src/HOL/Library/Countable.thy
author haftmann
Thu, 26 Jun 2008 10:07:01 +0200
changeset 27368 9f90ac19e32b
parent 26585 3bf2ebb7148e
child 27487 c8a6ce181805
permissions -rw-r--r--
established Plain theory and image
     1 (*  Title:      HOL/Library/Countable.thy
     2     ID:         $Id$
     3     Author:     Alexander Krauss, TU Muenchen
     4 *)
     5 
     6 header {* Encoding (almost) everything into natural numbers *}
     7 
     8 theory Countable
     9 imports Plain List Hilbert_Choice
    10 begin
    11 
    12 subsection {* The class of countable types *}
    13 
    14 class countable = itself +
    15   assumes ex_inj: "\<exists>to_nat \<Colon> 'a \<Rightarrow> nat. inj to_nat"
    16 
    17 lemma countable_classI:
    18   fixes f :: "'a \<Rightarrow> nat"
    19   assumes "\<And>x y. f x = f y \<Longrightarrow> x = y"
    20   shows "OFCLASS('a, countable_class)"
    21 proof (intro_classes, rule exI)
    22   show "inj f"
    23     by (rule injI [OF assms]) assumption
    24 qed
    25 
    26 
    27 subsection {* Conversion functions *}
    28 
    29 definition to_nat :: "'a\<Colon>countable \<Rightarrow> nat" where
    30   "to_nat = (SOME f. inj f)"
    31 
    32 definition from_nat :: "nat \<Rightarrow> 'a\<Colon>countable" where
    33   "from_nat = inv (to_nat \<Colon> 'a \<Rightarrow> nat)"
    34 
    35 lemma inj_to_nat [simp]: "inj to_nat"
    36   by (rule exE_some [OF ex_inj]) (simp add: to_nat_def)
    37 
    38 lemma to_nat_split [simp]: "to_nat x = to_nat y \<longleftrightarrow> x = y"
    39   using injD [OF inj_to_nat] by auto
    40 
    41 lemma from_nat_to_nat [simp]:
    42   "from_nat (to_nat x) = x"
    43   by (simp add: from_nat_def)
    44 
    45 
    46 subsection {* Countable types *}
    47 
    48 instance nat :: countable
    49   by (rule countable_classI [of "id"]) simp 
    50 
    51 subclass (in finite) countable
    52 proof unfold_locales
    53   have "finite (UNIV\<Colon>'a set)" by (rule finite_UNIV)
    54   with finite_conv_nat_seg_image [of UNIV]
    55   obtain n and f :: "nat \<Rightarrow> 'a" 
    56     where "UNIV = f ` {i. i < n}" by auto
    57   then have "surj f" unfolding surj_def by auto
    58   then have "inj (inv f)" by (rule surj_imp_inj_inv)
    59   then show "\<exists>to_nat \<Colon> 'a \<Rightarrow> nat. inj to_nat" by (rule exI[of inj])
    60 qed
    61 
    62 text {* Pairs *}
    63 
    64 primrec sum :: "nat \<Rightarrow> nat"
    65 where
    66   "sum 0 = 0"
    67 | "sum (Suc n) = Suc n + sum n"
    68 
    69 lemma sum_arith: "sum n = n * Suc n div 2"
    70   by (induct n) auto
    71 
    72 lemma sum_mono: "n \<ge> m \<Longrightarrow> sum n \<ge> sum m"
    73   by (induct n m rule: diff_induct) auto
    74 
    75 definition
    76   "pair_encode = (\<lambda>(m, n). sum (m + n) + m)"
    77 
    78 lemma inj_pair_cencode: "inj pair_encode"
    79   unfolding pair_encode_def
    80 proof (rule injI, simp only: split_paired_all split_conv)
    81   fix a b c d
    82   assume eq: "sum (a + b) + a = sum (c + d) + c"
    83   have "a + b = c + d \<or> a + b \<ge> Suc (c + d) \<or> c + d \<ge> Suc (a + b)" by arith
    84   then
    85   show "(a, b) = (c, d)"
    86   proof (elim disjE)
    87     assume sumeq: "a + b = c + d"
    88     then have "a = c" using eq by auto
    89     moreover from sumeq this have "b = d" by auto
    90     ultimately show ?thesis by simp
    91   next
    92     assume "a + b \<ge> Suc (c + d)"
    93     from sum_mono[OF this] eq
    94     show ?thesis by auto
    95   next
