src/HOL/BNF/Tools/bnf_fp_rec_sugar.ML
author panny
Fri, 18 Oct 2013 19:03:39 +0200
changeset 55612 a179353111db
parent 55609 5874be04e1f9
child 55613 496f9af15b39
permissions -rw-r--r--
generate callssss
     1 (*  Title:      HOL/BNF/Tools/bnf_fp_rec_sugar.ML
     2     Author:     Lorenz Panny, TU Muenchen
     3     Copyright   2013
     4 
     5 Recursor and corecursor sugar.
     6 *)
     7 
     8 signature BNF_FP_REC_SUGAR =
     9 sig
    10   val add_primrec: (binding * typ option * mixfix) list ->
    11     (Attrib.binding * term) list -> local_theory -> (term list * thm list list) * local_theory
    12   val add_primrec_cmd: (binding * string option * mixfix) list ->
    13     (Attrib.binding * string) list -> local_theory -> (term list * thm list list) * local_theory
    14   val add_primrec_global: (binding * typ option * mixfix) list ->
    15     (Attrib.binding * term) list -> theory -> (term list * thm list list) * theory
    16   val add_primrec_overloaded: (string * (string * typ) * bool) list ->
    17     (binding * typ option * mixfix) list ->
    18     (Attrib.binding * term) list -> theory -> (term list * thm list list) * theory
    19   val add_primrec_simple: ((binding * typ) * mixfix) list -> term list ->
    20     local_theory -> (string list * (term list * (int list list * thm list list))) * local_theory
    21   val add_primcorecursive_cmd: bool ->
    22     (binding * string option * mixfix) list * ((Attrib.binding * string) * string option) list ->
    23     Proof.context -> Proof.state
    24   val add_primcorec_cmd: bool ->
    25     (binding * string option * mixfix) list * ((Attrib.binding * string) * string option) list ->
    26     local_theory -> local_theory
    27 end;
    28 
    29 structure BNF_FP_Rec_Sugar : BNF_FP_REC_SUGAR =
    30 struct
    31 
    32 open BNF_Util
    33 open BNF_FP_Util
    34 open BNF_FP_Rec_Sugar_Util
    35 open BNF_FP_Rec_Sugar_Tactics
    36 
    37 val codeN = "code";
    38 val ctrN = "ctr";
    39 val discN = "disc";
    40 val selN = "sel";
    41 
    42 val nitpicksimp_attrs = @{attributes [nitpick_simp]};
    43 val simp_attrs = @{attributes [simp]};
    44 val code_nitpicksimp_attrs = Code.add_default_eqn_attrib :: nitpicksimp_attrs;
    45 val code_nitpicksimp_simp_attrs = Code.add_default_eqn_attrib :: nitpicksimp_attrs @ simp_attrs;
    46 
    47 exception Primrec_Error of string * term list;
    48 
    49 fun primrec_error str = raise Primrec_Error (str, []);
    50 fun primrec_error_eqn str eqn = raise Primrec_Error (str, [eqn]);
    51 fun primrec_error_eqns str eqns = raise Primrec_Error (str, eqns);
    52 
    53 fun finds eq = fold_map (fn x => List.partition (curry eq x) #>> pair x);
    54 
    55 val free_name = try (fn Free (v, _) => v);
    56 val const_name = try (fn Const (v, _) => v);
    57 val undef_const = Const (@{const_name undefined}, dummyT);
    58 
    59 fun permute_args n t = list_comb (t, map Bound (0 :: (n downto 1)))
    60   |> fold (K (Term.abs (Name.uu, dummyT))) (0 upto n);
    61 val abs_tuple = HOLogic.tupled_lambda o HOLogic.mk_tuple;
    62 fun drop_All t = subst_bounds (strip_qnt_vars @{const_name all} t |> map Free |> rev,
    63   strip_qnt_body @{const_name all} t)
    64 fun abstract vs =
    65   let fun a n (t $ u) = a n t $ a n u
    66         | a n (Abs (v, T, b)) = Abs (v, T, a (n + 1) b)
    67         | a n t = let val idx = find_index (equal t) vs in
    68             if idx < 0 then t else Bound (n + idx) end
    69   in a 0 end;
    70 fun mk_prod1 Ts (t, u) = HOLogic.pair_const (fastype_of1 (Ts, t)) (fastype_of1 (Ts, u)) $ t $ u;
    71 fun mk_tuple1 Ts = the_default HOLogic.unit o try (foldr1 (mk_prod1 Ts));
    72 
    73 fun get_indices fixes t = map (fst #>> Binding.name_of #> Free) fixes
    74   |> map_index (fn (i, v) => if exists_subterm (equal v) t then SOME i else NONE)
    75   |> map_filter I;
    76 
    77 
    78 (* Primrec *)
    79 
    80 type eqn_data = {
    81   fun_name: string,
    82   rec_type: typ,
    83   ctr: term,
    84   ctr_args: term list,
    85   left_args: term list,
    86   right_args: term list,
    87   res_type: typ,
    88   rhs_term: term,
    89   user_eqn: term
    90 };
    91 
    92 fun dissect_eqn lthy fun_names eqn' =
    93   let
    94     val eqn = drop_All eqn' |> HOLogic.dest_Trueprop
    95       handle TERM _ =>
    96         primrec_error_eqn "malformed function equation (expected \"lhs = rhs\")" eqn';
    97     val (lhs, rhs) = HOLogic.dest_eq eqn
    98         handle TERM _ =>
    99           primrec_error_eqn "malformed function equation (expected \"lhs = rhs\")" eqn';
   100     val (fun_name, args) = strip_comb lhs
   101       |>> (fn x => if is_Free x then fst (dest_Free x)
   102           else primrec_error_eqn "malformed function equation (does not start with free)" eqn);
   103     val (left_args, rest) = take_prefix is_Free args;
   104     val (nonfrees, right_args) = take_suffix is_Free rest;
   105     val num_nonfrees = length nonfrees;
   106     val _ = num_nonfrees = 1 orelse if num_nonfrees = 0 then
   107       primrec_error_eqn "constructor pattern missing in left-hand side" eqn else
   108       primrec_error_eqn "more than one non-variable argument in left-hand side" eqn;
   109     val _ = member (op =) fun_names fun_name orelse
   110       primrec_error_eqn "malformed function equation (does not start with function name)" eqn
   111 
   112     val (ctr, ctr_args) = strip_comb (the_single nonfrees);
   113     val _ = try (num_binder_types o fastype_of) ctr = SOME (length ctr_args) orelse
   114       primrec_error_eqn "partially applied constructor in pattern" eqn;
   115     val _ = let val d = duplicates (op =) (left_args @ ctr_args @ right_args) in null d orelse
   116       primrec_error_eqn ("duplicate variable \"" ^ Syntax.string_of_term lthy (hd d) ^
   117         "\" in left-hand side") eqn end;
   118     val _ = forall is_Free ctr_args orelse
   119       primrec_error_eqn "non-primitive pattern in left-hand side" eqn;
   120     val _ =
   121       let val b = fold_aterms (fn x as Free (v, _) =>
   122         if (not (member (op =) (left_args @ ctr_args @ right_args) x) andalso
   123         not (member (op =) fun_names v) andalso
   124         not (Variable.is_fixed lthy v)) then cons x else I | _ => I) rhs []
   125       in
   126         null b orelse
   127         primrec_error_eqn ("extra variable(s) in right-hand side: " ^
   128           commas (map (Syntax.string_of_term lthy) b)) eqn
   129       end;
   130   in
   131     {fun_name = fun_name,
   132      rec_type = body_type (type_of ctr),
   133      ctr = ctr,
   134      ctr_args = ctr_args,
   135      left_args = left_args,
   136      right_args = right_args,
   137      res_type = map fastype_of (left_args @ right_args) ---> fastype_of rhs,
   138      rhs_term = rhs,
   139      user_eqn = eqn'}
   140   end;
   141 
   142 fun rewrite_map_arg get_ctr_pos rec_type res_type =
   143   let
