src/HOL/List.thy
author huffman
Tue, 10 Feb 2009 17:53:51 -0800
changeset 29793 984191be0357
parent 29766 9acb915a62fa
child 29864 ae8f42c245b2
permissions -rw-r--r--
const_name antiquotations
     1 (*  Title:      HOL/List.thy
     2     Author:     Tobias Nipkow
     3 *)
     4 
     5 header {* The datatype of finite lists *}
     6 
     7 theory List
     8 imports Plain Relation_Power Presburger Recdef ATP_Linkup
     9 uses "Tools/string_syntax.ML"
    10 begin
    11 
    12 datatype 'a list =
    13     Nil    ("[]")
    14   | Cons 'a  "'a list"    (infixr "#" 65)
    15 
    16 subsection{*Basic list processing functions*}
    17 
    18 consts
    19   filter:: "('a => bool) => 'a list => 'a list"
    20   concat:: "'a list list => 'a list"
    21   foldl :: "('b => 'a => 'b) => 'b => 'a list => 'b"
    22   foldr :: "('a => 'b => 'b) => 'a list => 'b => 'b"
    23   hd:: "'a list => 'a"
    24   tl:: "'a list => 'a list"
    25   last:: "'a list => 'a"
    26   butlast :: "'a list => 'a list"
    27   set :: "'a list => 'a set"
    28   map :: "('a=>'b) => ('a list => 'b list)"
    29   listsum ::  "'a list => 'a::monoid_add"
    30   list_update :: "'a list => nat => 'a => 'a list"
    31   take:: "nat => 'a list => 'a list"
    32   drop:: "nat => 'a list => 'a list"
    33   takeWhile :: "('a => bool) => 'a list => 'a list"
    34   dropWhile :: "('a => bool) => 'a list => 'a list"
    35   rev :: "'a list => 'a list"
    36   zip :: "'a list => 'b list => ('a * 'b) list"
    37   upt :: "nat => nat => nat list" ("(1[_..</_'])")
    38   remdups :: "'a list => 'a list"
    39   remove1 :: "'a => 'a list => 'a list"
    40   removeAll :: "'a => 'a list => 'a list"
    41   "distinct":: "'a list => bool"
    42   replicate :: "nat => 'a => 'a list"
    43   splice :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"
    44 
    45 
    46 nonterminals lupdbinds lupdbind
    47 
    48 syntax
    49   -- {* list Enumeration *}
    50   "@list" :: "args => 'a list"    ("[(_)]")
    51 
    52   -- {* Special syntax for filter *}
    53   "@filter" :: "[pttrn, 'a list, bool] => 'a list"    ("(1[_<-_./ _])")
    54 
    55   -- {* list update *}
    56   "_lupdbind":: "['a, 'a] => lupdbind"    ("(2_ :=/ _)")
    57   "" :: "lupdbind => lupdbinds"    ("_")
    58   "_lupdbinds" :: "[lupdbind, lupdbinds] => lupdbinds"    ("_,/ _")
    59   "_LUpdate" :: "['a, lupdbinds] => 'a"    ("_/[(_)]" [900,0] 900)
    60 
    61 translations
    62   "[x, xs]" == "x#[xs]"
    63   "[x]" == "x#[]"
    64   "[x<-xs . P]"== "filter (%x. P) xs"
    65 
    66   "_LUpdate xs (_lupdbinds b bs)"== "_LUpdate (_LUpdate xs b) bs"
    67   "xs[i:=x]" == "list_update xs i x"
    68 
    69 
    70 syntax (xsymbols)
    71   "@filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<leftarrow>_ ./ _])")
    72 syntax (HTML output)
    73   "@filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<leftarrow>_ ./ _])")
    74 
    75 
    76 text {*
    77   Function @{text size} is overloaded for all datatypes. Users may
    78   refer to the list version as @{text length}. *}
    79 
    80 abbreviation
    81   length :: "'a list => nat" where
    82   "length == size"
    83 
    84 primrec
    85   "hd(x#xs) = x"
    86 
    87 primrec
    88   "tl([]) = []"
    89   "tl(x#xs) = xs"
    90 
    91 primrec
    92   "last(x#xs) = (if xs=[] then x else last xs)"
    93 
    94 primrec
    95   "butlast []= []"
    96   "butlast(x#xs) = (if xs=[] then [] else x#butlast xs)"
    97 
    98 primrec
    99   "set [] = {}"
   100   "set (x#xs) = insert x (set xs)"
   101 
   102 primrec
   103   "map f [] = []"
   104   "map f (x#xs) = f(x)#map f xs"
   105 
   106 primrec
   107   append :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixr "@" 65)
   108 where
   109   append_Nil:"[] @ ys = ys"
   110   | append_Cons: "(x#xs) @ ys = x # xs @ ys"
   111 
   112 primrec
   113   "rev([]) = []"
   114   "rev(x#xs) = rev(xs) @ [x]"
   115 
   116 primrec
   117   "filter P [] = []"
   118   "filter P (x#xs) = (if P x then x#filter P xs else filter P xs)"
   119 
   120 primrec
   121   foldl_Nil:"foldl f a [] = a"
   122   foldl_Cons: "foldl f a (x#xs) = foldl f (f a x) xs"
   123 
   124 primrec
   125   "foldr f [] a = a"
   126   "foldr f (x#xs) a = f x (foldr f xs a)"
   127 
   128 primrec
   129   "concat([]) = []"
   130   "concat(x#xs) = x @ concat(xs)"
   131 
   132 primrec
   133 "listsum [] = 0"
   134 "listsum (x # xs) = x + listsum xs"
   135 
   136 primrec
   137   drop_Nil:"drop n [] = []"
   138   drop_Cons: "drop n (x#xs) = (case n of 0 => x#xs | Suc(m) => drop m xs)"
   139   -- {*Warning: simpset does not contain this definition, but separate
   140        theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
   141 
   142 primrec
   143   take_Nil:"take n [] = []"
   144   take_Cons: "take n (x#xs) = (case n of 0 => [] | Suc(m) => x # take m xs)"
   145   -- {*Warning: simpset does not contain this definition, but separate
   146        theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
   147 
   148 primrec nth :: "'a list => nat => 'a" (infixl "!" 100) where
   149   nth_Cons: "(x#xs)!n = (case n of 0 => x | (Suc k) => xs!k)"
   150   -- {*Warning: simpset does not contain this definition, but separate
   151        theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
   152 
   153 primrec
   154   "[][i:=v] = []"
   155   "(x#xs)[i:=v] = (case i of 0 => v # xs | Suc j => x # xs[j:=v])"
   156 
   157 primrec
   158   "takeWhile P [] = []"
   159   "takeWhile P (x#xs) = (if P x then x#takeWhile P xs else [])"
   160 
   161 primrec
   162   "dropWhile P [] = []"
   163   "dropWhile P (x#xs) = (if P x then dropWhile P xs else x#xs)"
   164 
   165 primrec
   166   "zip xs [] = []"
   167   zip_Cons: "zip xs (y#ys) = (case xs of [] => [] | z#zs => (z,y)#zip zs ys)"
   168   -- {*Warning: simpset does not contain this definition, but separate
   169        theorems for @{text "xs = []"} and @{text "xs = z # zs"} *}
   170 
   171 primrec
   172   upt_0: "[i..<0] = []"
   173   upt_Suc: "[i..<(Suc j)] = (if i <= j then [i..<j] @ [j] else [])"
   174 
   175 primrec
   176   "distinct [] = True"
   177   "distinct (x#xs) = (x ~: set xs \<and> distinct xs)"
   178 
   179 primrec
   180   "remdups [] = []"
   181   "remdups (x#xs) = (if x : set xs then remdups xs else x # remdups xs)"
   182 
   183 primrec
   184   "remove1 x [] = []"
   185   "remove1 x (y#xs) = (if x=y then xs else y # remove1 x xs)"
   186 
   187 primrec
   188   "removeAll x [] = []"
   189   "removeAll x (y#xs) = (if x=y then removeAll x xs else y # removeAll x xs)"
   190 
   191 primrec
   192   replicate_0: "replicate 0 x = []"
   193   replicate_Suc: "replicate (Suc n) x = x # replicate n x"
   194 
   195 definition
   196   rotate1 :: "'a list \<Rightarrow> 'a list" where
   197   "rotate1 xs = (case xs of [] \<Rightarrow> [] | x#xs \<Rightarrow> xs @ [x])"
   198 
   199 definition
   200   rotate :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where
   201   "rotate n = rotate1 ^ n"
   202 
   203 definition
   204   list_all2 :: "('a => 'b => bool) => 'a list => 'b list => bool" where
   205   [code del]: "list_all2 P xs ys =
   206     (length xs = length ys \<and> (\<forall>(x, y) \<in> set (zip xs ys). P x y))"
   207 
   208 definition
   209   sublist :: "'a list => nat set => 'a list" where
   210   "sublist xs A = map fst (filter (\<lambda>p. snd p \<in> A) (zip xs [0..<size xs]))"
   211 
   212 primrec
   213   "splice [] ys = ys"
   214   "splice (x#xs) ys = (if ys=[] then x#xs else x # hd ys # splice xs (tl ys))"
   215     -- {*Warning: simpset does not contain the second eqn but a derived one. *}
   216 
   217 text{*
   218 \begin{figure}[htbp]
   219 \fbox{
   220 \begin{tabular}{l}
   221 @{lemma "[a,b]@[c,d] = [a,b,c,d]" by simp}\\
   222 @{lemma "length [a,b,c] = 3" by simp}\\
   223 @{lemma "set [a,b,c] = {a,b,c}" by simp}\\
   224 @{lemma "map f [a,b,c] = [f a, f b, f c]" by simp}\\
   225 @{lemma "rev [a,b,c] = [c,b,a]" by simp}\\
   226 @{lemma "hd [a,b,c,d] = a" by simp}\\
   227 @{lemma "tl [a,b,c,d] = [b,c,d]" by simp}\\
   228 @{lemma "last [a,b,c,d] = d" by simp}\\
   229 @{lemma "butlast [a,b,c,d] = [a,b,c]" by simp}\\
   230 @{lemma[source] "filter (\<lambda>n::nat. n<2) [0,2,1] = [0,1]" by simp}\\
   231 @{lemma "concat [[a,b],[c,d,e],[],[f]] = [a,b,c,d,e,f]" by simp}\\
   232 @{lemma "foldl f x [a,b,c] = f (f (f x a) b) c" by simp}\\
   233 @{lemma "foldr f [a,b,c] x = f a (f b (f c x))" by simp}\\
   234 @{lemma "zip [a,b,c] [x,y,z] = [(a,x),(b,y),(c,z)]" by simp}\\
   235 @{lemma "zip [a,b] [x,y,z] = [(a,x),(b,y)]" by simp}\\
   236 @{lemma "splice [a,b,c] [x,y,z] = [a,x,b,y,c,z]" by simp}\\
   237 @{lemma "splice [a,b,c,d] [x,y] = [a,x,b,y,c,d]" by simp}\\
   238 @{lemma "take 2 [a,b,c,d] = [a,b]" by simp}\\
   239 @{lemma "take 6 [a,b,c,d] = [a,b,c,d]" by simp}\\
   240 @{lemma "drop 2 [a,b,c,d] = [c,d]" by simp}\\
   241 @{lemma "drop 6 [a,b,c,d] = []" by simp}\\
   242 @{lemma "takeWhile (%n::nat. n<3) [1,2,3,0] = [1,2]" by simp}\\
   243 @{lemma "dropWhile (%n::nat. n<3) [1,2,3,0] = [3,0]" by simp}\\
   244 @{lemma "distinct [2,0,1::nat]" by simp}\\
   245 @{lemma "remdups [2,0,2,1::nat,2] = [0,1,2]" by simp}\\
   246 @{lemma "remove1 2 [2,0,2,1::nat,2] = [0,2,1,2]" by simp}\\
   247 @{lemma "removeAll 2 [2,0,2,1::nat,2] = [0,1]" by simp}\\
   248 @{lemma "nth [a,b,c,d] 2 = c" by simp}\\
   249 @{lemma "[a,b,c,d][2 := x] = [a,b,x,d]" by simp}\\
   250 @{lemma "sublist [a,b,c,d,e] {0,2,3} = [a,c,d]" by (simp add:sublist_def)}\\
   251 @{lemma "rotate1 [a,b,c,d] = [b,c,d,a]" by (simp add:rotate1_def)}\\
   252 @{lemma "rotate 3 [a,b,c,d] = [d,a,b,c]" by (simp add:rotate1_def rotate_def nat_number)}\\
   253 @{lemma "replicate 4 a = [a,a,a,a]" by (simp add:nat_number)}\\
   254 @{lemma "[2..<5] = [2,3,4]" by (simp add:nat_number)}\\
   255 @{lemma "listsum [1,2,3::nat] = 6" by simp}
   256 \end{tabular}}
   257 \caption{Characteristic examples}
   258 \label{fig:Characteristic}
   259 \end{figure}
   260 Figure~\ref{fig:Characteristic} shows charachteristic examples
   261 that should give an intuitive understanding of the above functions.
