105                       pred_sym andalso top_level andalso not bool_vars
  1106                     val types' = types |> insert_type ctxt I T
  1107                     val min_ary =
  1108                       if is_some explicit_apply orelse
  1109                          pointer_eq (types', types) then
  1110                         min_ary
  1111                       else
  1112                         fold (consider_var_arity T) fun_var_Ts min_ary
  1113                   in
  1114                     Symtab.update (s, {pred_sym = pred_sym,
  1115                                        min_ary = Int.min (ary, min_ary),
  1116                                        max_ary = Int.max (ary, max_ary),
  1117                                        types = types'})
  1118                                   sym_tab
  1119                   end
  1120                 | NONE =>
  1121                   let
  1122                     val pred_sym = top_level andalso not bool_vars
  1123                     val min_ary =
  1124                       case explicit_apply of
  1125                         SOME true => 0
  1126                       | SOME false => ary
  1127                       | NONE => fold (consider_var_arity T) fun_var_Ts ary
  1128                   in
  1129                     Symtab.update_new (s, {pred_sym = pred_sym,
  1130                                            min_ary = min_ary, max_ary = ary,
  1131                                            types = [T]})
  1132                                       sym_tab
  1133                   end)
  1134              end
  1135          | CombVar (_, T) => add_var_or_bound_var T accum
  1136          | _ => accum)
  1137         |> fold (add false) args
  1138       end
  1139   in add true end
  1140 fun add_fact_syms_to_table ctxt explicit_apply =
  1141   fact_lift (formula_fold NONE
  1142                           (K (add_combterm_syms_to_table ctxt explicit_apply)))
  1143 
  1144 val default_sym_tab_entries : (string * sym_info) list =
  1145   (prefixed_predicator_name,
  1146    {pred_sym = true, min_ary = 1, max_ary = 1, types = []}) ::
  1147   ([tptp_false, tptp_true]
  1148    |> map (rpair {pred_sym = true, min_ary = 0, max_ary = 0, types = []})) @
  1149   ([tptp_equal, tptp_old_equal]
  1150    |> map (rpair {pred_sym = true, min_ary = 2, max_ary = 2, types = []}))
  1151 
  1152 fun sym_table_for_facts ctxt explicit_apply facts =
  1153   ((false, []), Symtab.empty)
  1154   |> fold (add_fact_syms_to_table ctxt explicit_apply) facts |> snd
  1155   |> fold Symtab.update default_sym_tab_entries
  1156 
  1157 fun min_arity_of sym_tab s =
  1158   case Symtab.lookup sym_tab s of
  1159     SOME ({min_ary, ...} : sym_info) => min_ary
  1160   | NONE =>
  1161     case strip_prefix_and_unascii const_prefix s of
  1162       SOME s =>
  1163       let val s = s |> unmangled_const_name |> invert_const in
  1164         if s = predicator_name then 1
  1165         else if s = app_op_name then 2
  1166         else if s = type_pred_name then 1
  1167         else 0
  1168       end
  1169     | NONE => 0
  1170 
  1171 (* True if the constant ever appears outside of the top-level position in
  1172    literals, or if it appears with different arities (e.g., because of different
  1173    type instantiations). If false, the constant always receives all of its
  1174    arguments and is used as a predicate. *)
  1175 fun is_pred_sym sym_tab s =
  1176   case Symtab.lookup sym_tab s of
  1177     SOME ({pred_sym, min_ary, max_ary, ...} : sym_info) =>
  1178     pred_sym andalso min_ary = max_ary
  1179   | NONE => false
  1180 
  1181 val predicator_combconst =
  1182   CombConst (`make_fixed_const predicator_name, @{typ "bool => bool"}, [])
  1183 fun predicator tm = CombApp (predicator_combconst, tm)
  1184 
  1185 fun introduce_predicators_in_combterm sym_tab tm =
  1186   case strip_combterm_comb tm of
  1187     (CombConst ((s, _), _, _), _) =>
  1188     if is_pred_sym sym_tab s then tm else predicator tm
  1189   | _ => predicator tm
  1190 
  1191 fun list_app head args = fold (curry (CombApp o swap)) args head
  1192 
  1193 val app_op = `make_fixed_const app_op_name
  1194 
  1195 fun explicit_app arg head =
  1196   let
  1197     val head_T = combtyp_of head
  1198     val (arg_T, res_T) = dest_funT head_T
  1199     val explicit_app =
  1200       CombConst (app_op, head_T --> head_T, [arg_T, res_T])
  1201   in list_app explicit_app [head, arg] end
  1202 fun list_explicit_app head args = fold explicit_app args head
  1203 
  1204 fun introduce_explicit_apps_in_combterm sym_tab =
  1205   let
  1206     fun aux tm =
  1207       case strip_combterm_comb tm of
  1208         (head as CombConst ((s, _), _, _), args) =>
  1209         args |> map aux
  1210              |> chop (min_arity_of sym_tab s)
  1211              |>> list_app head
  1212              |-> list_explicit_app
  1213       | (head, args) => list_explicit_app head (map aux args)
  1214   in aux end
  1215 
  1216 fun chop_fun 0 T = ([], T)