   144     val pT = HOLogic.mk_prodT (rec_type, res_type);
   145 
   146     val maybe_suc = Option.map (fn x => x + 1);
   147     fun subst d (t as Bound d') = t |> d = SOME d' ? curry (op $) (fst_const pT)
   148       | subst d (Abs (v, T, b)) = Abs (v, if d = SOME ~1 then pT else T, subst (maybe_suc d) b)
   149       | subst d t =
   150         let
   151           val (u, vs) = strip_comb t;
   152           val ctr_pos = try (get_ctr_pos o the) (free_name u) |> the_default ~1;
   153         in
   154           if ctr_pos >= 0 then
   155             if d = SOME ~1 andalso length vs = ctr_pos then
   156               list_comb (permute_args ctr_pos (snd_const pT), vs)
   157             else if length vs > ctr_pos andalso is_some d
   158                 andalso d = try (fn Bound n => n) (nth vs ctr_pos) then
   159               list_comb (snd_const pT $ nth vs ctr_pos, map (subst d) (nth_drop ctr_pos vs))
   160             else
   161               primrec_error_eqn ("recursive call not directly applied to constructor argument") t
   162           else if d = SOME ~1 andalso const_name u = SOME @{const_name comp} then
   163             list_comb (map_types (K dummyT) u, map2 subst [NONE, d] vs)
   164           else
   165             list_comb (u, map (subst (d |> d = SOME ~1 ? K NONE)) vs)
   166         end
   167   in
   168     subst (SOME ~1)
   169   end;
   170 
   171 fun subst_rec_calls lthy get_ctr_pos has_call ctr_args mutual_calls nested_calls t =
   172   let
   173     fun subst bound_Ts (Abs (v, T, b)) = Abs (v, T, subst (T :: bound_Ts) b)
   174       | subst bound_Ts (t as g' $ y) =
   175         if not (member (op =) ctr_args y) then
   176           pairself (subst bound_Ts) (g', y) |> op $
   177         else
   178           let
   179             val maybe_mutual_y' = AList.lookup (op =) mutual_calls y;
   180             val maybe_nested_y' = AList.lookup (op =) nested_calls y;
   181             val (g, g_args) = strip_comb g';
   182             val ctr_pos = try (get_ctr_pos o the) (free_name g) |> the_default ~1;
   183             val _ = ctr_pos < 0 orelse length g_args >= ctr_pos orelse
   184               primrec_error_eqn "too few arguments in recursive call" t;
   185           in
   186             if ctr_pos >= 0 then
   187               list_comb (the maybe_mutual_y', g_args)
   188             else if is_some maybe_nested_y' then
   189               (if has_call g' then t else y)
   190               |> massage_nested_rec_call lthy has_call
   191                 (rewrite_map_arg get_ctr_pos) bound_Ts y (the maybe_nested_y')
   192               |> (if has_call g' then I else curry (op $) g')
   193             else
   194               t
   195           end
   196       | subst _ t = t
   197   in
   198     subst [] t
   199     |> tap (fn u => has_call u andalso (* FIXME detect this case earlier *)
   200       primrec_error_eqn "recursive call not directly applied to constructor argument" t)
   201   end;
   202 
   203 fun build_rec_arg lthy (funs_data : eqn_data list list) has_call (ctr_spec : rec_ctr_spec)
   204     (maybe_eqn_data : eqn_data option) =
   205   if is_none maybe_eqn_data then undef_const else
   206     let
   207       val eqn_data = the maybe_eqn_data;
   208       val t = #rhs_term eqn_data;
   209       val ctr_args = #ctr_args eqn_data;
   210 
   211       val calls = #calls ctr_spec;
   212       val n_args = fold (curry (op +) o (fn Mutual_Rec _ => 2 | _ => 1)) calls 0;
   213 
   214       val no_calls' = tag_list 0 calls
   215         |> map_filter (try (apsnd (fn No_Rec n => n | Mutual_Rec (n, _) => n)));
   216       val mutual_calls' = tag_list 0 calls
   217         |> map_filter (try (apsnd (fn Mutual_Rec (_, n) => n)));
   218       val nested_calls' = tag_list 0 calls
   219         |> map_filter (try (apsnd (fn Nested_Rec n => n)));
   220 
   221       fun make_mutual_type _ = dummyT; (* FIXME? *)
   222 
   223       val rec_res_type_list = map (fn (x :: _) => (#rec_type x, #res_type x)) funs_data;
   224 
   225       fun make_nested_type (Type (Tname, Ts)) = Type (Tname, Ts |> map (fn T =>
   226         let val maybe_res_type = AList.lookup (op =) rec_res_type_list T in
   227           if is_some maybe_res_type
   228           then HOLogic.mk_prodT (T, the maybe_res_type)
   229           else make_nested_type T end))
   230         | make_nested_type T = T;
   231 
   232       val args = replicate n_args ("", dummyT)
   233         |> Term.rename_wrt_term t
   234         |> map Free
   235         |> fold (fn (ctr_arg_idx, arg_idx) =>
   236             nth_map arg_idx (K (nth ctr_args ctr_arg_idx)))
   237           no_calls'
   238         |> fold (fn (ctr_arg_idx, arg_idx) =>
   239             nth_map arg_idx (K (nth ctr_args ctr_arg_idx |> map_types make_mutual_type)))
   240           mutual_calls'
   241         |> fold (fn (ctr_arg_idx, arg_idx) =>
   242             nth_map arg_idx (K (nth ctr_args ctr_arg_idx |> map_types make_nested_type)))
   243           nested_calls';
   244 
   245       val fun_name_ctr_pos_list =
   246         map (fn (x :: _) => (#fun_name x, length (#left_args x))) funs_data;
   247       val get_ctr_pos = try (the o AList.lookup (op =) fun_name_ctr_pos_list) #> the_default ~1;
   248       val mutual_calls = map (apfst (nth ctr_args) o apsnd (nth args)) mutual_calls';
   249       val nested_calls = map (apfst (nth ctr_args) o apsnd (nth args)) nested_calls';
   250 
   251       val abstractions = args @ #left_args eqn_data @ #right_args eqn_data;
   252     in
   253       t
   254       |> subst_rec_calls lthy get_ctr_pos has_call ctr_args mutual_calls nested_calls
   255       |> fold_rev lambda abstractions
   256     end;
   257 
   258 fun build_defs lthy bs mxs (funs_data : eqn_data list list) (rec_specs : rec_spec list) has_call =
   259   let
   260     val n_funs = length funs_data;
   261 
   262     val ctr_spec_eqn_data_list' =
   263       (take n_funs rec_specs |> map #ctr_specs) ~~ funs_data
   264       |> maps (uncurry (finds (fn (x, y) => #ctr x = #ctr y))
   265           ##> (fn x => null x orelse
   266             primrec_error_eqns "excess equations in definition" (map #rhs_term x)) #> fst);
   267     val _ = ctr_spec_eqn_data_list' |> map (fn (_, x) => length x <= 1 orelse
   268       primrec_error_eqns ("multiple equations for constructor") (map #user_eqn x));
   269 
   270     val ctr_spec_eqn_data_list =
   271       ctr_spec_eqn_data_list' @ (drop n_funs rec_specs |> maps #ctr_specs |> map (rpair []));
   272 
   273     val recs = take n_funs rec_specs |> map #recx;
   274     val rec_args = ctr_spec_eqn_data_list
   275       |> sort ((op <) o pairself (#offset o fst) |> make_ord)
   276       |> map (uncurry (build_rec_arg lthy funs_data has_call) o apsnd (try the_single));
   277     val ctr_poss = map (fn x =>
   278       if length (distinct ((op =) o pairself (length o #left_args)) x) <> 1 then
   279         primrec_error ("inconstant constructor pattern position for function " ^