   262 *}
   263 
   264 text{* The following simple sort functions are intended for proofs,
   265 not for efficient implementations. *}
   266 
   267 context linorder
   268 begin
   269 
   270 fun sorted :: "'a list \<Rightarrow> bool" where
   271 "sorted [] \<longleftrightarrow> True" |
   272 "sorted [x] \<longleftrightarrow> True" |
   273 "sorted (x#y#zs) \<longleftrightarrow> x <= y \<and> sorted (y#zs)"
   274 
   275 primrec insort :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where
   276 "insort x [] = [x]" |
   277 "insort x (y#ys) = (if x <= y then (x#y#ys) else y#(insort x ys))"
   278 
   279 primrec sort :: "'a list \<Rightarrow> 'a list" where
   280 "sort [] = []" |
   281 "sort (x#xs) = insort x (sort xs)"
   282 
   283 end
   284 
   285 
   286 subsubsection {* List comprehension *}
   287 
   288 text{* Input syntax for Haskell-like list comprehension notation.
   289 Typical example: @{text"[(x,y). x \<leftarrow> xs, y \<leftarrow> ys, x \<noteq> y]"},
   290 the list of all pairs of distinct elements from @{text xs} and @{text ys}.
   291 The syntax is as in Haskell, except that @{text"|"} becomes a dot
   292 (like in Isabelle's set comprehension): @{text"[e. x \<leftarrow> xs, \<dots>]"} rather than
   293 \verb![e| x <- xs, ...]!.
   294 
   295 The qualifiers after the dot are
   296 \begin{description}
   297 \item[generators] @{text"p \<leftarrow> xs"},
   298  where @{text p} is a pattern and @{text xs} an expression of list type, or
   299 \item[guards] @{text"b"}, where @{text b} is a boolean expression.
   300 %\item[local bindings] @ {text"let x = e"}.
   301 \end{description}
   302 
   303 Just like in Haskell, list comprehension is just a shorthand. To avoid
   304 misunderstandings, the translation into desugared form is not reversed
   305 upon output. Note that the translation of @{text"[e. x \<leftarrow> xs]"} is
   306 optmized to @{term"map (%x. e) xs"}.
   307 
   308 It is easy to write short list comprehensions which stand for complex
   309 expressions. During proofs, they may become unreadable (and
   310 mangled). In such cases it can be advisable to introduce separate
   311 definitions for the list comprehensions in question.  *}
   312 
   313 (*
   314 Proper theorem proving support would be nice. For example, if
   315 @{text"set[f x y. x \<leftarrow> xs, y \<leftarrow> ys, P x y]"}
   316 produced something like
   317 @{term"{z. EX x: set xs. EX y:set ys. P x y \<and> z = f x y}"}.
   318 *)
   319 
   320 nonterminals lc_qual lc_quals
   321 
   322 syntax
   323 "_listcompr" :: "'a \<Rightarrow> lc_qual \<Rightarrow> lc_quals \<Rightarrow> 'a list"  ("[_ . __")
   324 "_lc_gen" :: "'a \<Rightarrow> 'a list \<Rightarrow> lc_qual" ("_ <- _")
   325 "_lc_test" :: "bool \<Rightarrow> lc_qual" ("_")
   326 (*"_lc_let" :: "letbinds => lc_qual"  ("let _")*)
   327 "_lc_end" :: "lc_quals" ("]")
   328 "_lc_quals" :: "lc_qual \<Rightarrow> lc_quals \<Rightarrow> lc_quals" (", __")
   329 "_lc_abs" :: "'a => 'b list => 'b list"
   330 
   331 (* These are easier than ML code but cannot express the optimized
   332    translation of [e. p<-xs]
   333 translations
   334 "[e. p<-xs]" => "concat(map (_lc_abs p [e]) xs)"
   335 "_listcompr e (_lc_gen p xs) (_lc_quals Q Qs)"
   336  => "concat (map (_lc_abs p (_listcompr e Q Qs)) xs)"
   337 "[e. P]" => "if P then [e] else []"
   338 "_listcompr e (_lc_test P) (_lc_quals Q Qs)"
   339  => "if P then (_listcompr e Q Qs) else []"
   340 "_listcompr e (_lc_let b) (_lc_quals Q Qs)"
   341  => "_Let b (_listcompr e Q Qs)"
   342 *)
   343 
   344 syntax (xsymbols)
   345 "_lc_gen" :: "'a \<Rightarrow> 'a list \<Rightarrow> lc_qual" ("_ \<leftarrow> _")
   346 syntax (HTML output)
   347 "_lc_gen" :: "'a \<Rightarrow> 'a list \<Rightarrow> lc_qual" ("_ \<leftarrow> _")
   348 
   349 parse_translation (advanced) {*
   350 let
   351   val NilC = Syntax.const @{const_name Nil};
   352   val ConsC = Syntax.const @{const_name Cons};
   353   val mapC = Syntax.const @{const_name map};
   354   val concatC = Syntax.const @{const_name concat};
   355   val IfC = Syntax.const @{const_name If};
   356   fun singl x = ConsC $ x $ NilC;
   357 
   358    fun pat_tr ctxt p e opti = (* %x. case x of p => e | _ => [] *)
   359     let
   360       val x = Free (Name.variant (fold Term.add_free_names [p, e] []) "x", dummyT);
   361       val e = if opti then singl e else e;
   362       val case1 = Syntax.const "_case1" $ p $ e;
   363       val case2 = Syntax.const "_case1" $ Syntax.const Term.dummy_patternN
   364                                         $ NilC;
   365       val cs = Syntax.const "_case2" $ case1 $ case2
   366       val ft = DatatypeCase.case_tr false DatatypePackage.datatype_of_constr
   367                  ctxt [x, cs]
   368     in lambda x ft end;
   369 
   370   fun abs_tr ctxt (p as Free(s,T)) e opti =
   371         let val thy = ProofContext.theory_of ctxt;
   372             val s' = Sign.intern_const thy s
   373         in if Sign.declared_const thy s'
   374            then (pat_tr ctxt p e opti, false)
   375            else (lambda p e, true)
   376         end
   377     | abs_tr ctxt p e opti = (pat_tr ctxt p e opti, false);
   378 
   379   fun lc_tr ctxt [e, Const("_lc_test",_)$b, qs] =
   380         let val res = case qs of Const("_lc_end",_) => singl e
   381                       | Const("_lc_quals",_)$q$qs => lc_tr ctxt [e,q,qs];
   382         in IfC $ b $ res $ NilC end
   383     | lc_tr ctxt [e, Const("_lc_gen",_) $ p $ es, Const("_lc_end",_)] =
   384         (case abs_tr ctxt p e true of
   385            (f,true) => mapC $ f $ es
   386          | (f, false) => concatC $ (mapC $ f $ es))
   387     | lc_tr ctxt [e, Const("_lc_gen",_) $ p $ es, Const("_lc_quals",_)$q$qs] =
   388         let val e' = lc_tr ctxt [e,q,qs];
   389         in concatC $ (mapC $ (fst(abs_tr ctxt p e' false)) $ es) end
   390 
   391 in [("_listcompr", lc_tr)] end
   392 *}
   393 
   394 (*
   395 term "[(x,y,z). b]"
   396 term "[(x,y,z). x\<leftarrow>xs]"
   397 term "[e x y. x\<leftarrow>xs, y\<leftarrow>ys]"
   398 term "[(x,y,z). x<a, x>b]"
   399 term "[(x,y,z). x\<leftarrow>xs, x>b]"
   400 term "[(x,y,z). x<a, x\<leftarrow>xs]"
   401 term "[(x,y). Cons True x \<leftarrow> xs]"
   402 term "[(x,y,z). Cons x [] \<leftarrow> xs]"
   403 term "[(x,y,z). x<a, x>b, x=d]"
   404 term "[(x,y,z). x<a, x>b, y\<leftarrow>ys]"
   405 term "[(x,y,z). x<a, x\<leftarrow>xs,y>b]"
   406 term "[(x,y,z). x<a, x\<leftarrow>xs, y\<leftarrow>ys]"
   407 term "[(x,y,z). x\<leftarrow>xs, x>b, y<a]"
   408 term "[(x,y,z). x\<leftarrow>xs, x>b, y\<leftarrow>ys]"
   409 term "[(x,y,z). x\<leftarrow>xs, y\<leftarrow>ys,y>x]"
   410 term "[(x,y,z). x\<leftarrow>xs, y\<leftarrow>ys,z\<leftarrow>zs]"
   411 term "[(x,y). x\<leftarrow>xs, let xx = x+x, y\<leftarrow>ys, y \<noteq> xx]"
   412 *)
   413 
   414 subsubsection {* @{const Nil} and @{const Cons} *}
   415 
   416 lemma not_Cons_self [simp]:
   417   "xs \<noteq> x # xs"
   418 by (induct xs) auto
   419 
   420 lemmas not_Cons_self2 [simp] = not_Cons_self [symmetric]
   421 
   422 lemma neq_Nil_conv: "(xs \<noteq> []) = (\<exists>y ys. xs = y # ys)"
   423 by (induct xs) auto
   424 
   425 lemma length_induct:
   426   "(\<And>xs. \<forall>ys. length ys < length xs \<longrightarrow> P ys \<Longrightarrow> P xs) \<Longrightarrow> P xs"
   427 by (rule measure_induct [of length]) iprover
   428 
   429 
   430 subsubsection {* @{const length} *}
   431 
   432 text {*
   433   Needs to come before @{text "@"} because of theorem @{text
   434   append_eq_append_conv}.
   435 *}
   436 
   437 lemma length_append [simp]: "length (xs @ ys) = length xs + length ys"
   438 by (induct xs) auto
   439 
   440 lemma length_map [simp]: "length (map f xs) = length xs"
   441 by (induct xs) auto
   442 
   443 lemma length_rev [simp]: "length (rev xs) = length xs"
   444 by (induct xs) auto
   445 
   446 lemma length_tl [simp]: "length (tl xs) = length xs - 1"
   447 by (cases xs) auto
   448 
   449 lemma length_0_conv [iff]: "(length xs = 0) = (xs = [])"
   450 by (induct xs) auto
   451 
   452 lemma length_greater_0_conv [iff]: "(0 < length xs) = (xs \<noteq> [])"
   453 by (induct xs) auto
   454 
   455 lemma length_pos_if_in_set: "x : set xs \<Longrightarrow> length xs > 0"
   456 by auto
   457 
   458 lemma length_Suc_conv:
   459 "(length xs = Suc n) = (\<exists>y ys. xs = y # ys \<and> length ys = n)"
   460 by (induct xs) auto
   461 
   462 lemma Suc_length_conv:
   463 "(Suc n = length xs) = (\<exists>y ys. xs = y # ys \<and> length ys = n)"
   464 apply (induct xs, simp, simp)
   465 apply blast
   466 done
   467 
   468 lemma impossible_Cons: "length xs <= length ys ==> xs = x # ys = False"
   469   by (induct xs) auto
   470 
   471 lemma list_induct2 [consumes 1, case_names Nil Cons]:
   472   "length xs = length ys \<Longrightarrow> P [] [] \<Longrightarrow>
   473    (\<And>x xs y ys. length xs = length ys \<Longrightarrow> P xs ys \<Longrightarrow> P (x#xs) (y#ys))
   474    \<Longrightarrow> P xs ys"
   475 proof (induct xs arbitrary: ys)
   476   case Nil then show ?case by simp
   477 next
   478   case (Cons x xs ys) then show ?case by (cases ys) simp_all
   479 qed
   480 
   481 lemma list_induct3 [consumes 2, case_names Nil Cons]:
   482   "length xs = length ys \<Longrightarrow> length ys = length zs \<Longrightarrow> P [] [] [] \<Longrightarrow>
   483    (\<And>x xs y ys z zs. length xs = length ys \<Longrightarrow> length ys = length zs \<Longrightarrow> P xs ys zs \<Longrightarrow> P (x#xs) (y#ys) (z#zs))
   484    \<Longrightarrow> P xs ys zs"
   485 proof (induct xs arbitrary: ys zs)
   486   case Nil then show ?case by simp
   487 next
   488   case (Cons x xs ys zs) then show ?case by (cases ys, simp_all)
   489     (cases zs, simp_all)
   490 qed
   491 
   492 lemma list_induct2': 
   493   "\<lbrakk> P [] [];
   494   \<And>x xs. P (x#xs) [];
   495   \<And>y ys. P [] (y#ys);
   496    \<And>x xs y ys. P xs ys  \<Longrightarrow> P (x#xs) (y#ys) \<rbrakk>
   497  \<Longrightarrow> P xs ys"
   498 by (induct xs arbitrary: ys) (case_tac x, auto)+
   499 
   500 lemma neq_if_length_neq: "length xs \<noteq> length ys \<Longrightarrow> (xs = ys) == False"
   501 by (rule Eq_FalseI) auto
   502 
   503 simproc_setup list_neq ("(xs::'a list) = ys") = {*
   504 (*
   505 Reduces xs=ys to False if xs and ys cannot be of the same length.
   506 This is the case if the atomic sublists of one are a submultiset
   507 of those of the other list and there are fewer Cons's in one than the other.