  1217   | chop_fun n (Type (@{type_name fun}, [dom_T, ran_T])) =
  1218     chop_fun (n - 1) ran_T |>> cons dom_T
  1219   | chop_fun _ _ = raise Fail "unexpected non-function"
  1220 
  1221 fun filter_type_args _ _ _ [] = []
  1222   | filter_type_args thy s arity T_args =
  1223     let
  1224       (* will throw "TYPE" for pseudo-constants *)
  1225       val U = if s = app_op_name then
  1226                 @{typ "('a => 'b) => 'a => 'b"} |> Logic.varifyT_global
  1227               else
  1228                 s |> Sign.the_const_type thy
  1229     in
  1230       case Term.add_tvarsT (U |> chop_fun arity |> snd) [] of
  1231         [] => []
  1232       | res_U_vars =>
  1233         let val U_args = (s, U) |> Sign.const_typargs thy in
  1234           U_args ~~ T_args
  1235           |> map_filter (fn (U, T) =>
  1236                             if member (op =) res_U_vars (dest_TVar U) then
  1237                               SOME T
  1238                             else
  1239                               NONE)
  1240         end
  1241     end
  1242     handle TYPE _ => T_args
  1243 
  1244 fun enforce_type_arg_policy_in_combterm ctxt format type_sys =
  1245   let
  1246     val thy = Proof_Context.theory_of ctxt
  1247     fun aux arity (CombApp (tm1, tm2)) =
  1248         CombApp (aux (arity + 1) tm1, aux 0 tm2)
  1249       | aux arity (CombConst (name as (s, _), T, T_args)) =
  1250         (case strip_prefix_and_unascii const_prefix s of
  1251            NONE => (name, T_args)
  1252          | SOME s'' =>
  1253            let
  1254              val s'' = invert_const s''
  1255              fun filtered_T_args false = T_args
  1256                | filtered_T_args true = filter_type_args thy s'' arity T_args
  1257            in
  1258              case type_arg_policy type_sys s'' of
  1259                Explicit_Type_Args drop_args =>
  1260                (name, filtered_T_args drop_args)
  1261              | Mangled_Type_Args drop_args =>
  1262                (mangled_const_name format type_sys (filtered_T_args drop_args)
  1263                                    name, [])
  1264              | No_Type_Args => (name, [])
  1265            end)
  1266         |> (fn (name, T_args) => CombConst (name, T, T_args))
  1267       | aux _ tm = tm
  1268   in aux 0 end
  1269 
  1270 fun repair_combterm ctxt format type_sys sym_tab =
  1271   not (is_setting_higher_order format type_sys)
  1272   ? (introduce_explicit_apps_in_combterm sym_tab
  1273      #> introduce_predicators_in_combterm sym_tab)
  1274   #> enforce_type_arg_policy_in_combterm ctxt format type_sys
  1275 fun repair_fact ctxt format type_sys sym_tab =
  1276   update_combformula (formula_map
  1277       (repair_combterm ctxt format type_sys sym_tab))
  1278 
  1279 (** Helper facts **)
  1280 
  1281 (* The Boolean indicates that a fairly sound type encoding is needed. *)
  1282 val helper_table =
  1283   [(("COMBI", false), @{thms Meson.COMBI_def}),
  1284    (("COMBK", false), @{thms Meson.COMBK_def}),
  1285    (("COMBB", false), @{thms Meson.COMBB_def}),
  1286    (("COMBC", false), @{thms Meson.COMBC_def}),
  1287    (("COMBS", false), @{thms Meson.COMBS_def}),
  1288    (("fequal", true),
  1289     (* This is a lie: Higher-order equality doesn't need a sound type encoding.
  1290        However, this is done so for backward compatibility: Including the
  1291        equality helpers by default in Metis breaks a few existing proofs. *)
  1292     @{thms fequal_def [THEN Meson.iff_to_disjD, THEN conjunct1]
  1293            fequal_def [THEN Meson.iff_to_disjD, THEN conjunct2]}),
  1294    (("fFalse", false), [@{lemma "~ fFalse" by (unfold fFalse_def) fast}]),
  1295    (("fFalse", true), @{thms True_or_False}),
  1296    (("fTrue", false), [@{lemma "fTrue" by (unfold fTrue_def) fast}]),
  1297    (("fTrue", true), @{thms True_or_False}),
  1298    (("fNot", false),
  1299     @{thms fNot_def [THEN Meson.iff_to_disjD, THEN conjunct1]
  1300            fNot_def [THEN Meson.iff_to_disjD, THEN conjunct2]}),
  1301    (("fconj", false),
  1302     @{lemma "~ P | ~ Q | fconj P Q" "~ fconj P Q | P" "~ fconj P Q | Q"
  1303         by (unfold fconj_def) fast+}),
  1304    (("fdisj", false),
  1305     @{lemma "~ P | fdisj P Q" "~ Q | fdisj P Q" "~ fdisj P Q | P | Q"
  1306         by (unfold fdisj_def) fast+}),
  1307    (("fimplies", false),
  1308     @{lemma "P | fimplies P Q" "~ Q | fimplies P Q" "~ fimplies P Q | ~ P | Q"
  1309         by (unfold fimplies_def) fast+}),
  1310    (("If", true), @{thms if_True if_False True_or_False})]
  1311   |> map (apsnd (map zero_var_indexes))
  1312 
  1313 val type_tag = `make_fixed_const type_tag_name
  1314 
  1315 fun type_tag_idempotence_fact () =
  1316   let
  1317     fun var s = ATerm (`I s, [])
  1318     fun tag tm = ATerm (type_tag, [var "T", tm])
  1319     val tagged_a = tag (var "A")
  1320   in
  1321     Formula (type_tag_idempotence_helper_name, Axiom,
  1322              AAtom (ATerm (`I tptp_equal, [tag tagged_a, tagged_a]))
  1323              |> close_formula_universally, simp_info, NONE)