   280           quote (#fun_name (hd x)))
   281       else
   282         hd x |> #left_args |> length) funs_data;
   283   in
   284     (recs, ctr_poss)
   285     |-> map2 (fn recx => fn ctr_pos => list_comb (recx, rec_args) |> permute_args ctr_pos)
   286     |> Syntax.check_terms lthy
   287     |> map3 (fn b => fn mx => fn t => ((b, mx), ((Binding.conceal (Thm.def_binding b), []), t)))
   288       bs mxs
   289   end;
   290 
   291 fun find_rec_calls has_call (eqn_data : eqn_data) =
   292   let
   293     fun find (Abs (_, _, b)) ctr_arg = find b ctr_arg
   294       | find (t as _ $ _) ctr_arg =
   295         let
   296           val (f', args') = strip_comb t;
   297           val n = find_index (equal ctr_arg) args';
   298         in
   299           if n < 0 then
   300             find f' ctr_arg @ maps (fn x => find x ctr_arg) args'
   301           else
   302             let val (f, args) = chop n args' |>> curry list_comb f' in
   303               if has_call f then
   304                 f :: maps (fn x => find x ctr_arg) args
   305               else
   306                 find f ctr_arg @ maps (fn x => find x ctr_arg) args
   307             end
   308         end
   309       | find _ _ = [];
   310   in
   311     map (find (#rhs_term eqn_data)) (#ctr_args eqn_data)
   312     |> (fn [] => NONE | callss => SOME (#ctr eqn_data, callss))
   313   end;
   314 
   315 fun prepare_primrec fixes specs lthy =
   316   let
   317     val (bs, mxs) = map_split (apfst fst) fixes;
   318     val fun_names = map Binding.name_of bs;
   319     val eqns_data = map (dissect_eqn lthy fun_names) specs;
   320     val funs_data = eqns_data
   321       |> partition_eq ((op =) o pairself #fun_name)
   322       |> finds (fn (x, y) => x = #fun_name (hd y)) fun_names |> fst
   323       |> map (fn (x, y) => the_single y handle List.Empty =>
   324           primrec_error ("missing equations for function " ^ quote x));
   325 
   326     val has_call = exists_subterm (map (fst #>> Binding.name_of #> Free) fixes |> member (op =));
   327     val arg_Ts = map (#rec_type o hd) funs_data;
   328     val res_Ts = map (#res_type o hd) funs_data;
   329     val callssss = funs_data
   330       |> map (partition_eq ((op =) o pairself #ctr))
   331       |> map (maps (map_filter (find_rec_calls has_call)));
   332 
   333     val ((n2m, rec_specs, _, induct_thm, induct_thms), lthy') =
   334       rec_specs_of bs arg_Ts res_Ts (get_indices fixes) callssss lthy;
   335 
   336     val actual_nn = length funs_data;
   337 
   338     val _ = let val ctrs = (maps (map #ctr o #ctr_specs) rec_specs) in
   339       map (fn {ctr, user_eqn, ...} => member (op =) ctrs ctr orelse
   340         primrec_error_eqn ("argument " ^ quote (Syntax.string_of_term lthy' ctr) ^
   341           " is not a constructor in left-hand side") user_eqn) eqns_data end;
   342 
   343     val defs = build_defs lthy' bs mxs funs_data rec_specs has_call;
   344 
   345     fun prove lthy def_thms' ({ctr_specs, nested_map_idents, nested_map_comps, ...} : rec_spec)
   346         (fun_data : eqn_data list) =
   347       let
   348         val def_thms = map (snd o snd) def_thms';
   349         val simp_thmss = finds (fn (x, y) => #ctr x = #ctr y) fun_data ctr_specs
   350           |> fst
   351           |> map_filter (try (fn (x, [y]) =>
   352             (#user_eqn x, length (#left_args x) + length (#right_args x), #rec_thm y)))
   353           |> map (fn (user_eqn, num_extra_args, rec_thm) =>
   354             mk_primrec_tac lthy num_extra_args nested_map_idents nested_map_comps def_thms rec_thm
   355             |> K |> Goal.prove lthy [] [] user_eqn);
   356         val poss = find_indices (fn (x, y) => #ctr x = #ctr y) fun_data eqns_data;
   357       in
   358         (poss, simp_thmss)
   359       end;
   360 
   361     val notes =
   362       (if n2m then map2 (fn name => fn thm =>
   363         (name, inductN, [thm], [])) fun_names (take actual_nn induct_thms) else [])
   364       |> map (fn (prefix, thmN, thms, attrs) =>
   365         ((Binding.qualify true prefix (Binding.name thmN), attrs), [(thms, [])]));
   366 
   367     val common_name = mk_common_name fun_names;
   368 
   369     val common_notes =
   370       (if n2m then [(inductN, [induct_thm], [])] else [])
   371       |> map (fn (thmN, thms, attrs) =>
   372         ((Binding.qualify true common_name (Binding.name thmN), attrs), [(thms, [])]));
   373   in
   374     (((fun_names, defs),
   375       fn lthy => fn defs =>
   376         split_list (map2 (prove lthy defs) (take actual_nn rec_specs) funs_data)),
   377       lthy' |> Local_Theory.notes (notes @ common_notes) |> snd)
   378   end;
   379 
   380 (* primrec definition *)
   381 
   382 fun add_primrec_simple fixes ts lthy =
   383   let
   384     val (((names, defs), prove), lthy) = prepare_primrec fixes ts lthy
   385       handle ERROR str => primrec_error str;
   386   in
   387     lthy
   388     |> fold_map Local_Theory.define defs
   389     |-> (fn defs => `(fn lthy => (names, (map fst defs, prove lthy defs))))
   390   end
   391   handle Primrec_Error (str, eqns) =>
   392     if null eqns
   393     then error ("primrec_new error:\n  " ^ str)
   394     else error ("primrec_new error:\n  " ^ str ^ "\nin\n  " ^
   395       space_implode "\n  " (map (quote o Syntax.string_of_term lthy) eqns));
   396 
   397 local
   398 
   399 fun gen_primrec prep_spec (raw_fixes : (binding * 'a option * mixfix) list) raw_spec lthy =
   400   let
   401     val d = duplicates (op =) (map (Binding.name_of o #1) raw_fixes)
   402     val _ = null d orelse primrec_error ("duplicate function name(s): " ^ commas d);
   403 
   404     val (fixes, specs) = fst (prep_spec raw_fixes raw_spec lthy);
   405 
   406     val mk_notes =
   407       flat ooo map3 (fn poss => fn prefix => fn thms =>
   408         let
   409           val (bs, attrss) = map_split (fst o nth specs) poss;
   410           val notes =
   411             map3 (fn b => fn attrs => fn thm =>
   412               ((Binding.qualify false prefix b, code_nitpicksimp_simp_attrs @ attrs), [([thm], [])]))
   413             bs attrss thms;
   414         in
   415           ((Binding.qualify true prefix (Binding.name simpsN), []), [(thms, [])]) :: notes
   416         end);
   417   in
   418     lthy
   419     |> add_primrec_simple fixes (map snd specs)
   420     |-> (fn (names, (ts, (posss, simpss))) =>
   421       Spec_Rules.add Spec_Rules.Equational (ts, flat simpss)
   422       #> Local_Theory.notes (mk_notes posss names simpss)
   423       #>> pair ts o map snd)
   424   end;
   425 
   426 in
   427 
   428 val add_primrec = gen_primrec Specification.check_spec;
   429 val add_primrec_cmd = gen_primrec Specification.read_spec;
   430 
   431 end;
   432 
   433 fun add_primrec_global fixes specs thy =
   434   let
   435     val lthy = Named_Target.theory_init thy;
   436     val ((ts, simps), lthy') = add_primrec fixes specs lthy;
