src/HOL/Tools/ATP/atp_proof_reconstruct.ML
author blanchet
Tue, 26 Jun 2012 11:14:39 +0200
changeset 49147 9aa0fad4e864
parent 49100 ff5e900d7b1a
child 49150 a44f34694406
permissions -rw-r--r--
added type arguments to "ATerm" constructor -- but don't use them yet
     1 (*  Title:      HOL/Tools/ATP/atp_proof_reconstruct.ML
     2     Author:     Lawrence C. Paulson, Cambridge University Computer Laboratory
     3     Author:     Claire Quigley, Cambridge University Computer Laboratory
     4     Author:     Jasmin Blanchette, TU Muenchen
     5 
     6 Proof reconstruction from ATP proofs.
     7 *)
     8 
     9 signature ATP_PROOF_RECONSTRUCT =
    10 sig
    11   type ('a, 'b) ho_term = ('a, 'b) ATP_Problem.ho_term
    12   type ('a, 'b, 'c) formula = ('a, 'b, 'c) ATP_Problem.formula
    13   type 'a proof = 'a ATP_Proof.proof
    14   type stature = ATP_Problem_Generate.stature
    15 
    16   datatype reconstructor =
    17     Metis of string * string |
    18     SMT
    19 
    20   datatype play =
    21     Played of reconstructor * Time.time |
    22     Trust_Playable of reconstructor * Time.time option |
    23     Failed_to_Play of reconstructor
    24 
    25   type minimize_command = string list -> string
    26   type one_line_params =
    27     play * string * (string * stature) list * minimize_command * int * int
    28   type isar_params =
    29     bool * int * string Symtab.table * (string * stature) list vector
    30     * int Symtab.table * string proof * thm
    31 
    32   val metisN : string
    33   val smtN : string
    34   val full_typesN : string
    35   val partial_typesN : string
    36   val no_typesN : string
    37   val really_full_type_enc : string
    38   val full_type_enc : string
    39   val partial_type_enc : string
    40   val no_type_enc : string
    41   val full_type_encs : string list
    42   val partial_type_encs : string list
    43   val metis_default_lam_trans : string
    44   val metis_call : string -> string -> string
    45   val string_for_reconstructor : reconstructor -> string
    46   val used_facts_in_atp_proof :
    47     Proof.context -> (string * stature) list vector -> string proof
    48     -> (string * stature) list
    49   val lam_trans_from_atp_proof : string proof -> string -> string
    50   val is_typed_helper_used_in_atp_proof : string proof -> bool
    51   val used_facts_in_unsound_atp_proof :
    52     Proof.context -> (string * stature) list vector -> 'a proof
    53     -> string list option
    54   val unalias_type_enc : string -> string list
    55   val one_line_proof_text : one_line_params -> string
    56   val make_tvar : string -> typ
    57   val make_tfree : Proof.context -> string -> typ
    58   val term_from_atp :
    59     Proof.context -> bool -> int Symtab.table -> typ option
    60     -> (string, string) ho_term -> term
    61   val prop_from_atp :
    62     Proof.context -> bool -> int Symtab.table
    63     -> (string, string, (string, string) ho_term) formula -> term
    64   val isar_proof_text :
    65     Proof.context -> bool -> isar_params -> one_line_params -> string
    66   val proof_text :
    67     Proof.context -> bool -> isar_params -> one_line_params -> string
    68 end;
    69 
    70 structure ATP_Proof_Reconstruct : ATP_PROOF_RECONSTRUCT =
    71 struct
    72 
    73 open ATP_Util
    74 open ATP_Problem
    75 open ATP_Proof
    76 open ATP_Problem_Generate
    77 
    78 structure String_Redirect = ATP_Proof_Redirect(
    79     type key = step_name
    80     val ord = fn ((s, _ : string list), (s', _)) => fast_string_ord (s, s')
    81     val string_of = fst)
    82 
    83 open String_Redirect
    84 
    85 datatype reconstructor =
    86   Metis of string * string |
    87   SMT
    88 
    89 datatype play =
    90   Played of reconstructor * Time.time |
    91   Trust_Playable of reconstructor * Time.time option |
    92   Failed_to_Play of reconstructor
    93 
    94 type minimize_command = string list -> string
    95 type one_line_params =
    96   play * string * (string * stature) list * minimize_command * int * int
    97 type isar_params =
    98   bool * int * string Symtab.table * (string * stature) list vector
    99   * int Symtab.table * string proof * thm
   100 
   101 val metisN = "metis"
   102 val smtN = "smt"
   103 
   104 val full_typesN = "full_types"
   105 val partial_typesN = "partial_types"
   106 val no_typesN = "no_types"
   107 
   108 val really_full_type_enc = "mono_tags"
   109 val full_type_enc = "poly_guards_query"
   110 val partial_type_enc = "poly_args"
   111 val no_type_enc = "erased"
   112 
   113 val full_type_encs = [full_type_enc, really_full_type_enc]
   114 val partial_type_encs = partial_type_enc :: full_type_encs
   115 
   116 val type_enc_aliases =
   117   [(full_typesN, full_type_encs),
   118    (partial_typesN, partial_type_encs),
   119    (no_typesN, [no_type_enc])]
   120 
   121 fun unalias_type_enc s =
   122   AList.lookup (op =) type_enc_aliases s |> the_default [s]
   123 
   124 val metis_default_lam_trans = combsN
   125 
   126 fun metis_call type_enc lam_trans =
   127   let
   128     val type_enc =
   129       case AList.find (fn (enc, encs) => enc = hd encs) type_enc_aliases
   130                       type_enc of
   131         [alias] => alias
   132       | _ => type_enc
   133     val opts = [] |> type_enc <> partial_typesN ? cons type_enc
   134                   |> lam_trans <> metis_default_lam_trans ? cons lam_trans