  1324   end
  1325 
  1326 fun should_specialize_helper type_sys t =
  1327   case general_type_arg_policy type_sys of
  1328     Mangled_Type_Args _ => not (null (Term.hidden_polymorphism t))
  1329   | _ => false
  1330 
  1331 fun helper_facts_for_sym ctxt format type_sys (s, {types, ...} : sym_info) =
  1332   case strip_prefix_and_unascii const_prefix s of
  1333     SOME mangled_s =>
  1334     let
  1335       val thy = Proof_Context.theory_of ctxt
  1336       val unmangled_s = mangled_s |> unmangled_const_name
  1337       fun dub_and_inst needs_fairly_sound (th, j) =
  1338         ((unmangled_s ^ "_" ^ string_of_int j ^
  1339           (if mangled_s = unmangled_s then "" else "_" ^ ascii_of mangled_s) ^
  1340           (if needs_fairly_sound then typed_helper_suffix
  1341            else untyped_helper_suffix),
  1342           General),
  1343          let val t = th |> prop_of in
  1344            t |> should_specialize_helper type_sys t
  1345                 ? (case types of
  1346                      [T] => specialize_type thy (invert_const unmangled_s, T)
  1347                    | _ => I)
  1348          end)
  1349       val make_facts =
  1350         map_filter (make_fact ctxt format type_sys false false false [])
  1351       val fairly_sound = is_type_sys_fairly_sound type_sys
  1352     in
  1353       helper_table
  1354       |> maps (fn ((helper_s, needs_fairly_sound), ths) =>
  1355                   if helper_s <> unmangled_s orelse
  1356                      (needs_fairly_sound andalso not fairly_sound) then
  1357                     []
  1358                   else
  1359                     ths ~~ (1 upto length ths)
  1360                     |> map (dub_and_inst needs_fairly_sound)
  1361                     |> make_facts)
  1362     end
  1363   | NONE => []
  1364 fun helper_facts_for_sym_table ctxt format type_sys sym_tab =
  1365   Symtab.fold_rev (append o helper_facts_for_sym ctxt format type_sys) sym_tab
  1366                   []
  1367 
  1368 (***************************************************************)
  1369 (* Type Classes Present in the Axiom or Conjecture Clauses     *)
  1370 (***************************************************************)
  1371 
  1372 fun set_insert (x, s) = Symtab.update (x, ()) s
  1373 
  1374 fun add_classes (sorts, cset) = List.foldl set_insert cset (flat sorts)
  1375 
  1376 (* Remove this trivial type class (FIXME: similar code elsewhere) *)
  1377 fun delete_type cset = Symtab.delete_safe (the_single @{sort HOL.type}) cset
  1378 
  1379 fun classes_of_terms get_Ts =
  1380   map (map snd o get_Ts)
  1381   #> List.foldl add_classes Symtab.empty
  1382   #> delete_type #> Symtab.keys
  1383 
  1384 val tfree_classes_of_terms = classes_of_terms OldTerm.term_tfrees
  1385 val tvar_classes_of_terms = classes_of_terms OldTerm.term_tvars
  1386 
  1387 (*fold type constructors*)
  1388 fun fold_type_constrs f (Type (a, Ts)) x =
  1389     fold (fold_type_constrs f) Ts (f (a,x))
  1390   | fold_type_constrs _ _ x = x
  1391 
  1392 (*Type constructors used to instantiate overloaded constants are the only ones needed.*)
  1393 fun add_type_constrs_in_term thy =
  1394   let
  1395     fun add (Const (@{const_name Meson.skolem}, _) $ _) = I
  1396       | add (t $ u) = add t #> add u
  1397       | add (Const (x as (s, _))) =
  1398         if String.isPrefix skolem_const_prefix s then I
  1399         else x |> Sign.const_typargs thy |> fold (fold_type_constrs set_insert)
  1400       | add (Abs (_, _, u)) = add u
  1401       | add _ = I
  1402   in add end
  1403 
  1404 fun type_constrs_of_terms thy ts =
  1405   Symtab.keys (fold (add_type_constrs_in_term thy) ts Symtab.empty)
  1406 
  1407 fun translate_formulas ctxt format prem_kind type_sys preproc hyp_ts concl_t
  1408                        facts =
  1409   let
  1410     val thy = Proof_Context.theory_of ctxt
  1411     val fact_ts = facts |> map snd
  1412     val presimp_consts = Meson.presimplified_consts ctxt
  1413     val make_fact =
  1414       make_fact ctxt format type_sys false true true presimp_consts
  1415     val (facts, fact_names) =
  1416       facts |> map (fn (name, t) => (name, t) |> make_fact |> rpair name)
  1417             |> map_filter (try (apfst the))
  1418             |> ListPair.unzip
  1419     (* Remove existing facts from the conjecture, as this can dramatically
  1420        boost an ATP's performance (for some reason). *)
  1421     val hyp_ts =
  1422       hyp_ts
  1423       |> map (fn t => if member (op aconv) fact_ts t then @{prop True} else t)
  1424     val goal_t = Logic.list_implies (hyp_ts, concl_t)
  1425     val all_ts = goal_t :: fact_ts
  1426     val subs = tfree_classes_of_terms all_ts
  1427     val supers = tvar_classes_of_terms all_ts
  1428     val tycons = type_constrs_of_terms thy all_ts
  1429     val conjs =
  1430       hyp_ts @ [concl_t]
  1431       |> make_conjecture ctxt format prem_kind type_sys preproc presimp_consts
  1432     val (supers', arity_clauses) =
  1433       if level_of_type_sys type_sys = No_Types then ([], [])