   437     val simps' = burrow (Proof_Context.export lthy' lthy) simps;
   438   in ((ts, simps'), Local_Theory.exit_global lthy') end;
   439 
   440 fun add_primrec_overloaded ops fixes specs thy =
   441   let
   442     val lthy = Overloading.overloading ops thy;
   443     val ((ts, simps), lthy') = add_primrec fixes specs lthy;
   444     val simps' = burrow (Proof_Context.export lthy' lthy) simps;
   445   in ((ts, simps'), Local_Theory.exit_global lthy') end;
   446 
   447 
   448 
   449 (* Primcorec *)
   450 
   451 type coeqn_data_disc = {
   452   fun_name: string,
   453   fun_T: typ,
   454   fun_args: term list,
   455   ctr: term,
   456   ctr_no: int, (*###*)
   457   disc: term,
   458   prems: term list,
   459   auto_gen: bool,
   460   maybe_ctr_rhs: term option,
   461   maybe_code_rhs: term option,
   462   user_eqn: term
   463 };
   464 
   465 type coeqn_data_sel = {
   466   fun_name: string,
   467   fun_T: typ,
   468   fun_args: term list,
   469   ctr: term,
   470   sel: term,
   471   rhs_term: term,
   472   user_eqn: term
   473 };
   474 
   475 datatype coeqn_data =
   476   Disc of coeqn_data_disc |
   477   Sel of coeqn_data_sel;
   478 
   479 fun dissect_coeqn_disc seq fun_names (basic_ctr_specss : basic_corec_ctr_spec list list)
   480     maybe_ctr_rhs maybe_code_rhs prems' concl matchedsss =
   481   let
   482     fun find_subterm p = let (* FIXME \<exists>? *)
   483       fun f (t as u $ v) = if p t then SOME t else merge_options (f u, f v)
   484         | f t = if p t then SOME t else NONE
   485       in f end;
   486 
   487     val applied_fun = concl
   488       |> find_subterm (member ((op =) o apsnd SOME) fun_names o try (fst o dest_Free o head_of))
   489       |> the
   490       handle Option.Option => primrec_error_eqn "malformed discriminator equation" concl;
   491     val ((fun_name, fun_T), fun_args) = strip_comb applied_fun |>> dest_Free;
   492     val basic_ctr_specs = the (AList.lookup (op =) (fun_names ~~ basic_ctr_specss) fun_name);
   493 
   494     val discs = map #disc basic_ctr_specs;
   495     val ctrs = map #ctr basic_ctr_specs;
   496     val not_disc = head_of concl = @{term Not};
   497     val _ = not_disc andalso length ctrs <> 2 andalso
   498       primrec_error_eqn "\<not>ed discriminator for a type with \<noteq> 2 constructors" concl;
   499     val disc' = find_subterm (member (op =) discs o head_of) concl;
   500     val eq_ctr0 = concl |> perhaps (try (HOLogic.dest_not)) |> try (HOLogic.dest_eq #> snd)
   501         |> (fn SOME t => let val n = find_index (equal t) ctrs in
   502           if n >= 0 then SOME n else NONE end | _ => NONE);
   503     val _ = is_some disc' orelse is_some eq_ctr0 orelse
   504       primrec_error_eqn "no discriminator in equation" concl;
   505     val ctr_no' =
   506       if is_none disc' then the eq_ctr0 else find_index (equal (head_of (the disc'))) discs;
   507     val ctr_no = if not_disc then 1 - ctr_no' else ctr_no';
   508     val {ctr, disc, ...} = nth basic_ctr_specs ctr_no;
   509 
   510     val catch_all = try (fst o dest_Free o the_single) prems' = SOME Name.uu_;
   511     val matchedss = AList.lookup (op =) matchedsss fun_name |> the_default [];
   512     val prems = map (abstract (List.rev fun_args)) prems';
   513     val real_prems =
   514       (if catch_all orelse seq then maps s_not_conj matchedss else []) @
   515       (if catch_all then [] else prems);
   516 
   517     val matchedsss' = AList.delete (op =) fun_name matchedsss
   518       |> cons (fun_name, if seq then matchedss @ [prems] else matchedss @ [real_prems]);
   519 
   520     val user_eqn =
   521       (real_prems, concl)
   522       |>> map HOLogic.mk_Trueprop ||> HOLogic.mk_Trueprop o abstract (List.rev fun_args)
   523       |> curry Logic.list_all (map dest_Free fun_args) o Logic.list_implies;
   524   in
   525     (Disc {
   526       fun_name = fun_name,
   527       fun_T = fun_T,
   528       fun_args = fun_args,
   529       ctr = ctr,
   530       ctr_no = ctr_no,
   531       disc = disc,
   532       prems = real_prems,
   533       auto_gen = catch_all,
   534       maybe_ctr_rhs = maybe_ctr_rhs,
   535       maybe_code_rhs = maybe_code_rhs,
   536       user_eqn = user_eqn
   537     }, matchedsss')
   538   end;
   539 
   540 fun dissect_coeqn_sel fun_names (basic_ctr_specss : basic_corec_ctr_spec list list) eqn' of_spec
   541     eqn =
   542   let
   543     val (lhs, rhs) = HOLogic.dest_eq eqn
   544       handle TERM _ =>
   545         primrec_error_eqn "malformed function equation (expected \"lhs = rhs\")" eqn;
   546     val sel = head_of lhs;
   547     val ((fun_name, fun_T), fun_args) = dest_comb lhs |> snd |> strip_comb |> apfst dest_Free
   548       handle TERM _ =>
   549         primrec_error_eqn "malformed selector argument in left-hand side" eqn;
   550     val basic_ctr_specs = the (AList.lookup (op =) (fun_names ~~ basic_ctr_specss) fun_name)
   551       handle Option.Option => primrec_error_eqn "malformed selector argument in left-hand side" eqn;
   552     val {ctr, ...} =
   553       if is_some of_spec
   554       then the (find_first (equal (the of_spec) o #ctr) basic_ctr_specs)
   555       else filter (exists (equal sel) o #sels) basic_ctr_specs |> the_single
   556         handle List.Empty => primrec_error_eqn "ambiguous selector - use \"of\"" eqn;
   557     val user_eqn = drop_All eqn';
   558   in
   559     Sel {
   560       fun_name = fun_name,
   561       fun_T = fun_T,
   562       fun_args = fun_args,
   563       ctr = ctr,
   564       sel = sel,
   565       rhs_term = rhs,
   566       user_eqn = user_eqn
   567     }
   568   end;
   569 
   570 fun dissect_coeqn_ctr seq fun_names (basic_ctr_specss : basic_corec_ctr_spec list list) eqn'
   571     maybe_code_rhs prems concl matchedsss =
   572   let
   573     val (lhs, rhs) = HOLogic.dest_eq concl;
   574     val (fun_name, fun_args) = strip_comb lhs |>> fst o dest_Free;
   575     val basic_ctr_specs = the (AList.lookup (op =) (fun_names ~~ basic_ctr_specss) fun_name);
   576     val (ctr, ctr_args) = strip_comb (unfold_let rhs);
   577     val {disc, sels, ...} = the (find_first (equal ctr o #ctr) basic_ctr_specs)
   578       handle Option.Option => primrec_error_eqn "not a constructor" ctr;
   579 
   580     val disc_concl = betapply (disc, lhs);
   581     val (maybe_eqn_data_disc, matchedsss') = if length basic_ctr_specs = 1
   582       then (NONE, matchedsss)
   583       else apfst SOME (dissect_coeqn_disc seq fun_names basic_ctr_specss
   584           (SOME (abstract (List.rev fun_args) rhs)) maybe_code_rhs prems disc_concl matchedsss);
   585 
   586     val sel_concls = (sels ~~ ctr_args)
   587       |> map (fn (sel, ctr_arg) => HOLogic.mk_eq (betapply (sel, lhs), ctr_arg));
   588 
   589 (*
   590 val _ = tracing ("reduced\n    " ^ Syntax.string_of_term @{context} concl ^ "\nto\n    \<cdot> " ^
   591  (is_some maybe_eqn_data_disc ? K (Syntax.string_of_term @{context} disc_concl ^ "\n    \<cdot> ")) "" ^