   508 *)
   509 
   510 let
   511 
   512 fun len (Const(@{const_name Nil},_)) acc = acc
   513   | len (Const(@{const_name Cons},_) $ _ $ xs) (ts,n) = len xs (ts,n+1)
   514   | len (Const(@{const_name append},_) $ xs $ ys) acc = len xs (len ys acc)
   515   | len (Const(@{const_name rev},_) $ xs) acc = len xs acc
   516   | len (Const(@{const_name map},_) $ _ $ xs) acc = len xs acc
   517   | len t (ts,n) = (t::ts,n);
   518 
   519 fun list_neq _ ss ct =
   520   let
   521     val (Const(_,eqT) $ lhs $ rhs) = Thm.term_of ct;
   522     val (ls,m) = len lhs ([],0) and (rs,n) = len rhs ([],0);
   523     fun prove_neq() =
   524       let
   525         val Type(_,listT::_) = eqT;
   526         val size = HOLogic.size_const listT;
   527         val eq_len = HOLogic.mk_eq (size $ lhs, size $ rhs);
   528         val neq_len = HOLogic.mk_Trueprop (HOLogic.Not $ eq_len);
   529         val thm = Goal.prove (Simplifier.the_context ss) [] [] neq_len
   530           (K (simp_tac (Simplifier.inherit_context ss @{simpset}) 1));
   531       in SOME (thm RS @{thm neq_if_length_neq}) end
   532   in
   533     if m < n andalso submultiset (op aconv) (ls,rs) orelse
   534        n < m andalso submultiset (op aconv) (rs,ls)
   535     then prove_neq() else NONE
   536   end;
   537 in list_neq end;
   538 *}
   539 
   540 
   541 subsubsection {* @{text "@"} -- append *}
   542 
   543 lemma append_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"
   544 by (induct xs) auto
   545 
   546 lemma append_Nil2 [simp]: "xs @ [] = xs"
   547 by (induct xs) auto
   548 
   549 lemma append_is_Nil_conv [iff]: "(xs @ ys = []) = (xs = [] \<and> ys = [])"
   550 by (induct xs) auto
   551 
   552 lemma Nil_is_append_conv [iff]: "([] = xs @ ys) = (xs = [] \<and> ys = [])"
   553 by (induct xs) auto
   554 
   555 lemma append_self_conv [iff]: "(xs @ ys = xs) = (ys = [])"
   556 by (induct xs) auto
   557 
   558 lemma self_append_conv [iff]: "(xs = xs @ ys) = (ys = [])"
   559 by (induct xs) auto
   560 
   561 lemma append_eq_append_conv [simp, noatp]:
   562  "length xs = length ys \<or> length us = length vs
   563  ==> (xs@us = ys@vs) = (xs=ys \<and> us=vs)"
   564 apply (induct xs arbitrary: ys)
   565  apply (case_tac ys, simp, force)
   566 apply (case_tac ys, force, simp)
   567 done
   568 
   569 lemma append_eq_append_conv2: "(xs @ ys = zs @ ts) =
   570   (EX us. xs = zs @ us & us @ ys = ts | xs @ us = zs & ys = us@ ts)"
   571 apply (induct xs arbitrary: ys zs ts)
   572  apply fastsimp
   573 apply(case_tac zs)
   574  apply simp
   575 apply fastsimp
   576 done
   577 
   578 lemma same_append_eq [iff]: "(xs @ ys = xs @ zs) = (ys = zs)"
   579 by simp
   580 
   581 lemma append1_eq_conv [iff]: "(xs @ [x] = ys @ [y]) = (xs = ys \<and> x = y)"
   582 by simp
   583 
   584 lemma append_same_eq [iff]: "(ys @ xs = zs @ xs) = (ys = zs)"
   585 by simp
   586 
   587 lemma append_self_conv2 [iff]: "(xs @ ys = ys) = (xs = [])"
   588 using append_same_eq [of _ _ "[]"] by auto
   589 
   590 lemma self_append_conv2 [iff]: "(ys = xs @ ys) = (xs = [])"
   591 using append_same_eq [of "[]"] by auto
   592 
   593 lemma hd_Cons_tl [simp,noatp]: "xs \<noteq> [] ==> hd xs # tl xs = xs"
   594 by (induct xs) auto
   595 
   596 lemma hd_append: "hd (xs @ ys) = (if xs = [] then hd ys else hd xs)"
   597 by (induct xs) auto
   598 
   599 lemma hd_append2 [simp]: "xs \<noteq> [] ==> hd (xs @ ys) = hd xs"
   600 by (simp add: hd_append split: list.split)
   601 
   602 lemma tl_append: "tl (xs @ ys) = (case xs of [] => tl ys | z#zs => zs @ ys)"
   603 by (simp split: list.split)
   604 
   605 lemma tl_append2 [simp]: "xs \<noteq> [] ==> tl (xs @ ys) = tl xs @ ys"
   606 by (simp add: tl_append split: list.split)
   607 
   608 
   609 lemma Cons_eq_append_conv: "x#xs = ys@zs =
   610  (ys = [] & x#xs = zs | (EX ys'. x#ys' = ys & xs = ys'@zs))"
   611 by(cases ys) auto
   612 
   613 lemma append_eq_Cons_conv: "(ys@zs = x#xs) =
   614  (ys = [] & zs = x#xs | (EX ys'. ys = x#ys' & ys'@zs = xs))"
   615 by(cases ys) auto
   616 
   617 
   618 text {* Trivial rules for solving @{text "@"}-equations automatically. *}
   619 
   620 lemma eq_Nil_appendI: "xs = ys ==> xs = [] @ ys"
   621 by simp
   622 
   623 lemma Cons_eq_appendI:
   624 "[| x # xs1 = ys; xs = xs1 @ zs |] ==> x # xs = ys @ zs"
   625 by (drule sym) simp
   626 
   627 lemma append_eq_appendI:
   628 "[| xs @ xs1 = zs; ys = xs1 @ us |] ==> xs @ ys = zs @ us"
   629 by (drule sym) simp
   630 
   631 
   632 text {*
   633 Simplification procedure for all list equalities.
   634 Currently only tries to rearrange @{text "@"} to see if
   635 - both lists end in a singleton list,
   636 - or both lists end in the same list.
   637 *}
   638 
   639 ML {*
   640 local
   641 
   642 fun last (cons as Const(@{const_name Cons},_) $ _ $ xs) =
   643   (case xs of Const(@{const_name Nil},_) => cons | _ => last xs)
   644   | last (Const(@{const_name append},_) $ _ $ ys) = last ys
   645   | last t = t;
   646 
   647 fun list1 (Const(@{const_name Cons},_) $ _ $ Const(@{const_name Nil},_)) = true
   648   | list1 _ = false;
   649 
   650 fun butlast ((cons as Const(@{const_name Cons},_) $ x) $ xs) =
   651   (case xs of Const(@{const_name Nil},_) => xs | _ => cons $ butlast xs)
   652   | butlast ((app as Const(@{const_name append},_) $ xs) $ ys) = app $ butlast ys
   653   | butlast xs = Const(@{const_name Nil},fastype_of xs);
   654 
   655 val rearr_ss = HOL_basic_ss addsimps [@{thm append_assoc},
   656   @{thm append_Nil}, @{thm append_Cons}];
   657 
   658 fun list_eq ss (F as (eq as Const(_,eqT)) $ lhs $ rhs) =
   659   let
   660     val lastl = last lhs and lastr = last rhs;
   661     fun rearr conv =
   662       let
   663         val lhs1 = butlast lhs and rhs1 = butlast rhs;
   664         val Type(_,listT::_) = eqT
   665         val appT = [listT,listT] ---> listT
   666         val app = Const(@{const_name append},appT)
   667         val F2 = eq $ (app$lhs1$lastl) $ (app$rhs1$lastr)
   668         val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (F,F2));
   669         val thm = Goal.prove (Simplifier.the_context ss) [] [] eq
   670           (K (simp_tac (Simplifier.inherit_context ss rearr_ss) 1));
   671       in SOME ((conv RS (thm RS trans)) RS eq_reflection) end;
   672 
   673   in
   674     if list1 lastl andalso list1 lastr then rearr @{thm append1_eq_conv}
   675     else if lastl aconv lastr then rearr @{thm append_same_eq}
   676     else NONE
   677   end;
   678 
   679 in
   680 
   681 val list_eq_simproc =
   682   Simplifier.simproc (the_context ()) "list_eq" ["(xs::'a list) = ys"] (K list_eq);
   683 
   684 end;
   685 
   686 Addsimprocs [list_eq_simproc];
   687 *}
   688 
   689 
   690 subsubsection {* @{text map} *}
   691 
   692 lemma map_ext: "(!!x. x : set xs --> f x = g x) ==> map f xs = map g xs"
   693 by (induct xs) simp_all
   694 
   695 lemma map_ident [simp]: "map (\<lambda>x. x) = (\<lambda>xs. xs)"
   696 by (rule ext, induct_tac xs) auto
   697 
   698 lemma map_append [simp]: "map f (xs @ ys) = map f xs @ map f ys"
   699 by (induct xs) auto
   700 
   701 lemma map_compose: "map (f o g) xs = map f (map g xs)"
   702 by (induct xs) (auto simp add: o_def)
   703 
   704 lemma rev_map: "rev (map f xs) = map f (rev xs)"
   705 by (induct xs) auto
   706 
   707 lemma map_eq_conv[simp]: "(map f xs = map g xs) = (!x : set xs. f x = g x)"
   708 by (induct xs) auto
   709 
   710 lemma map_cong [fundef_cong, recdef_cong]:
   711 "xs = ys ==> (!!x. x : set ys ==> f x = g x) ==> map f xs = map g ys"
   712 -- {* a congruence rule for @{text map} *}
   713 by simp
   714 
   715 lemma map_is_Nil_conv [iff]: "(map f xs = []) = (xs = [])"
   716 by (cases xs) auto
   717 
   718 lemma Nil_is_map_conv [iff]: "([] = map f xs) = (xs = [])"
   719 by (cases xs) auto
   720 
   721 lemma map_eq_Cons_conv:
   722  "(map f xs = y#ys) = (\<exists>z zs. xs = z#zs \<and> f z = y \<and> map f zs = ys)"
   723 by (cases xs) auto
   724 
   725 lemma Cons_eq_map_conv:
   726  "(x#xs = map f ys) = (\<exists>z zs. ys = z#zs \<and> x = f z \<and> xs = map f zs)"
   727 by (cases ys) auto
   728 
   729 lemmas map_eq_Cons_D = map_eq_Cons_conv [THEN iffD1]
   730 lemmas Cons_eq_map_D = Cons_eq_map_conv [THEN iffD1]
   731 declare map_eq_Cons_D [dest!]  Cons_eq_map_D [dest!]