  1434       else make_arity_clauses thy tycons supers
  1435     val class_rel_clauses = make_class_rel_clauses thy subs supers'
  1436   in
  1437     (fact_names |> map single, (conjs, facts, class_rel_clauses, arity_clauses))
  1438   end
  1439 
  1440 fun fo_literal_from_type_literal (TyLitVar (class, name)) =
  1441     (true, ATerm (class, [ATerm (name, [])]))
  1442   | fo_literal_from_type_literal (TyLitFree (class, name)) =
  1443     (true, ATerm (class, [ATerm (name, [])]))
  1444 
  1445 fun formula_from_fo_literal (pos, t) = AAtom t |> not pos ? mk_anot
  1446 
  1447 val type_pred = `make_fixed_const type_pred_name
  1448 
  1449 fun type_pred_combterm ctxt format type_sys T tm =
  1450   CombApp (CombConst (type_pred, T --> @{typ bool}, [T])
  1451            |> enforce_type_arg_policy_in_combterm ctxt format type_sys, tm)
  1452 
  1453 fun var_occurs_positively_naked_in_term _ (SOME false) _ accum = accum
  1454   | var_occurs_positively_naked_in_term name _ (ATerm ((s, _), tms)) accum =
  1455     accum orelse (is_tptp_equal s andalso member (op =) tms (ATerm (name, [])))
  1456 fun is_var_nonmonotonic_in_formula _ _ (SOME false) _ = false
  1457   | is_var_nonmonotonic_in_formula pos phi _ name =
  1458     formula_fold pos (var_occurs_positively_naked_in_term name) phi false
  1459 
  1460 fun mk_const_aterm format type_sys x T_args args =
  1461   ATerm (x, map (fo_term_from_typ format type_sys) T_args @ args)
  1462 
  1463 fun tag_with_type ctxt format nonmono_Ts type_sys T tm =
  1464   CombConst (type_tag, T --> T, [T])
  1465   |> enforce_type_arg_policy_in_combterm ctxt format type_sys
  1466   |> term_from_combterm ctxt format nonmono_Ts type_sys Top_Level
  1467   |> (fn ATerm (s, tms) => ATerm (s, tms @ [tm]))
  1468 and term_from_combterm ctxt format nonmono_Ts type_sys =
  1469   let
  1470     fun aux site u =
  1471       let
  1472         val (head, args) = strip_combterm_comb u
  1473         val (x as (s, _), T_args) =
  1474           case head of
  1475             CombConst (name, _, T_args) => (name, T_args)
  1476           | CombVar (name, _) => (name, [])
  1477           | CombApp _ => raise Fail "impossible \"CombApp\""
  1478         val arg_site = if site = Top_Level andalso is_tptp_equal s then Eq_Arg
  1479                        else Elsewhere
  1480         val t = mk_const_aterm format type_sys x T_args
  1481                     (map (aux arg_site) args)
  1482         val T = combtyp_of u
  1483       in
  1484         t |> (if should_tag_with_type ctxt nonmono_Ts type_sys site u T then
  1485                 tag_with_type ctxt format nonmono_Ts type_sys T
  1486               else
  1487                 I)
  1488       end
  1489   in aux end
  1490 and formula_from_combformula ctxt format nonmono_Ts type_sys
  1491                              should_predicate_on_var =
  1492   let
  1493     val do_term = term_from_combterm ctxt format nonmono_Ts type_sys Top_Level
  1494     val do_bound_type =
  1495       case type_sys of
  1496         Simple_Types level =>
  1497         homogenized_type ctxt nonmono_Ts level 0
  1498         #> mangled_type format type_sys false 0 #> SOME
  1499       | _ => K NONE
  1500     fun do_out_of_bound_type pos phi universal (name, T) =
  1501       if should_predicate_on_type ctxt nonmono_Ts type_sys
  1502              (fn () => should_predicate_on_var pos phi universal name) T then
  1503         CombVar (name, T)
  1504         |> type_pred_combterm ctxt format type_sys T
  1505         |> do_term |> AAtom |> SOME
  1506       else
  1507         NONE
  1508     fun do_formula pos (AQuant (q, xs, phi)) =
  1509         let
  1510           val phi = phi |> do_formula pos
  1511           val universal = Option.map (q = AExists ? not) pos
  1512         in
  1513           AQuant (q, xs |> map (apsnd (fn NONE => NONE
  1514                                         | SOME T => do_bound_type T)),
  1515                   (if q = AForall then mk_ahorn else fold_rev (mk_aconn AAnd))
  1516                       (map_filter
  1517                            (fn (_, NONE) => NONE
  1518                              | (s, SOME T) =>
  1519                                do_out_of_bound_type pos phi universal (s, T))
  1520                            xs)
  1521                       phi)
  1522         end
  1523       | do_formula pos (AConn conn) = aconn_map pos do_formula conn
  1524       | do_formula _ (AAtom tm) = AAtom (do_term tm)
  1525   in do_formula o SOME end
  1526 
  1527 fun bound_tvars type_sys Ts =
  1528   mk_ahorn (map (formula_from_fo_literal o fo_literal_from_type_literal)
  1529                 (type_literals_for_types type_sys add_sorts_on_tvar Ts))
  1530 
  1531 fun formula_for_fact ctxt format nonmono_Ts type_sys
  1532                      ({combformula, atomic_types, ...} : translated_formula) =
  1533   combformula
  1534   |> close_combformula_universally
  1535   |> formula_from_combformula ctxt format nonmono_Ts type_sys
  1536                               is_var_nonmonotonic_in_formula true