   135   in metisN ^ (if null opts then "" else " (" ^ commas opts ^ ")") end
   136 
   137 fun string_for_reconstructor (Metis (type_enc, lam_trans)) =
   138     metis_call type_enc lam_trans
   139   | string_for_reconstructor SMT = smtN
   140 
   141 fun find_first_in_list_vector vec key =
   142   Vector.foldl (fn (ps, NONE) => AList.lookup (op =) ps key
   143                  | (_, value) => value) NONE vec
   144 
   145 val unprefix_fact_number = space_implode "_" o tl o space_explode "_"
   146 
   147 fun resolve_one_named_fact fact_names s =
   148   case try (unprefix fact_prefix) s of
   149     SOME s' =>
   150     let val s' = s' |> unprefix_fact_number |> unascii_of in
   151       s' |> find_first_in_list_vector fact_names |> Option.map (pair s')
   152     end
   153   | NONE => NONE
   154 fun resolve_fact fact_names = map_filter (resolve_one_named_fact fact_names)
   155 fun is_fact fact_names = not o null o resolve_fact fact_names
   156 
   157 fun resolve_one_named_conjecture s =
   158   case try (unprefix conjecture_prefix) s of
   159     SOME s' => Int.fromString s'
   160   | NONE => NONE
   161 
   162 val resolve_conjecture = map_filter resolve_one_named_conjecture
   163 val is_conjecture = not o null o resolve_conjecture
   164 
   165 fun is_axiom_used_in_proof pred =
   166   exists (fn Inference_Step ((_, ss), _, _, []) => exists pred ss | _ => false)
   167 
   168 val is_combinator_def = String.isPrefix (helper_prefix ^ combinator_prefix)
   169 
   170 val ascii_of_lam_fact_prefix = ascii_of lam_fact_prefix
   171 
   172 (* overapproximation (good enough) *)
   173 fun is_lam_lifted s =
   174   String.isPrefix fact_prefix s andalso
   175   String.isSubstring ascii_of_lam_fact_prefix s
   176 
   177 fun lam_trans_from_atp_proof atp_proof default =
   178   case (is_axiom_used_in_proof is_combinator_def atp_proof,
   179         is_axiom_used_in_proof is_lam_lifted atp_proof) of
   180     (false, false) => default
   181   | (false, true) => liftingN
   182 (*  | (true, true) => combs_and_liftingN -- not supported by "metis" *)
   183   | (true, _) => combsN
   184 
   185 val is_typed_helper_name =
   186   String.isPrefix helper_prefix andf String.isSuffix typed_helper_suffix
   187 fun is_typed_helper_used_in_atp_proof atp_proof =
   188   is_axiom_used_in_proof is_typed_helper_name atp_proof
   189 
   190 val leo2_ext = "extcnf_equal_neg"
   191 val leo2_unfold_def = "unfold_def"
   192 
   193 val isa_ext = Thm.get_name_hint @{thm ext}
   194 val isa_short_ext = Long_Name.base_name isa_ext
   195 
   196 fun ext_name ctxt =
   197   if Thm.eq_thm_prop (@{thm ext},
   198          singleton (Attrib.eval_thms ctxt) (Facts.named isa_short_ext, [])) then
   199     isa_short_ext
   200   else
   201     isa_ext
   202 
   203 fun add_all_defs fact_names accum =
   204   Vector.foldl
   205       (fn (facts, facts') =>
   206           union (op =) (filter (fn (_, (_, status)) => status = Def) facts)
   207                 facts')
   208       accum fact_names
   209 
   210 fun add_fact ctxt fact_names (Inference_Step ((_, ss), _, rule, deps)) =
   211     (if rule = leo2_ext then
   212        insert (op =) (ext_name ctxt, (Global, General))
   213      else if rule = leo2_unfold_def then
   214        (* LEO 1.3.3 does not record definitions properly, leading to missing
   215          dependencies in the TSTP proof. Remove the next line once this is
   216          fixed. *)
   217        add_all_defs fact_names
   218      else if rule = satallax_unsat_coreN then
   219        (fn [] =>
   220            (* Satallax doesn't include definitions in its unsatisfiable cores,
   221               so we assume the worst and include them all here. *)
   222            [(ext_name ctxt, (Global, General))] |> add_all_defs fact_names
   223          | facts => facts)
   224      else
   225        I)
   226     #> (if null deps then union (op =) (resolve_fact fact_names ss)
   227         else I)
   228   | add_fact _ _ _ = I
   229 
   230 fun used_facts_in_atp_proof ctxt fact_names atp_proof =
   231   if null atp_proof then Vector.foldl (uncurry (union (op =))) [] fact_names
   232   else fold (add_fact ctxt fact_names) atp_proof []
   233 
   234 fun used_facts_in_unsound_atp_proof _ _ [] = NONE
   235   | used_facts_in_unsound_atp_proof ctxt fact_names atp_proof =
   236     let val used_facts = used_facts_in_atp_proof ctxt fact_names atp_proof in
   237       if forall (fn (_, (sc, _)) => sc = Global) used_facts andalso
   238          not (is_axiom_used_in_proof (is_conjecture o single) atp_proof) then
   239         SOME (map fst used_facts)
   240       else
   241         NONE
   242     end
   243 
   244 
   245 (** Soft-core proof reconstruction: one-liners **)
   246 
   247 fun string_for_label (s, num) = s ^ string_of_int num
   248 
   249 fun show_time NONE = ""
   250   | show_time (SOME ext_time) = " (" ^ string_from_ext_time ext_time ^ ")"
   251 
   252 fun apply_on_subgoal _ 1 = "by "
   253   | apply_on_subgoal 1 _ = "apply "
   254   | apply_on_subgoal i n =
   255     "prefer " ^ string_of_int i ^ " " ^ apply_on_subgoal 1 n
   256 fun command_call name [] =
   257     name |> not (Lexicon.is_identifier name) ? enclose "(" ")"
   258   | command_call name args = "(" ^ name ^ " " ^ space_implode " " args ^ ")"
   259 fun try_command_line banner time command =
   260   banner ^ ": " ^ Markup.markup Isabelle_Markup.sendback command ^ show_time time ^ "."