   732 
   733 lemma ex_map_conv:
   734   "(EX xs. ys = map f xs) = (ALL y : set ys. EX x. y = f x)"
   735 by(induct ys, auto simp add: Cons_eq_map_conv)
   736 
   737 lemma map_eq_imp_length_eq:
   738   assumes "map f xs = map f ys"
   739   shows "length xs = length ys"
   740 using assms proof (induct ys arbitrary: xs)
   741   case Nil then show ?case by simp
   742 next
   743   case (Cons y ys) then obtain z zs where xs: "xs = z # zs" by auto
   744   from Cons xs have "map f zs = map f ys" by simp
   745   moreover with Cons have "length zs = length ys" by blast
   746   with xs show ?case by simp
   747 qed
   748   
   749 lemma map_inj_on:
   750  "[| map f xs = map f ys; inj_on f (set xs Un set ys) |]
   751   ==> xs = ys"
   752 apply(frule map_eq_imp_length_eq)
   753 apply(rotate_tac -1)
   754 apply(induct rule:list_induct2)
   755  apply simp
   756 apply(simp)
   757 apply (blast intro:sym)
   758 done
   759 
   760 lemma inj_on_map_eq_map:
   761  "inj_on f (set xs Un set ys) \<Longrightarrow> (map f xs = map f ys) = (xs = ys)"
   762 by(blast dest:map_inj_on)
   763 
   764 lemma map_injective:
   765  "map f xs = map f ys ==> inj f ==> xs = ys"
   766 by (induct ys arbitrary: xs) (auto dest!:injD)
   767 
   768 lemma inj_map_eq_map[simp]: "inj f \<Longrightarrow> (map f xs = map f ys) = (xs = ys)"
   769 by(blast dest:map_injective)
   770 
   771 lemma inj_mapI: "inj f ==> inj (map f)"
   772 by (iprover dest: map_injective injD intro: inj_onI)
   773 
   774 lemma inj_mapD: "inj (map f) ==> inj f"
   775 apply (unfold inj_on_def, clarify)
   776 apply (erule_tac x = "[x]" in ballE)
   777  apply (erule_tac x = "[y]" in ballE, simp, blast)
   778 apply blast
   779 done
   780 
   781 lemma inj_map[iff]: "inj (map f) = inj f"
   782 by (blast dest: inj_mapD intro: inj_mapI)
   783 
   784 lemma inj_on_mapI: "inj_on f (\<Union>(set ` A)) \<Longrightarrow> inj_on (map f) A"
   785 apply(rule inj_onI)
   786 apply(erule map_inj_on)
   787 apply(blast intro:inj_onI dest:inj_onD)
   788 done
   789 
   790 lemma map_idI: "(\<And>x. x \<in> set xs \<Longrightarrow> f x = x) \<Longrightarrow> map f xs = xs"
   791 by (induct xs, auto)
   792 
   793 lemma map_fun_upd [simp]: "y \<notin> set xs \<Longrightarrow> map (f(y:=v)) xs = map f xs"
   794 by (induct xs) auto
   795 
   796 lemma map_fst_zip[simp]:
   797   "length xs = length ys \<Longrightarrow> map fst (zip xs ys) = xs"
   798 by (induct rule:list_induct2, simp_all)
   799 
   800 lemma map_snd_zip[simp]:
   801   "length xs = length ys \<Longrightarrow> map snd (zip xs ys) = ys"
   802 by (induct rule:list_induct2, simp_all)
   803 
   804 
   805 subsubsection {* @{text rev} *}
   806 
   807 lemma rev_append [simp]: "rev (xs @ ys) = rev ys @ rev xs"
   808 by (induct xs) auto
   809 
   810 lemma rev_rev_ident [simp]: "rev (rev xs) = xs"
   811 by (induct xs) auto
   812 
   813 lemma rev_swap: "(rev xs = ys) = (xs = rev ys)"
   814 by auto
   815 
   816 lemma rev_is_Nil_conv [iff]: "(rev xs = []) = (xs = [])"
   817 by (induct xs) auto
   818 
   819 lemma Nil_is_rev_conv [iff]: "([] = rev xs) = (xs = [])"
   820 by (induct xs) auto
   821 
   822 lemma rev_singleton_conv [simp]: "(rev xs = [x]) = (xs = [x])"
   823 by (cases xs) auto
   824 
   825 lemma singleton_rev_conv [simp]: "([x] = rev xs) = (xs = [x])"
   826 by (cases xs) auto
   827 
   828 lemma rev_is_rev_conv [iff]: "(rev xs = rev ys) = (xs = ys)"
   829 apply (induct xs arbitrary: ys, force)
   830 apply (case_tac ys, simp, force)
   831 done
   832 
   833 lemma inj_on_rev[iff]: "inj_on rev A"
   834 by(simp add:inj_on_def)
   835 
   836 lemma rev_induct [case_names Nil snoc]:
   837   "[| P []; !!x xs. P xs ==> P (xs @ [x]) |] ==> P xs"
   838 apply(simplesubst rev_rev_ident[symmetric])
   839 apply(rule_tac list = "rev xs" in list.induct, simp_all)
   840 done
   841 
   842 lemma rev_exhaust [case_names Nil snoc]:
   843   "(xs = [] ==> P) ==>(!!ys y. xs = ys @ [y] ==> P) ==> P"
   844 by (induct xs rule: rev_induct) auto
   845 
   846 lemmas rev_cases = rev_exhaust
   847 
   848 lemma rev_eq_Cons_iff[iff]: "(rev xs = y#ys) = (xs = rev ys @ [y])"
   849 by(rule rev_cases[of xs]) auto
   850 
   851 
   852 subsubsection {* @{text set} *}
   853 
   854 lemma finite_set [iff]: "finite (set xs)"
   855 by (induct xs) auto
   856 
   857 lemma set_append [simp]: "set (xs @ ys) = (set xs \<union> set ys)"
   858 by (induct xs) auto
   859 
   860 lemma hd_in_set[simp]: "xs \<noteq> [] \<Longrightarrow> hd xs : set xs"
   861 by(cases xs) auto
   862 
   863 lemma set_subset_Cons: "set xs \<subseteq> set (x # xs)"
   864 by auto
   865 
   866 lemma set_ConsD: "y \<in> set (x # xs) \<Longrightarrow> y=x \<or> y \<in> set xs" 
   867 by auto
   868 
   869 lemma set_empty [iff]: "(set xs = {}) = (xs = [])"
   870 by (induct xs) auto
   871 
   872 lemma set_empty2[iff]: "({} = set xs) = (xs = [])"
   873 by(induct xs) auto
   874 
   875 lemma set_rev [simp]: "set (rev xs) = set xs"
   876 by (induct xs) auto
   877 
   878 lemma set_map [simp]: "set (map f xs) = f`(set xs)"
   879 by (induct xs) auto
   880 
   881 lemma set_filter [simp]: "set (filter P xs) = {x. x : set xs \<and> P x}"
   882 by (induct xs) auto
   883 
   884 lemma set_upt [simp]: "set[i..<j] = {k. i \<le> k \<and> k < j}"
   885 apply (induct j, simp_all)
   886 apply (erule ssubst, auto)
   887 done
   888 
   889 
   890 lemma split_list: "x : set xs \<Longrightarrow> \<exists>ys zs. xs = ys @ x # zs"
   891 proof (induct xs)
   892   case Nil thus ?case by simp
   893 next
   894   case Cons thus ?case by (auto intro: Cons_eq_appendI)
   895 qed
   896 
   897 lemma in_set_conv_decomp: "x \<in> set xs \<longleftrightarrow> (\<exists>ys zs. xs = ys @ x # zs)"
   898   by (auto elim: split_list)
   899 
   900 lemma split_list_first: "x : set xs \<Longrightarrow> \<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set ys"
   901 proof (induct xs)
   902   case Nil thus ?case by simp
   903 next
   904   case (Cons a xs)
   905   show ?case
   906   proof cases
   907     assume "x = a" thus ?case using Cons by fastsimp
   908   next
   909     assume "x \<noteq> a" thus ?case using Cons by(fastsimp intro!: Cons_eq_appendI)
   910   qed
   911 qed
   912 
   913 lemma in_set_conv_decomp_first:
   914   "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set ys)"
   915   by (auto dest!: split_list_first)
   916 
   917 lemma split_list_last: "x : set xs \<Longrightarrow> \<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set zs"
   918 proof (induct xs rule:rev_induct)
   919   case Nil thus ?case by simp
   920 next
   921   case (snoc a xs)
   922   show ?case
   923   proof cases
   924     assume "x = a" thus ?case using snoc by simp (metis ex_in_conv set_empty2)
   925   next
   926     assume "x \<noteq> a" thus ?case using snoc by fastsimp
   927   qed
   928 qed
   929 
   930 lemma in_set_conv_decomp_last:
   931   "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set zs)"
   932   by (auto dest!: split_list_last)
   933 
   934 lemma split_list_prop: "\<exists>x \<in> set xs. P x \<Longrightarrow> \<exists>ys x zs. xs = ys @ x # zs & P x"
   935 proof (induct xs)
   936   case Nil thus ?case by simp
   937 next
   938   case Cons thus ?case
   939     by(simp add:Bex_def)(metis append_Cons append.simps(1))
   940 qed
   941 
   942 lemma split_list_propE:
   943   assumes "\<exists>x \<in> set xs. P x"
   944   obtains ys x zs where "xs = ys @ x # zs" and "P x"
   945 using split_list_prop [OF assms] by blast
   946 
   947 lemma split_list_first_prop:
   948   "\<exists>x \<in> set xs. P x \<Longrightarrow>
   949    \<exists>ys x zs. xs = ys@x#zs \<and> P x \<and> (\<forall>y \<in> set ys. \<not> P y)"
   950 proof (induct xs)
   951   case Nil thus ?case by simp
   952 next
   953   case (Cons x xs)
   954   show ?case
   955   proof cases
   956     assume "P x"
   957     thus ?thesis by simp
   958       (metis Un_upper1 contra_subsetD in_set_conv_decomp_first self_append_conv2 set_append)
   959   next
   960     assume "\<not> P x"
   961     hence "\<exists>x\<in>set xs. P x" using Cons(2) by simp
   962     thus ?thesis using `\<not> P x` Cons(1) by (metis append_Cons set_ConsD)
   963   qed
   964 qed
   965 
   966 lemma split_list_first_propE:
   967   assumes "\<exists>x \<in> set xs. P x"
   968   obtains ys x zs where "xs = ys @ x # zs" and "P x" and "\<forall>y \<in> set ys. \<not> P y"
   969 using split_list_first_prop [OF assms] by blast
   970 
   971 lemma split_list_first_prop_iff:
   972   "(\<exists>x \<in> set xs. P x) \<longleftrightarrow>
   973    (\<exists>ys x zs. xs = ys@x#zs \<and> P x \<and> (\<forall>y \<in> set ys. \<not> P y))"
   974 by (rule, erule split_list_first_prop) auto
   975 
   976 lemma split_list_last_prop:
   977   "\<exists>x \<in> set xs. P x \<Longrightarrow>
   978    \<exists>ys x zs. xs = ys@x#zs \<and> P x \<and> (\<forall>z \<in> set zs. \<not> P z)"
   979 proof(induct xs rule:rev_induct)
   980   case Nil thus ?case by simp
   981 next
   982   case (snoc x xs)
   983   show ?case
   984   proof cases
   985     assume "P x" thus ?thesis by (metis emptyE set_empty)
   986   next
   987     assume "\<not> P x"
   988     hence "\<exists>x\<in>set xs. P x" using snoc(2) by simp
   989     thus ?thesis using `\<not> P x` snoc(1) by fastsimp
   990   qed
   991 qed
   992 
   993 lemma split_list_last_propE:
   994   assumes "\<exists>x \<in> set xs. P x"
   995   obtains ys x zs where "xs = ys @ x # zs" and "P x" and "\<forall>z \<in> set zs. \<not> P z"
   996 using split_list_last_prop [OF assms] by blast
   997 
   998 lemma split_list_last_prop_iff:
   999   "(\<exists>x \<in> set xs. P x) \<longleftrightarrow>
  1000    (\<exists>ys x zs. xs = ys@x#zs \<and> P x \<and> (\<forall>z \<in> set zs. \<not> P z))"
  1001 by (metis split_list_last_prop [where P=P] in_set_conv_decomp)
  1002 
  1003 lemma finite_list: "finite A ==> EX xs. set xs = A"
  1004   by (erule finite_induct)
  1005     (auto simp add: set.simps(2) [symmetric] simp del: set.simps(2))
  1006 
  1007 lemma card_length: "card (set xs) \<le> length xs"
  1008 by (induct xs) (auto simp add: card_insert_if)
  1009 
  1010 lemma set_minus_filter_out:
  1011   "set xs - {y} = set (filter (\<lambda>x. \<not> (x = y)) xs)"
  1012   by (induct xs) auto
  1013 
  1014 subsubsection {* @{text filter} *}
  1015 
  1016 lemma filter_append [simp]: "filter P (xs @ ys) = filter P xs @ filter P ys"
  1017 by (induct xs) auto
  1018 
  1019 lemma rev_filter: "rev (filter P xs) = filter P (rev xs)"
  1020 by (induct xs) simp_all
  1021 
  1022 lemma filter_filter [simp]: "filter P (filter Q xs) = filter (\<lambda>x. Q x \<and> P x) xs"
  1023 by (induct xs) auto
  1024 
  1025 lemma length_filter_le [simp]: "length (filter P xs) \<le> length xs"
  1026 by (induct xs) (auto simp add: le_SucI)
  1027 
  1028 lemma sum_length_filter_compl:
  1029   "length(filter P xs) + length(filter (%x. ~P x) xs) = length xs"
  1030 by(induct xs) simp_all
  1031 
  1032 lemma filter_True [simp]: "\<forall>x \<in> set xs. P x ==> filter P xs = xs"
  1033 by (induct xs) auto
  1034 
  1035 lemma filter_False [simp]: "\<forall>x \<in> set xs. \<not> P x ==> filter P xs = []"
  1036 by (induct xs) auto
  1037 
  1038 lemma filter_empty_conv: "(filter P xs = []) = (\<forall>x\<in>set xs. \<not> P x)" 
  1039 by (induct xs) simp_all
  1040 
  1041 lemma filter_id_conv: "(filter P xs = xs) = (\<forall>x\<in>set xs. P x)"
  1042 apply (induct xs)
  1043  apply auto
  1044 apply(cut_tac P=P and xs=xs in length_filter_le)
  1045 apply simp
  1046 done
  1047 
  1048 lemma filter_map:
  1049   "filter P (map f xs) = map f (filter (P o f) xs)"
  1050 by (induct xs) simp_all
  1051 
  1052 lemma length_filter_map[simp]:
  1053   "length (filter P (map f xs)) = length(filter (P o f) xs)"
  1054 by (simp add:filter_map)
  1055 
  1056 lemma filter_is_subset [simp]: "set (filter P xs) \<le> set xs"
  1057 by auto
  1058 
  1059 lemma length_filter_less:
  1060   "\<lbrakk> x : set xs; ~ P x \<rbrakk> \<Longrightarrow> length(filter P xs) < length xs"
  1061 proof (induct xs)
  1062   case Nil thus ?case by simp
  1063 next
  1064   case (Cons x xs) thus ?case
  1065     apply (auto split:split_if_asm)
  1066     using length_filter_le[of P xs] apply arith
  1067   done
  1068 qed
  1069 
  1070 lemma length_filter_conv_card:
  1071  "length(filter p xs) = card{i. i < length xs & p(xs!i)}"
  1072 proof (induct xs)
  1073   case Nil thus ?case by simp
  1074 next
  1075   case (Cons x xs)
  1076   let ?S = "{i. i < length xs & p(xs!i)}"
  1077   have fin: "finite ?S" by(fast intro: bounded_nat_set_is_finite)
  1078   show ?case (is "?l = card ?S'")
  1079   proof (cases)
  1080     assume "p x"
  1081     hence eq: "?S' = insert 0 (Suc ` ?S)"
  1082       by(auto simp: image_def split:nat.split dest:gr0_implies_Suc)
  1083     have "length (filter p (x # xs)) = Suc(card ?S)"
  1084       using Cons `p x` by simp
  1085     also have "\<dots> = Suc(card(Suc ` ?S))" using fin
  1086       by (simp add: card_image inj_Suc)
  1087     also have "\<dots> = card ?S'" using eq fin
  1088       by (simp add:card_insert_if) (simp add:image_def)
  1089     finally show ?thesis .