  1537   |> bound_tvars type_sys atomic_types
  1538   |> close_formula_universally
  1539 
  1540 (* Each fact is given a unique fact number to avoid name clashes (e.g., because
  1541    of monomorphization). The TPTP explicitly forbids name clashes, and some of
  1542    the remote provers might care. *)
  1543 fun formula_line_for_fact ctxt format prefix encode freshen nonmono_Ts type_sys
  1544                           (j, formula as {name, locality, kind, ...}) =
  1545   Formula (prefix ^
  1546            (if freshen andalso
  1547                polymorphism_of_type_sys type_sys <> Polymorphic then
  1548               string_of_int j ^ "_"
  1549             else
  1550               "") ^ encode name,
  1551            kind, formula_for_fact ctxt format nonmono_Ts type_sys formula, NONE,
  1552            case locality of
  1553              Intro => intro_info
  1554            | Elim => elim_info
  1555            | Simp => simp_info
  1556            | _ => NONE)
  1557 
  1558 fun formula_line_for_class_rel_clause ({name, subclass, superclass, ...}
  1559                                        : class_rel_clause) =
  1560   let val ty_arg = ATerm (`I "T", []) in
  1561     Formula (class_rel_clause_prefix ^ ascii_of name, Axiom,
  1562              AConn (AImplies, [AAtom (ATerm (subclass, [ty_arg])),
  1563                                AAtom (ATerm (superclass, [ty_arg]))])
  1564              |> close_formula_universally, intro_info, NONE)
  1565   end
  1566 
  1567 fun fo_literal_from_arity_literal (TConsLit (c, t, args)) =
  1568     (true, ATerm (c, [ATerm (t, map (fn arg => ATerm (arg, [])) args)]))
  1569   | fo_literal_from_arity_literal (TVarLit (c, sort)) =
  1570     (false, ATerm (c, [ATerm (sort, [])]))
  1571 
  1572 fun formula_line_for_arity_clause ({name, prem_lits, concl_lits, ...}
  1573                                    : arity_clause) =
  1574   Formula (arity_clause_prefix ^ ascii_of name, Axiom,
  1575            mk_ahorn (map (formula_from_fo_literal o apfst not
  1576                           o fo_literal_from_arity_literal) prem_lits)
  1577                     (formula_from_fo_literal
  1578                          (fo_literal_from_arity_literal concl_lits))
  1579            |> close_formula_universally, intro_info, NONE)
  1580 
  1581 fun formula_line_for_conjecture ctxt format nonmono_Ts type_sys
  1582         ({name, kind, combformula, atomic_types, ...} : translated_formula) =
  1583   Formula (conjecture_prefix ^ name, kind,
  1584            formula_from_combformula ctxt format nonmono_Ts type_sys
  1585                is_var_nonmonotonic_in_formula false
  1586                (close_combformula_universally combformula)
  1587            |> bound_tvars type_sys atomic_types
  1588            |> close_formula_universally, NONE, NONE)
  1589 
  1590 fun free_type_literals type_sys ({atomic_types, ...} : translated_formula) =
  1591   atomic_types |> type_literals_for_types type_sys add_sorts_on_tfree
  1592                |> map fo_literal_from_type_literal
  1593 
  1594 fun formula_line_for_free_type j lit =
  1595   Formula (tfree_clause_prefix ^ string_of_int j, Hypothesis,
  1596            formula_from_fo_literal lit, NONE, NONE)
  1597 fun formula_lines_for_free_types type_sys facts =
  1598   let
  1599     val litss = map (free_type_literals type_sys) facts
  1600     val lits = fold (union (op =)) litss []
  1601   in map2 formula_line_for_free_type (0 upto length lits - 1) lits end
  1602 
  1603 (** Symbol declarations **)
  1604 
  1605 fun should_declare_sym type_sys pred_sym s =
  1606   is_tptp_user_symbol s andalso not (String.isPrefix bound_var_prefix s) andalso
  1607   (case type_sys of
  1608      Simple_Types _ => true
  1609    | Tags (_, _, Lightweight) => true
  1610    | _ => not pred_sym)
  1611 
  1612 fun sym_decl_table_for_facts ctxt type_sys repaired_sym_tab (conjs, facts) =
  1613   let
  1614     fun add_combterm in_conj tm =
  1615       let val (head, args) = strip_combterm_comb tm in
  1616         (case head of
  1617            CombConst ((s, s'), T, T_args) =>
  1618            let val pred_sym = is_pred_sym repaired_sym_tab s in
  1619              if should_declare_sym type_sys pred_sym s then
  1620                Symtab.map_default (s, [])
  1621                    (insert_type ctxt #3 (s', T_args, T, pred_sym, length args,
  1622                                          in_conj))
  1623              else
  1624                I
  1625            end
  1626          | _ => I)
  1627         #> fold (add_combterm in_conj) args
  1628       end
  1629     fun add_fact in_conj =
  1630       fact_lift (formula_fold NONE (K (add_combterm in_conj)))
  1631   in
  1632     Symtab.empty
  1633     |> is_type_sys_fairly_sound type_sys
  1634        ? (fold (add_fact true) conjs #> fold (add_fact false) facts)
  1635   end
  1636 
  1637 (* These types witness that the type classes they belong to allow infinite
  1638    models and hence that any types with these type classes is monotonic. *)
  1639 val known_infinite_types =
