src/HOL/BNF/Tools/bnf_fp_rec_sugar.ML
author blanchet
Mon, 04 Nov 2013 10:52:41 +0100
changeset 55691 9bd91d5d8a7b
parent 55667 ab0595cb9fe9
child 55695 a596292be9a8
permissions -rw-r--r--
handle constructor syntax in n2m primcorec
     1 (*  Title:      HOL/BNF/Tools/bnf_fp_rec_sugar.ML
     2     Author:     Lorenz Panny, TU Muenchen
     3     Copyright   2013
     4 
     5 Recursor and corecursor sugar.
     6 *)
     7 
     8 signature BNF_FP_REC_SUGAR =
     9 sig
    10   val add_primrec: (binding * typ option * mixfix) list ->
    11     (Attrib.binding * term) list -> local_theory -> (term list * thm list list) * local_theory
    12   val add_primrec_cmd: (binding * string option * mixfix) list ->
    13     (Attrib.binding * string) list -> local_theory -> (term list * thm list list) * local_theory
    14   val add_primrec_global: (binding * typ option * mixfix) list ->
    15     (Attrib.binding * term) list -> theory -> (term list * thm list list) * theory
    16   val add_primrec_overloaded: (string * (string * typ) * bool) list ->
    17     (binding * typ option * mixfix) list ->
    18     (Attrib.binding * term) list -> theory -> (term list * thm list list) * theory
    19   val add_primrec_simple: ((binding * typ) * mixfix) list -> term list ->
    20     local_theory -> (string list * (term list * (int list list * thm list list))) * local_theory
    21   val add_primcorecursive_cmd: bool ->
    22     (binding * string option * mixfix) list * ((Attrib.binding * string) * string option) list ->
    23     Proof.context -> Proof.state
    24   val add_primcorec_cmd: bool ->
    25     (binding * string option * mixfix) list * ((Attrib.binding * string) * string option) list ->
    26     local_theory -> local_theory
    27 end;
    28 
    29 structure BNF_FP_Rec_Sugar : BNF_FP_REC_SUGAR =
    30 struct
    31 
    32 open BNF_Util
    33 open BNF_FP_Util
    34 open BNF_FP_Rec_Sugar_Util
    35 open BNF_FP_Rec_Sugar_Tactics
    36 
    37 val codeN = "code";
    38 val ctrN = "ctr";
    39 val discN = "disc";
    40 val selN = "sel";
    41 
    42 val nitpicksimp_attrs = @{attributes [nitpick_simp]};
    43 val simp_attrs = @{attributes [simp]};
    44 val code_nitpicksimp_attrs = Code.add_default_eqn_attrib :: nitpicksimp_attrs;
    45 val code_nitpicksimp_simp_attrs = Code.add_default_eqn_attrib :: nitpicksimp_attrs @ simp_attrs;
    46 
    47 exception Primrec_Error of string * term list;
    48 
    49 fun primrec_error str = raise Primrec_Error (str, []);
    50 fun primrec_error_eqn str eqn = raise Primrec_Error (str, [eqn]);
    51 fun primrec_error_eqns str eqns = raise Primrec_Error (str, eqns);
    52 
    53 fun finds eq = fold_map (fn x => List.partition (curry eq x) #>> pair x);
    54 
    55 val free_name = try (fn Free (v, _) => v);
    56 val const_name = try (fn Const (v, _) => v);
    57 val undef_const = Const (@{const_name undefined}, dummyT);
    58 
    59 fun permute_args n t = list_comb (t, map Bound (0 :: (n downto 1)))
    60   |> fold (K (Term.abs (Name.uu, dummyT))) (0 upto n);
    61 val abs_tuple = HOLogic.tupled_lambda o HOLogic.mk_tuple;
    62 fun drop_All t = subst_bounds (strip_qnt_vars @{const_name all} t |> map Free |> rev,
    63   strip_qnt_body @{const_name all} t)
    64 fun abstract vs =
    65   let fun a n (t $ u) = a n t $ a n u
    66         | a n (Abs (v, T, b)) = Abs (v, T, a (n + 1) b)
    67         | a n t = let val idx = find_index (equal t) vs in
    68             if idx < 0 then t else Bound (n + idx) end
    69   in a 0 end;
    70 fun mk_prod1 Ts (t, u) = HOLogic.pair_const (fastype_of1 (Ts, t)) (fastype_of1 (Ts, u)) $ t $ u;
    71 fun mk_tuple1 Ts = the_default HOLogic.unit o try (foldr1 (mk_prod1 Ts));
    72 
    73 fun get_indices fixes t = map (fst #>> Binding.name_of #> Free) fixes
    74   |> map_index (fn (i, v) => if exists_subterm (equal v) t then SOME i else NONE)
    75   |> map_filter I;
    76 
    77 
    78 (* Primrec *)
    79 
    80 type eqn_data = {
    81   fun_name: string,
    82   rec_type: typ,
    83   ctr: term,
    84   ctr_args: term list,
    85   left_args: term list,
    86   right_args: term list,
    87   res_type: typ,
    88   rhs_term: term,
    89   user_eqn: term
    90 };
    91 
    92 fun dissect_eqn lthy fun_names eqn' =
    93   let
    94     val eqn = drop_All eqn' |> HOLogic.dest_Trueprop
    95       handle TERM _ =>
    96         primrec_error_eqn "malformed function equation (expected \"lhs = rhs\")" eqn';
    97     val (lhs, rhs) = HOLogic.dest_eq eqn
    98         handle TERM _ =>
    99           primrec_error_eqn "malformed function equation (expected \"lhs = rhs\")" eqn';
   100     val (fun_name, args) = strip_comb lhs
   101       |>> (fn x => if is_Free x then fst (dest_Free x)
   102           else primrec_error_eqn "malformed function equation (does not start with free)" eqn);
   103     val (left_args, rest) = take_prefix is_Free args;
   104     val (nonfrees, right_args) = take_suffix is_Free rest;
   105     val num_nonfrees = length nonfrees;
   106     val _ = num_nonfrees = 1 orelse if num_nonfrees = 0 then
   107       primrec_error_eqn "constructor pattern missing in left-hand side" eqn else
   108       primrec_error_eqn "more than one non-variable argument in left-hand side" eqn;
   109     val _ = member (op =) fun_names fun_name orelse
   110       primrec_error_eqn "malformed function equation (does not start with function name)" eqn
   111 
   112     val (ctr, ctr_args) = strip_comb (the_single nonfrees);
   113     val _ = try (num_binder_types o fastype_of) ctr = SOME (length ctr_args) orelse
   114       primrec_error_eqn "partially applied constructor in pattern" eqn;
   115     val _ = let val d = duplicates (op =) (left_args @ ctr_args @ right_args) in null d orelse
   116       primrec_error_eqn ("duplicate variable \"" ^ Syntax.string_of_term lthy (hd d) ^
   117         "\" in left-hand side") eqn end;
   118     val _ = forall is_Free ctr_args orelse
   119       primrec_error_eqn "non-primitive pattern in left-hand side" eqn;
   120     val _ =
   121       let val b = fold_aterms (fn x as Free (v, _) =>
   122         if (not (member (op =) (left_args @ ctr_args @ right_args) x) andalso
   123         not (member (op =) fun_names v) andalso
   124         not (Variable.is_fixed lthy v)) then cons x else I | _ => I) rhs []
   125       in
   126         null b orelse
   127         primrec_error_eqn ("extra variable(s) in right-hand side: " ^
   128           commas (map (Syntax.string_of_term lthy) b)) eqn
   129       end;
   130   in
   131     {fun_name = fun_name,
   132      rec_type = body_type (type_of ctr),
   133      ctr = ctr,
   134      ctr_args = ctr_args,
   135      left_args = left_args,
   136      right_args = right_args,
   137      res_type = map fastype_of (left_args @ right_args) ---> fastype_of rhs,
   138      rhs_term = rhs,
   139      user_eqn = eqn'}
   140   end;
   141 
   142 fun rewrite_map_arg get_ctr_pos rec_type res_type =
   143   let
   144     val pT = HOLogic.mk_prodT (rec_type, res_type);