   261 fun using_labels [] = ""
   262   | using_labels ls =
   263     "using " ^ space_implode " " (map string_for_label ls) ^ " "
   264 fun reconstructor_command reconstr i n (ls, ss) =
   265   using_labels ls ^ apply_on_subgoal i n ^
   266   command_call (string_for_reconstructor reconstr) ss
   267 fun minimize_line _ [] = ""
   268   | minimize_line minimize_command ss =
   269     case minimize_command ss of
   270       "" => ""
   271     | command =>
   272       "\nTo minimize: " ^ Markup.markup Isabelle_Markup.sendback command ^ "."
   273 
   274 fun split_used_facts facts =
   275   facts |> List.partition (fn (_, (sc, _)) => sc = Chained)
   276         |> pairself (sort_distinct (string_ord o pairself fst))
   277 
   278 fun one_line_proof_text (preplay, banner, used_facts, minimize_command,
   279                          subgoal, subgoal_count) =
   280   let
   281     val (chained, extra) = split_used_facts used_facts
   282     val (failed, reconstr, ext_time) =
   283       case preplay of
   284         Played (reconstr, time) => (false, reconstr, (SOME (false, time)))
   285       | Trust_Playable (reconstr, time) =>
   286         (false, reconstr,
   287          case time of
   288            NONE => NONE
   289          | SOME time =>
   290            if time = Time.zeroTime then NONE else SOME (true, time))
   291       | Failed_to_Play reconstr => (true, reconstr, NONE)
   292     val try_line =
   293       ([], map fst extra)
   294       |> reconstructor_command reconstr subgoal subgoal_count
   295       |> (if failed then
   296             enclose "One-line proof reconstruction failed: "
   297                      ".\n(Invoking \"sledgehammer\" with \"[strict]\" might \
   298                      \solve this.)"
   299           else
   300             try_command_line banner ext_time)
   301   in try_line ^ minimize_line minimize_command (map fst (extra @ chained)) end
   302 
   303 (** Hard-core proof reconstruction: structured Isar proofs **)
   304 
   305 fun forall_of v t = HOLogic.all_const (fastype_of v) $ lambda v t
   306 fun exists_of v t = HOLogic.exists_const (fastype_of v) $ lambda v t
   307 
   308 fun make_tvar s = TVar (("'" ^ s, 0), HOLogic.typeS)
   309 fun make_tfree ctxt w =
   310   let val ww = "'" ^ w in
   311     TFree (ww, the_default HOLogic.typeS (Variable.def_sort ctxt (ww, ~1)))
   312   end
   313 
   314 val indent_size = 2
   315 val no_label = ("", ~1)
   316 
   317 val raw_prefix = "x"
   318 val assum_prefix = "a"
   319 val have_prefix = "f"
   320 
   321 fun raw_label_for_name (num, ss) =
   322   case resolve_conjecture ss of
   323     [j] => (conjecture_prefix, j)
   324   | _ => (raw_prefix ^ ascii_of num, 0)
   325 
   326 (**** INTERPRETATION OF TSTP SYNTAX TREES ****)
   327 
   328 exception HO_TERM of (string, string) ho_term list
   329 exception FORMULA of (string, string, (string, string) ho_term) formula list
   330 exception SAME of unit
   331 
   332 (* Type variables are given the basic sort "HOL.type". Some will later be
   333    constrained by information from type literals, or by type inference. *)
   334 fun typ_from_atp ctxt (u as ATerm ((a, _), us)) =
   335   let val Ts = map (typ_from_atp ctxt) us in
   336     case unprefix_and_unascii type_const_prefix a of
   337       SOME b => Type (invert_const b, Ts)
   338     | NONE =>
   339       if not (null us) then
   340         raise HO_TERM [u]  (* only "tconst"s have type arguments *)
   341       else case unprefix_and_unascii tfree_prefix a of
   342         SOME b => make_tfree ctxt b
   343       | NONE =>
   344         (* Could be an Isabelle variable or a variable from the ATP, say "X1"
   345            or "_5018". Sometimes variables from the ATP are indistinguishable
   346            from Isabelle variables, which forces us to use a type parameter in
   347            all cases. *)
   348         (a |> perhaps (unprefix_and_unascii tvar_prefix), HOLogic.typeS)
   349         |> Type_Infer.param 0
   350   end
   351 
   352 (* Type class literal applied to a type. Returns triple of polarity, class,
   353    type. *)
   354 fun type_constraint_from_term ctxt (u as ATerm ((a, _), us)) =
   355   case (unprefix_and_unascii class_prefix a, map (typ_from_atp ctxt) us) of
   356     (SOME b, [T]) => (b, T)
   357   | _ => raise HO_TERM [u]
   358 
   359 (* Accumulate type constraints in a formula: negative type literals. *)
   360 fun add_var (key, z)  = Vartab.map_default (key, []) (cons z)
   361 fun add_type_constraint false (cl, TFree (a ,_)) = add_var ((a, ~1), cl)
   362   | add_type_constraint false (cl, TVar (ix, _)) = add_var (ix, cl)
   363   | add_type_constraint _ _ = I
   364 
   365 fun repair_variable_name f s =
   366   let
   367     fun subscript_name s n = s ^ nat_subscript n
   368     val s = String.map f s
   369   in
   370     case space_explode "_" s of
   371       [_] => (case take_suffix Char.isDigit (String.explode s) of
   372                 (cs1 as _ :: _, cs2 as _ :: _) =>
   373                 subscript_name (String.implode cs1)
   374                                (the (Int.fromString (String.implode cs2)))
   375               | (_, _) => s)
   376     | [s1, s2] => (case Int.fromString s2 of
   377                      SOME n => subscript_name s1 n
   378                    | NONE => s)
   379     | _ => s
   380   end
   381 
   382 (* The number of type arguments of a constant, zero if it's monomorphic. For
   383    (instances of) Skolem pseudoconstants, this information is encoded in the
   384    constant name. *)
   385 fun num_type_args thy s =
   386   if String.isPrefix skolem_const_prefix s then
   387     s |> Long_Name.explode |> List.last |> Int.fromString |> the
   388   else if String.isPrefix lam_lifted_prefix s then
   389     if String.isPrefix lam_lifted_poly_prefix s then 2 else 0
   390   else