  1640   [@{typ nat}, Type ("Int.int", []), @{typ "nat => bool"}]
  1641 
  1642 (* This inference is described in section 2.3 of Claessen et al.'s "Sorting it
  1643    out with monotonicity" paper presented at CADE 2011. *)
  1644 fun add_combterm_nonmonotonic_types _ _ (SOME false) _ = I
  1645   | add_combterm_nonmonotonic_types ctxt level _
  1646         (CombApp (CombApp (CombConst ((s, _), Type (_, [T, _]), _), tm1),
  1647                            tm2)) =
  1648     (is_tptp_equal s andalso exists is_var_or_bound_var [tm1, tm2] andalso
  1649      (case level of
  1650         Nonmonotonic_Types =>
  1651         not (is_type_surely_infinite ctxt known_infinite_types T)
  1652       | Finite_Types => is_type_surely_finite ctxt T
  1653       | _ => true)) ? insert_type ctxt I (deep_freeze_type T)
  1654   | add_combterm_nonmonotonic_types _ _ _ _ = I
  1655 fun add_fact_nonmonotonic_types ctxt level ({kind, combformula, ...}
  1656                                             : translated_formula) =
  1657   formula_fold (SOME (kind <> Conjecture))
  1658                (add_combterm_nonmonotonic_types ctxt level) combformula
  1659 fun nonmonotonic_types_for_facts ctxt type_sys facts =
  1660   let val level = level_of_type_sys type_sys in
  1661     if level = Nonmonotonic_Types orelse level = Finite_Types then
  1662       [] |> fold (add_fact_nonmonotonic_types ctxt level) facts
  1663          (* We must add "bool" in case the helper "True_or_False" is added
  1664             later. In addition, several places in the code rely on the list of
  1665             nonmonotonic types not being empty. *)
  1666          |> insert_type ctxt I @{typ bool}
  1667     else
  1668       []
  1669   end
  1670 
  1671 fun decl_line_for_sym ctxt format nonmono_Ts type_sys s
  1672                       (s', T_args, T, pred_sym, ary, _) =
  1673   let
  1674     val (T_arg_Ts, level) =
  1675       case type_sys of
  1676         Simple_Types level => ([], level)
  1677       | _ => (replicate (length T_args) homo_infinite_type, No_Types)
  1678   in
  1679     Decl (sym_decl_prefix ^ s, (s, s'),
  1680           (T_arg_Ts ---> (T |> homogenized_type ctxt nonmono_Ts level ary))
  1681           |> mangled_type format type_sys pred_sym (length T_arg_Ts + ary))
  1682   end
  1683 
  1684 fun is_polymorphic_type T = fold_atyps (fn TVar _ => K true | _ => I) T false
  1685 
  1686 fun formula_line_for_preds_sym_decl ctxt format conj_sym_kind nonmono_Ts
  1687         type_sys n s j (s', T_args, T, _, ary, in_conj) =
  1688   let
  1689     val (kind, maybe_negate) =
  1690       if in_conj then (conj_sym_kind, conj_sym_kind = Conjecture ? mk_anot)
  1691       else (Axiom, I)
  1692     val (arg_Ts, res_T) = chop_fun ary T
  1693     val bound_names =
  1694       1 upto length arg_Ts |> map (`I o make_bound_var o string_of_int)
  1695     val bounds =
  1696       bound_names ~~ arg_Ts |> map (fn (name, T) => CombConst (name, T, []))
  1697     val bound_Ts =
  1698       arg_Ts |> map (fn T => if n > 1 orelse is_polymorphic_type T then SOME T
  1699                              else NONE)
  1700   in
  1701     Formula (preds_sym_formula_prefix ^ s ^
  1702              (if n > 1 then "_" ^ string_of_int j else ""), kind,
  1703              CombConst ((s, s'), T, T_args)
  1704              |> fold (curry (CombApp o swap)) bounds
  1705              |> type_pred_combterm ctxt format type_sys res_T
  1706              |> AAtom |> mk_aquant AForall (bound_names ~~ bound_Ts)
  1707              |> formula_from_combformula ctxt format nonmono_Ts type_sys
  1708                                          (K (K (K (K true)))) true
  1709              |> n > 1 ? bound_tvars type_sys (atyps_of T)
  1710              |> close_formula_universally
  1711              |> maybe_negate,
  1712              intro_info, NONE)
  1713   end
  1714 
  1715 fun formula_lines_for_lightweight_tags_sym_decl ctxt format conj_sym_kind
  1716         nonmono_Ts type_sys n s (j, (s', T_args, T, pred_sym, ary, in_conj)) =
  1717   let
  1718     val ident_base =
  1719       lightweight_tags_sym_formula_prefix ^ s ^
  1720       (if n > 1 then "_" ^ string_of_int j else "")
  1721     val (kind, maybe_negate) =
  1722       if in_conj then (conj_sym_kind, conj_sym_kind = Conjecture ? mk_anot)
  1723       else (Axiom, I)
  1724     val (arg_Ts, res_T) = chop_fun ary T
  1725     val bound_names =
  1726       1 upto length arg_Ts |> map (`I o make_bound_var o string_of_int)
  1727     val bounds = bound_names |> map (fn name => ATerm (name, []))
  1728     val cst = mk_const_aterm format type_sys (s, s') T_args
  1729     val atomic_Ts = atyps_of T
  1730     fun eq tms =
  1731       (if pred_sym then AConn (AIff, map AAtom tms)
  1732        else AAtom (ATerm (`I tptp_equal, tms)))
  1733       |> bound_tvars type_sys atomic_Ts
  1734       |> close_formula_universally
  1735       |> maybe_negate
  1736     val should_encode = should_encode_type ctxt nonmono_Ts All_Types
  1737     val tag_with = tag_with_type ctxt format nonmono_Ts type_sys
  1738     val add_formula_for_res =