   145 
   146     val maybe_suc = Option.map (fn x => x + 1);
   147     fun subst d (t as Bound d') = t |> d = SOME d' ? curry (op $) (fst_const pT)
   148       | subst d (Abs (v, T, b)) = Abs (v, if d = SOME ~1 then pT else T, subst (maybe_suc d) b)
   149       | subst d t =
   150         let
   151           val (u, vs) = strip_comb t;
   152           val ctr_pos = try (get_ctr_pos o the) (free_name u) |> the_default ~1;
   153         in
   154           if ctr_pos >= 0 then
   155             if d = SOME ~1 andalso length vs = ctr_pos then
   156               list_comb (permute_args ctr_pos (snd_const pT), vs)
   157             else if length vs > ctr_pos andalso is_some d
   158                 andalso d = try (fn Bound n => n) (nth vs ctr_pos) then
   159               list_comb (snd_const pT $ nth vs ctr_pos, map (subst d) (nth_drop ctr_pos vs))
   160             else
   161               primrec_error_eqn ("recursive call not directly applied to constructor argument") t
   162           else
   163             list_comb (u, map (subst (d |> d = SOME ~1 ? K NONE)) vs)
   164         end
   165   in
   166     subst (SOME ~1)
   167   end;
   168 
   169 fun subst_rec_calls lthy get_ctr_pos has_call ctr_args mutual_calls nested_calls =
   170   let
   171     fun try_nested_rec bound_Ts y t =
   172       AList.lookup (op =) nested_calls y
   173       |> Option.map (fn y' =>
   174         massage_nested_rec_call lthy has_call (rewrite_map_arg get_ctr_pos) bound_Ts y y' t);
   175 
   176     fun subst bound_Ts (t as g' $ y) =
   177         let
   178           fun subst_rec () = subst bound_Ts g' $ subst bound_Ts y;
   179           val y_head = head_of y;
   180         in
   181           if not (member (op =) ctr_args y_head) then
   182             subst_rec ()
   183           else
   184             (case try_nested_rec bound_Ts y_head t of
   185               SOME t' => t'
   186             | NONE =>
   187               let val (g, g_args) = strip_comb g' in
   188                 (case try (get_ctr_pos o the) (free_name g) of
   189                   SOME ctr_pos =>
   190                   (length g_args >= ctr_pos orelse
   191                    primrec_error_eqn "too few arguments in recursive call" t;
   192                    (case AList.lookup (op =) mutual_calls y of
   193                      SOME y' => list_comb (y', g_args)
   194                    | NONE => subst_rec ()))
   195                 | NONE => subst_rec ())
   196               end)
   197         end
   198       | subst bound_Ts (Abs (v, T, b)) = Abs (v, T, subst (T :: bound_Ts) b)
   199       | subst _ t = t
   200 
   201     fun subst' t =
   202       if has_call t then
   203         (* FIXME detect this case earlier? *)
   204         primrec_error_eqn "recursive call not directly applied to constructor argument" t
   205       else
   206         try_nested_rec [] (head_of t) t |> the_default t
   207   in
   208     subst' o subst []
   209   end;
   210 
   211 fun build_rec_arg lthy (funs_data : eqn_data list list) has_call (ctr_spec : rec_ctr_spec)
   212     (maybe_eqn_data : eqn_data option) =
   213   (case maybe_eqn_data of
   214     NONE => undef_const
   215   | SOME {ctr_args, left_args, right_args, rhs_term = t, ...} =>
   216     let
   217       val calls = #calls ctr_spec;
   218       val n_args = fold (Integer.add o (fn Mutual_Rec _ => 2 | _ => 1)) calls 0;
   219 
   220       val no_calls' = tag_list 0 calls
   221         |> map_filter (try (apsnd (fn No_Rec p => p | Mutual_Rec (p, _) => p)));
   222       val mutual_calls' = tag_list 0 calls
   223         |> map_filter (try (apsnd (fn Mutual_Rec (_, p) => p)));
   224       val nested_calls' = tag_list 0 calls
   225         |> map_filter (try (apsnd (fn Nested_Rec p => p)));
   226 
   227       val args = replicate n_args ("", dummyT)
   228         |> Term.rename_wrt_term t
   229         |> map Free
   230         |> fold (fn (ctr_arg_idx, (arg_idx, _)) =>
   231             nth_map arg_idx (K (nth ctr_args ctr_arg_idx)))
   232           no_calls'
   233         |> fold (fn (ctr_arg_idx, (arg_idx, T)) =>
   234             nth_map arg_idx (K (retype_free T (nth ctr_args ctr_arg_idx))))
   235           mutual_calls'
   236         |> fold (fn (ctr_arg_idx, (arg_idx, T)) =>
   237             nth_map arg_idx (K (retype_free T (nth ctr_args ctr_arg_idx))))
   238           nested_calls';
   239 
   240       val fun_name_ctr_pos_list =
   241         map (fn (x :: _) => (#fun_name x, length (#left_args x))) funs_data;
   242       val get_ctr_pos = try (the o AList.lookup (op =) fun_name_ctr_pos_list) #> the_default ~1;
   243       val mutual_calls = map (apfst (nth ctr_args) o apsnd (nth args o fst)) mutual_calls';
   244       val nested_calls = map (apfst (nth ctr_args) o apsnd (nth args o fst)) nested_calls';
   245     in
   246       t
   247       |> subst_rec_calls lthy get_ctr_pos has_call ctr_args mutual_calls nested_calls
   248       |> fold_rev lambda (args @ left_args @ right_args)
   249     end);
   250 
   251 fun build_defs lthy bs mxs (funs_data : eqn_data list list) (rec_specs : rec_spec list) has_call =
   252   let
   253     val n_funs = length funs_data;
   254 
   255     val ctr_spec_eqn_data_list' =
   256       (take n_funs rec_specs |> map #ctr_specs) ~~ funs_data
   257       |> maps (uncurry (finds (fn (x, y) => #ctr x = #ctr y))
   258           ##> (fn x => null x orelse
   259             primrec_error_eqns "excess equations in definition" (map #rhs_term x)) #> fst);
   260     val _ = ctr_spec_eqn_data_list' |> map (fn (_, x) => length x <= 1 orelse
   261       primrec_error_eqns ("multiple equations for constructor") (map #user_eqn x));
   262 
   263     val ctr_spec_eqn_data_list =
   264       ctr_spec_eqn_data_list' @ (drop n_funs rec_specs |> maps #ctr_specs |> map (rpair []));
   265 
   266     val recs = take n_funs rec_specs |> map #recx;
   267     val rec_args = ctr_spec_eqn_data_list
   268       |> sort ((op <) o pairself (#offset o fst) |> make_ord)
   269       |> map (uncurry (build_rec_arg lthy funs_data has_call) o apsnd (try the_single));
   270     val ctr_poss = map (fn x =>
   271       if length (distinct ((op =) o pairself (length o #left_args)) x) <> 1 then
   272         primrec_error ("inconstant constructor pattern position for function " ^
   273           quote (#fun_name (hd x)))
   274       else
   275         hd x |> #left_args |> length) funs_data;
   276   in
   277     (recs, ctr_poss)
   278     |-> map2 (fn recx => fn ctr_pos => list_comb (recx, rec_args) |> permute_args ctr_pos)
   279     |> Syntax.check_terms lthy
   280     |> map3 (fn b => fn mx => fn t => ((b, mx), ((Binding.conceal (Thm.def_binding b), []), t)))
   281       bs mxs
   282   end;
   283 
   284 fun massage_comp ctxt has_call bound_Ts t = (* FIXME unused *)
   285   massage_nested_corec_call ctxt has_call (K (K (K I))) bound_Ts (fastype_of1 (bound_Ts, t)) t;
   286 
   287 fun find_rec_calls ctxt has_call ({ctr, ctr_args, rhs_term, ...} : eqn_data) =
   288   let