   391     (s, Sign.the_const_type thy s) |> Sign.const_typargs thy |> length
   392 
   393 fun slack_fastype_of t = fastype_of t handle TERM _ => HOLogic.typeT
   394 
   395 (* First-order translation. No types are known for variables. "HOLogic.typeT"
   396    should allow them to be inferred. *)
   397 fun term_from_atp ctxt textual sym_tab =
   398   let
   399     val thy = Proof_Context.theory_of ctxt
   400     (* For Metis, we use 1 rather than 0 because variable references in clauses
   401        may otherwise conflict with variable constraints in the goal. At least,
   402        type inference often fails otherwise. See also "axiom_inference" in
   403        "Metis_Reconstruct". *)
   404     val var_index = if textual then 0 else 1
   405     fun do_term extra_ts opt_T u =
   406       case u of
   407         ATerm ((s, _), us) =>
   408         if String.isPrefix native_type_prefix s then
   409           @{const True} (* ignore TPTP type information *)
   410         else if s = tptp_equal then
   411           let val ts = map (do_term [] NONE) us in
   412             if textual andalso length ts = 2 andalso
   413               hd ts aconv List.last ts then
   414               (* Vampire is keen on producing these. *)
   415               @{const True}
   416             else
   417               list_comb (Const (@{const_name HOL.eq}, HOLogic.typeT), ts)
   418           end
   419         else case unprefix_and_unascii const_prefix s of
   420           SOME s' =>
   421           let
   422             val ((s', s''), mangled_us) =
   423               s' |> unmangled_const |>> `invert_const
   424           in
   425             if s' = type_tag_name then
   426               case mangled_us @ us of
   427                 [typ_u, term_u] =>
   428                 do_term extra_ts (SOME (typ_from_atp ctxt typ_u)) term_u
   429               | _ => raise HO_TERM us
   430             else if s' = predicator_name then
   431               do_term [] (SOME @{typ bool}) (hd us)
   432             else if s' = app_op_name then
   433               let val extra_t = do_term [] NONE (List.last us) in
   434                 do_term (extra_t :: extra_ts)
   435                         (case opt_T of
   436                            SOME T => SOME (slack_fastype_of extra_t --> T)
   437                          | NONE => NONE)
   438                         (nth us (length us - 2))
   439               end
   440             else if s' = type_guard_name then
   441               @{const True} (* ignore type predicates *)
   442             else
   443               let
   444                 val new_skolem = String.isPrefix new_skolem_const_prefix s''
   445                 val num_ty_args =
   446                   length us - the_default 0 (Symtab.lookup sym_tab s)
   447                 val (type_us, term_us) =
   448                   chop num_ty_args us |>> append mangled_us
   449                 val term_ts = map (do_term [] NONE) term_us
   450                 val T =
   451                   (if not (null type_us) andalso
   452                       num_type_args thy s' = length type_us then
   453                      let val Ts = type_us |> map (typ_from_atp ctxt) in
   454                        if new_skolem then
   455                          SOME (Type_Infer.paramify_vars (tl Ts ---> hd Ts))
   456                        else if textual then
   457                          try (Sign.const_instance thy) (s', Ts)
   458                        else
   459                          NONE
   460                      end
   461                    else
   462                      NONE)
   463                   |> (fn SOME T => T
   464                        | NONE => map slack_fastype_of term_ts --->
   465                                  (case opt_T of
   466                                     SOME T => T
   467                                   | NONE => HOLogic.typeT))
   468                 val t =
   469                   if new_skolem then
   470                     Var ((new_skolem_var_name_from_const s'', var_index), T)
   471                   else
   472                     Const (unproxify_const s', T)
   473               in list_comb (t, term_ts @ extra_ts) end
   474           end
   475         | NONE => (* a free or schematic variable *)
   476           let
   477             val term_ts = map (do_term [] NONE) us
   478             val ts = term_ts @ extra_ts
   479             val T =
   480               case opt_T of
   481                 SOME T => map slack_fastype_of term_ts ---> T
   482               | NONE => map slack_fastype_of ts ---> HOLogic.typeT
   483             val t =
   484               case unprefix_and_unascii fixed_var_prefix s of
   485                 SOME s => Free (s, T)
   486               | NONE =>
   487                 case unprefix_and_unascii schematic_var_prefix s of
   488                   SOME s => Var ((s, var_index), T)
   489                 | NONE =>
   490                   Var ((s |> textual ? repair_variable_name Char.toLower,
   491                         var_index), T)
   492           in list_comb (t, ts) end
   493   in do_term [] end
   494 
   495 fun term_from_atom ctxt textual sym_tab pos (u as ATerm ((s, _), _)) =
   496   if String.isPrefix class_prefix s then
   497     add_type_constraint pos (type_constraint_from_term ctxt u)
   498     #> pair @{const True}
   499   else
   500     pair (term_from_atp ctxt textual sym_tab (SOME @{typ bool}) u)
   501 
   502 val combinator_table =
   503   [(@{const_name Meson.COMBI}, @{thm Meson.COMBI_def [abs_def]}),
   504    (@{const_name Meson.COMBK}, @{thm Meson.COMBK_def [abs_def]}),
   505    (@{const_name Meson.COMBB}, @{thm Meson.COMBB_def [abs_def]}),
   506    (@{const_name Meson.COMBC}, @{thm Meson.COMBC_def [abs_def]}),
   507    (@{const_name Meson.COMBS}, @{thm Meson.COMBS_def [abs_def]})]