  1090   next
  1091     assume "\<not> p x"
  1092     hence eq: "?S' = Suc ` ?S"
  1093       by(auto simp add: image_def split:nat.split elim:lessE)
  1094     have "length (filter p (x # xs)) = card ?S"
  1095       using Cons `\<not> p x` by simp
  1096     also have "\<dots> = card(Suc ` ?S)" using fin
  1097       by (simp add: card_image inj_Suc)
  1098     also have "\<dots> = card ?S'" using eq fin
  1099       by (simp add:card_insert_if)
  1100     finally show ?thesis .
  1101   qed
  1102 qed
  1103 
  1104 lemma Cons_eq_filterD:
  1105  "x#xs = filter P ys \<Longrightarrow>
  1106   \<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs"
  1107   (is "_ \<Longrightarrow> \<exists>us vs. ?P ys us vs")
  1108 proof(induct ys)
  1109   case Nil thus ?case by simp
  1110 next
  1111   case (Cons y ys)
  1112   show ?case (is "\<exists>x. ?Q x")
  1113   proof cases
  1114     assume Py: "P y"
  1115     show ?thesis
  1116     proof cases
  1117       assume "x = y"
  1118       with Py Cons.prems have "?Q []" by simp
  1119       then show ?thesis ..
  1120     next
  1121       assume "x \<noteq> y"
  1122       with Py Cons.prems show ?thesis by simp
  1123     qed
  1124   next
  1125     assume "\<not> P y"
  1126     with Cons obtain us vs where "?P (y#ys) (y#us) vs" by fastsimp
  1127     then have "?Q (y#us)" by simp
  1128     then show ?thesis ..
  1129   qed
  1130 qed
  1131 
  1132 lemma filter_eq_ConsD:
  1133  "filter P ys = x#xs \<Longrightarrow>
  1134   \<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs"
  1135 by(rule Cons_eq_filterD) simp
  1136 
  1137 lemma filter_eq_Cons_iff:
  1138  "(filter P ys = x#xs) =
  1139   (\<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs)"
  1140 by(auto dest:filter_eq_ConsD)
  1141 
  1142 lemma Cons_eq_filter_iff:
  1143  "(x#xs = filter P ys) =
  1144   (\<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs)"
  1145 by(auto dest:Cons_eq_filterD)
  1146 
  1147 lemma filter_cong[fundef_cong, recdef_cong]:
  1148  "xs = ys \<Longrightarrow> (\<And>x. x \<in> set ys \<Longrightarrow> P x = Q x) \<Longrightarrow> filter P xs = filter Q ys"
  1149 apply simp
  1150 apply(erule thin_rl)
  1151 by (induct ys) simp_all
  1152 
  1153 
  1154 subsubsection {* List partitioning *}
  1155 
  1156 primrec partition :: "('a \<Rightarrow> bool) \<Rightarrow>'a list \<Rightarrow> 'a list \<times> 'a list" where
  1157   "partition P [] = ([], [])"
  1158   | "partition P (x # xs) = 
  1159       (let (yes, no) = partition P xs
  1160       in if P x then (x # yes, no) else (yes, x # no))"
  1161 
  1162 lemma partition_filter1:
  1163     "fst (partition P xs) = filter P xs"
  1164 by (induct xs) (auto simp add: Let_def split_def)
  1165 
  1166 lemma partition_filter2:
  1167     "snd (partition P xs) = filter (Not o P) xs"
  1168 by (induct xs) (auto simp add: Let_def split_def)
  1169 
  1170 lemma partition_P:
  1171   assumes "partition P xs = (yes, no)"
  1172   shows "(\<forall>p \<in> set yes.  P p) \<and> (\<forall>p  \<in> set no. \<not> P p)"
  1173 proof -
  1174   from assms have "yes = fst (partition P xs)" and "no = snd (partition P xs)"
  1175     by simp_all
  1176   then show ?thesis by (simp_all add: partition_filter1 partition_filter2)
  1177 qed
  1178 
  1179 lemma partition_set:
  1180   assumes "partition P xs = (yes, no)"
  1181   shows "set yes \<union> set no = set xs"
  1182 proof -
  1183   from assms have "yes = fst (partition P xs)" and "no = snd (partition P xs)"
  1184     by simp_all
  1185   then show ?thesis by (auto simp add: partition_filter1 partition_filter2) 
  1186 qed
  1187 
  1188 
  1189 subsubsection {* @{text concat} *}
  1190 
  1191 lemma concat_append [simp]: "concat (xs @ ys) = concat xs @ concat ys"
  1192 by (induct xs) auto
  1193 
  1194 lemma concat_eq_Nil_conv [simp]: "(concat xss = []) = (\<forall>xs \<in> set xss. xs = [])"
  1195 by (induct xss) auto
  1196 
  1197 lemma Nil_eq_concat_conv [simp]: "([] = concat xss) = (\<forall>xs \<in> set xss. xs = [])"
  1198 by (induct xss) auto
  1199 
  1200 lemma set_concat [simp]: "set (concat xs) = (UN x:set xs. set x)"
  1201 by (induct xs) auto
  1202 
  1203 lemma concat_map_singleton[simp]: "concat(map (%x. [f x]) xs) = map f xs"
  1204 by (induct xs) auto
  1205 
  1206 lemma map_concat: "map f (concat xs) = concat (map (map f) xs)"
  1207 by (induct xs) auto
  1208 
  1209 lemma filter_concat: "filter p (concat xs) = concat (map (filter p) xs)"
  1210 by (induct xs) auto
  1211 
  1212 lemma rev_concat: "rev (concat xs) = concat (map rev (rev xs))"
  1213 by (induct xs) auto
  1214 
  1215 
  1216 subsubsection {* @{text nth} *}
  1217 
  1218 lemma nth_Cons_0 [simp, code]: "(x # xs)!0 = x"
  1219 by auto
  1220 
  1221 lemma nth_Cons_Suc [simp, code]: "(x # xs)!(Suc n) = xs!n"
  1222 by auto
  1223 
  1224 declare nth.simps [simp del]
  1225 
  1226 lemma nth_append:
  1227   "(xs @ ys)!n = (if n < length xs then xs!n else ys!(n - length xs))"
  1228 apply (induct xs arbitrary: n, simp)
  1229 apply (case_tac n, auto)
  1230 done
  1231 
  1232 lemma nth_append_length [simp]: "(xs @ x # ys) ! length xs = x"
  1233 by (induct xs) auto
  1234 
  1235 lemma nth_append_length_plus[simp]: "(xs @ ys) ! (length xs + n) = ys ! n"
  1236 by (induct xs) auto
  1237 
  1238 lemma nth_map [simp]: "n < length xs ==> (map f xs)!n = f(xs!n)"
  1239 apply (induct xs arbitrary: n, simp)
  1240 apply (case_tac n, auto)
  1241 done
  1242 
  1243 lemma hd_conv_nth: "xs \<noteq> [] \<Longrightarrow> hd xs = xs!0"
  1244 by(cases xs) simp_all
  1245 
  1246 
  1247 lemma list_eq_iff_nth_eq:
  1248  "(xs = ys) = (length xs = length ys \<and> (ALL i<length xs. xs!i = ys!i))"
  1249 apply(induct xs arbitrary: ys)
  1250  apply force
  1251 apply(case_tac ys)
  1252  apply simp
  1253 apply(simp add:nth_Cons split:nat.split)apply blast
  1254 done
  1255 
  1256 lemma set_conv_nth: "set xs = {xs!i | i. i < length xs}"
  1257 apply (induct xs, simp, simp)
  1258 apply safe
  1259 apply (metis nat_case_0 nth.simps zero_less_Suc)
  1260 apply (metis less_Suc_eq_0_disj nth_Cons_Suc)
  1261 apply (case_tac i, simp)
  1262 apply (metis diff_Suc_Suc nat_case_Suc nth.simps zero_less_diff)
  1263 done
  1264 
  1265 lemma in_set_conv_nth: "(x \<in> set xs) = (\<exists>i < length xs. xs!i = x)"
  1266 by(auto simp:set_conv_nth)
  1267 
  1268 lemma list_ball_nth: "[| n < length xs; !x : set xs. P x|] ==> P(xs!n)"
  1269 by (auto simp add: set_conv_nth)
  1270 
  1271 lemma nth_mem [simp]: "n < length xs ==> xs!n : set xs"
  1272 by (auto simp add: set_conv_nth)
  1273 
  1274 lemma all_nth_imp_all_set:
  1275 "[| !i < length xs. P(xs!i); x : set xs|] ==> P x"
  1276 by (auto simp add: set_conv_nth)
  1277 
  1278 lemma all_set_conv_all_nth:
  1279 "(\<forall>x \<in> set xs. P x) = (\<forall>i. i < length xs --> P (xs ! i))"
  1280 by (auto simp add: set_conv_nth)
  1281 
  1282 lemma rev_nth:
  1283   "n < size xs \<Longrightarrow> rev xs ! n = xs ! (length xs - Suc n)"
  1284 proof (induct xs arbitrary: n)
  1285   case Nil thus ?case by simp
  1286 next
  1287   case (Cons x xs)
  1288   hence n: "n < Suc (length xs)" by simp
  1289   moreover
  1290   { assume "n < length xs"
  1291     with n obtain n' where "length xs - n = Suc n'"
  1292       by (cases "length xs - n", auto)
  1293     moreover
  1294     then have "length xs - Suc n = n'" by simp
  1295     ultimately
  1296     have "xs ! (length xs - Suc n) = (x # xs) ! (length xs - n)" by simp
  1297   }
  1298   ultimately
  1299   show ?case by (clarsimp simp add: Cons nth_append)
  1300 qed
  1301 
  1302 subsubsection {* @{text list_update} *}
  1303 
  1304 lemma length_list_update [simp]: "length(xs[i:=x]) = length xs"
  1305 by (induct xs arbitrary: i) (auto split: nat.split)
  1306 
  1307 lemma nth_list_update:
  1308 "i < length xs==> (xs[i:=x])!j = (if i = j then x else xs!j)"
  1309 by (induct xs arbitrary: i j) (auto simp add: nth_Cons split: nat.split)
  1310 
  1311 lemma nth_list_update_eq [simp]: "i < length xs ==> (xs[i:=x])!i = x"
  1312 by (simp add: nth_list_update)
  1313 
  1314 lemma nth_list_update_neq [simp]: "i \<noteq> j ==> xs[i:=x]!j = xs!j"
  1315 by (induct xs arbitrary: i j) (auto simp add: nth_Cons split: nat.split)
  1316 
  1317 lemma list_update_id[simp]: "xs[i := xs!i] = xs"
  1318 by (induct xs arbitrary: i) (simp_all split:nat.splits)
  1319 
  1320 lemma list_update_beyond[simp]: "length xs \<le> i \<Longrightarrow> xs[i:=x] = xs"
  1321 apply (induct xs arbitrary: i)
  1322  apply simp
  1323 apply (case_tac i)
  1324 apply simp_all
  1325 done
  1326 
  1327 lemma list_update_same_conv:
  1328 "i < length xs ==> (xs[i := x] = xs) = (xs!i = x)"
  1329 by (induct xs arbitrary: i) (auto split: nat.split)
  1330 
  1331 lemma list_update_append1:
  1332  "i < size xs \<Longrightarrow> (xs @ ys)[i:=x] = xs[i:=x] @ ys"
  1333 apply (induct xs arbitrary: i, simp)
  1334 apply(simp split:nat.split)
  1335 done
  1336 
  1337 lemma list_update_append:
  1338   "(xs @ ys) [n:= x] = 
  1339   (if n < length xs then xs[n:= x] @ ys else xs @ (ys [n-length xs:= x]))"
  1340 by (induct xs arbitrary: n) (auto split:nat.splits)
  1341 
  1342 lemma list_update_length [simp]:
  1343  "(xs @ x # ys)[length xs := y] = (xs @ y # ys)"
  1344 by (induct xs, auto)
  1345 
  1346 lemma update_zip:
  1347   "length xs = length ys ==>
  1348   (zip xs ys)[i:=xy] = zip (xs[i:=fst xy]) (ys[i:=snd xy])"
  1349 by (induct ys arbitrary: i xy xs) (auto, case_tac xs, auto split: nat.split)
  1350 
  1351 lemma set_update_subset_insert: "set(xs[i:=x]) <= insert x (set xs)"
  1352 by (induct xs arbitrary: i) (auto split: nat.split)
  1353 
  1354 lemma set_update_subsetI: "[| set xs <= A; x:A |] ==> set(xs[i := x]) <= A"
  1355 by (blast dest!: set_update_subset_insert [THEN subsetD])
  1356 
  1357 lemma set_update_memI: "n < length xs \<Longrightarrow> x \<in> set (xs[n := x])"
  1358 by (induct xs arbitrary: n) (auto split:nat.splits)
  1359 
  1360 lemma list_update_overwrite:
  1361   "xs [i := x, i := y] = xs [i := y]"
  1362 apply (induct xs arbitrary: i)
  1363 apply simp
  1364 apply (case_tac i)
  1365 apply simp_all
  1366 done
  1367 
  1368 lemma list_update_swap:
  1369   "i \<noteq> i' \<Longrightarrow> xs [i := x, i' := x'] = xs [i' := x', i := x]"
  1370 apply (induct xs arbitrary: i i')
  1371 apply simp
  1372 apply (case_tac i, case_tac i')
  1373 apply auto
  1374 apply (case_tac i')
  1375 apply auto
  1376 done
  1377 
  1378 lemma list_update_code [code]:
  1379   "[][i := y] = []"
  1380   "(x # xs)[0 := y] = y # xs"
  1381   "(x # xs)[Suc i := y] = x # xs[i := y]"
  1382   by simp_all
  1383 
  1384 
  1385 subsubsection {* @{text last} and @{text butlast} *}
  1386 
  1387 lemma last_snoc [simp]: "last (xs @ [x]) = x"
