doc-src/ind-defs.bbl
author lcp
Thu, 04 Aug 1994 11:45:59 +0200
changeset 507 a00301e9e64b
parent 293 63a0077dd9f2
child 606 d5b322b33afb
permissions -rw-r--r--
addition of show_brackets
     1 \begin{thebibliography}{10}
     2 
     3 \bibitem{abramsky90}
     4 Abramsky, S.,
     5 \newblock The lazy lambda calculus,
     6 \newblock In {\em Resesarch Topics in Functional Programming}, D.~A. Turner,
     7   Ed. Addison-Wesley, 1977, pp.~65--116
     8 
     9 \bibitem{aczel77}
    10 Aczel, P.,
    11 \newblock An introduction to inductive definitions,
    12 \newblock In {\em Handbook of Mathematical Logic}, J.~Barwise, Ed.
    13   North-Holland, 1977, pp.~739--782
    14 
    15 \bibitem{aczel88}
    16 Aczel, P.,
    17 \newblock {\em Non-Well-Founded Sets},
    18 \newblock CSLI, 1988
    19 
    20 \bibitem{bm79}
    21 Boyer, R.~S., Moore, J.~S.,
    22 \newblock {\em A Computational Logic},
    23 \newblock Academic Press, 1979
    24 
    25 \bibitem{camilleri92}
    26 Camilleri, J., Melham, T.~F.,
    27 \newblock Reasoning with inductively defined relations in the {HOL} theorem
    28   prover,
    29 \newblock Tech. Rep. 265, Comp. Lab., Univ. Cambridge, August 1992
    30 
    31 \bibitem{davey&priestley}
    32 Davey, B.~A., Priestley, H.~A.,
    33 \newblock {\em Introduction to Lattices and Order},
    34 \newblock Cambridge Univ. Press, 1990
    35 
    36 \bibitem{dybjer91}
    37 Dybjer, P.,
    38 \newblock Inductive sets and families in {Martin-L\"of's} type theory and their
    39   set-theoretic semantics,
    40 \newblock In {\em Logical Frameworks}, G.~Huet, G.~Plotkin, Eds. Cambridge
    41   Univ. Press, 1991, pp.~280--306
    42 
    43 \bibitem{IMPS}
    44 Farmer, W.~M., Guttman, J.~D., Thayer, F.~J.,
    45 \newblock {IMPS}: An interactive mathematical proof system,
    46 \newblock {\em J. Auto. Reas. {\bf 11}}, 2 (1993), 213--248
    47 
    48 \bibitem{hennessy90}
    49 Hennessy, M.,
    50 \newblock {\em The Semantics of Programming Languages: An Elementary
    51   Introduction Using Structural Operational Semantics},
    52 \newblock Wiley, 1990
    53 
    54 \bibitem{huet88}
    55 Huet, G.,
    56 \newblock Induction principles formalized in the {Calculus of Constructions},
    57 \newblock In {\em Programming of Future Generation Computers\/} (1988),
    58   Elsevier, pp.~205--216
    59 
    60 \bibitem{melham89}
    61 Melham, T.~F.,
    62 \newblock Automating recursive type definitions in higher order logic,
    63 \newblock In {\em Current Trends in Hardware Verification and Automated Theorem
    64   Proving}, G.~Birtwistle, P.~A. Subrahmanyam, Eds. Springer, 1989,
    65   pp.~341--386
    66 
    67 \bibitem{milner-ind}
    68 Milner, R.,
    69 \newblock How to derive inductions in {LCF},
    70 \newblock note, Dept. Comp. Sci., Univ. Edinburgh, 1980
    71 
    72 \bibitem{milner89}
    73 Milner, R.,
    74 \newblock {\em Communication and Concurrency},
    75 \newblock Prentice-Hall, 1989
    76 
    77 \bibitem{monahan84}
    78 Monahan, B.~Q.,
    79 \newblock {\em Data Type Proofs using Edinburgh {LCF}},
    80 \newblock PhD thesis, University of Edinburgh, 1984
    81 
    82 \bibitem{paulin92}
    83 Paulin-Mohring, C.,
    84 \newblock Inductive definitions in the system {Coq}: Rules and properties,
    85 \newblock Research Report 92-49, LIP, Ecole Normale Sup\'erieure de Lyon, Dec.
    86   1992
    87 
    88 \bibitem{paulson87}
    89 Paulson, L.~C.,
    90 \newblock {\em Logic and Computation: Interactive proof with Cambridge LCF},
    91 \newblock Cambridge Univ. Press, 1987
    92 
    93 \bibitem{paulson91}
    94 Paulson, L.~C.,
    95 \newblock {\em {ML} for the Working Programmer},
    96 \newblock Cambridge Univ. Press, 1991
    97 
    98 \bibitem{paulson-coind}
    99 Paulson, L.~C.,
   100 \newblock Co-induction and co-recursion in higher-order logic,
   101 \newblock Tech. Rep. 304, Comp. Lab., Univ. Cambridge, July 1993
   102 
   103 \bibitem{isabelle-intro}
   104 Paulson, L.~C.,
   105 \newblock Introduction to {Isabelle},
   106 \newblock Tech. Rep. 280, Comp. Lab., Univ. Cambridge, 1993
   107 
   108 \bibitem{paulson-set-I}
   109 Paulson, L.~C.,
   110 \newblock Set theory for verification: {I}. {From} foundations to functions,
   111 \newblock {\em J. Auto. Reas. {\bf 11}}, 3 (1993), 353--389
   112 
   113 \bibitem{paulson-set-II}
   114 Paulson, L.~C.,
   115 \newblock Set theory for verification: {II}. {Induction} and recursion,
   116 \newblock Tech. Rep. 312, Comp. Lab., Univ. Cambridge, 1993
   117 
   118 \bibitem{paulson-final}
   119 Paulson, L.~C.,
   120 \newblock A concrete final coalgebra theorem for {ZF} set theory,
   121 \newblock Tech. rep., Comp. Lab., Univ. Cambridge, 1994
   122 
   123 \bibitem{pitts94}
   124 Pitts, A.~M.,
   125 \newblock A co-induction principle for recursively defined domains,
   126 \newblock {\em Theoretical Comput. Sci.\/} (1994),
   127 \newblock In press; available as Report 252, Comp. Lab., Univ. Cambridge
   128 
   129 \bibitem{saaltink-fme}
   130 Saaltink, M., Kromodimoeljo, S., Pase, B., Craigen, D., Meisels, I.,
   131 \newblock An {EVES} data abstraction example,
   132 \newblock In {\em FME '93: Industrial-Strength Formal Methods\/} (1993),
   133   J.~C.~P. Woodcock, P.~G. Larsen, Eds., Springer, pp.~578--596,
   134 \newblock LNCS 670
   135 
   136 \bibitem{szasz93}
   137 Szasz, N.,
   138 \newblock A machine checked proof that {Ackermann's} function is not primitive
   139   recursive,
   140 \newblock In {\em Logical Environments}, G.~Huet, G.~Plotkin, Eds. Cambridge
   141   Univ. Press, 1993, pp.~317--338
   142 
   143 \end{thebibliography}