   592  space_implode "\n    \<cdot> " (map (Syntax.string_of_term @{context}) sel_concls) ^
   593  "\nfor premise(s)\n    \<cdot> " ^
   594  space_implode "\n    \<cdot> " (map (Syntax.string_of_term @{context}) prems));
   595 *)
   596 
   597     val eqns_data_sel =
   598       map (dissect_coeqn_sel fun_names basic_ctr_specss eqn' (SOME ctr)) sel_concls;
   599   in
   600     (the_list maybe_eqn_data_disc @ eqns_data_sel, matchedsss')
   601   end;
   602 
   603 fun dissect_coeqn_code lthy has_call fun_names basic_ctr_specss eqn' concl matchedsss =
   604   let
   605     val (lhs, (rhs', rhs)) = HOLogic.dest_eq concl ||> `(expand_corec_code_rhs lthy has_call []);
   606     val (fun_name, fun_args) = strip_comb lhs |>> fst o dest_Free;
   607     val basic_ctr_specs = the (AList.lookup (op =) (fun_names ~~ basic_ctr_specss) fun_name);
   608 
   609     val cond_ctrs = fold_rev_corec_code_rhs lthy (fn cs => fn ctr => fn _ =>
   610         if member ((op =) o apsnd #ctr) basic_ctr_specs ctr
   611         then cons (ctr, cs)
   612         else primrec_error_eqn "not a constructor" ctr) [] rhs' []
   613       |> AList.group (op =);
   614 
   615     val ctr_premss = (case cond_ctrs of [_] => [[]] | _ => map (s_dnf o snd) cond_ctrs);
   616     val ctr_concls = cond_ctrs |> map (fn (ctr, _) =>
   617         binder_types (fastype_of ctr)
   618         |> map_index (fn (n, T) => massage_corec_code_rhs lthy (fn _ => fn ctr' => fn args =>
   619           if ctr' = ctr then nth args n else Const (@{const_name undefined}, T)) [] rhs')
   620         |> curry list_comb ctr
   621         |> curry HOLogic.mk_eq lhs);
   622   in
   623     fold_map2 (dissect_coeqn_ctr false fun_names basic_ctr_specss eqn'
   624         (SOME (abstract (List.rev fun_args) rhs)))
   625       ctr_premss ctr_concls matchedsss
   626   end;
   627 
   628 fun dissect_coeqn lthy seq has_call fun_names (basic_ctr_specss : basic_corec_ctr_spec list list)
   629     eqn' of_spec matchedsss =
   630   let
   631     val eqn = drop_All eqn'
   632       handle TERM _ => primrec_error_eqn "malformed function equation" eqn';
   633     val (prems, concl) = Logic.strip_horn eqn
   634       |> apfst (map HOLogic.dest_Trueprop) o apsnd HOLogic.dest_Trueprop;
   635 
   636     val head = concl
   637       |> perhaps (try HOLogic.dest_not) |> perhaps (try (fst o HOLogic.dest_eq))
   638       |> head_of;
   639 
   640     val maybe_rhs = concl |> perhaps (try (HOLogic.dest_not)) |> try (snd o HOLogic.dest_eq);
   641 
   642     val discs = maps (map #disc) basic_ctr_specss;
   643     val sels = maps (maps #sels) basic_ctr_specss;
   644     val ctrs = maps (map #ctr) basic_ctr_specss;
   645   in
   646     if member (op =) discs head orelse
   647       is_some maybe_rhs andalso
   648         member (op =) (filter (null o binder_types o fastype_of) ctrs) (the maybe_rhs) then
   649       dissect_coeqn_disc seq fun_names basic_ctr_specss NONE NONE prems concl matchedsss
   650       |>> single
   651     else if member (op =) sels head then
   652       ([dissect_coeqn_sel fun_names basic_ctr_specss eqn' of_spec concl], matchedsss)
   653     else if is_Free head andalso member (op =) fun_names (fst (dest_Free head)) andalso
   654       member (op =) ctrs (head_of (unfold_let (the maybe_rhs))) then
   655       dissect_coeqn_ctr seq fun_names basic_ctr_specss eqn' NONE prems concl matchedsss
   656     else if is_Free head andalso member (op =) fun_names (fst (dest_Free head)) andalso
   657       null prems then
   658       dissect_coeqn_code lthy has_call fun_names basic_ctr_specss eqn' concl matchedsss
   659       |>> flat
   660     else
   661       primrec_error_eqn "malformed function equation" eqn
   662   end;
   663 
   664 fun build_corec_arg_disc (ctr_specs : corec_ctr_spec list)
   665     ({fun_args, ctr_no, prems, ...} : coeqn_data_disc) =
   666   if is_none (#pred (nth ctr_specs ctr_no)) then I else
   667     s_conjs prems
   668     |> curry subst_bounds (List.rev fun_args)
   669     |> HOLogic.tupled_lambda (HOLogic.mk_tuple fun_args)
   670     |> K |> nth_map (the (#pred (nth ctr_specs ctr_no)));
   671 
   672 fun build_corec_arg_no_call (sel_eqns : coeqn_data_sel list) sel =
   673   find_first (equal sel o #sel) sel_eqns
   674   |> try (fn SOME {fun_args, rhs_term, ...} => abs_tuple fun_args rhs_term)
   675   |> the_default undef_const
   676   |> K;
   677 
   678 fun build_corec_args_mutual_call lthy has_call (sel_eqns : coeqn_data_sel list) sel =
   679   let
   680     val maybe_sel_eqn = find_first (equal sel o #sel) sel_eqns;
   681   in
   682     if is_none maybe_sel_eqn then (I, I, I) else
   683     let
   684       val {fun_args, rhs_term, ... } = the maybe_sel_eqn;
   685       val bound_Ts = List.rev (map fastype_of fun_args);
   686       fun rewrite_q _ t = if has_call t then @{term False} else @{term True};
   687       fun rewrite_g _ t = if has_call t then undef_const else t;
   688       fun rewrite_h bound_Ts t =
   689         if has_call t then mk_tuple1 bound_Ts (snd (strip_comb t)) else undef_const;
   690       fun massage f _ = massage_mutual_corec_call lthy has_call f bound_Ts rhs_term
   691         |> abs_tuple fun_args;
   692     in
   693       (massage rewrite_q,
   694        massage rewrite_g,
   695        massage rewrite_h)
   696     end
   697   end;
   698 
   699 fun build_corec_arg_nested_call lthy has_call (sel_eqns : coeqn_data_sel list) sel =
   700   let
   701     val maybe_sel_eqn = find_first (equal sel o #sel) sel_eqns;
   702   in
   703     if is_none maybe_sel_eqn then I else
   704     let
   705       val {fun_args, rhs_term, ...} = the maybe_sel_eqn;
   706       val bound_Ts = List.rev (map fastype_of fun_args);
   707       fun rewrite bound_Ts U T (Abs (v, V, b)) = Abs (v, V, rewrite (V :: bound_Ts) U T b)
   708         | rewrite bound_Ts U T (t as _ $ _) =
   709           let val (u, vs) = strip_comb t in
   710             if is_Free u andalso has_call u then
   711               Inr_const U T $ mk_tuple1 bound_Ts vs
   712             else if try (fst o dest_Const) u = SOME @{const_name prod_case} then
   713               map (rewrite bound_Ts U T) vs |> chop 1 |>> HOLogic.mk_split o the_single |> list_comb
   714             else
   715               list_comb (rewrite bound_Ts U T u, map (rewrite bound_Ts U T) vs)
   716           end
   717         | rewrite _ U T t =
   718           if is_Free t andalso has_call t then Inr_const U T $ HOLogic.unit else t;
   719       fun massage t =
   720         rhs_term
   721         |> massage_nested_corec_call lthy has_call rewrite bound_Ts (range_type (fastype_of t))
   722         |> abs_tuple fun_args;
   723     in
   724       massage
   725     end
   726   end;
   727 
   728 fun build_corec_args_sel lthy has_call (all_sel_eqns : coeqn_data_sel list)
   729     (ctr_spec : corec_ctr_spec) =
   730   let val sel_eqns = filter (equal (#ctr ctr_spec) o #ctr) all_sel_eqns in
   731     if null sel_eqns then I else