   289     fun find bound_Ts (Abs (_, T, b)) ctr_arg = find (T :: bound_Ts) b ctr_arg
   290       | find bound_Ts (t as _ $ _) ctr_arg =
   291         let
   292           val typof = curry fastype_of1 bound_Ts;
   293           val (f', args') = strip_comb t;
   294           val n = find_index (equal ctr_arg o head_of) args';
   295         in
   296           if n < 0 then
   297             find bound_Ts f' ctr_arg @ maps (fn x => find bound_Ts x ctr_arg) args'
   298           else
   299             let
   300               val (f, args as arg :: _) = chop n args' |>> curry list_comb f'
   301               val (arg_head, arg_args) = Term.strip_comb arg;
   302             in
   303               if has_call f then
   304                 mk_partial_compN (length arg_args) (typof f) (typof arg_head) f ::
   305                 maps (fn x => find bound_Ts x ctr_arg) args
   306               else
   307                 find bound_Ts f ctr_arg @ maps (fn x => find bound_Ts x ctr_arg) args
   308             end
   309         end
   310       | find _ _ _ = [];
   311   in
   312     map (find [] rhs_term) ctr_args
   313     |> (fn [] => NONE | callss => SOME (ctr, callss))
   314   end;
   315 
   316 fun prepare_primrec fixes specs lthy =
   317   let
   318     val (bs, mxs) = map_split (apfst fst) fixes;
   319     val fun_names = map Binding.name_of bs;
   320     val eqns_data = map (dissect_eqn lthy fun_names) specs;
   321     val funs_data = eqns_data
   322       |> partition_eq ((op =) o pairself #fun_name)
   323       |> finds (fn (x, y) => x = #fun_name (hd y)) fun_names |> fst
   324       |> map (fn (x, y) => the_single y handle List.Empty =>
   325           primrec_error ("missing equations for function " ^ quote x));
   326 
   327     val has_call = exists_subterm (map (fst #>> Binding.name_of #> Free) fixes |> member (op =));
   328     val arg_Ts = map (#rec_type o hd) funs_data;
   329     val res_Ts = map (#res_type o hd) funs_data;
   330     val callssss = funs_data
   331       |> map (partition_eq ((op =) o pairself #ctr))
   332       |> map (maps (map_filter (find_rec_calls lthy has_call)));
   333 
   334     val ((n2m, rec_specs, _, induct_thm, induct_thms), lthy') =
   335       rec_specs_of bs arg_Ts res_Ts (get_indices fixes) callssss lthy;
   336 
   337     val actual_nn = length funs_data;
   338 
   339     val _ = let val ctrs = (maps (map #ctr o #ctr_specs) rec_specs) in
   340       map (fn {ctr, user_eqn, ...} => member (op =) ctrs ctr orelse
   341         primrec_error_eqn ("argument " ^ quote (Syntax.string_of_term lthy' ctr) ^
   342           " is not a constructor in left-hand side") user_eqn) eqns_data end;
   343 
   344     val defs = build_defs lthy' bs mxs funs_data rec_specs has_call;
   345 
   346     fun prove lthy def_thms' ({ctr_specs, nested_map_idents, nested_map_comps, ...} : rec_spec)
   347         (fun_data : eqn_data list) =
   348       let
   349         val def_thms = map (snd o snd) def_thms';
   350         val simp_thmss = finds (fn (x, y) => #ctr x = #ctr y) fun_data ctr_specs
   351           |> fst
   352           |> map_filter (try (fn (x, [y]) =>
   353             (#user_eqn x, length (#left_args x) + length (#right_args x), #rec_thm y)))
   354           |> map (fn (user_eqn, num_extra_args, rec_thm) =>
   355             mk_primrec_tac lthy num_extra_args nested_map_idents nested_map_comps def_thms rec_thm
   356             |> K |> Goal.prove lthy [] [] user_eqn
   357             |> Thm.close_derivation);
   358         val poss = find_indices (fn (x, y) => #ctr x = #ctr y) fun_data eqns_data;
   359       in
   360         (poss, simp_thmss)
   361       end;
   362 
   363     val notes =
   364       (if n2m then map2 (fn name => fn thm =>
   365         (name, inductN, [thm], [])) fun_names (take actual_nn induct_thms) else [])
   366       |> map (fn (prefix, thmN, thms, attrs) =>
   367         ((Binding.qualify true prefix (Binding.name thmN), attrs), [(thms, [])]));
   368 
   369     val common_name = mk_common_name fun_names;
   370 
   371     val common_notes =
   372       (if n2m then [(inductN, [induct_thm], [])] else [])
   373       |> map (fn (thmN, thms, attrs) =>
   374         ((Binding.qualify true common_name (Binding.name thmN), attrs), [(thms, [])]));
   375   in
   376     (((fun_names, defs),
   377       fn lthy => fn defs =>
   378         split_list (map2 (prove lthy defs) (take actual_nn rec_specs) funs_data)),
   379       lthy' |> Local_Theory.notes (notes @ common_notes) |> snd)
   380   end;
   381 
   382 (* primrec definition *)
   383 
   384 fun add_primrec_simple fixes ts lthy =
   385   let
   386     val (((names, defs), prove), lthy) = prepare_primrec fixes ts lthy
   387       handle ERROR str => primrec_error str;
   388   in
   389     lthy
   390     |> fold_map Local_Theory.define defs
   391     |-> (fn defs => `(fn lthy => (names, (map fst defs, prove lthy defs))))
   392   end
   393   handle Primrec_Error (str, eqns) =>
   394     if null eqns
   395     then error ("primrec_new error:\n  " ^ str)
   396     else error ("primrec_new error:\n  " ^ str ^ "\nin\n  " ^
   397       space_implode "\n  " (map (quote o Syntax.string_of_term lthy) eqns));
   398 
   399 local
   400 
   401 fun gen_primrec prep_spec (raw_fixes : (binding * 'a option * mixfix) list) raw_spec lthy =
   402   let
   403     val d = duplicates (op =) (map (Binding.name_of o #1) raw_fixes)
   404     val _ = null d orelse primrec_error ("duplicate function name(s): " ^ commas d);
   405 
   406     val (fixes, specs) = fst (prep_spec raw_fixes raw_spec lthy);
   407 
   408     val mk_notes =
   409       flat ooo map3 (fn poss => fn prefix => fn thms =>
   410         let
   411           val (bs, attrss) = map_split (fst o nth specs) poss;
   412           val notes =
   413             map3 (fn b => fn attrs => fn thm =>
   414               ((Binding.qualify false prefix b, code_nitpicksimp_simp_attrs @ attrs), [([thm], [])]))
   415             bs attrss thms;
   416         in
   417           ((Binding.qualify true prefix (Binding.name simpsN), []), [(thms, [])]) :: notes
   418         end);
   419   in
   420     lthy
   421     |> add_primrec_simple fixes (map snd specs)
   422     |-> (fn (names, (ts, (posss, simpss))) =>
   423       Spec_Rules.add Spec_Rules.Equational (ts, flat simpss)
   424       #> Local_Theory.notes (mk_notes posss names simpss)
   425       #>> pair ts o map snd)
   426   end;
   427 
   428 in
   429 
   430 val add_primrec = gen_primrec Specification.check_spec;
   431 val add_primrec_cmd = gen_primrec Specification.read_spec;
   432 
   433 end;
   434 
   435 fun add_primrec_global fixes specs thy =
   436   let
   437     val lthy = Named_Target.theory_init thy;
   438     val ((ts, simps), lthy') = add_primrec fixes specs lthy;
   439     val simps' = burrow (Proof_Context.export lthy' lthy) simps;
   440   in ((ts, simps'), Local_Theory.exit_global lthy') end;
   441 
   442 fun add_primrec_overloaded ops fixes specs thy =
   443   let