   508 
   509 fun uncombine_term thy =
   510   let
   511     fun aux (t1 $ t2) = betapply (pairself aux (t1, t2))
   512       | aux (Abs (s, T, t')) = Abs (s, T, aux t')
   513       | aux (t as Const (x as (s, _))) =
   514         (case AList.lookup (op =) combinator_table s of
   515            SOME thm => thm |> prop_of |> specialize_type thy x
   516                            |> Logic.dest_equals |> snd
   517          | NONE => t)
   518       | aux t = t
   519   in aux end
   520 
   521 (* Update schematic type variables with detected sort constraints. It's not
   522    totally clear whether this code is necessary. *)
   523 fun repair_tvar_sorts (t, tvar_tab) =
   524   let
   525     fun do_type (Type (a, Ts)) = Type (a, map do_type Ts)
   526       | do_type (TVar (xi, s)) =
   527         TVar (xi, the_default s (Vartab.lookup tvar_tab xi))
   528       | do_type (TFree z) = TFree z
   529     fun do_term (Const (a, T)) = Const (a, do_type T)
   530       | do_term (Free (a, T)) = Free (a, do_type T)
   531       | do_term (Var (xi, T)) = Var (xi, do_type T)
   532       | do_term (t as Bound _) = t
   533       | do_term (Abs (a, T, t)) = Abs (a, do_type T, do_term t)
   534       | do_term (t1 $ t2) = do_term t1 $ do_term t2
   535   in t |> not (Vartab.is_empty tvar_tab) ? do_term end
   536 
   537 fun quantify_over_var quant_of var_s t =
   538   let
   539     val vars = [] |> Term.add_vars t |> filter (fn ((s, _), _) => s = var_s)
   540                   |> map Var
   541   in fold_rev quant_of vars t end
   542 
   543 (* Interpret an ATP formula as a HOL term, extracting sort constraints as they
   544    appear in the formula. *)
   545 fun prop_from_atp ctxt textual sym_tab phi =
   546   let
   547     fun do_formula pos phi =
   548       case phi of
   549         AQuant (_, [], phi) => do_formula pos phi
   550       | AQuant (q, (s, _) :: xs, phi') =>
   551         do_formula pos (AQuant (q, xs, phi'))
   552         (* FIXME: TFF *)
   553         #>> quantify_over_var (case q of
   554                                  AForall => forall_of
   555                                | AExists => exists_of)
   556                               (s |> textual ? repair_variable_name Char.toLower)
   557       | AConn (ANot, [phi']) => do_formula (not pos) phi' #>> s_not
   558       | AConn (c, [phi1, phi2]) =>
   559         do_formula (pos |> c = AImplies ? not) phi1
   560         ##>> do_formula pos phi2
   561         #>> (case c of
   562                AAnd => s_conj
   563              | AOr => s_disj
   564              | AImplies => s_imp
   565              | AIff => s_iff
   566              | ANot => raise Fail "impossible connective")
   567       | AAtom tm => term_from_atom ctxt textual sym_tab pos tm
   568       | _ => raise FORMULA [phi]
   569   in repair_tvar_sorts (do_formula true phi Vartab.empty) end
   570 
   571 fun infer_formula_types ctxt =
   572   Type.constraint HOLogic.boolT
   573   #> Syntax.check_term
   574          (Proof_Context.set_mode Proof_Context.mode_schematic ctxt)
   575 
   576 fun uncombined_etc_prop_from_atp ctxt textual sym_tab =
   577   let val thy = Proof_Context.theory_of ctxt in
   578     prop_from_atp ctxt textual sym_tab
   579     #> textual ? uncombine_term thy #> infer_formula_types ctxt
   580   end
   581 
   582 (**** Translation of TSTP files to Isar proofs ****)
   583 
   584 fun unvarify_term (Var ((s, 0), T)) = Free (s, T)
   585   | unvarify_term t = raise TERM ("unvarify_term: non-Var", [t])
   586 
   587 fun decode_line sym_tab (Definition_Step (name, phi1, phi2)) ctxt =
   588     let
   589       val thy = Proof_Context.theory_of ctxt
   590       val t1 = prop_from_atp ctxt true sym_tab phi1
   591       val vars = snd (strip_comb t1)
   592       val frees = map unvarify_term vars
   593       val unvarify_args = subst_atomic (vars ~~ frees)
   594       val t2 = prop_from_atp ctxt true sym_tab phi2
   595       val (t1, t2) =
   596         HOLogic.eq_const HOLogic.typeT $ t1 $ t2
   597         |> unvarify_args |> uncombine_term thy |> infer_formula_types ctxt
   598         |> HOLogic.dest_eq
   599     in
   600       (Definition_Step (name, t1, t2),
   601        fold Variable.declare_term (maps Misc_Legacy.term_frees [t1, t2]) ctxt)
   602     end
   603   | decode_line sym_tab (Inference_Step (name, u, rule, deps)) ctxt =
   604     let val t = u |> uncombined_etc_prop_from_atp ctxt true sym_tab in
   605       (Inference_Step (name, t, rule, deps),
   606        fold Variable.declare_term (Misc_Legacy.term_frees t) ctxt)
   607     end
   608 fun decode_lines ctxt sym_tab lines =
   609   fst (fold_map (decode_line sym_tab) lines ctxt)
   610 
   611 fun is_same_inference _ (Definition_Step _) = false
   612   | is_same_inference t (Inference_Step (_, t', _, _)) = t aconv t'
   613 
   614 (* No "real" literals means only type information (tfree_tcs, clsrel, or
   615    clsarity). *)
   616 fun is_only_type_information t = t aconv @{term True}
   617 
   618 fun replace_one_dependency (old, new) dep =
   619   if is_same_atp_step dep old then new else [dep]
   620 fun replace_dependencies_in_line _ (line as Definition_Step _) = line
   621   | replace_dependencies_in_line p (Inference_Step (name, t, rule, deps)) =
   622     Inference_Step (name, t, rule,
   623                     fold (union (op =) o replace_one_dependency p) deps [])
   624 
   625 (* Discard facts; consolidate adjacent lines that prove the same formula, since
   626    they differ only in type information.*)
   627 fun add_line _ (line as Definition_Step _) lines = line :: lines
   628   | add_line fact_names (Inference_Step (name as (_, ss), t, rule, [])) lines =
   629     (* No dependencies: fact, conjecture, or (for Vampire) internal facts or
   630        definitions. *)
   631     if is_fact fact_names ss then