   732       let
   733         val sel_call_list = #sels ctr_spec ~~ #calls ctr_spec;
   734 
   735         val no_calls' = map_filter (try (apsnd (fn No_Corec n => n))) sel_call_list;
   736         val mutual_calls' = map_filter (try (apsnd (fn Mutual_Corec n => n))) sel_call_list;
   737         val nested_calls' = map_filter (try (apsnd (fn Nested_Corec n => n))) sel_call_list;
   738       in
   739         I
   740         #> fold (fn (sel, n) => nth_map n (build_corec_arg_no_call sel_eqns sel)) no_calls'
   741         #> fold (fn (sel, (q, g, h)) =>
   742           let val (fq, fg, fh) = build_corec_args_mutual_call lthy has_call sel_eqns sel in
   743             nth_map q fq o nth_map g fg o nth_map h fh end) mutual_calls'
   744         #> fold (fn (sel, n) => nth_map n
   745           (build_corec_arg_nested_call lthy has_call sel_eqns sel)) nested_calls'
   746       end
   747   end;
   748 
   749 fun build_codefs lthy bs mxs has_call arg_Tss (corec_specs : corec_spec list)
   750     (disc_eqnss : coeqn_data_disc list list) (sel_eqnss : coeqn_data_sel list list) =
   751   let
   752     val corecs = map #corec corec_specs;
   753     val ctr_specss = map #ctr_specs corec_specs;
   754     val corec_args = hd corecs
   755       |> fst o split_last o binder_types o fastype_of
   756       |> map (Const o pair @{const_name undefined})
   757       |> fold2 (fold o build_corec_arg_disc) ctr_specss disc_eqnss
   758       |> fold2 (fold o build_corec_args_sel lthy has_call) sel_eqnss ctr_specss;
   759     fun currys [] t = t
   760       | currys Ts t = t $ mk_tuple1 (List.rev Ts) (map Bound (length Ts - 1 downto 0))
   761           |> fold_rev (Term.abs o pair Name.uu) Ts;
   762 
   763 (*
   764 val _ = tracing ("corecursor arguments:\n    \<cdot> " ^
   765  space_implode "\n    \<cdot> " (map (Syntax.string_of_term lthy) corec_args));
   766 *)
   767 
   768     val exclss' =
   769       disc_eqnss
   770       |> map (map (fn x => (#fun_args x, #ctr_no x, #prems x, #auto_gen x))
   771         #> fst o (fn xs => fold_map (fn x => fn ys => ((x, ys), ys @ [x])) xs [])
   772         #> maps (uncurry (map o pair)
   773           #> map (fn ((fun_args, c, x, a), (_, c', y, a')) =>
   774               ((c, c', a orelse a'), (x, s_not (s_conjs y)))
   775             ||> apfst (map HOLogic.mk_Trueprop) o apsnd HOLogic.mk_Trueprop
   776             ||> Logic.list_implies
   777             ||> curry Logic.list_all (map dest_Free fun_args))))
   778   in
   779     map (list_comb o rpair corec_args) corecs
   780     |> map2 (fn Ts => fn t => if length Ts = 0 then t $ HOLogic.unit else t) arg_Tss
   781     |> map2 currys arg_Tss
   782     |> Syntax.check_terms lthy
   783     |> map3 (fn b => fn mx => fn t => ((b, mx), ((Binding.conceal (Thm.def_binding b), []), t)))
   784       bs mxs
   785     |> rpair exclss'
   786   end;
   787 
   788 fun mk_real_disc_eqns fun_binding arg_Ts ({ctr_specs, ...} : corec_spec)
   789     (sel_eqns : coeqn_data_sel list) (disc_eqns : coeqn_data_disc list) =
   790   if length disc_eqns <> length ctr_specs - 1 then disc_eqns else
   791     let
   792       val n = 0 upto length ctr_specs
   793         |> the o find_first (fn idx => not (exists (equal idx o #ctr_no) disc_eqns));
   794       val fun_args = (try (#fun_args o hd) disc_eqns, try (#fun_args o hd) sel_eqns)
   795         |> the_default (map (curry Free Name.uu) arg_Ts) o merge_options;
   796       val extra_disc_eqn = {
   797         fun_name = Binding.name_of fun_binding,
   798         fun_T = arg_Ts ---> body_type (fastype_of (#ctr (hd ctr_specs))),
   799         fun_args = fun_args,
   800         ctr = #ctr (nth ctr_specs n),
   801         ctr_no = n,
   802         disc = #disc (nth ctr_specs n),
   803         prems = maps (s_not_conj o #prems) disc_eqns,
   804         auto_gen = true,
   805         maybe_ctr_rhs = NONE,
   806         maybe_code_rhs = NONE,
   807         user_eqn = undef_const};
   808     in
   809       chop n disc_eqns ||> cons extra_disc_eqn |> (op @)
   810     end;
   811 
   812 fun find_corec_calls has_call basic_ctr_specs {ctr, sel, rhs_term, ...} =
   813   let
   814     val sel_no = find_first (equal ctr o #ctr) basic_ctr_specs
   815       |> find_index (equal sel) o #sels o the;
   816     fun find (Abs (_, _, b)) = find b
   817       | find (t as _ $ _) = strip_comb t |>> find ||> maps find |> (op @)
   818       | find f = if is_Free f andalso has_call f then [f] else [];
   819   in
   820     find rhs_term
   821     |> K |> nth_map sel_no |> AList.map_entry (op =) ctr
   822   end;
   823 
   824 fun add_primcorec simple seq fixes specs of_specs lthy =
   825   let
   826     val (bs, mxs) = map_split (apfst fst) fixes;
   827     val (arg_Ts, res_Ts) = map (strip_type o snd o fst #>> HOLogic.mk_tupleT) fixes |> split_list;
   828 
   829     val fun_names = map Binding.name_of bs;
   830     val basic_ctr_specss = map (basic_corec_specs_of lthy) res_Ts;
   831     val has_call = exists_subterm (map (fst #>> Binding.name_of #> Free) fixes |> member (op =));
   832     val eqns_data =
   833       fold_map2 (dissect_coeqn lthy seq has_call fun_names basic_ctr_specss) (map snd specs)
   834         of_specs []
   835       |> flat o fst;
   836 
   837     val callssss =
   838       map_filter (try (fn Sel x => x)) eqns_data
   839       |> partition_eq ((op =) o pairself #fun_name)
   840       |> fst o finds (fn (x, ({fun_name, ...} :: _)) => x = fun_name) fun_names
   841       |> map (flat o snd)      |> map2 (fold o find_corec_calls has_call) basic_ctr_specss
   842       |> map2 (curry (op |>)) (map (map (fn {ctr, sels, ...} =>
   843         (ctr, map (K []) sels))) basic_ctr_specss);
   844 
   845 (*
   846 val _ = tracing ("callssss = " ^ @{make_string} callssss);
   847 *)
   848 
   849     val ((n2m, corec_specs', _, coinduct_thm, strong_coinduct_thm, coinduct_thms,
   850           strong_coinduct_thms), lthy') =
   851       corec_specs_of bs arg_Ts res_Ts (get_indices fixes) callssss lthy;
   852     val actual_nn = length bs;
   853     val corec_specs = take actual_nn corec_specs'; (*###*)
   854 
   855     val disc_eqnss' = map_filter (try (fn Disc x => x)) eqns_data
   856       |> partition_eq ((op =) o pairself #fun_name)
   857       |> fst o finds (fn (x, ({fun_name, ...} :: _)) => x = fun_name) fun_names
   858       |> map (sort ((op <) o pairself #ctr_no |> make_ord) o flat o snd);
   859     val _ = disc_eqnss' |> map (fn x =>
   860       let val d = duplicates ((op =) o pairself #ctr_no) x in null d orelse
   861         primrec_error_eqns "excess discriminator equations in definition"
   862           (maps (fn t => filter (equal (#ctr_no t) o #ctr_no) x) d |> map #user_eqn) end);
   863 
   864     val sel_eqnss = map_filter (try (fn Sel x => x)) eqns_data
   865       |> partition_eq ((op =) o pairself #fun_name)
   866       |> fst o finds (fn (x, ({fun_name, ...} :: _)) => x = fun_name) fun_names
   867       |> map (flat o snd);
