doc-src/TutorialI/CTL/PDL.thy
author wenzelm
Wed, 19 Oct 2005 21:52:07 +0200
changeset 17914 99ead7a7eb42
parent 12815 1f073030b97a
child 18724 cb6e0064c88c
permissions -rw-r--r--
fix headers;
     1 (*<*)theory PDL imports Base begin(*>*)
     2 
     3 subsection{*Propositional Dynamic Logic --- PDL*}
     4 
     5 text{*\index{PDL|(}
     6 The formulae of PDL are built up from atomic propositions via
     7 negation and conjunction and the two temporal
     8 connectives @{text AX} and @{text EF}\@. Since formulae are essentially
     9 syntax trees, they are naturally modelled as a datatype:%
    10 \footnote{The customary definition of PDL
    11 \cite{HarelKT-DL} looks quite different from ours, but the two are easily
    12 shown to be equivalent.}
    13 *}
    14 
    15 datatype formula = Atom atom
    16                   | Neg formula
    17                   | And formula formula
    18                   | AX formula
    19                   | EF formula
    20 
    21 text{*\noindent
    22 This resembles the boolean expression case study in
    23 \S\ref{sec:boolex}.
    24 A validity relation between
    25 states and formulae specifies the semantics:
    26 *}
    27 
    28 consts valid :: "state \<Rightarrow> formula \<Rightarrow> bool"   ("(_ \<Turnstile> _)" [80,80] 80)
    29 
    30 text{*\noindent
    31 The syntax annotation allows us to write @{term"s \<Turnstile> f"} instead of
    32 \hbox{@{text"valid s f"}}.
    33 The definition of @{text"\<Turnstile>"} is by recursion over the syntax:
    34 *}
    35 
    36 primrec
    37 "s \<Turnstile> Atom a  = (a \<in> L s)"
    38 "s \<Turnstile> Neg f   = (\<not>(s \<Turnstile> f))"
    39 "s \<Turnstile> And f g = (s \<Turnstile> f \<and> s \<Turnstile> g)"
    40 "s \<Turnstile> AX f    = (\<forall>t. (s,t) \<in> M \<longrightarrow> t \<Turnstile> f)"
    41 "s \<Turnstile> EF f    = (\<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<Turnstile> f)"
    42 
    43 text{*\noindent
    44 The first three equations should be self-explanatory. The temporal formula
    45 @{term"AX f"} means that @{term f} is true in \emph{A}ll ne\emph{X}t states whereas
    46 @{term"EF f"} means that there \emph{E}xists some \emph{F}uture state in which @{term f} is
    47 true. The future is expressed via @{text"\<^sup>*"}, the reflexive transitive
    48 closure. Because of reflexivity, the future includes the present.
    49 
    50 Now we come to the model checker itself. It maps a formula into the set of
    51 states where the formula is true.  It too is defined by recursion over the syntax:
    52 *}
    53 
    54 consts mc :: "formula \<Rightarrow> state set"
    55 primrec
    56 "mc(Atom a)  = {s. a \<in> L s}"
    57 "mc(Neg f)   = -mc f"
    58 "mc(And f g) = mc f \<inter> mc g"
    59 "mc(AX f)    = {s. \<forall>t. (s,t) \<in> M  \<longrightarrow> t \<in> mc f}"
    60 "mc(EF f)    = lfp(\<lambda>T. mc f \<union> (M\<inverse> `` T))"
    61 
    62 text{*\noindent
    63 Only the equation for @{term EF} deserves some comments. Remember that the
    64 postfix @{text"\<inverse>"} and the infix @{text"``"} are predefined and denote the
    65 converse of a relation and the image of a set under a relation.  Thus
    66 @{term "M\<inverse> `` T"} is the set of all predecessors of @{term T} and the least
    67 fixed point (@{term lfp}) of @{term"\<lambda>T. mc f \<union> M\<inverse> `` T"} is the least set
    68 @{term T} containing @{term"mc f"} and all predecessors of @{term T}. If you
    69 find it hard to see that @{term"mc(EF f)"} contains exactly those states from
    70 which there is a path to a state where @{term f} is true, do not worry --- this
    71 will be proved in a moment.
    72 
    73 First we prove monotonicity of the function inside @{term lfp}
    74 in order to make sure it really has a least fixed point.