   632       (* Facts are not proof lines. *)
   633       if is_only_type_information t then
   634         map (replace_dependencies_in_line (name, [])) lines
   635       (* Is there a repetition? If so, replace later line by earlier one. *)
   636       else case take_prefix (not o is_same_inference t) lines of
   637         (_, []) => lines (* no repetition of proof line *)
   638       | (pre, Inference_Step (name', _, _, _) :: post) =>
   639         pre @ map (replace_dependencies_in_line (name', [name])) post
   640       | _ => raise Fail "unexpected inference"
   641     else if is_conjecture ss then
   642       Inference_Step (name, t, rule, []) :: lines
   643     else
   644       map (replace_dependencies_in_line (name, [])) lines
   645   | add_line _ (Inference_Step (name, t, rule, deps)) lines =
   646     (* Type information will be deleted later; skip repetition test. *)
   647     if is_only_type_information t then
   648       Inference_Step (name, t, rule, deps) :: lines
   649     (* Is there a repetition? If so, replace later line by earlier one. *)
   650     else case take_prefix (not o is_same_inference t) lines of
   651       (* FIXME: Doesn't this code risk conflating proofs involving different
   652          types? *)
   653        (_, []) => Inference_Step (name, t, rule, deps) :: lines
   654      | (pre, Inference_Step (name', t', rule, _) :: post) =>
   655        Inference_Step (name, t', rule, deps) ::
   656        pre @ map (replace_dependencies_in_line (name', [name])) post
   657      | _ => raise Fail "unexpected inference"
   658 
   659 val waldmeister_conjecture_num = "1.0.0.0"
   660 
   661 val repair_waldmeister_endgame =
   662   let
   663     fun do_tail (Inference_Step (name, t, rule, deps)) =
   664         Inference_Step (name, s_not t, rule, deps)
   665       | do_tail line = line
   666     fun do_body [] = []
   667       | do_body ((line as Inference_Step ((num, _), _, _, _)) :: lines) =
   668         if num = waldmeister_conjecture_num then map do_tail (line :: lines)
   669         else line :: do_body lines
   670       | do_body (line :: lines) = line :: do_body lines
   671   in do_body end
   672 
   673 (* Recursively delete empty lines (type information) from the proof. *)
   674 fun add_nontrivial_line (line as Inference_Step (name, t, _, [])) lines =
   675     if is_only_type_information t then delete_dependency name lines
   676     else line :: lines
   677   | add_nontrivial_line line lines = line :: lines
   678 and delete_dependency name lines =
   679   fold_rev add_nontrivial_line
   680            (map (replace_dependencies_in_line (name, [])) lines) []
   681 
   682 (* ATPs sometimes reuse free variable names in the strangest ways. Removing
   683    offending lines often does the trick. *)
   684 fun is_bad_free frees (Free x) = not (member (op =) frees x)
   685   | is_bad_free _ _ = false
   686 
   687 fun add_desired_line _ _ _ (line as Definition_Step (name, _, _)) (j, lines) =
   688     (j, line :: map (replace_dependencies_in_line (name, [])) lines)
   689   | add_desired_line isar_shrink_factor fact_names frees
   690         (Inference_Step (name as (_, ss), t, rule, deps)) (j, lines) =
   691     (j + 1,
   692      if is_fact fact_names ss orelse
   693         is_conjecture ss orelse
   694         (* the last line must be kept *)
   695         j = 0 orelse
   696         (not (is_only_type_information t) andalso
   697          null (Term.add_tvars t []) andalso
   698          not (exists_subterm (is_bad_free frees) t) andalso
   699          length deps >= 2 andalso j mod isar_shrink_factor = 0 andalso
   700          (* kill next to last line, which usually results in a trivial step *)
   701          j <> 1) then
   702        Inference_Step (name, t, rule, deps) :: lines  (* keep line *)
   703      else
   704        map (replace_dependencies_in_line (name, deps)) lines)  (* drop line *)
   705 
   706 (** Isar proof construction and manipulation **)
   707 
   708 type label = string * int
   709 type facts = label list * string list
   710 
   711 datatype isar_qualifier = Show | Then | Moreover | Ultimately
   712 
   713 datatype isar_step =
   714   Fix of (string * typ) list |
   715   Let of term * term |
   716   Assume of label * term |
   717   Prove of isar_qualifier list * label * term * byline
   718 and byline =
   719   By_Metis of facts |
   720   Case_Split of isar_step list list * facts
   721 
   722 fun add_fact_from_dependency fact_names (name as (_, ss)) =
   723   if is_fact fact_names ss then
   724     apsnd (union (op =) (map fst (resolve_fact fact_names ss)))
   725   else
   726     apfst (insert (op =) (raw_label_for_name name))
   727 
   728 fun repair_name "$true" = "c_True"
   729   | repair_name "$false" = "c_False"
   730   | repair_name "$$e" = tptp_equal (* seen in Vampire proofs *)
   731   | repair_name s =
   732     if is_tptp_equal s orelse
   733        (* seen in Vampire proofs *)
   734        (String.isPrefix "sQ" s andalso String.isSuffix "_eqProxy" s) then
   735       tptp_equal
   736     else
   737       s
   738 
   739 (* FIXME: Still needed? Try with SPASS proofs perhaps. *)
   740 val kill_duplicate_assumptions_in_proof =
   741   let
   742     fun relabel_facts subst =
   743       apfst (map (fn l => AList.lookup (op =) subst l |> the_default l))
   744     fun do_step (step as Assume (l, t)) (proof, subst, assums) =
   745         (case AList.lookup (op aconv) assums t of
   746            SOME l' => (proof, (l, l') :: subst, assums)
   747          | NONE => (step :: proof, subst, (t, l) :: assums))
   748       | do_step (Prove (qs, l, t, by)) (proof, subst, assums) =
   749         (Prove (qs, l, t,
   750                 case by of
   751                   By_Metis facts => By_Metis (relabel_facts subst facts)
   752                 | Case_Split (proofs, facts) =>