   868 
   869     val arg_Tss = map (binder_types o snd o fst) fixes;
   870     val disc_eqnss = map5 mk_real_disc_eqns bs arg_Tss corec_specs sel_eqnss disc_eqnss';
   871     val (defs, exclss') =
   872       build_codefs lthy' bs mxs has_call arg_Tss corec_specs disc_eqnss sel_eqnss;
   873 
   874     fun excl_tac (c, c', a) =
   875       if a orelse c = c' orelse seq then
   876         SOME (K (HEADGOAL (mk_primcorec_assumption_tac lthy [])))
   877       else if simple then
   878         SOME (K (auto_tac lthy))
   879       else
   880         NONE;
   881 
   882 (*
   883 val _ = tracing ("exclusiveness properties:\n    \<cdot> " ^
   884  space_implode "\n    \<cdot> " (maps (map (Syntax.string_of_term lthy o snd)) exclss'));
   885 *)
   886 
   887     val exclss'' = exclss' |> map (map (fn (idx, t) =>
   888       (idx, (Option.map (Goal.prove lthy [] [] t) (excl_tac idx), t))));
   889     val taut_thmss = map (map (apsnd (the o fst)) o filter (is_some o fst o snd)) exclss'';
   890     val (obligation_idxss, obligationss) = exclss''
   891       |> map (map (apsnd (rpair [] o snd)) o filter (is_none o fst o snd))
   892       |> split_list o map split_list;
   893 
   894     fun prove thmss' def_thms' lthy =
   895       let
   896         val def_thms = map (snd o snd) def_thms';
   897 
   898         val exclss' = map (op ~~) (obligation_idxss ~~ thmss');
   899         fun mk_exclsss excls n =
   900           (excls, map (fn k => replicate k [TrueI] @ replicate (n - k) []) (0 upto n - 1))
   901           |-> fold (fn ((c, c', _), thm) => nth_map c (nth_map c' (K [thm])));
   902         val exclssss = (exclss' ~~ taut_thmss |> map (op @), fun_names ~~ corec_specs)
   903           |-> map2 (fn excls => fn (_, {ctr_specs, ...}) => mk_exclsss excls (length ctr_specs));
   904 
   905         fun prove_disc ({ctr_specs, ...} : corec_spec) exclsss
   906             ({fun_name, fun_T, fun_args, ctr_no, prems, ...} : coeqn_data_disc) =
   907           if Term.aconv_untyped (#disc (nth ctr_specs ctr_no), @{term "\<lambda>x. x = x"}) then [] else
   908             let
   909               val {disc_corec, ...} = nth ctr_specs ctr_no;
   910               val k = 1 + ctr_no;
   911               val m = length prems;
   912               val t =
   913                 list_comb (Free (fun_name, fun_T), map Bound (length fun_args - 1 downto 0))
   914                 |> curry betapply (#disc (nth ctr_specs ctr_no)) (*###*)
   915                 |> HOLogic.mk_Trueprop
   916                 |> curry Logic.list_implies (map HOLogic.mk_Trueprop prems)
   917                 |> curry Logic.list_all (map dest_Free fun_args);
   918             in
   919               if prems = [@{term False}] then [] else
   920               mk_primcorec_disc_tac lthy def_thms disc_corec k m exclsss
   921               |> K |> Goal.prove lthy [] [] t
   922               |> pair (#disc (nth ctr_specs ctr_no))
   923               |> single
   924             end;
   925 
   926         fun prove_sel ({nested_maps, nested_map_idents, nested_map_comps, ctr_specs, ...}
   927             : corec_spec) (disc_eqns : coeqn_data_disc list) exclsss
   928             ({fun_name, fun_T, fun_args, ctr, sel, rhs_term, ...} : coeqn_data_sel) =
   929           let
   930             val SOME ctr_spec = find_first (equal ctr o #ctr) ctr_specs;
   931             val ctr_no = find_index (equal ctr o #ctr) ctr_specs;
   932             val prems = the_default (maps (s_not_conj o #prems) disc_eqns)
   933                 (find_first (equal ctr_no o #ctr_no) disc_eqns |> Option.map #prems);
   934             val sel_corec = find_index (equal sel) (#sels ctr_spec)
   935               |> nth (#sel_corecs ctr_spec);
   936             val k = 1 + ctr_no;
   937             val m = length prems;
   938             val t =
   939               list_comb (Free (fun_name, fun_T), map Bound (length fun_args - 1 downto 0))
   940               |> curry betapply sel
   941               |> rpair (abstract (List.rev fun_args) rhs_term)
   942               |> HOLogic.mk_Trueprop o HOLogic.mk_eq
   943               |> curry Logic.list_implies (map HOLogic.mk_Trueprop prems)
   944               |> curry Logic.list_all (map dest_Free fun_args);
   945             val (distincts, _, sel_splits, sel_split_asms) = case_thms_of_term lthy [] rhs_term;
   946           in
   947             mk_primcorec_sel_tac lthy def_thms distincts sel_splits sel_split_asms nested_maps
   948               nested_map_idents nested_map_comps sel_corec k m exclsss
   949             |> K |> Goal.prove lthy [] [] t
   950             |> pair sel
   951           end;
   952 
   953         fun prove_ctr disc_alist sel_alist (disc_eqns : coeqn_data_disc list)
   954             (sel_eqns : coeqn_data_sel list) ({ctr, disc, sels, collapse, ...} : corec_ctr_spec) =
   955           (* don't try to prove theorems when some sel_eqns are missing *)
   956           if not (exists (equal ctr o #ctr) disc_eqns)
   957               andalso not (exists (equal ctr o #ctr) sel_eqns)
   958             orelse
   959               filter (equal ctr o #ctr) sel_eqns
   960               |> fst o finds ((op =) o apsnd #sel) sels
   961               |> exists (null o snd)
   962           then [] else
   963             let
   964               val (fun_name, fun_T, fun_args, prems, maybe_rhs) =
   965                 (find_first (equal ctr o #ctr) disc_eqns, find_first (equal ctr o #ctr) sel_eqns)
   966                 |>> Option.map (fn x => (#fun_name x, #fun_T x, #fun_args x, #prems x,
   967                   #maybe_ctr_rhs x))
   968                 ||> Option.map (fn x => (#fun_name x, #fun_T x, #fun_args x, [], NONE))
   969                 |> the o merge_options;
   970               val m = length prems;
   971               val t = (if is_some maybe_rhs then the maybe_rhs else
   972                   filter (equal ctr o #ctr) sel_eqns
   973                   |> fst o finds ((op =) o apsnd #sel) sels
   974                   |> map (snd #> (fn [x] => (List.rev (#fun_args x), #rhs_term x)) #-> abstract)
   975                   |> curry list_comb ctr)
   976                 |> curry HOLogic.mk_eq (list_comb (Free (fun_name, fun_T),
   977                   map Bound (length fun_args - 1 downto 0)))
   978                 |> HOLogic.mk_Trueprop
   979                 |> curry Logic.list_implies (map HOLogic.mk_Trueprop prems)
   980                 |> curry Logic.list_all (map dest_Free fun_args);
   981               val maybe_disc_thm = AList.lookup (op =) disc_alist disc;
   982               val sel_thms = map snd (filter (member (op =) sels o fst) sel_alist);
   983             in
   984               if prems = [@{term False}] then [] else
   985                 mk_primcorec_ctr_of_dtr_tac lthy m collapse maybe_disc_thm sel_thms
   986                 |> K |> Goal.prove lthy [] [] t
   987                 |> pair ctr
   988                 |> single
   989             end;
   990 