    96     assume "c + d \<ge> Suc (a + b)"
    97     from sum_mono[OF this] eq
    98     show ?thesis by auto
    99   qed
   100 qed
   101 
   102 instance "*" :: (countable, countable) countable
   103 by (rule countable_classI [of "\<lambda>(x, y). pair_encode (to_nat x, to_nat y)"])
   104   (auto dest: injD [OF inj_pair_cencode] injD [OF inj_to_nat])
   105 
   106 
   107 text {* Sums *}
   108 
   109 instance "+":: (countable, countable) countable
   110   by (rule countable_classI [of "(\<lambda>x. case x of Inl a \<Rightarrow> to_nat (False, to_nat a)
   111                                      | Inr b \<Rightarrow> to_nat (True, to_nat b))"])
   112     (auto split:sum.splits)
   113 
   114 
   115 text {* Integers *}
   116 
   117 lemma int_cases: "(i::int) = 0 \<or> i < 0 \<or> i > 0"
   118 by presburger
   119 
   120 lemma int_pos_neg_zero:
   121   obtains (zero) "(z::int) = 0" "sgn z = 0" "abs z = 0"
   122   | (pos) n where "z = of_nat n" "sgn z = 1" "abs z = of_nat n"
   123   | (neg) n where "z = - (of_nat n)" "sgn z = -1" "abs z = of_nat n"
   124 apply atomize_elim
   125 apply (insert int_cases[of z])
   126 apply (auto simp:zsgn_def)
   127 apply (rule_tac x="nat (-z)" in exI, simp)
   128 apply (rule_tac x="nat z" in exI, simp)
   129 done
   130 
   131 instance int :: countable
   132 proof (rule countable_classI [of "(\<lambda>i. to_nat (nat (sgn i + 1), nat (abs i)))"], 
   133     auto dest: injD [OF inj_to_nat])
   134   fix x y 
   135   assume a: "nat (sgn x + 1) = nat (sgn y + 1)" "nat (abs x) = nat (abs y)"
   136   show "x = y"
   137   proof (cases rule: int_pos_neg_zero[of x])
   138     case zero 
   139     with a show "x = y" by (cases rule: int_pos_neg_zero[of y]) auto
   140   next
   141     case (pos n)
   142     with a show "x = y" by (cases rule: int_pos_neg_zero[of y]) auto
   143   next
   144     case (neg n)
   145     with a show "x = y" by (cases rule: int_pos_neg_zero[of y]) auto
   146   qed
   147 qed
   148 
   149 
   150 text {* Options *}
   151 
   152 instance option :: (countable) countable
   153 by (rule countable_classI[of "\<lambda>x. case x of None \<Rightarrow> 0
   154                                      | Some y \<Rightarrow> Suc (to_nat y)"])
   155  (auto split:option.splits)
   156 
   157 
   158 text {* Lists *}
   159 
   160 lemma from_nat_to_nat_map [simp]: "map from_nat (map to_nat xs) = xs"
   161   by (simp add: comp_def map_compose [symmetric])
   162 
   163 primrec
   164   list_encode :: "'a\<Colon>countable list \<Rightarrow> nat"
   165 where
   166   "list_encode [] = 0"
   167 | "list_encode (x#xs) = Suc (to_nat (x, list_encode xs))"
   168 
   169 instance list :: (countable) countable
   170 proof (rule countable_classI [of "list_encode"])
   171   fix xs ys :: "'a list"
   172   assume cenc: "list_encode xs = list_encode ys"
   173   then show "xs = ys"
   174   proof (induct xs arbitrary: ys)
   175     case (Nil ys)
   176     with cenc show ?case by (cases ys, auto)
   177   next
   178     case (Cons x xs' ys)
   179     thus ?case by (cases ys) auto
   180   qed
   181 qed
   182 
   183 
   184 text {* Functions *}
   185 
   186 instance "fun" :: (finite, countable) countable
   187 proof
   188   obtain xs :: "'a list" where xs: "set xs = UNIV"
   189     using finite_list [OF finite_UNIV] ..
   190   show "\<exists>to_nat::('a \<Rightarrow> 'b) \<Rightarrow> nat. inj to_nat"
   191   proof
   192     show "inj (\<lambda>f. to_nat (map f xs))"
   193       by (rule injI, simp add: xs expand_fun_eq)
   194   qed
   195 qed
   196 
   197 end