   444     val lthy = Overloading.overloading ops thy;
   445     val ((ts, simps), lthy') = add_primrec fixes specs lthy;
   446     val simps' = burrow (Proof_Context.export lthy' lthy) simps;
   447   in ((ts, simps'), Local_Theory.exit_global lthy') end;
   448 
   449 
   450 
   451 (* Primcorec *)
   452 
   453 type coeqn_data_disc = {
   454   fun_name: string,
   455   fun_T: typ,
   456   fun_args: term list,
   457   ctr: term,
   458   ctr_no: int, (*###*)
   459   disc: term,
   460   prems: term list,
   461   auto_gen: bool,
   462   maybe_ctr_rhs: term option,
   463   maybe_code_rhs: term option,
   464   user_eqn: term
   465 };
   466 
   467 type coeqn_data_sel = {
   468   fun_name: string,
   469   fun_T: typ,
   470   fun_args: term list,
   471   ctr: term,
   472   sel: term,
   473   rhs_term: term,
   474   user_eqn: term
   475 };
   476 
   477 datatype coeqn_data =
   478   Disc of coeqn_data_disc |
   479   Sel of coeqn_data_sel;
   480 
   481 fun dissect_coeqn_disc seq fun_names (basic_ctr_specss : basic_corec_ctr_spec list list)
   482     maybe_ctr_rhs maybe_code_rhs prems' concl matchedsss =
   483   let
   484     fun find_subterm p = let (* FIXME \<exists>? *)
   485       fun f (t as u $ v) = if p t then SOME t else merge_options (f u, f v)
   486         | f t = if p t then SOME t else NONE
   487       in f end;
   488 
   489     val applied_fun = concl
   490       |> find_subterm (member ((op =) o apsnd SOME) fun_names o try (fst o dest_Free o head_of))
   491       |> the
   492       handle Option.Option => primrec_error_eqn "malformed discriminator formula" concl;
   493     val ((fun_name, fun_T), fun_args) = strip_comb applied_fun |>> dest_Free;
   494     val SOME basic_ctr_specs = AList.lookup (op =) (fun_names ~~ basic_ctr_specss) fun_name;
   495 
   496     val discs = map #disc basic_ctr_specs;
   497     val ctrs = map #ctr basic_ctr_specs;
   498     val not_disc = head_of concl = @{term Not};
   499     val _ = not_disc andalso length ctrs <> 2 andalso
   500       primrec_error_eqn "negated discriminator for a type with \<noteq> 2 constructors" concl;
   501     val disc' = find_subterm (member (op =) discs o head_of) concl;
   502     val eq_ctr0 = concl |> perhaps (try HOLogic.dest_not) |> try (HOLogic.dest_eq #> snd)
   503         |> (fn SOME t => let val n = find_index (equal t) ctrs in
   504           if n >= 0 then SOME n else NONE end | _ => NONE);
   505     val _ = is_some disc' orelse is_some eq_ctr0 orelse
   506       primrec_error_eqn "no discriminator in equation" concl;
   507     val ctr_no' =
   508       if is_none disc' then the eq_ctr0 else find_index (equal (head_of (the disc'))) discs;
   509     val ctr_no = if not_disc then 1 - ctr_no' else ctr_no';
   510     val {ctr, disc, ...} = nth basic_ctr_specs ctr_no;
   511 
   512     val catch_all = try (fst o dest_Free o the_single) prems' = SOME Name.uu_;
   513     val matchedss = AList.lookup (op =) matchedsss fun_name |> the_default [];
   514     val prems = map (abstract (List.rev fun_args)) prems';
   515     val real_prems =
   516       (if catch_all orelse seq then maps s_not_conj matchedss else []) @
   517       (if catch_all then [] else prems);
   518 
   519     val matchedsss' = AList.delete (op =) fun_name matchedsss
   520       |> cons (fun_name, if seq then matchedss @ [prems] else matchedss @ [real_prems]);
   521 
   522     val user_eqn =
   523       (real_prems, concl)
   524       |>> map HOLogic.mk_Trueprop ||> HOLogic.mk_Trueprop o abstract (List.rev fun_args)
   525       |> curry Logic.list_all (map dest_Free fun_args) o Logic.list_implies;
   526   in
   527     (Disc {
   528       fun_name = fun_name,
   529       fun_T = fun_T,
   530       fun_args = fun_args,
   531       ctr = ctr,
   532       ctr_no = ctr_no,
   533       disc = disc,
   534       prems = real_prems,
   535       auto_gen = catch_all,
   536       maybe_ctr_rhs = maybe_ctr_rhs,
   537       maybe_code_rhs = maybe_code_rhs,
   538       user_eqn = user_eqn
   539     }, matchedsss')
   540   end;
   541 
   542 fun dissect_coeqn_sel fun_names (basic_ctr_specss : basic_corec_ctr_spec list list) eqn'
   543     maybe_of_spec eqn =
   544   let
   545     val (lhs, rhs) = HOLogic.dest_eq eqn
   546       handle TERM _ =>
   547         primrec_error_eqn "malformed function equation (expected \"lhs = rhs\")" eqn;
   548     val sel = head_of lhs;
   549     val ((fun_name, fun_T), fun_args) = dest_comb lhs |> snd |> strip_comb |> apfst dest_Free
   550       handle TERM _ =>
   551         primrec_error_eqn "malformed selector argument in left-hand side" eqn;
   552     val basic_ctr_specs = the (AList.lookup (op =) (fun_names ~~ basic_ctr_specss) fun_name)
   553       handle Option.Option => primrec_error_eqn "malformed selector argument in left-hand side" eqn;
   554     val {ctr, ...} =
   555       (case maybe_of_spec of
   556         SOME of_spec => the (find_first (equal of_spec o #ctr) basic_ctr_specs)
   557       | NONE => filter (exists (equal sel) o #sels) basic_ctr_specs |> the_single
   558           handle List.Empty => primrec_error_eqn "ambiguous selector - use \"of\"" eqn);
   559     val user_eqn = drop_All eqn';
   560   in
   561     Sel {
   562       fun_name = fun_name,
   563       fun_T = fun_T,
   564       fun_args = fun_args,
   565       ctr = ctr,
   566       sel = sel,
   567       rhs_term = rhs,
   568       user_eqn = user_eqn
   569     }
   570   end;
   571 
   572 fun dissect_coeqn_ctr seq fun_names (basic_ctr_specss : basic_corec_ctr_spec list list) eqn'
   573     maybe_code_rhs prems concl matchedsss =
   574   let
   575     val (lhs, rhs) = HOLogic.dest_eq concl;
   576     val (fun_name, fun_args) = strip_comb lhs |>> fst o dest_Free;
   577     val SOME basic_ctr_specs = AList.lookup (op =) (fun_names ~~ basic_ctr_specss) fun_name;
   578     val (ctr, ctr_args) = strip_comb (unfold_let rhs);
   579     val {disc, sels, ...} = the (find_first (equal ctr o #ctr) basic_ctr_specs)
   580       handle Option.Option => primrec_error_eqn "not a constructor" ctr;
   581 
   582     val disc_concl = betapply (disc, lhs);
   583     val (maybe_eqn_data_disc, matchedsss') = if length basic_ctr_specs = 1
   584       then (NONE, matchedsss)
   585       else apfst SOME (dissect_coeqn_disc seq fun_names basic_ctr_specss
   586           (SOME (abstract (List.rev fun_args) rhs)) maybe_code_rhs prems disc_concl matchedsss);
   587 
   588     val sel_concls = sels ~~ ctr_args
   589       |> map (fn (sel, ctr_arg) => HOLogic.mk_eq (betapply (sel, lhs), ctr_arg));
   590 
   591 (*
   592 val _ = tracing ("reduced\n    " ^ Syntax.string_of_term @{context} concl ^ "\nto\n    \<cdot> " ^
   593  (is_some maybe_eqn_data_disc ? K (Syntax.string_of_term @{context} disc_concl ^ "\n    \<cdot> ")) "" ^
   594  space_implode "\n    \<cdot> " (map (Syntax.string_of_term @{context}) sel_concls) ^
   595  "\nfor premise(s)\n    \<cdot> " ^
   596  space_implode "\n    \<cdot> " (map (Syntax.string_of_term @{context}) prems));
   597 *)
   598 
   599     val eqns_data_sel =