   991         fun prove_code disc_eqns sel_eqns ctr_alist {ctr_specs, ...} =
   992           let
   993             val (fun_name, fun_T, fun_args, maybe_rhs) =
   994               (find_first (member (op =) (map #ctr ctr_specs) o #ctr) disc_eqns,
   995                find_first (member (op =) (map #ctr ctr_specs) o #ctr) sel_eqns)
   996               |>> Option.map (fn x => (#fun_name x, #fun_T x, #fun_args x, #maybe_code_rhs x))
   997               ||> Option.map (fn x => (#fun_name x, #fun_T x, #fun_args x, NONE))
   998               |> the o merge_options;
   999 
  1000             val lhs = list_comb (Free (fun_name, fun_T), map Bound (length fun_args - 1 downto 0));
  1001             val maybe_rhs' = if is_some maybe_rhs then maybe_rhs else
  1002               let
  1003                 fun prove_code_ctr {ctr, sels, ...} =
  1004                   if not (exists (equal ctr o fst) ctr_alist) then NONE else
  1005                     let
  1006                       val prems = find_first (equal ctr o #ctr) disc_eqns
  1007                         |> Option.map #prems |> the_default [];
  1008                       val t =
  1009                         filter (equal ctr o #ctr) sel_eqns
  1010                         |> fst o finds ((op =) o apsnd #sel) sels
  1011                         |> map (snd #> (fn [x] => (List.rev (#fun_args x), #rhs_term x)) #-> abstract)
  1012                         |> curry list_comb ctr;
  1013                     in
  1014                       SOME (prems, t)
  1015                     end;
  1016                 val maybe_ctr_conds_argss = map prove_code_ctr ctr_specs;
  1017               in
  1018                 if exists is_none maybe_ctr_conds_argss then NONE else
  1019                   fold_rev (fn SOME (prems, u) => fn t => mk_If (s_conjs prems) u t)
  1020                     maybe_ctr_conds_argss
  1021                     (Const (@{const_name Code.abort}, @{typ String.literal} -->
  1022                         (@{typ unit} --> body_type fun_T) --> body_type fun_T) $
  1023                       @{term "STR []"} $ (* FIXME *)
  1024                       absdummy @{typ unit} (incr_boundvars 1 lhs))
  1025                   |> SOME
  1026               end;
  1027           in
  1028             if is_none maybe_rhs' then [] else
  1029               let
  1030                 val rhs = the maybe_rhs';
  1031                 val bound_Ts = List.rev (map fastype_of fun_args);
  1032                 val ctr_thms = map snd ctr_alist;
  1033                 val ms = map (Logic.count_prems o prop_of) ctr_thms;
  1034                 val t = HOLogic.mk_eq (lhs, rhs)
  1035                   |> HOLogic.mk_Trueprop
  1036                   |> curry Logic.list_all (map dest_Free fun_args);
  1037                 val (distincts, discIs, sel_splits, sel_split_asms) =
  1038                   case_thms_of_term lthy bound_Ts rhs;
  1039 val _ = tracing ("code equation: " ^ Syntax.string_of_term lthy t);
  1040 
  1041                 val code_thm = mk_primcorec_raw_code_of_ctr_tac lthy distincts discIs sel_splits
  1042                     sel_split_asms ms ctr_thms
  1043                   |> K |> Goal.prove lthy [] [] t;
  1044 val _ = tracing ("code theorem: " ^ Syntax.string_of_term lthy (prop_of code_thm));
  1045                in
  1046                  [code_thm]
  1047                end
  1048 handle ERROR s => (warning s; []) (*###*)
  1049            end;
  1050 
  1051         val disc_alists = map3 (maps oo prove_disc) corec_specs exclssss disc_eqnss;
  1052         val sel_alists = map4 (map ooo prove_sel) corec_specs disc_eqnss exclssss sel_eqnss;
  1053         val disc_thmss = map (map snd) disc_alists;
  1054         val sel_thmss = map (map snd) sel_alists;
  1055 
  1056         val ctr_alists = map5 (maps oooo prove_ctr) disc_alists sel_alists disc_eqnss sel_eqnss
  1057           (map #ctr_specs corec_specs);
  1058         val ctr_thmss = map (map snd) ctr_alists;
  1059 
  1060         val code_thmss = map4 prove_code disc_eqnss sel_eqnss ctr_alists corec_specs;
  1061 
  1062         val simp_thmss = map2 append disc_thmss sel_thmss
  1063 
  1064         val common_name = mk_common_name fun_names;
  1065 
  1066         val notes =
  1067           [(coinductN, map (if n2m then single else K []) coinduct_thms, []),
  1068            (codeN, code_thmss, code_nitpicksimp_attrs),
  1069            (ctrN, ctr_thmss, []),
  1070            (discN, disc_thmss, simp_attrs),
  1071            (selN, sel_thmss, simp_attrs),
  1072            (simpsN, simp_thmss, []),
  1073            (strong_coinductN, map (if n2m then single else K []) strong_coinduct_thms, [])]
  1074           |> maps (fn (thmN, thmss, attrs) =>
  1075             map2 (fn fun_name => fn thms =>
  1076                 ((Binding.qualify true fun_name (Binding.name thmN), attrs), [(thms, [])]))
  1077               fun_names (take actual_nn thmss))
  1078           |> filter_out (null o fst o hd o snd);
  1079 
  1080         val common_notes =
  1081           [(coinductN, if n2m then [coinduct_thm] else [], []),
  1082            (strong_coinductN, if n2m then [strong_coinduct_thm] else [], [])]
  1083           |> filter_out (null o #2)
  1084           |> map (fn (thmN, thms, attrs) =>
  1085             ((Binding.qualify true common_name (Binding.name thmN), attrs), [(thms, [])]));
  1086       in
  1087         lthy |> Local_Theory.notes (notes @ common_notes) |> snd
  1088       end;
  1089 
  1090     fun after_qed thmss' = fold_map Local_Theory.define defs #-> prove thmss';
  1091 
  1092     val _ = if not simple orelse forall null obligationss then () else
  1093       primrec_error "need exclusiveness proofs - use primcorecursive instead of primcorec";
  1094   in
  1095     if simple then
  1096       lthy'
  1097       |> after_qed (map (fn [] => []) obligationss)
  1098       |> pair NONE o SOME
  1099     else
  1100       lthy'
  1101       |> Proof.theorem NONE after_qed obligationss
  1102       |> Proof.refine (Method.primitive_text I)
  1103       |> Seq.hd
  1104       |> rpair NONE o SOME
  1105   end;
  1106 
  1107 fun add_primcorec_ursive_cmd simple seq (raw_fixes, raw_specs') lthy =
  1108   let
  1109     val (raw_specs, of_specs) = split_list raw_specs' ||> map (Option.map (Syntax.read_term lthy));
  1110     val ((fixes, specs), _) = Specification.read_spec raw_fixes raw_specs lthy;
  1111   in
  1112     add_primcorec simple seq fixes specs of_specs lthy
  1113     handle ERROR str => primrec_error str
  1114   end
  1115   handle Primrec_Error (str, eqns) =>
  1116     if null eqns
  1117     then error ("primcorec error:\n  " ^ str)
  1118     else error ("primcorec error:\n  " ^ str ^ "\nin\n  " ^
  1119       space_implode "\n  " (map (quote o Syntax.string_of_term lthy) eqns));
  1120 
  1121 val add_primcorecursive_cmd = (the o fst) ooo add_primcorec_ursive_cmd false;
  1122 val add_primcorec_cmd = (the o snd) ooo add_primcorec_ursive_cmd true;
  1123 
  1124 end;