  1388 by (induct xs) auto
  1389 
  1390 lemma butlast_snoc [simp]: "butlast (xs @ [x]) = xs"
  1391 by (induct xs) auto
  1392 
  1393 lemma last_ConsL: "xs = [] \<Longrightarrow> last(x#xs) = x"
  1394 by(simp add:last.simps)
  1395 
  1396 lemma last_ConsR: "xs \<noteq> [] \<Longrightarrow> last(x#xs) = last xs"
  1397 by(simp add:last.simps)
  1398 
  1399 lemma last_append: "last(xs @ ys) = (if ys = [] then last xs else last ys)"
  1400 by (induct xs) (auto)
  1401 
  1402 lemma last_appendL[simp]: "ys = [] \<Longrightarrow> last(xs @ ys) = last xs"
  1403 by(simp add:last_append)
  1404 
  1405 lemma last_appendR[simp]: "ys \<noteq> [] \<Longrightarrow> last(xs @ ys) = last ys"
  1406 by(simp add:last_append)
  1407 
  1408 lemma hd_rev: "xs \<noteq> [] \<Longrightarrow> hd(rev xs) = last xs"
  1409 by(rule rev_exhaust[of xs]) simp_all
  1410 
  1411 lemma last_rev: "xs \<noteq> [] \<Longrightarrow> last(rev xs) = hd xs"
  1412 by(cases xs) simp_all
  1413 
  1414 lemma last_in_set[simp]: "as \<noteq> [] \<Longrightarrow> last as \<in> set as"
  1415 by (induct as) auto
  1416 
  1417 lemma length_butlast [simp]: "length (butlast xs) = length xs - 1"
  1418 by (induct xs rule: rev_induct) auto
  1419 
  1420 lemma butlast_append:
  1421   "butlast (xs @ ys) = (if ys = [] then butlast xs else xs @ butlast ys)"
  1422 by (induct xs arbitrary: ys) auto
  1423 
  1424 lemma append_butlast_last_id [simp]:
  1425 "xs \<noteq> [] ==> butlast xs @ [last xs] = xs"
  1426 by (induct xs) auto
  1427 
  1428 lemma in_set_butlastD: "x : set (butlast xs) ==> x : set xs"
  1429 by (induct xs) (auto split: split_if_asm)
  1430 
  1431 lemma in_set_butlast_appendI:
  1432 "x : set (butlast xs) | x : set (butlast ys) ==> x : set (butlast (xs @ ys))"
  1433 by (auto dest: in_set_butlastD simp add: butlast_append)
  1434 
  1435 lemma last_drop[simp]: "n < length xs \<Longrightarrow> last (drop n xs) = last xs"
  1436 apply (induct xs arbitrary: n)
  1437  apply simp
  1438 apply (auto split:nat.split)
  1439 done
  1440 
  1441 lemma last_conv_nth: "xs\<noteq>[] \<Longrightarrow> last xs = xs!(length xs - 1)"
  1442 by(induct xs)(auto simp:neq_Nil_conv)
  1443 
  1444 lemma butlast_conv_take: "butlast xs = take (length xs - 1) xs"
  1445 by (induct xs, simp, case_tac xs, simp_all)
  1446 
  1447 
  1448 subsubsection {* @{text take} and @{text drop} *}
  1449 
  1450 lemma take_0 [simp]: "take 0 xs = []"
  1451 by (induct xs) auto
  1452 
  1453 lemma drop_0 [simp]: "drop 0 xs = xs"
  1454 by (induct xs) auto
  1455 
  1456 lemma take_Suc_Cons [simp]: "take (Suc n) (x # xs) = x # take n xs"
  1457 by simp
  1458 
  1459 lemma drop_Suc_Cons [simp]: "drop (Suc n) (x # xs) = drop n xs"
  1460 by simp
  1461 
  1462 declare take_Cons [simp del] and drop_Cons [simp del]
  1463 
  1464 lemma take_Suc: "xs ~= [] ==> take (Suc n) xs = hd xs # take n (tl xs)"
  1465 by(clarsimp simp add:neq_Nil_conv)
  1466 
  1467 lemma drop_Suc: "drop (Suc n) xs = drop n (tl xs)"
  1468 by(cases xs, simp_all)
  1469 
  1470 lemma take_tl: "take n (tl xs) = tl (take (Suc n) xs)"
  1471 by (induct xs arbitrary: n) simp_all
  1472 
  1473 lemma drop_tl: "drop n (tl xs) = tl(drop n xs)"
  1474 by(induct xs arbitrary: n, simp_all add:drop_Cons drop_Suc split:nat.split)
  1475 
  1476 lemma tl_take: "tl (take n xs) = take (n - 1) (tl xs)"
  1477 by (cases n, simp, cases xs, auto)
  1478 
  1479 lemma tl_drop: "tl (drop n xs) = drop n (tl xs)"
  1480 by (simp only: drop_tl)
  1481 
  1482 lemma nth_via_drop: "drop n xs = y#ys \<Longrightarrow> xs!n = y"
  1483 apply (induct xs arbitrary: n, simp)
  1484 apply(simp add:drop_Cons nth_Cons split:nat.splits)
  1485 done
  1486 
  1487 lemma take_Suc_conv_app_nth:
  1488   "i < length xs \<Longrightarrow> take (Suc i) xs = take i xs @ [xs!i]"
  1489 apply (induct xs arbitrary: i, simp)
  1490 apply (case_tac i, auto)
  1491 done
  1492 
  1493 lemma drop_Suc_conv_tl:
  1494   "i < length xs \<Longrightarrow> (xs!i) # (drop (Suc i) xs) = drop i xs"
  1495 apply (induct xs arbitrary: i, simp)
  1496 apply (case_tac i, auto)
  1497 done
  1498 
  1499 lemma length_take [simp]: "length (take n xs) = min (length xs) n"
  1500 by (induct n arbitrary: xs) (auto, case_tac xs, auto)
  1501 
  1502 lemma length_drop [simp]: "length (drop n xs) = (length xs - n)"
  1503 by (induct n arbitrary: xs) (auto, case_tac xs, auto)
  1504 
  1505 lemma take_all [simp]: "length xs <= n ==> take n xs = xs"
  1506 by (induct n arbitrary: xs) (auto, case_tac xs, auto)
  1507 
  1508 lemma drop_all [simp]: "length xs <= n ==> drop n xs = []"
  1509 by (induct n arbitrary: xs) (auto, case_tac xs, auto)
  1510 
  1511 lemma take_append [simp]:
  1512   "take n (xs @ ys) = (take n xs @ take (n - length xs) ys)"
  1513 by (induct n arbitrary: xs) (auto, case_tac xs, auto)
  1514 
  1515 lemma drop_append [simp]:
  1516   "drop n (xs @ ys) = drop n xs @ drop (n - length xs) ys"
  1517 by (induct n arbitrary: xs) (auto, case_tac xs, auto)
  1518 
  1519 lemma take_take [simp]: "take n (take m xs) = take (min n m) xs"
  1520 apply (induct m arbitrary: xs n, auto)
  1521 apply (case_tac xs, auto)
  1522 apply (case_tac n, auto)
  1523 done
  1524 
  1525 lemma drop_drop [simp]: "drop n (drop m xs) = drop (n + m) xs"
  1526 apply (induct m arbitrary: xs, auto)
  1527 apply (case_tac xs, auto)
  1528 done
  1529 
  1530 lemma take_drop: "take n (drop m xs) = drop m (take (n + m) xs)"
  1531 apply (induct m arbitrary: xs n, auto)
  1532 apply (case_tac xs, auto)
  1533 done
  1534 
  1535 lemma drop_take: "drop n (take m xs) = take (m-n) (drop n xs)"
  1536 apply(induct xs arbitrary: m n)
  1537  apply simp
  1538 apply(simp add: take_Cons drop_Cons split:nat.split)
  1539 done
  1540 
  1541 lemma append_take_drop_id [simp]: "take n xs @ drop n xs = xs"
  1542 apply (induct n arbitrary: xs, auto)
  1543 apply (case_tac xs, auto)
  1544 done
  1545 
  1546 lemma take_eq_Nil[simp]: "(take n xs = []) = (n = 0 \<or> xs = [])"
  1547 apply(induct xs arbitrary: n)
  1548  apply simp
  1549 apply(simp add:take_Cons split:nat.split)
  1550 done
  1551 
  1552 lemma drop_eq_Nil[simp]: "(drop n xs = []) = (length xs <= n)"
  1553 apply(induct xs arbitrary: n)
  1554 apply simp
  1555 apply(simp add:drop_Cons split:nat.split)
  1556 done
  1557 
  1558 lemma take_map: "take n (map f xs) = map f (take n xs)"
  1559 apply (induct n arbitrary: xs, auto)
  1560 apply (case_tac xs, auto)
  1561 done
  1562 
  1563 lemma drop_map: "drop n (map f xs) = map f (drop n xs)"
  1564 apply (induct n arbitrary: xs, auto)
  1565 apply (case_tac xs, auto)
  1566 done
  1567 
  1568 lemma rev_take: "rev (take i xs) = drop (length xs - i) (rev xs)"
  1569 apply (induct xs arbitrary: i, auto)
  1570 apply (case_tac i, auto)
  1571 done
  1572 
  1573 lemma rev_drop: "rev (drop i xs) = take (length xs - i) (rev xs)"
  1574 apply (induct xs arbitrary: i, auto)
  1575 apply (case_tac i, auto)
  1576 done
  1577 
  1578 lemma nth_take [simp]: "i < n ==> (take n xs)!i = xs!i"
  1579 apply (induct xs arbitrary: i n, auto)
  1580 apply (case_tac n, blast)
  1581 apply (case_tac i, auto)
  1582 done
  1583 
  1584 lemma nth_drop [simp]:
  1585   "n + i <= length xs ==> (drop n xs)!i = xs!(n + i)"
  1586 apply (induct n arbitrary: xs i, auto)
  1587 apply (case_tac xs, auto)
  1588 done
  1589 
  1590 lemma butlast_take:
  1591   "n <= length xs ==> butlast (take n xs) = take (n - 1) xs"
  1592 by (simp add: butlast_conv_take min_max.inf_absorb1 min_max.inf_absorb2)
  1593 
  1594 lemma butlast_drop: "butlast (drop n xs) = drop n (butlast xs)"
  1595 by (simp add: butlast_conv_take drop_take)
  1596 
  1597 lemma take_butlast: "n < length xs ==> take n (butlast xs) = take n xs"
  1598 by (simp add: butlast_conv_take min_max.inf_absorb1)
  1599 
  1600 lemma drop_butlast: "drop n (butlast xs) = butlast (drop n xs)"
  1601 by (simp add: butlast_conv_take drop_take)
  1602 
  1603 lemma hd_drop_conv_nth: "\<lbrakk> xs \<noteq> []; n < length xs \<rbrakk> \<Longrightarrow> hd(drop n xs) = xs!n"
  1604 by(simp add: hd_conv_nth)
  1605 
  1606 lemma set_take_subset: "set(take n xs) \<subseteq> set xs"
  1607 by(induct xs arbitrary: n)(auto simp:take_Cons split:nat.split)
  1608 
  1609 lemma set_drop_subset: "set(drop n xs) \<subseteq> set xs"
  1610 by(induct xs arbitrary: n)(auto simp:drop_Cons split:nat.split)
  1611 
  1612 lemma in_set_takeD: "x : set(take n xs) \<Longrightarrow> x : set xs"
  1613 using set_take_subset by fast
  1614 
  1615 lemma in_set_dropD: "x : set(drop n xs) \<Longrightarrow> x : set xs"
  1616 using set_drop_subset by fast
  1617 
  1618 lemma append_eq_conv_conj:
  1619   "(xs @ ys = zs) = (xs = take (length xs) zs \<and> ys = drop (length xs) zs)"
  1620 apply (induct xs arbitrary: zs, simp, clarsimp)
  1621 apply (case_tac zs, auto)
  1622 done
  1623 
  1624 lemma take_add: 
  1625   "i+j \<le> length(xs) \<Longrightarrow> take (i+j) xs = take i xs @ take j (drop i xs)"
  1626 apply (induct xs arbitrary: i, auto) 
  1627 apply (case_tac i, simp_all)
  1628 done
  1629 
  1630 lemma append_eq_append_conv_if:
  1631  "(xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>1 @ ys\<^isub>2) =
  1632   (if size xs\<^isub>1 \<le> size ys\<^isub>1
  1633    then xs\<^isub>1 = take (size xs\<^isub>1) ys\<^isub>1 \<and> xs\<^isub>2 = drop (size xs\<^isub>1) ys\<^isub>1 @ ys\<^isub>2
  1634    else take (size ys\<^isub>1) xs\<^isub>1 = ys\<^isub>1 \<and> drop (size ys\<^isub>1) xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>2)"
  1635 apply(induct xs\<^isub>1 arbitrary: ys\<^isub>1)
  1636  apply simp
  1637 apply(case_tac ys\<^isub>1)
  1638 apply simp_all
  1639 done
  1640 
  1641 lemma take_hd_drop:
  1642   "n < length xs \<Longrightarrow> take n xs @ [hd (drop n xs)] = take (n+1) xs"
  1643 apply(induct xs arbitrary: n)
  1644 apply simp
  1645 apply(simp add:drop_Cons split:nat.split)
  1646 done
  1647 
  1648 lemma id_take_nth_drop:
  1649  "i < length xs \<Longrightarrow> xs = take i xs @ xs!i # drop (Suc i) xs" 
  1650 proof -
  1651   assume si: "i < length xs"
  1652   hence "xs = take (Suc i) xs @ drop (Suc i) xs" by auto
  1653   moreover
  1654   from si have "take (Suc i) xs = take i xs @ [xs!i]"
  1655     apply (rule_tac take_Suc_conv_app_nth) by arith
  1656   ultimately show ?thesis by auto
  1657 qed
  1658   
  1659 lemma upd_conv_take_nth_drop:
  1660  "i < length xs \<Longrightarrow> xs[i:=a] = take i xs @ a # drop (Suc i) xs"
  1661 proof -
  1662   assume i: "i < length xs"
  1663   have "xs[i:=a] = (take i xs @ xs!i # drop (Suc i) xs)[i:=a]"
  1664     by(rule arg_cong[OF id_take_nth_drop[OF i]])
  1665   also have "\<dots> = take i xs @ a # drop (Suc i) xs"
  1666     using i by (simp add: list_update_append)
  1667   finally show ?thesis .