   600       map (dissect_coeqn_sel fun_names basic_ctr_specss eqn' (SOME ctr)) sel_concls;
   601   in
   602     (the_list maybe_eqn_data_disc @ eqns_data_sel, matchedsss')
   603   end;
   604 
   605 fun dissect_coeqn_code lthy has_call fun_names basic_ctr_specss eqn' concl matchedsss =
   606   let
   607     val (lhs, (rhs', rhs)) = HOLogic.dest_eq concl ||> `(expand_corec_code_rhs lthy has_call []);
   608     val (fun_name, fun_args) = strip_comb lhs |>> fst o dest_Free;
   609     val SOME basic_ctr_specs = AList.lookup (op =) (fun_names ~~ basic_ctr_specss) fun_name;
   610 
   611     val cond_ctrs = fold_rev_corec_code_rhs lthy (fn cs => fn ctr => fn _ =>
   612         if member ((op =) o apsnd #ctr) basic_ctr_specs ctr
   613         then cons (ctr, cs)
   614         else primrec_error_eqn "not a constructor" ctr) [] rhs' []
   615       |> AList.group (op =);
   616 
   617     val ctr_premss = (case cond_ctrs of [_] => [[]] | _ => map (s_dnf o snd) cond_ctrs);
   618     val ctr_concls = cond_ctrs |> map (fn (ctr, _) =>
   619         binder_types (fastype_of ctr)
   620         |> map_index (fn (n, T) => massage_corec_code_rhs lthy (fn _ => fn ctr' => fn args =>
   621           if ctr' = ctr then nth args n else Const (@{const_name undefined}, T)) [] rhs')
   622         |> curry list_comb ctr
   623         |> curry HOLogic.mk_eq lhs);
   624   in
   625     fold_map2 (dissect_coeqn_ctr false fun_names basic_ctr_specss eqn'
   626         (SOME (abstract (List.rev fun_args) rhs)))
   627       ctr_premss ctr_concls matchedsss
   628   end;
   629 
   630 fun dissect_coeqn lthy seq has_call fun_names (basic_ctr_specss : basic_corec_ctr_spec list list)
   631     eqn' maybe_of_spec matchedsss =
   632   let
   633     val eqn = drop_All eqn'
   634       handle TERM _ => primrec_error_eqn "malformed function equation" eqn';
   635     val (prems, concl) = Logic.strip_horn eqn
   636       |> apfst (map HOLogic.dest_Trueprop) o apsnd HOLogic.dest_Trueprop;
   637 
   638     val head = concl
   639       |> perhaps (try HOLogic.dest_not) |> perhaps (try (fst o HOLogic.dest_eq))
   640       |> head_of;
   641 
   642     val maybe_rhs = concl |> perhaps (try HOLogic.dest_not) |> try (snd o HOLogic.dest_eq);
   643 
   644     val discs = maps (map #disc) basic_ctr_specss;
   645     val sels = maps (maps #sels) basic_ctr_specss;
   646     val ctrs = maps (map #ctr) basic_ctr_specss;
   647   in
   648     if member (op =) discs head orelse
   649       is_some maybe_rhs andalso
   650         member (op =) (filter (null o binder_types o fastype_of) ctrs) (the maybe_rhs) then
   651       dissect_coeqn_disc seq fun_names basic_ctr_specss NONE NONE prems concl matchedsss
   652       |>> single
   653     else if member (op =) sels head then
   654       ([dissect_coeqn_sel fun_names basic_ctr_specss eqn' maybe_of_spec concl], matchedsss)
   655     else if is_Free head andalso member (op =) fun_names (fst (dest_Free head)) andalso
   656       member (op =) ctrs (head_of (unfold_let (the maybe_rhs))) then
   657       dissect_coeqn_ctr seq fun_names basic_ctr_specss eqn' NONE prems concl matchedsss
   658     else if is_Free head andalso member (op =) fun_names (fst (dest_Free head)) andalso
   659       null prems then
   660       dissect_coeqn_code lthy has_call fun_names basic_ctr_specss eqn' concl matchedsss
   661       |>> flat
   662     else
   663       primrec_error_eqn "malformed function equation" eqn
   664   end;
   665 
   666 fun build_corec_arg_disc (ctr_specs : corec_ctr_spec list)
   667     ({fun_args, ctr_no, prems, ...} : coeqn_data_disc) =
   668   if is_none (#pred (nth ctr_specs ctr_no)) then I else
   669     s_conjs prems
   670     |> curry subst_bounds (List.rev fun_args)
   671     |> HOLogic.tupled_lambda (HOLogic.mk_tuple fun_args)
   672     |> K |> nth_map (the (#pred (nth ctr_specs ctr_no)));
   673 
   674 fun build_corec_arg_no_call (sel_eqns : coeqn_data_sel list) sel =
   675   find_first (equal sel o #sel) sel_eqns
   676   |> try (fn SOME {fun_args, rhs_term, ...} => abs_tuple fun_args rhs_term)
   677   |> the_default undef_const
   678   |> K;
   679 
   680 fun build_corec_args_mutual_call lthy has_call (sel_eqns : coeqn_data_sel list) sel =
   681   (case find_first (equal sel o #sel) sel_eqns of
   682     NONE => (I, I, I)
   683   | SOME {fun_args, rhs_term, ... } =>
   684     let
   685       val bound_Ts = List.rev (map fastype_of fun_args);
   686       fun rewrite_stop _ t = if has_call t then @{term False} else @{term True};
   687       fun rewrite_end _ t = if has_call t then undef_const else t;
   688       fun rewrite_cont bound_Ts t =
   689         if has_call t then mk_tuple1 bound_Ts (snd (strip_comb t)) else undef_const;
   690       fun massage f _ = massage_mutual_corec_call lthy has_call f bound_Ts rhs_term
   691         |> abs_tuple fun_args;
   692     in
   693       (massage rewrite_stop, massage rewrite_end, massage rewrite_cont)
   694     end);
   695 
   696 fun build_corec_arg_nested_call lthy has_call (sel_eqns : coeqn_data_sel list) sel =
   697   (case find_first (equal sel o #sel) sel_eqns of
   698     NONE => I
   699   | SOME {fun_args, rhs_term, ...} =>
   700     let
   701       val bound_Ts = List.rev (map fastype_of fun_args);
   702       fun rewrite bound_Ts U T (Abs (v, V, b)) = Abs (v, V, rewrite (V :: bound_Ts) U T b)
   703         | rewrite bound_Ts U T (t as _ $ _) =
   704           let val (u, vs) = strip_comb t in
   705             if is_Free u andalso has_call u then
   706               Inr_const U T $ mk_tuple1 bound_Ts vs
   707             else if const_name u = SOME @{const_name prod_case} then
   708               map (rewrite bound_Ts U T) vs |> chop 1 |>> HOLogic.mk_split o the_single |> list_comb
   709             else
   710               list_comb (rewrite bound_Ts U T u, map (rewrite bound_Ts U T) vs)
   711           end
   712         | rewrite _ U T t =
   713           if is_Free t andalso has_call t then Inr_const U T $ HOLogic.unit else t;
   714       fun massage t =
   715         rhs_term
   716         |> massage_nested_corec_call lthy has_call rewrite bound_Ts (range_type (fastype_of t))
   717         |> abs_tuple fun_args;
   718     in
   719       massage
   720     end);
   721 
   722 fun build_corec_args_sel lthy has_call (all_sel_eqns : coeqn_data_sel list)
   723     (ctr_spec : corec_ctr_spec) =
   724   (case filter (equal (#ctr ctr_spec) o #ctr) all_sel_eqns of
   725     [] => I
   726   | sel_eqns =>
   727     let
   728       val sel_call_list = #sels ctr_spec ~~ #calls ctr_spec;
   729       val no_calls' = map_filter (try (apsnd (fn No_Corec n => n))) sel_call_list;
   730       val mutual_calls' = map_filter (try (apsnd (fn Mutual_Corec n => n))) sel_call_list;
   731       val nested_calls' = map_filter (try (apsnd (fn Nested_Corec n => n))) sel_call_list;
   732     in
   733       I
   734       #> fold (fn (sel, n) => nth_map n (build_corec_arg_no_call sel_eqns sel)) no_calls'
   735       #> fold (fn (sel, (q, g, h)) =>