  1739       if should_encode res_T then
  1740         cons (Formula (ident_base ^ "_res", kind,
  1741                        eq [tag_with res_T (cst bounds), cst bounds],
  1742                        simp_info, NONE))
  1743       else
  1744         I
  1745     fun add_formula_for_arg k =
  1746       let val arg_T = nth arg_Ts k in
  1747         if should_encode arg_T then
  1748           case chop k bounds of
  1749             (bounds1, bound :: bounds2) =>
  1750             cons (Formula (ident_base ^ "_arg" ^ string_of_int (k + 1), kind,
  1751                            eq [cst (bounds1 @ tag_with arg_T bound :: bounds2),
  1752                                cst bounds],
  1753                            simp_info, NONE))
  1754           | _ => raise Fail "expected nonempty tail"
  1755         else
  1756           I
  1757       end
  1758   in
  1759     [] |> not pred_sym ? add_formula_for_res
  1760        |> fold add_formula_for_arg (ary - 1 downto 0)
  1761   end
  1762 
  1763 fun result_type_of_decl (_, _, T, _, ary, _) = chop_fun ary T |> snd
  1764 
  1765 fun problem_lines_for_sym_decls ctxt format conj_sym_kind nonmono_Ts type_sys
  1766                                 (s, decls) =
  1767   case type_sys of
  1768     Simple_Types _ =>
  1769     decls |> map (decl_line_for_sym ctxt format nonmono_Ts type_sys s)
  1770   | Preds _ =>
  1771     let
  1772       val decls =
  1773         case decls of
  1774           decl :: (decls' as _ :: _) =>
  1775           let val T = result_type_of_decl decl in
  1776             if forall (curry (type_instance ctxt o swap) T
  1777                        o result_type_of_decl) decls' then
  1778               [decl]
  1779             else
  1780               decls
  1781           end
  1782         | _ => decls
  1783       val n = length decls
  1784       val decls =
  1785         decls
  1786         |> filter (should_predicate_on_type ctxt nonmono_Ts type_sys (K true)
  1787                    o result_type_of_decl)
  1788     in
  1789       (0 upto length decls - 1, decls)
  1790       |-> map2 (formula_line_for_preds_sym_decl ctxt format conj_sym_kind
  1791                                                 nonmono_Ts type_sys n s)
  1792     end
  1793   | Tags (_, _, heaviness) =>
  1794     (case heaviness of
  1795        Heavyweight => []
  1796      | Lightweight =>
  1797        let val n = length decls in
  1798          (0 upto n - 1 ~~ decls)
  1799          |> maps (formula_lines_for_lightweight_tags_sym_decl ctxt format
  1800                       conj_sym_kind nonmono_Ts type_sys n s)
  1801        end)
  1802 
  1803 fun problem_lines_for_sym_decl_table ctxt format conj_sym_kind nonmono_Ts
  1804                                      type_sys sym_decl_tab =
  1805   sym_decl_tab
  1806   |> Symtab.dest
  1807   |> sort_wrt fst
  1808   |> rpair []
  1809   |-> fold_rev (append o problem_lines_for_sym_decls ctxt format conj_sym_kind
  1810                                                      nonmono_Ts type_sys)
  1811 
  1812 fun needs_type_tag_idempotence (Tags (poly, level, heaviness)) =
  1813     poly <> Mangled_Monomorphic andalso
  1814     ((level = All_Types andalso heaviness = Lightweight) orelse
  1815      level = Nonmonotonic_Types orelse level = Finite_Types)
  1816   | needs_type_tag_idempotence _ = false
  1817 
  1818 fun offset_of_heading_in_problem _ [] j = j
  1819   | offset_of_heading_in_problem needle ((heading, lines) :: problem) j =
  1820     if heading = needle then j
  1821     else offset_of_heading_in_problem needle problem (j + length lines)
  1822 
  1823 val implicit_declsN = "Should-be-implicit typings"
  1824 val explicit_declsN = "Explicit typings"
  1825 val factsN = "Relevant facts"
  1826 val class_relsN = "Class relationships"
  1827 val aritiesN = "Arities"
  1828 val helpersN = "Helper facts"
  1829 val conjsN = "Conjectures"
  1830 val free_typesN = "Type variables"
  1831 
  1832 val explicit_apply = NONE (* for experimental purposes *)
  1833 
  1834 fun prepare_atp_problem ctxt format conj_sym_kind prem_kind type_sys
  1835                         readable_names preproc hyp_ts concl_t facts =
  1836   let
  1837     val (format, type_sys) = choose_format [format] type_sys
  1838     val (fact_names, (conjs, facts, class_rel_clauses, arity_clauses)) =
  1839       translate_formulas ctxt format prem_kind type_sys preproc hyp_ts concl_t
  1840                          facts
  1841     val sym_tab = conjs @ facts |> sym_table_for_facts ctxt explicit_apply
  1842     val nonmono_Ts = conjs @ facts |> nonmonotonic_types_for_facts ctxt type_sys
  1843     val repair = repair_fact ctxt format type_sys sym_tab
  1844     val (conjs, facts) = (conjs, facts) |> pairself (map repair)
  1845     val repaired_sym_tab =
  1846       conjs @ facts |> sym_table_for_facts ctxt (SOME false)
  1847     val helpers =
  1848       repaired_sym_tab |> helper_facts_for_sym_table ctxt format type_sys
  1849                        |> map repair
  1850     val lavish_nonmono_Ts =