    75 *}
    76 
    77 lemma mono_ef: "mono(\<lambda>T. A \<union> (M\<inverse> `` T))"
    78 apply(rule monoI)
    79 apply blast
    80 done
    81 
    82 text{*\noindent
    83 Now we can relate model checking and semantics. For the @{text EF} case we need
    84 a separate lemma:
    85 *}
    86 
    87 lemma EF_lemma:
    88   "lfp(\<lambda>T. A \<union> (M\<inverse> `` T)) = {s. \<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<in> A}"
    89 
    90 txt{*\noindent
    91 The equality is proved in the canonical fashion by proving that each set
    92 includes the other; the inclusion is shown pointwise:
    93 *}
    94 
    95 apply(rule equalityI)
    96  apply(rule subsetI)
    97  apply(simp)(*<*)apply(rename_tac s)(*>*)
    98 
    99 txt{*\noindent
   100 Simplification leaves us with the following first subgoal
   101 @{subgoals[display,indent=0,goals_limit=1]}
   102 which is proved by @{term lfp}-induction:
   103 *}
   104 
   105  apply(erule lfp_induct)
   106   apply(rule mono_ef)
   107  apply(simp)
   108 (*pr(latex xsymbols symbols);*)
   109 txt{*\noindent
   110 Having disposed of the monotonicity subgoal,
   111 simplification leaves us with the following goal:
   112 \begin{isabelle}
   113 \ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x{\isachardot}\ x\ {\isasymin}\ A\ {\isasymor}\isanewline
   114 \ \ \ \ \ \ \ \ \ x\ {\isasymin}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ {\isacharparenleft}lfp\ {\isacharparenleft}\dots{\isacharparenright}\ {\isasyminter}\ {\isacharbraceleft}x{\isachardot}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A{\isacharbraceright}{\isacharparenright}\isanewline
   115 \ \ \ \ \ \ \ \ {\isasymLongrightarrow}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A
   116 \end{isabelle}
   117 It is proved by @{text blast}, using the transitivity of 
   118 \isa{M\isactrlsup {\isacharasterisk}}.
   119 *}
   120 
   121  apply(blast intro: rtrancl_trans)
   122 
   123 txt{*
   124 We now return to the second set inclusion subgoal, which is again proved
   125 pointwise:
   126 *}
   127 
   128 apply(rule subsetI)
   129 apply(simp, clarify)
   130 
   131 txt{*\noindent
   132 After simplification and clarification we are left with
   133 @{subgoals[display,indent=0,goals_limit=1]}
   134 This goal is proved by induction on @{term"(s,t)\<in>M\<^sup>*"}. But since the model
   135 checker works backwards (from @{term t} to @{term s}), we cannot use the
   136 induction theorem @{thm[source]rtrancl_induct}: it works in the
   137 forward direction. Fortunately the converse induction theorem
   138 @{thm[source]converse_rtrancl_induct} already exists:
   139 @{thm[display,margin=60]converse_rtrancl_induct[no_vars]}
   140 It says that if @{prop"(a,b):r\<^sup>*"} and we know @{prop"P b"} then we can infer
   141 @{prop"P a"} provided each step backwards from a predecessor @{term z} of
   142 @{term b} preserves @{term P}.
   143 *}
   144 
   145 apply(erule converse_rtrancl_induct)
   146 
   147 txt{*\noindent
   148 The base case
   149 @{subgoals[display,indent=0,goals_limit=1]}
   150 is solved by unrolling @{term lfp} once
   151 *}
   152 
   153  apply(subst lfp_unfold[OF mono_ef])
   154 
   155 txt{*
   156 @{subgoals[display,indent=0,goals_limit=1]}
   157 and disposing of the resulting trivial subgoal automatically:
   158 *}
   159 
   160  apply(blast)
   161 
   162 txt{*\noindent
   163 The proof of the induction step is identical to the one for the base case:
   164 *}
   165 
   166 apply(subst lfp_unfold[OF mono_ef])
   167 apply(blast)
   168 done
   169 
   170 text{*
   171 The main theorem is proved in the familiar manner: induction followed by
   172 @{text auto} augmented with the lemma as a simplification rule.
   173 *}
   174 
   175 theorem "mc f = {s. s \<Turnstile> f}"
   176 apply(induct_tac f)
   177 apply(auto simp add: EF_lemma)
   178 done
   179 
   180 text{*
   181 \begin{exercise}
   182 @{term AX} has a dual operator @{term EN} 
   183 (``there exists a next state such that'')%
   184 \footnote{We cannot use the customary @{text EX}: it is reserved
   185 as the \textsc{ascii}-equivalent of @{text"\<exists>"}.}
   186 with the intended semantics
   187 @{prop[display]"(s \<Turnstile> EN f) = (EX t. (s,t) : M & t \<Turnstile> f)"}
   188 Fortunately, @{term"EN f"} can already be expressed as a PDL formula. How?
   189 
   190 Show that the semantics for @{term EF} satisfies the following recursion equation:
   191 @{prop[display]"(s \<Turnstile> EF f) = (s \<Turnstile> f | s \<Turnstile> EN(EF f))"}
   192 \end{exercise}
   193 \index{PDL|)}
   194 *}
   195 (*<*)
   196 theorem main: "mc f = {s. s \<Turnstile> f}"
   197 apply(induct_tac f)
   198 apply(auto simp add: EF_lemma)
   199 done
   200 
   201 lemma aux: "s \<Turnstile> f = (s : mc f)"
   202 apply(simp add: main)
   203 done
   204 
   205 lemma "(s \<Turnstile> EF f) = (s \<Turnstile> f | s \<Turnstile> Neg(AX(Neg(EF f))))"
   206 apply(simp only: aux)
   207 apply(simp)
   208 apply(subst lfp_unfold[OF mono_ef], fast)
   209 done
   210 
   211 end
   212 (*>*)