   736         let val (fq, fg, fh) = build_corec_args_mutual_call lthy has_call sel_eqns sel in
   737           nth_map q fq o nth_map g fg o nth_map h fh end) mutual_calls'
   738       #> fold (fn (sel, n) => nth_map n
   739         (build_corec_arg_nested_call lthy has_call sel_eqns sel)) nested_calls'
   740     end);
   741 
   742 fun build_codefs lthy bs mxs has_call arg_Tss (corec_specs : corec_spec list)
   743     (disc_eqnss : coeqn_data_disc list list) (sel_eqnss : coeqn_data_sel list list) =
   744   let
   745     val corecs = map #corec corec_specs;
   746     val ctr_specss = map #ctr_specs corec_specs;
   747     val corec_args = hd corecs
   748       |> fst o split_last o binder_types o fastype_of
   749       |> map (Const o pair @{const_name undefined})
   750       |> fold2 (fold o build_corec_arg_disc) ctr_specss disc_eqnss
   751       |> fold2 (fold o build_corec_args_sel lthy has_call) sel_eqnss ctr_specss;
   752     fun currys [] t = t
   753       | currys Ts t = t $ mk_tuple1 (List.rev Ts) (map Bound (length Ts - 1 downto 0))
   754           |> fold_rev (Term.abs o pair Name.uu) Ts;
   755 
   756 (*
   757 val _ = tracing ("corecursor arguments:\n    \<cdot> " ^
   758  space_implode "\n    \<cdot> " (map (Syntax.string_of_term lthy) corec_args));
   759 *)
   760 
   761     val exclss' =
   762       disc_eqnss
   763       |> map (map (fn x => (#fun_args x, #ctr_no x, #prems x, #auto_gen x))
   764         #> fst o (fn xs => fold_map (fn x => fn ys => ((x, ys), ys @ [x])) xs [])
   765         #> maps (uncurry (map o pair)
   766           #> map (fn ((fun_args, c, x, a), (_, c', y, a')) =>
   767               ((c, c', a orelse a'), (x, s_not (s_conjs y)))
   768             ||> apfst (map HOLogic.mk_Trueprop) o apsnd HOLogic.mk_Trueprop
   769             ||> Logic.list_implies
   770             ||> curry Logic.list_all (map dest_Free fun_args))))
   771   in
   772     map (list_comb o rpair corec_args) corecs
   773     |> map2 (fn Ts => fn t => if length Ts = 0 then t $ HOLogic.unit else t) arg_Tss
   774     |> map2 currys arg_Tss
   775     |> Syntax.check_terms lthy
   776     |> map3 (fn b => fn mx => fn t => ((b, mx), ((Binding.conceal (Thm.def_binding b), []), t)))
   777       bs mxs
   778     |> rpair exclss'
   779   end;
   780 
   781 fun mk_real_disc_eqns fun_binding arg_Ts ({ctr_specs, ...} : corec_spec)
   782     (sel_eqns : coeqn_data_sel list) (disc_eqns : coeqn_data_disc list) =
   783   if length disc_eqns <> length ctr_specs - 1 then disc_eqns else
   784     let
   785       val n = 0 upto length ctr_specs
   786         |> the o find_first (fn idx => not (exists (equal idx o #ctr_no) disc_eqns));
   787       val fun_args = (try (#fun_args o hd) disc_eqns, try (#fun_args o hd) sel_eqns)
   788         |> the_default (map (curry Free Name.uu) arg_Ts) o merge_options;
   789       val extra_disc_eqn = {
   790         fun_name = Binding.name_of fun_binding,
   791         fun_T = arg_Ts ---> body_type (fastype_of (#ctr (hd ctr_specs))),
   792         fun_args = fun_args,
   793         ctr = #ctr (nth ctr_specs n),
   794         ctr_no = n,
   795         disc = #disc (nth ctr_specs n),
   796         prems = maps (s_not_conj o #prems) disc_eqns,
   797         auto_gen = true,
   798         maybe_ctr_rhs = NONE,
   799         maybe_code_rhs = NONE,
   800         user_eqn = undef_const};
   801     in
   802       chop n disc_eqns ||> cons extra_disc_eqn |> (op @)
   803     end;
   804 
   805 fun find_corec_calls has_call basic_ctr_specs ({ctr, sel, rhs_term, ...} : coeqn_data_sel) =
   806   let
   807     val sel_no = find_first (equal ctr o #ctr) basic_ctr_specs
   808       |> find_index (equal sel) o #sels o the;
   809     fun find t = if has_call t then [t] else [];
   810   in
   811     find rhs_term
   812     |> K |> nth_map sel_no |> AList.map_entry (op =) ctr
   813   end;
   814 
   815 fun add_primcorec_ursive maybe_tac seq fixes specs maybe_of_specs lthy =
   816   let
   817     val (bs, mxs) = map_split (apfst fst) fixes;
   818     val (arg_Ts, res_Ts) = map (strip_type o snd o fst #>> HOLogic.mk_tupleT) fixes |> split_list;
   819 
   820     val fun_names = map Binding.name_of bs;
   821     val basic_ctr_specss = map (basic_corec_specs_of lthy) res_Ts;
   822     val has_call = exists_subterm (map (fst #>> Binding.name_of #> Free) fixes |> member (op =));
   823     val eqns_data =
   824       fold_map2 (dissect_coeqn lthy seq has_call fun_names basic_ctr_specss) (map snd specs)
   825         maybe_of_specs []
   826       |> flat o fst;
   827 
   828     val callssss =
   829       map_filter (try (fn Sel x => x)) eqns_data
   830       |> partition_eq ((op =) o pairself #fun_name)
   831       |> fst o finds (fn (x, ({fun_name, ...} :: _)) => x = fun_name) fun_names
   832       |> map (flat o snd)
   833       |> map2 (fold o find_corec_calls has_call) basic_ctr_specss
   834       |> map2 (curry (op |>)) (map (map (fn {ctr, sels, ...} =>
   835         (ctr, map (K []) sels))) basic_ctr_specss);
   836 
   837 (*
   838 val _ = tracing ("callssss = " ^ @{make_string} callssss);
   839 *)
   840 
   841     val ((n2m, corec_specs', _, coinduct_thm, strong_coinduct_thm, coinduct_thms,
   842           strong_coinduct_thms), lthy') =
   843       corec_specs_of bs arg_Ts res_Ts (get_indices fixes) callssss lthy;
   844     val actual_nn = length bs;
   845     val corec_specs = take actual_nn corec_specs'; (*###*)
   846     val ctr_specss = map #ctr_specs corec_specs;
   847 
   848     val disc_eqnss' = map_filter (try (fn Disc x => x)) eqns_data
   849       |> partition_eq ((op =) o pairself #fun_name)
   850       |> fst o finds (fn (x, ({fun_name, ...} :: _)) => x = fun_name) fun_names
   851       |> map (sort ((op <) o pairself #ctr_no |> make_ord) o flat o snd);
   852     val _ = disc_eqnss' |> map (fn x =>
   853       let val d = duplicates ((op =) o pairself #ctr_no) x in null d orelse
   854         primrec_error_eqns "excess discriminator formula in definition"
   855           (maps (fn t => filter (equal (#ctr_no t) o #ctr_no) x) d |> map #user_eqn) end);
   856 
   857     val sel_eqnss = map_filter (try (fn Sel x => x)) eqns_data
   858       |> partition_eq ((op =) o pairself #fun_name)
   859       |> fst o finds (fn (x, ({fun_name, ...} :: _)) => x = fun_name) fun_names
   860       |> map (flat o snd);
   861 
   862     val arg_Tss = map (binder_types o snd o fst) fixes;
   863     val disc_eqnss = map5 mk_real_disc_eqns bs arg_Tss corec_specs sel_eqnss disc_eqnss';
   864     val (defs, exclss') =
   865       build_codefs lthy' bs mxs has_call arg_Tss corec_specs disc_eqnss sel_eqnss;
   866 
   867     fun excl_tac (c, c', a) =
   868       if a orelse c = c' orelse seq then SOME (K (HEADGOAL (mk_primcorec_assumption_tac lthy [])))
   869       else maybe_tac;
   870 
   871 (*
   872 val _ = tracing ("exclusiveness properties:\n    \<cdot> " ^
   873  space_implode "\n    \<cdot> " (maps (map (Syntax.string_of_term lthy o snd)) exclss'));
   874 *)
   875 
   876     val exclss'' = exclss' |> map (map (fn (idx, t) =>