   753                   Case_Split (map do_proof proofs,
   754                               relabel_facts subst facts)) ::
   755          proof, subst, assums)
   756       | do_step step (proof, subst, assums) = (step :: proof, subst, assums)
   757     and do_proof proof = fold do_step proof ([], [], []) |> #1 |> rev
   758   in do_proof end
   759 
   760 fun used_labels_of_step (Prove (_, _, _, by)) =
   761     (case by of
   762        By_Metis (ls, _) => ls
   763      | Case_Split (proofs, (ls, _)) =>
   764        fold (union (op =) o used_labels_of) proofs ls)
   765   | used_labels_of_step _ = []
   766 and used_labels_of proof = fold (union (op =) o used_labels_of_step) proof []
   767 
   768 fun kill_useless_labels_in_proof proof =
   769   let
   770     val used_ls = used_labels_of proof
   771     fun do_label l = if member (op =) used_ls l then l else no_label
   772     fun do_step (Assume (l, t)) = Assume (do_label l, t)
   773       | do_step (Prove (qs, l, t, by)) =
   774         Prove (qs, do_label l, t,
   775                case by of
   776                  Case_Split (proofs, facts) =>
   777                  Case_Split (map (map do_step) proofs, facts)
   778                | _ => by)
   779       | do_step step = step
   780   in map do_step proof end
   781 
   782 fun prefix_for_depth n = replicate_string (n + 1)
   783 
   784 val relabel_proof =
   785   let
   786     fun aux _ _ _ [] = []
   787       | aux subst depth (next_assum, next_fact) (Assume (l, t) :: proof) =
   788         if l = no_label then
   789           Assume (l, t) :: aux subst depth (next_assum, next_fact) proof
   790         else
   791           let val l' = (prefix_for_depth depth assum_prefix, next_assum) in
   792             Assume (l', t) ::
   793             aux ((l, l') :: subst) depth (next_assum + 1, next_fact) proof
   794           end
   795       | aux subst depth (next_assum, next_fact)
   796             (Prove (qs, l, t, by) :: proof) =
   797         let
   798           val (l', subst, next_fact) =
   799             if l = no_label then
   800               (l, subst, next_fact)
   801             else
   802               let
   803                 val l' = (prefix_for_depth depth have_prefix, next_fact)
   804               in (l', (l, l') :: subst, next_fact + 1) end
   805           val relabel_facts =
   806             apfst (maps (the_list o AList.lookup (op =) subst))
   807           val by =
   808             case by of
   809               By_Metis facts => By_Metis (relabel_facts facts)
   810             | Case_Split (proofs, facts) =>
   811               Case_Split (map (aux subst (depth + 1) (1, 1)) proofs,
   812                           relabel_facts facts)
   813         in
   814           Prove (qs, l', t, by) :: aux subst depth (next_assum, next_fact) proof
   815         end
   816       | aux subst depth nextp (step :: proof) =
   817         step :: aux subst depth nextp proof
   818   in aux [] 0 (1, 1) end
   819 
   820 fun string_for_proof ctxt0 type_enc lam_trans i n =
   821   let
   822     val ctxt = ctxt0
   823 (* FIXME: Implement proper handling of type constraints:
   824       |> Config.put show_free_types false
   825       |> Config.put show_types false
   826       |> Config.put show_sorts false
   827 *)
   828     fun fix_print_mode f x =
   829       Print_Mode.setmp (filter (curry (op =) Symbol.xsymbolsN)
   830                                (print_mode_value ())) f x
   831     fun do_indent ind = replicate_string (ind * indent_size) " "
   832     fun do_free (s, T) =
   833       maybe_quote s ^ " :: " ^
   834       maybe_quote (fix_print_mode (Syntax.string_of_typ ctxt) T)
   835     fun do_label l = if l = no_label then "" else string_for_label l ^ ": "
   836     fun do_have qs =
   837       (if member (op =) qs Moreover then "moreover " else "") ^
   838       (if member (op =) qs Ultimately then "ultimately " else "") ^
   839       (if member (op =) qs Then then
   840          if member (op =) qs Show then "thus" else "hence"
   841        else
   842          if member (op =) qs Show then "show" else "have")
   843     val do_term = maybe_quote o fix_print_mode (Syntax.string_of_term ctxt)
   844     val reconstr = Metis (type_enc, lam_trans)
   845     fun do_facts (ls, ss) =
   846       reconstructor_command reconstr 1 1
   847           (ls |> sort_distinct (prod_ord string_ord int_ord),
   848            ss |> sort_distinct string_ord)
   849     and do_step ind (Fix xs) =
   850         do_indent ind ^ "fix " ^ space_implode " and " (map do_free xs) ^ "\n"
   851       | do_step ind (Let (t1, t2)) =
   852         do_indent ind ^ "let " ^ do_term t1 ^ " = " ^ do_term t2 ^ "\n"
   853       | do_step ind (Assume (l, t)) =
   854         do_indent ind ^ "assume " ^ do_label l ^ do_term t ^ "\n"
   855       | do_step ind (Prove (qs, l, t, By_Metis facts)) =
   856         do_indent ind ^ do_have qs ^ " " ^
   857         do_label l ^ do_term t ^ " " ^ do_facts facts ^ "\n"
   858       | do_step ind (Prove (qs, l, t, Case_Split (proofs, facts))) =
   859         implode (map (prefix (do_indent ind ^ "moreover\n") o do_block ind)
   860                      proofs) ^
   861         do_indent ind ^ do_have qs ^ " " ^ do_label l ^ do_term t ^ " " ^
   862         do_facts facts ^ "\n"
   863     and do_steps prefix suffix ind steps =
   864       let val s = implode (map (do_step ind) steps) in
   865         replicate_string (ind * indent_size - size prefix) " " ^ prefix ^
   866         String.extract (s, ind * indent_size,
   867                         SOME (size s - ind * indent_size - 1)) ^
   868         suffix ^ "\n"
   869       end
   870     and do_block ind proof = do_steps "{ " " }" (ind + 1) proof
   871     (* One-step proofs are pointless; better use the Metis one-liner
   872        directly. *)