  1851       if null nonmono_Ts orelse nonmono_Ts = [@{typ bool}] orelse
  1852          polymorphism_of_type_sys type_sys <> Polymorphic then
  1853         nonmono_Ts
  1854       else
  1855         [TVar (("'a", 0), HOLogic.typeS)]
  1856     val sym_decl_lines =
  1857       (conjs, helpers @ facts)
  1858       |> sym_decl_table_for_facts ctxt type_sys repaired_sym_tab
  1859       |> problem_lines_for_sym_decl_table ctxt format conj_sym_kind
  1860                                           lavish_nonmono_Ts type_sys
  1861     val helper_lines =
  1862       0 upto length helpers - 1 ~~ helpers
  1863       |> map (formula_line_for_fact ctxt format helper_prefix I false
  1864                                     lavish_nonmono_Ts type_sys)
  1865       |> (if needs_type_tag_idempotence type_sys then
  1866             cons (type_tag_idempotence_fact ())
  1867           else
  1868             I)
  1869     (* Reordering these might confuse the proof reconstruction code or the SPASS
  1870        FLOTTER hack. *)
  1871     val problem =
  1872       [(explicit_declsN, sym_decl_lines),
  1873        (factsN,
  1874         map (formula_line_for_fact ctxt format fact_prefix ascii_of true
  1875                                    nonmono_Ts type_sys)
  1876             (0 upto length facts - 1 ~~ facts)),
  1877        (class_relsN, map formula_line_for_class_rel_clause class_rel_clauses),
  1878        (aritiesN, map formula_line_for_arity_clause arity_clauses),
  1879        (helpersN, helper_lines),
  1880        (conjsN,
  1881         map (formula_line_for_conjecture ctxt format nonmono_Ts type_sys)
  1882             conjs),
  1883        (free_typesN, formula_lines_for_free_types type_sys (facts @ conjs))]
  1884     val problem =
  1885       problem
  1886       |> (case format of
  1887             CNF => ensure_cnf_problem
  1888           | CNF_UEQ => filter_cnf_ueq_problem
  1889           | _ => I)
  1890       |> (if is_format_typed format then
  1891             declare_undeclared_syms_in_atp_problem type_decl_prefix
  1892                                                    implicit_declsN
  1893           else
  1894             I)
  1895     val (problem, pool) = problem |> nice_atp_problem readable_names
  1896     val helpers_offset = offset_of_heading_in_problem helpersN problem 0
  1897     val typed_helpers =
  1898       map_filter (fn (j, {name, ...}) =>
  1899                      if String.isSuffix typed_helper_suffix name then SOME j
  1900                      else NONE)
  1901                  ((helpers_offset + 1 upto helpers_offset + length helpers)
  1902                   ~~ helpers)
  1903     fun add_sym_arity (s, {min_ary, ...} : sym_info) =
  1904       if min_ary > 0 then
  1905         case strip_prefix_and_unascii const_prefix s of
  1906           SOME s => Symtab.insert (op =) (s, min_ary)
  1907         | NONE => I
  1908       else
  1909         I
  1910   in
  1911     (problem,
  1912      case pool of SOME the_pool => snd the_pool | NONE => Symtab.empty,
  1913      offset_of_heading_in_problem conjsN problem 0,
  1914      offset_of_heading_in_problem factsN problem 0,
  1915      fact_names |> Vector.fromList,
  1916      typed_helpers,
  1917      Symtab.empty |> Symtab.fold add_sym_arity sym_tab)
  1918   end
  1919 
  1920 (* FUDGE *)
  1921 val conj_weight = 0.0
  1922 val hyp_weight = 0.1
  1923 val fact_min_weight = 0.2
  1924 val fact_max_weight = 1.0
  1925 val type_info_default_weight = 0.8
  1926 
  1927 fun add_term_weights weight (ATerm (s, tms)) =
  1928   is_tptp_user_symbol s ? Symtab.default (s, weight)
  1929   #> fold (add_term_weights weight) tms
  1930 fun add_problem_line_weights weight (Formula (_, _, phi, _, _)) =
  1931     formula_fold NONE (K (add_term_weights weight)) phi
  1932   | add_problem_line_weights _ _ = I
  1933 
  1934 fun add_conjectures_weights [] = I
  1935   | add_conjectures_weights conjs =
  1936     let val (hyps, conj) = split_last conjs in
  1937       add_problem_line_weights conj_weight conj
  1938       #> fold (add_problem_line_weights hyp_weight) hyps
  1939     end
  1940 
  1941 fun add_facts_weights facts =
  1942   let
  1943     val num_facts = length facts
  1944     fun weight_of j =
  1945       fact_min_weight + (fact_max_weight - fact_min_weight) * Real.fromInt j
  1946                         / Real.fromInt num_facts
  1947   in
  1948     map weight_of (0 upto num_facts - 1) ~~ facts
  1949     |> fold (uncurry add_problem_line_weights)
  1950   end
  1951 
  1952 (* Weights are from 0.0 (most important) to 1.0 (least important). *)
  1953 fun atp_problem_weights problem =
  1954   let val get = these o AList.lookup (op =) problem in
  1955     Symtab.empty
  1956     |> add_conjectures_weights (get free_typesN @ get conjsN)
  1957     |> add_facts_weights (get factsN)
  1958     |> fold (fold (add_problem_line_weights type_info_default_weight) o get)
  1959             [explicit_declsN, class_relsN, aritiesN]
  1960     |> Symtab.dest
  1961     |> sort (prod_ord Real.compare string_ord o pairself swap)
  1962   end
  1963 
  1964 end;