   877       (idx, (Option.map (Goal.prove lthy [] [] t #> Thm.close_derivation) (excl_tac idx), t))));
   878     val taut_thmss = map (map (apsnd (the o fst)) o filter (is_some o fst o snd)) exclss'';
   879     val (goal_idxss, goalss) = exclss''
   880       |> map (map (apsnd (rpair [] o snd)) o filter (is_none o fst o snd))
   881       |> split_list o map split_list;
   882 
   883     fun prove thmss' def_thms' lthy =
   884       let
   885         val def_thms = map (snd o snd) def_thms';
   886 
   887         val exclss' = map (op ~~) (goal_idxss ~~ thmss');
   888         fun mk_exclsss excls n =
   889           (excls, map (fn k => replicate k [TrueI] @ replicate (n - k) []) (0 upto n - 1))
   890           |-> fold (fn ((c, c', _), thm) => nth_map c (nth_map c' (K [thm])));
   891         val exclssss = (exclss' ~~ taut_thmss |> map (op @), fun_names ~~ corec_specs)
   892           |-> map2 (fn excls => fn (_, {ctr_specs, ...}) => mk_exclsss excls (length ctr_specs));
   893 
   894         fun prove_disc ({ctr_specs, ...} : corec_spec) exclsss
   895             ({fun_name, fun_T, fun_args, ctr_no, prems, ...} : coeqn_data_disc) =
   896           if Term.aconv_untyped (#disc (nth ctr_specs ctr_no), @{term "\<lambda>x. x = x"}) then [] else
   897             let
   898               val {disc_corec, ...} = nth ctr_specs ctr_no;
   899               val k = 1 + ctr_no;
   900               val m = length prems;
   901               val t =
   902                 list_comb (Free (fun_name, fun_T), map Bound (length fun_args - 1 downto 0))
   903                 |> curry betapply (#disc (nth ctr_specs ctr_no)) (*###*)
   904                 |> HOLogic.mk_Trueprop
   905                 |> curry Logic.list_implies (map HOLogic.mk_Trueprop prems)
   906                 |> curry Logic.list_all (map dest_Free fun_args);
   907             in
   908               if prems = [@{term False}] then [] else
   909               mk_primcorec_disc_tac lthy def_thms disc_corec k m exclsss
   910               |> K |> Goal.prove lthy [] [] t
   911               |> Thm.close_derivation
   912               |> pair (#disc (nth ctr_specs ctr_no))
   913               |> single
   914             end;
   915 
   916         fun prove_sel ({nested_maps, nested_map_idents, nested_map_comps, ctr_specs, ...}
   917             : corec_spec) (disc_eqns : coeqn_data_disc list) exclsss
   918             ({fun_name, fun_T, fun_args, ctr, sel, rhs_term, ...} : coeqn_data_sel) =
   919           let
   920             val SOME ctr_spec = find_first (equal ctr o #ctr) ctr_specs;
   921             val ctr_no = find_index (equal ctr o #ctr) ctr_specs;
   922             val prems = the_default (maps (s_not_conj o #prems) disc_eqns)
   923                 (find_first (equal ctr_no o #ctr_no) disc_eqns |> Option.map #prems);
   924             val sel_corec = find_index (equal sel) (#sels ctr_spec)
   925               |> nth (#sel_corecs ctr_spec);
   926             val k = 1 + ctr_no;
   927             val m = length prems;
   928             val t =
   929               list_comb (Free (fun_name, fun_T), map Bound (length fun_args - 1 downto 0))
   930               |> curry betapply sel
   931               |> rpair (abstract (List.rev fun_args) rhs_term)
   932               |> HOLogic.mk_Trueprop o HOLogic.mk_eq
   933               |> curry Logic.list_implies (map HOLogic.mk_Trueprop prems)
   934               |> curry Logic.list_all (map dest_Free fun_args);
   935             val (distincts, _, sel_splits, sel_split_asms) = case_thms_of_term lthy [] rhs_term;
   936           in
   937             mk_primcorec_sel_tac lthy def_thms distincts sel_splits sel_split_asms nested_maps
   938               nested_map_idents nested_map_comps sel_corec k m exclsss
   939             |> K |> Goal.prove lthy [] [] t
   940             |> Thm.close_derivation
   941             |> pair sel
   942           end;
   943 
   944         fun prove_ctr disc_alist sel_alist (disc_eqns : coeqn_data_disc list)
   945             (sel_eqns : coeqn_data_sel list) ({ctr, disc, sels, collapse, ...} : corec_ctr_spec) =
   946           (* don't try to prove theorems when some sel_eqns are missing *)
   947           if not (exists (equal ctr o #ctr) disc_eqns)
   948               andalso not (exists (equal ctr o #ctr) sel_eqns)
   949             orelse
   950               filter (equal ctr o #ctr) sel_eqns
   951               |> fst o finds ((op =) o apsnd #sel) sels
   952               |> exists (null o snd)
   953           then [] else
   954             let
   955               val (fun_name, fun_T, fun_args, prems, maybe_rhs) =
   956                 (find_first (equal ctr o #ctr) disc_eqns, find_first (equal ctr o #ctr) sel_eqns)
   957                 |>> Option.map (fn x => (#fun_name x, #fun_T x, #fun_args x, #prems x,
   958                   #maybe_ctr_rhs x))
   959                 ||> Option.map (fn x => (#fun_name x, #fun_T x, #fun_args x, [], NONE))
   960                 |> the o merge_options;
   961               val m = length prems;
   962               val t = (if is_some maybe_rhs then the maybe_rhs else
   963                   filter (equal ctr o #ctr) sel_eqns
   964                   |> fst o finds ((op =) o apsnd #sel) sels
   965                   |> map (snd #> (fn [x] => (List.rev (#fun_args x), #rhs_term x)) #-> abstract)
   966                   |> curry list_comb ctr)
   967                 |> curry HOLogic.mk_eq (list_comb (Free (fun_name, fun_T),
   968                   map Bound (length fun_args - 1 downto 0)))
   969                 |> HOLogic.mk_Trueprop
   970                 |> curry Logic.list_implies (map HOLogic.mk_Trueprop prems)
   971                 |> curry Logic.list_all (map dest_Free fun_args);
   972               val maybe_disc_thm = AList.lookup (op =) disc_alist disc;
   973               val sel_thms = map snd (filter (member (op =) sels o fst) sel_alist);
   974             in
   975               if prems = [@{term False}] then [] else
   976                 mk_primcorec_ctr_of_dtr_tac lthy m collapse maybe_disc_thm sel_thms
   977                 |> K |> Goal.prove lthy [] [] t
   978                 |> Thm.close_derivation
   979                 |> pair ctr
   980                 |> single
   981             end;
   982 
   983         fun prove_code disc_eqns sel_eqns ctr_alist ctr_specs =
   984           let
   985             val (fun_name, fun_T, fun_args, maybe_rhs) =
   986               (find_first (member (op =) (map #ctr ctr_specs) o #ctr) disc_eqns,
   987                find_first (member (op =) (map #ctr ctr_specs) o #ctr) sel_eqns)
   988               |>> Option.map (fn x => (#fun_name x, #fun_T x, #fun_args x, #maybe_code_rhs x))
   989               ||> Option.map (fn x => (#fun_name x, #fun_T x, #fun_args x, NONE))
   990               |> the o merge_options;
   991 
   992             val bound_Ts = List.rev (map fastype_of fun_args);
   993 
   994             val lhs = list_comb (Free (fun_name, fun_T), map Bound (length fun_args - 1 downto 0));