   873     and do_proof [Prove (_, _, _, By_Metis _)] = ""
   874       | do_proof proof =
   875         (if i <> 1 then "prefer " ^ string_of_int i ^ "\n" else "") ^
   876         do_indent 0 ^ "proof -\n" ^ do_steps "" "" 1 proof ^ do_indent 0 ^
   877         (if n <> 1 then "next" else "qed")
   878   in do_proof end
   879 
   880 fun isar_proof_text ctxt isar_proof_requested
   881         (debug, isar_shrink_factor, pool, fact_names, sym_tab, atp_proof, goal)
   882         (one_line_params as (_, _, _, _, subgoal, subgoal_count)) =
   883   let
   884     val isar_shrink_factor =
   885       (if isar_proof_requested then 1 else 2) * isar_shrink_factor
   886     val (params, hyp_ts, concl_t) = strip_subgoal ctxt goal subgoal
   887     val frees = fold Term.add_frees (concl_t :: hyp_ts) []
   888     val one_line_proof = one_line_proof_text one_line_params
   889     val type_enc =
   890       if is_typed_helper_used_in_atp_proof atp_proof then full_typesN
   891       else partial_typesN
   892     val lam_trans = lam_trans_from_atp_proof atp_proof metis_default_lam_trans
   893 
   894     fun isar_proof_of () =
   895       let
   896         val atp_proof =
   897           atp_proof
   898           |> clean_up_atp_proof_dependencies
   899           |> nasty_atp_proof pool
   900           |> map_term_names_in_atp_proof repair_name
   901           |> decode_lines ctxt sym_tab
   902           |> rpair [] |-> fold_rev (add_line fact_names)
   903           |> repair_waldmeister_endgame
   904           |> rpair [] |-> fold_rev add_nontrivial_line
   905           |> rpair (0, [])
   906           |-> fold_rev (add_desired_line isar_shrink_factor fact_names frees)
   907           |> snd
   908         val conj_name = conjecture_prefix ^ string_of_int (length hyp_ts)
   909         val conjs =
   910           atp_proof
   911           |> map_filter (fn Inference_Step (name as (_, ss), _, _, []) =>
   912                             if member (op =) ss conj_name then SOME name else NONE
   913                           | _ => NONE)
   914         fun dep_of_step (Definition_Step _) = NONE
   915           | dep_of_step (Inference_Step (name, _, _, from)) = SOME (from, name)
   916         val ref_graph = atp_proof |> map_filter dep_of_step |> make_ref_graph
   917         val axioms = axioms_of_ref_graph ref_graph conjs
   918         val tainted = tainted_atoms_of_ref_graph ref_graph conjs
   919         val props =
   920           Symtab.empty
   921           |> fold (fn Definition_Step _ => I (* FIXME *)
   922                     | Inference_Step ((s, _), t, _, _) =>
   923                       Symtab.update_new (s,
   924                           t |> fold forall_of (map Var (Term.add_vars t []))
   925                             |> member (op = o apsnd fst) tainted s ? s_not))
   926                   atp_proof
   927         fun prop_of_clause c =
   928           fold (curry s_disj) (map_filter (Symtab.lookup props o fst) c)
   929                @{term False}
   930         fun label_of_clause [name] = raw_label_for_name name
   931           | label_of_clause c = (space_implode "___" (map fst c), 0)
   932         fun maybe_show outer c =
   933           (outer andalso length c = 1 andalso subset (op =) (c, conjs))
   934           ? cons Show
   935         fun do_have outer qs (gamma, c) =
   936           Prove (maybe_show outer c qs, label_of_clause c, prop_of_clause c,
   937                  By_Metis (fold (add_fact_from_dependency fact_names
   938                                  o the_single) gamma ([], [])))
   939         fun do_inf outer (Have z) = do_have outer [] z
   940           | do_inf outer (Hence z) = do_have outer [Then] z
   941           | do_inf outer (Cases cases) =
   942             let val c = succedent_of_cases cases in
   943               Prove (maybe_show outer c [Ultimately], label_of_clause c,
   944                      prop_of_clause c,
   945                      Case_Split (map (do_case false) cases, ([], [])))
   946             end
   947         and do_case outer (c, infs) =
   948           Assume (label_of_clause c, prop_of_clause c) ::
   949           map (do_inf outer) infs
   950         val isar_proof =
   951           (if null params then [] else [Fix params]) @
   952           (ref_graph
   953            |> redirect_graph axioms tainted
   954            |> chain_direct_proof
   955            |> map (do_inf true)
   956            |> kill_duplicate_assumptions_in_proof
   957            |> kill_useless_labels_in_proof
   958            |> relabel_proof)
   959           |> string_for_proof ctxt type_enc lam_trans subgoal subgoal_count
   960       in
   961         case isar_proof of
   962           "" =>
   963           if isar_proof_requested then
   964             "\nNo structured proof available (proof too short)."
   965           else
   966             ""
   967         | _ =>
   968           "\n\n" ^ (if isar_proof_requested then "Structured proof"
   969                     else "Perhaps this will work") ^
   970           ":\n" ^ Markup.markup Isabelle_Markup.sendback isar_proof
   971       end
   972     val isar_proof =
   973       if debug then
   974         isar_proof_of ()
   975       else case try isar_proof_of () of
   976         SOME s => s
   977       | NONE => if isar_proof_requested then
   978                   "\nWarning: The Isar proof construction failed."
   979                 else
   980                   ""
   981   in one_line_proof ^ isar_proof end
   982 
   983 fun proof_text ctxt isar_proof isar_params
   984                (one_line_params as (preplay, _, _, _, _, _)) =
   985   (if case preplay of Failed_to_Play _ => true | _ => isar_proof then
   986      isar_proof_text ctxt isar_proof isar_params
   987    else
   988      one_line_proof_text) one_line_params
   989 
   990 end;