   995             val maybe_rhs_info =
   996               (case maybe_rhs of
   997                 SOME rhs =>
   998                 let
   999                   val raw_rhs = expand_corec_code_rhs lthy has_call bound_Ts rhs;
  1000                   val cond_ctrs =
  1001                     fold_rev_corec_code_rhs lthy (K oo (cons oo pair)) bound_Ts raw_rhs [];
  1002                   val ctr_thms = map (the o AList.lookup (op =) ctr_alist o snd) cond_ctrs;
  1003                 in SOME (rhs, raw_rhs, ctr_thms) end
  1004               | NONE =>
  1005                 let
  1006                   fun prove_code_ctr {ctr, sels, ...} =
  1007                     if not (exists (equal ctr o fst) ctr_alist) then NONE else
  1008                       let
  1009                         val prems = find_first (equal ctr o #ctr) disc_eqns
  1010                           |> Option.map #prems |> the_default [];
  1011                         val t =
  1012                           filter (equal ctr o #ctr) sel_eqns
  1013                           |> fst o finds ((op =) o apsnd #sel) sels
  1014                           |> map (snd #> (fn [x] => (List.rev (#fun_args x), #rhs_term x))
  1015                             #-> abstract)
  1016                           |> curry list_comb ctr;
  1017                       in
  1018                         SOME (prems, t)
  1019                       end;
  1020                   val maybe_ctr_conds_argss = map prove_code_ctr ctr_specs;
  1021                 in
  1022                   if exists is_none maybe_ctr_conds_argss then NONE else
  1023                     let
  1024                       val rhs = fold_rev (fn SOME (prems, u) => fn t => mk_If (s_conjs prems) u t)
  1025                         maybe_ctr_conds_argss
  1026                         (Const (@{const_name Code.abort}, @{typ String.literal} -->
  1027                             (@{typ unit} --> body_type fun_T) --> body_type fun_T) $
  1028                           HOLogic.mk_literal fun_name $
  1029                           absdummy @{typ unit} (incr_boundvars 1 lhs));
  1030                     in SOME (rhs, rhs, map snd ctr_alist) end
  1031                 end);
  1032           in
  1033             (case maybe_rhs_info of
  1034               NONE => []
  1035             | SOME (rhs, raw_rhs, ctr_thms) =>
  1036               let
  1037                 val ms = map (Logic.count_prems o prop_of) ctr_thms;
  1038                 val (raw_t, t) = (raw_rhs, rhs)
  1039                   |> pairself
  1040                     (curry HOLogic.mk_eq (list_comb (Free (fun_name, fun_T),
  1041                       map Bound (length fun_args - 1 downto 0)))
  1042                     #> HOLogic.mk_Trueprop
  1043                     #> curry Logic.list_all (map dest_Free fun_args));
  1044                 val (distincts, discIs, sel_splits, sel_split_asms) =
  1045                   case_thms_of_term lthy bound_Ts raw_rhs;
  1046 
  1047                 val raw_code_thm = mk_primcorec_raw_code_of_ctr_tac lthy distincts discIs sel_splits
  1048                     sel_split_asms ms ctr_thms
  1049                   |> K |> Goal.prove lthy [] [] raw_t
  1050                   |> Thm.close_derivation;
  1051               in
  1052                 mk_primcorec_code_of_raw_code_tac lthy distincts sel_splits raw_code_thm
  1053                 |> K |> Goal.prove lthy [] [] t
  1054                 |> Thm.close_derivation
  1055                 |> single
  1056               end)
  1057           end;
  1058 
  1059         val disc_alists = map3 (maps oo prove_disc) corec_specs exclssss disc_eqnss;
  1060         val sel_alists = map4 (map ooo prove_sel) corec_specs disc_eqnss exclssss sel_eqnss;
  1061         val disc_thmss = map (map snd) disc_alists;
  1062         val sel_thmss = map (map snd) sel_alists;
  1063 
  1064         val ctr_alists = map5 (maps oooo prove_ctr) disc_alists sel_alists disc_eqnss sel_eqnss
  1065           ctr_specss;
  1066         val ctr_thmss = map (map snd) ctr_alists;
  1067 
  1068         val code_thmss = map4 prove_code disc_eqnss sel_eqnss ctr_alists ctr_specss;
  1069 
  1070         val simp_thmss = map2 append disc_thmss sel_thmss
  1071 
  1072         val common_name = mk_common_name fun_names;
  1073 
  1074         val notes =
  1075           [(coinductN, map (if n2m then single else K []) coinduct_thms, []),
  1076            (codeN, code_thmss, code_nitpicksimp_attrs),
  1077            (ctrN, ctr_thmss, []),
  1078            (discN, disc_thmss, simp_attrs),
  1079            (selN, sel_thmss, simp_attrs),
  1080            (simpsN, simp_thmss, []),
  1081            (strong_coinductN, map (if n2m then single else K []) strong_coinduct_thms, [])]
  1082           |> maps (fn (thmN, thmss, attrs) =>
  1083             map2 (fn fun_name => fn thms =>
  1084                 ((Binding.qualify true fun_name (Binding.name thmN), attrs), [(thms, [])]))
  1085               fun_names (take actual_nn thmss))
  1086           |> filter_out (null o fst o hd o snd);
  1087 
  1088         val common_notes =
  1089           [(coinductN, if n2m then [coinduct_thm] else [], []),
  1090            (strong_coinductN, if n2m then [strong_coinduct_thm] else [], [])]
  1091           |> filter_out (null o #2)
  1092           |> map (fn (thmN, thms, attrs) =>
  1093             ((Binding.qualify true common_name (Binding.name thmN), attrs), [(thms, [])]));
  1094       in
  1095         lthy |> Local_Theory.notes (notes @ common_notes) |> snd
  1096       end;
  1097 
  1098     fun after_qed thmss' = fold_map Local_Theory.define defs #-> prove thmss';
  1099   in
  1100     (goalss, after_qed, lthy')
  1101   end;
  1102 
  1103 fun add_primcorec_ursive_cmd maybe_tac seq (raw_fixes, raw_specs') lthy =
  1104   let
  1105     val (raw_specs, maybe_of_specs) =
  1106       split_list raw_specs' ||> map (Option.map (Syntax.read_term lthy));
  1107     val ((fixes, specs), _) = Specification.read_spec raw_fixes raw_specs lthy;
  1108   in
  1109     add_primcorec_ursive maybe_tac seq fixes specs maybe_of_specs lthy
  1110     handle ERROR str => primrec_error str
  1111   end
  1112   handle Primrec_Error (str, eqns) =>
  1113     if null eqns
  1114     then error ("primcorec error:\n  " ^ str)
  1115     else error ("primcorec error:\n  " ^ str ^ "\nin\n  " ^
  1116       space_implode "\n  " (map (quote o Syntax.string_of_term lthy) eqns));
  1117 
  1118 val add_primcorecursive_cmd = (fn (goalss, after_qed, lthy) =>
  1119   lthy
  1120   |> Proof.theorem NONE after_qed goalss
  1121   |> Proof.refine (Method.primitive_text I)
  1122   |> Seq.hd) ooo add_primcorec_ursive_cmd NONE;
  1123 
  1124 val add_primcorec_cmd = (fn (goalss, after_qed, lthy) =>
  1125   lthy
  1126   |> after_qed (map (fn [] => []
  1127       | _ => primrec_error "need exclusiveness proofs - use primcorecursive instead of primcorec")
  1128     goalss)) ooo add_primcorec_ursive_cmd (SOME (fn {context = ctxt, ...} => auto_tac ctxt));
  1129 
  1130 end;