  1668 qed
  1669 
  1670 lemma nth_drop':
  1671   "i < length xs \<Longrightarrow> xs ! i # drop (Suc i) xs = drop i xs"
  1672 apply (induct i arbitrary: xs)
  1673 apply (simp add: neq_Nil_conv)
  1674 apply (erule exE)+
  1675 apply simp
  1676 apply (case_tac xs)
  1677 apply simp_all
  1678 done
  1679 
  1680 
  1681 subsubsection {* @{text takeWhile} and @{text dropWhile} *}
  1682 
  1683 lemma takeWhile_dropWhile_id [simp]: "takeWhile P xs @ dropWhile P xs = xs"
  1684 by (induct xs) auto
  1685 
  1686 lemma takeWhile_append1 [simp]:
  1687 "[| x:set xs; ~P(x)|] ==> takeWhile P (xs @ ys) = takeWhile P xs"
  1688 by (induct xs) auto
  1689 
  1690 lemma takeWhile_append2 [simp]:
  1691 "(!!x. x : set xs ==> P x) ==> takeWhile P (xs @ ys) = xs @ takeWhile P ys"
  1692 by (induct xs) auto
  1693 
  1694 lemma takeWhile_tail: "\<not> P x ==> takeWhile P (xs @ (x#l)) = takeWhile P xs"
  1695 by (induct xs) auto
  1696 
  1697 lemma dropWhile_append1 [simp]:
  1698 "[| x : set xs; ~P(x)|] ==> dropWhile P (xs @ ys) = (dropWhile P xs)@ys"
  1699 by (induct xs) auto
  1700 
  1701 lemma dropWhile_append2 [simp]:
  1702 "(!!x. x:set xs ==> P(x)) ==> dropWhile P (xs @ ys) = dropWhile P ys"
  1703 by (induct xs) auto
  1704 
  1705 lemma set_takeWhileD: "x : set (takeWhile P xs) ==> x : set xs \<and> P x"
  1706 by (induct xs) (auto split: split_if_asm)
  1707 
  1708 lemma takeWhile_eq_all_conv[simp]:
  1709  "(takeWhile P xs = xs) = (\<forall>x \<in> set xs. P x)"
  1710 by(induct xs, auto)
  1711 
  1712 lemma dropWhile_eq_Nil_conv[simp]:
  1713  "(dropWhile P xs = []) = (\<forall>x \<in> set xs. P x)"
  1714 by(induct xs, auto)
  1715 
  1716 lemma dropWhile_eq_Cons_conv:
  1717  "(dropWhile P xs = y#ys) = (xs = takeWhile P xs @ y # ys & \<not> P y)"
  1718 by(induct xs, auto)
  1719 
  1720 text{* The following two lemmmas could be generalized to an arbitrary
  1721 property. *}
  1722 
  1723 lemma takeWhile_neq_rev: "\<lbrakk>distinct xs; x \<in> set xs\<rbrakk> \<Longrightarrow>
  1724  takeWhile (\<lambda>y. y \<noteq> x) (rev xs) = rev (tl (dropWhile (\<lambda>y. y \<noteq> x) xs))"
  1725 by(induct xs) (auto simp: takeWhile_tail[where l="[]"])
  1726 
  1727 lemma dropWhile_neq_rev: "\<lbrakk>distinct xs; x \<in> set xs\<rbrakk> \<Longrightarrow>
  1728   dropWhile (\<lambda>y. y \<noteq> x) (rev xs) = x # rev (takeWhile (\<lambda>y. y \<noteq> x) xs)"
  1729 apply(induct xs)
  1730  apply simp
  1731 apply auto
  1732 apply(subst dropWhile_append2)
  1733 apply auto
  1734 done
  1735 
  1736 lemma takeWhile_not_last:
  1737  "\<lbrakk> xs \<noteq> []; distinct xs\<rbrakk> \<Longrightarrow> takeWhile (\<lambda>y. y \<noteq> last xs) xs = butlast xs"
  1738 apply(induct xs)
  1739  apply simp
  1740 apply(case_tac xs)
  1741 apply(auto)
  1742 done
  1743 
  1744 lemma takeWhile_cong [fundef_cong, recdef_cong]:
  1745   "[| l = k; !!x. x : set l ==> P x = Q x |] 
  1746   ==> takeWhile P l = takeWhile Q k"
  1747 by (induct k arbitrary: l) (simp_all)
  1748 
  1749 lemma dropWhile_cong [fundef_cong, recdef_cong]:
  1750   "[| l = k; !!x. x : set l ==> P x = Q x |] 
  1751   ==> dropWhile P l = dropWhile Q k"
  1752 by (induct k arbitrary: l, simp_all)
  1753 
  1754 
  1755 subsubsection {* @{text zip} *}
  1756 
  1757 lemma zip_Nil [simp]: "zip [] ys = []"
  1758 by (induct ys) auto
  1759 
  1760 lemma zip_Cons_Cons [simp]: "zip (x # xs) (y # ys) = (x, y) # zip xs ys"
  1761 by simp
  1762 
  1763 declare zip_Cons [simp del]
  1764 
  1765 lemma zip_Cons1:
  1766  "zip (x#xs) ys = (case ys of [] \<Rightarrow> [] | y#ys \<Rightarrow> (x,y)#zip xs ys)"
  1767 by(auto split:list.split)
  1768 
  1769 lemma length_zip [simp]:
  1770 "length (zip xs ys) = min (length xs) (length ys)"
  1771 by (induct xs ys rule:list_induct2') auto
  1772 
  1773 lemma zip_append1:
  1774 "zip (xs @ ys) zs =
  1775 zip xs (take (length xs) zs) @ zip ys (drop (length xs) zs)"
  1776 by (induct xs zs rule:list_induct2') auto
  1777 
  1778 lemma zip_append2:
  1779 "zip xs (ys @ zs) =
  1780 zip (take (length ys) xs) ys @ zip (drop (length ys) xs) zs"
  1781 by (induct xs ys rule:list_induct2') auto
  1782 
  1783 lemma zip_append [simp]:
  1784  "[| length xs = length us; length ys = length vs |] ==>
  1785 zip (xs@ys) (us@vs) = zip xs us @ zip ys vs"
  1786 by (simp add: zip_append1)
  1787 
  1788 lemma zip_rev:
  1789 "length xs = length ys ==> zip (rev xs) (rev ys) = rev (zip xs ys)"
  1790 by (induct rule:list_induct2, simp_all)
  1791 
  1792 lemma map_zip_map:
  1793  "map f (zip (map g xs) ys) = map (%(x,y). f(g x, y)) (zip xs ys)"
  1794 apply(induct xs arbitrary:ys) apply simp
  1795 apply(case_tac ys)
  1796 apply simp_all
  1797 done
  1798 
  1799 lemma map_zip_map2:
  1800  "map f (zip xs (map g ys)) = map (%(x,y). f(x, g y)) (zip xs ys)"
  1801 apply(induct xs arbitrary:ys) apply simp
  1802 apply(case_tac ys)
  1803 apply simp_all
  1804 done
  1805 
  1806 lemma nth_zip [simp]:
  1807 "[| i < length xs; i < length ys|] ==> (zip xs ys)!i = (xs!i, ys!i)"
  1808 apply (induct ys arbitrary: i xs, simp)
  1809 apply (case_tac xs)
  1810  apply (simp_all add: nth.simps split: nat.split)
  1811 done
  1812 
  1813 lemma set_zip:
  1814 "set (zip xs ys) = {(xs!i, ys!i) | i. i < min (length xs) (length ys)}"
  1815 by (simp add: set_conv_nth cong: rev_conj_cong)
  1816 
  1817 lemma zip_update:
  1818 "length xs = length ys ==> zip (xs[i:=x]) (ys[i:=y]) = (zip xs ys)[i:=(x,y)]"
  1819 by (rule sym, simp add: update_zip)
  1820 
  1821 lemma zip_replicate [simp]:
  1822   "zip (replicate i x) (replicate j y) = replicate (min i j) (x,y)"
  1823 apply (induct i arbitrary: j, auto)
  1824 apply (case_tac j, auto)
  1825 done
  1826 
  1827 lemma take_zip:
  1828   "take n (zip xs ys) = zip (take n xs) (take n ys)"
  1829 apply (induct n arbitrary: xs ys)
  1830  apply simp
  1831 apply (case_tac xs, simp)
  1832 apply (case_tac ys, simp_all)
  1833 done
  1834 
  1835 lemma drop_zip:
  1836   "drop n (zip xs ys) = zip (drop n xs) (drop n ys)"
  1837 apply (induct n arbitrary: xs ys)
  1838  apply simp
  1839 apply (case_tac xs, simp)
  1840 apply (case_tac ys, simp_all)
  1841 done
  1842 
  1843 lemma set_zip_leftD:
  1844   "(x,y)\<in> set (zip xs ys) \<Longrightarrow> x \<in> set xs"
  1845 by (induct xs ys rule:list_induct2') auto
  1846 
  1847 lemma set_zip_rightD:
  1848   "(x,y)\<in> set (zip xs ys) \<Longrightarrow> y \<in> set ys"
  1849 by (induct xs ys rule:list_induct2') auto
  1850 
  1851 lemma in_set_zipE:
  1852   "(x,y) : set(zip xs ys) \<Longrightarrow> (\<lbrakk> x : set xs; y : set ys \<rbrakk> \<Longrightarrow> R) \<Longrightarrow> R"
  1853 by(blast dest: set_zip_leftD set_zip_rightD)
  1854 
  1855 lemma zip_map_fst_snd:
  1856   "zip (map fst zs) (map snd zs) = zs"
  1857   by (induct zs) simp_all
  1858 
  1859 lemma zip_eq_conv:
  1860   "length xs = length ys \<Longrightarrow> zip xs ys = zs \<longleftrightarrow> map fst zs = xs \<and> map snd zs = ys"
  1861   by (auto simp add: zip_map_fst_snd)
  1862 
  1863 
  1864 subsubsection {* @{text list_all2} *}
  1865 
  1866 lemma list_all2_lengthD [intro?]: 
  1867   "list_all2 P xs ys ==> length xs = length ys"
  1868 by (simp add: list_all2_def)
  1869 
  1870 lemma list_all2_Nil [iff, code]: "list_all2 P [] ys = (ys = [])"
  1871 by (simp add: list_all2_def)
  1872 
  1873 lemma list_all2_Nil2 [iff, code]: "list_all2 P xs [] = (xs = [])"
  1874 by (simp add: list_all2_def)
  1875 
  1876 lemma list_all2_Cons [iff, code]:
  1877   "list_all2 P (x # xs) (y # ys) = (P x y \<and> list_all2 P xs ys)"
  1878 by (auto simp add: list_all2_def)
  1879 
  1880 lemma list_all2_Cons1:
  1881 "list_all2 P (x # xs) ys = (\<exists>z zs. ys = z # zs \<and> P x z \<and> list_all2 P xs zs)"
  1882 by (cases ys) auto
  1883 
  1884 lemma list_all2_Cons2:
  1885 "list_all2 P xs (y # ys) = (\<exists>z zs. xs = z # zs \<and> P z y \<and> list_all2 P zs ys)"
  1886 by (cases xs) auto
  1887 
  1888 lemma list_all2_rev [iff]:
  1889 "list_all2 P (rev xs) (rev ys) = list_all2 P xs ys"
  1890 by (simp add: list_all2_def zip_rev cong: conj_cong)
  1891 
  1892 lemma list_all2_rev1:
  1893 "list_all2 P (rev xs) ys = list_all2 P xs (rev ys)"
  1894 by (subst list_all2_rev [symmetric]) simp
  1895 
  1896 lemma list_all2_append1:
  1897 "list_all2 P (xs @ ys) zs =
  1898 (EX us vs. zs = us @ vs \<and> length us = length xs \<and> length vs = length ys \<and>
  1899 list_all2 P xs us \<and> list_all2 P ys vs)"
  1900 apply (simp add: list_all2_def zip_append1)
  1901 apply (rule iffI)
  1902  apply (rule_tac x = "take (length xs) zs" in exI)
  1903  apply (rule_tac x = "drop (length xs) zs" in exI)
  1904  apply (force split: nat_diff_split simp add: min_def, clarify)
  1905 apply (simp add: ball_Un)
  1906 done
  1907 
  1908 lemma list_all2_append2:
  1909 "list_all2 P xs (ys @ zs) =
  1910 (EX us vs. xs = us @ vs \<and> length us = length ys \<and> length vs = length zs \<and>
  1911 list_all2 P us ys \<and> list_all2 P vs zs)"
  1912 apply (simp add: list_all2_def zip_append2)
  1913 apply (rule iffI)
  1914  apply (rule_tac x = "take (length ys) xs" in exI)
  1915  apply (rule_tac x = "drop (length ys) xs" in exI)
  1916  apply (force split: nat_diff_split simp add: min_def, clarify)
  1917 apply (simp add: ball_Un)
  1918 done
  1919 
  1920 lemma list_all2_append:
  1921   "length xs = length ys \<Longrightarrow>
  1922   list_all2 P (xs@us) (ys@vs) = (list_all2 P xs ys \<and> list_all2 P us vs)"
  1923 by (induct rule:list_induct2, simp_all)
  1924 
  1925 lemma list_all2_appendI [intro?, trans]:
  1926   "\<lbrakk> list_all2 P a b; list_all2 P c d \<rbrakk> \<Longrightarrow> list_all2 P (a@c) (b@d)"
  1927 by (simp add: list_all2_append list_all2_lengthD)
  1928 
  1929 lemma list_all2_conv_all_nth:
  1930 "list_all2 P xs ys =
  1931 (length xs = length ys \<and> (\<forall>i < length xs. P (xs!i) (ys!i)))"
  1932 by (force simp add: list_all2_def set_zip)
  1933 
  1934 lemma list_all2_trans:
  1935   assumes tr: "!!a b c. P1 a b ==> P2 b c ==> P3 a c"
  1936   shows "!!bs cs. list_all2 P1 as bs ==> list_all2 P2 bs cs ==> list_all2 P3 as cs"
  1937         (is "!!bs cs. PROP ?Q as bs cs")
  1938 proof (induct as)
  1939   fix x xs bs assume I1: "!!bs cs. PROP ?Q xs bs cs"
  1940   show "!!cs. PROP ?Q (x # xs) bs cs"
  1941   proof (induct bs)
  1942     fix y ys cs assume I2: "!!cs. PROP ?Q (x # xs) ys cs"
  1943     show "PROP ?Q (x # xs) (y # ys) cs"
  1944       by (induct cs) (auto intro: tr I1 I2)
  1945   qed simp
  1946 qed simp
  1947 
  1948 lemma list_all2_all_nthI [intro?]:
  1949   "length a = length b \<Longrightarrow> (\<And>n. n < length a \<Longrightarrow> P (a!n) (b!n)) \<Longrightarrow> list_all2 P a b"
  1950 by (simp add: list_all2_conv_all_nth)
  1951 
  1952 lemma list_all2I:
  1953   "\<forall>x \<in> set (zip a b). split P x \<Longrightarrow> length a = length b \<Longrightarrow> list_all2 P a b"
  1954 by (simp add: list_all2_def)
  1955 
  1956 lemma list_all2_nthD:
  1957   "\<lbrakk> list_all2 P xs ys; p < size xs \<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)"
  1958 by (simp add: list_all2_conv_all_nth)
  1959 
  1960 lemma list_all2_nthD2:
  1961   "\<lbrakk>list_all2 P xs ys; p < size ys\<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)"
  1962 by (frule list_all2_lengthD) (auto intro: list_all2_nthD)
  1963 
  1964 lemma list_all2_map1: 
  1965   "list_all2 P (map f as) bs = list_all2 (\<lambda>x y. P (f x) y) as bs"
  1966 by (simp add: list_all2_conv_all_nth)
  1967 
  1968 lemma list_all2_map2: 
  1969   "list_all2 P as (map f bs) = list_all2 (\<lambda>x y. P x (f y)) as bs"
  1970 by (auto simp add: list_all2_conv_all_nth)
  1971 
  1972 lemma list_all2_refl [intro?]:
  1973   "(\<And>x. P x x) \<Longrightarrow> list_all2 P xs xs"
  1974 by (simp add: list_all2_conv_all_nth)
  1975 
  1976 lemma list_all2_update_cong:
  1977   "\<lbrakk> i<size xs; list_all2 P xs ys; P x y \<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])"
  1978 by (simp add: list_all2_conv_all_nth nth_list_update)
  1979 
  1980 lemma list_all2_update_cong2:
  1981   "\<lbrakk>list_all2 P xs ys; P x y; i < length ys\<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])"
  1982 by (simp add: list_all2_lengthD list_all2_update_cong)
  1983 
  1984 lemma list_all2_takeI [simp,intro?]:
  1985   "list_all2 P xs ys \<Longrightarrow> list_all2 P (take n xs) (take n ys)"
  1986 apply (induct xs arbitrary: n ys)
  1987  apply simp
  1988 apply (clarsimp simp add: list_all2_Cons1)
  1989 apply (case_tac n)
  1990 apply auto
  1991 done
  1992 
  1993 lemma list_all2_dropI [simp,intro?]:
  1994   "list_all2 P as bs \<Longrightarrow> list_all2 P (drop n as) (drop n bs)"
  1995 apply (induct as arbitrary: n bs, simp)
  1996 apply (clarsimp simp add: list_all2_Cons1)
  1997 apply (case_tac n, simp, simp)
  1998 done
  1999 
  2000 lemma list_all2_mono [intro?]:
  2001   "list_all2 P xs ys \<Longrightarrow> (\<And>xs ys. P xs ys \<Longrightarrow> Q xs ys) \<Longrightarrow> list_all2 Q xs ys"
  2002 apply (induct xs arbitrary: ys, simp)
  2003 apply (case_tac ys, auto)
  2004 done
  2005 
  2006 lemma list_all2_eq:
  2007   "xs = ys \<longleftrightarrow> list_all2 (op =) xs ys"
  2008 by (induct xs ys rule: list_induct2') auto
  2009 
  2010 
  2011 subsubsection {* @{text foldl} and @{text foldr} *}
  2012 
  2013 lemma foldl_append [simp]:
  2014   "foldl f a (xs @ ys) = foldl f (foldl f a xs) ys"
  2015 by (induct xs arbitrary: a) auto
  2016 
  2017 lemma foldr_append[simp]: "foldr f (xs @ ys) a = foldr f xs (foldr f ys a)"
  2018 by (induct xs) auto
  2019 
  2020 lemma foldr_map: "foldr g (map f xs) a = foldr (g o f) xs a"
  2021 by(induct xs) simp_all
  2022 
  2023 text{* For efficient code generation: avoid intermediate list. *}
  2024 lemma foldl_map[code unfold]:
  2025   "foldl g a (map f xs) = foldl (%a x. g a (f x)) a xs"
  2026 by(induct xs arbitrary:a) simp_all
  2027 
  2028 lemma foldl_cong [fundef_cong, recdef_cong]:
  2029   "[| a = b; l = k; !!a x. x : set l ==> f a x = g a x |] 
  2030   ==> foldl f a l = foldl g b k"
  2031 by (induct k arbitrary: a b l) simp_all
  2032 
  2033 lemma foldr_cong [fundef_cong, recdef_cong]:
  2034   "[| a = b; l = k; !!a x. x : set l ==> f x a = g x a |] 
  2035   ==> foldr f l a = foldr g k b"
  2036 by (induct k arbitrary: a b l) simp_all
  2037 
  2038 lemma (in semigroup_add) foldl_assoc:
  2039 shows "foldl op+ (x+y) zs = x + (foldl op+ y zs)"
  2040 by (induct zs arbitrary: y) (simp_all add:add_assoc)
  2041 
  2042 lemma (in monoid_add) foldl_absorb0:
  2043 shows "x + (foldl op+ 0 zs) = foldl op+ x zs"
  2044 by (induct zs) (simp_all add:foldl_assoc)
  2045 
  2046 
  2047 text{* The ``First Duality Theorem'' in Bird \& Wadler: *}
  2048 
  2049 lemma foldl_foldr1_lemma:
  2050  "foldl op + a xs = a + foldr op + xs (0\<Colon>'a::monoid_add)"
  2051 by (induct xs arbitrary: a) (auto simp:add_assoc)
  2052 
  2053 corollary foldl_foldr1:
  2054  "foldl op + 0 xs = foldr op + xs (0\<Colon>'a::monoid_add)"
  2055 by (simp add:foldl_foldr1_lemma)
  2056 
  2057 
  2058 text{* The ``Third Duality Theorem'' in Bird \& Wadler: *}
  2059 
  2060 lemma foldr_foldl: "foldr f xs a = foldl (%x y. f y x) a (rev xs)"
  2061 by (induct xs) auto
  2062 
  2063 lemma foldl_foldr: "foldl f a xs = foldr (%x y. f y x) (rev xs) a"
  2064 by (simp add: foldr_foldl [of "%x y. f y x" "rev xs"])
  2065 
  2066 lemma (in ab_semigroup_add) foldr_conv_foldl: "foldr op + xs a = foldl op + a xs"
  2067   by (induct xs, auto simp add: foldl_assoc add_commute)
  2068 
  2069 text {*
  2070 Note: @{text "n \<le> foldl (op +) n ns"} looks simpler, but is more
  2071 difficult to use because it requires an additional transitivity step.
  2072 *}
  2073 
  2074 lemma start_le_sum: "(m::nat) <= n ==> m <= foldl (op +) n ns"
  2075 by (induct ns arbitrary: n) auto
  2076 
  2077 lemma elem_le_sum: "(n::nat) : set ns ==> n <= foldl (op +) 0 ns"
  2078 by (force intro: start_le_sum simp add: in_set_conv_decomp)
  2079 
  2080 lemma sum_eq_0_conv [iff]:
  2081   "(foldl (op +) (m::nat) ns = 0) = (m = 0 \<and> (\<forall>n \<in> set ns. n = 0))"
  2082 by (induct ns arbitrary: m) auto
  2083 
  2084 lemma foldr_invariant: 
  2085   "\<lbrakk>Q x ; \<forall> x\<in> set xs. P x; \<forall> x y. P x \<and> Q y \<longrightarrow> Q (f x y) \<rbrakk> \<Longrightarrow> Q (foldr f xs x)"
  2086   by (induct xs, simp_all)
  2087 
  2088 lemma foldl_invariant: 
  2089   "\<lbrakk>Q x ; \<forall> x\<in> set xs. P x; \<forall> x y. P x \<and> Q y \<longrightarrow> Q (f y x) \<rbrakk> \<Longrightarrow> Q (foldl f x xs)"
  2090   by (induct xs arbitrary: x, simp_all)
  2091 
  2092 text{* @{const foldl} and @{text concat} *}
  2093 
  2094 lemma foldl_conv_concat:
  2095   "foldl (op @) xs xss = xs @ concat xss"
  2096 proof (induct xss arbitrary: xs)
  2097   case Nil show ?case by simp
  2098 next
  2099   interpret monoid_add "[]" "op @" proof qed simp_all
  2100   case Cons then show ?case by (simp add: foldl_absorb0)
  2101 qed
  2102 
  2103 lemma concat_conv_foldl: "concat xss = foldl (op @) [] xss"
  2104   by (simp add: foldl_conv_concat)
  2105 
  2106 
  2107 subsubsection {* List summation: @{const listsum} and @{text"\<Sum>"}*}
  2108 
  2109 lemma listsum_append [simp]: "listsum (xs @ ys) = listsum xs + listsum ys"
  2110 by (induct xs) (simp_all add:add_assoc)
  2111 
  2112 lemma listsum_rev [simp]:
  2113   fixes xs :: "'a\<Colon>comm_monoid_add list"
  2114   shows "listsum (rev xs) = listsum xs"
  2115 by (induct xs) (simp_all add:add_ac)
  2116 
  2117 lemma listsum_foldr: "listsum xs = foldr (op +) xs 0"
  2118 by (induct xs) auto
  2119 
  2120 lemma length_concat: "length (concat xss) = listsum (map length xss)"
  2121 by (induct xss) simp_all
  2122 
  2123 text{* For efficient code generation ---
  2124        @{const listsum} is not tail recursive but @{const foldl} is. *}
  2125 lemma listsum[code unfold]: "listsum xs = foldl (op +) 0 xs"
  2126 by(simp add:listsum_foldr foldl_foldr1)
  2127 
  2128 
  2129 text{* Some syntactic sugar for summing a function over a list: *}
  2130 
  2131 syntax
  2132   "_listsum" :: "pttrn => 'a list => 'b => 'b"    ("(3SUM _<-_. _)" [0, 51, 10] 10)
  2133 syntax (xsymbols)
  2134   "_listsum" :: "pttrn => 'a list => 'b => 'b"    ("(3\<Sum>_\<leftarrow>_. _)" [0, 51, 10] 10)
  2135 syntax (HTML output)
  2136   "_listsum" :: "pttrn => 'a list => 'b => 'b"    ("(3\<Sum>_\<leftarrow>_. _)" [0, 51, 10] 10)
  2137 
  2138 translations -- {* Beware of argument permutation! *}
  2139   "SUM x<-xs. b" == "CONST listsum (map (%x. b) xs)"
  2140   "\<Sum>x\<leftarrow>xs. b" == "CONST listsum (map (%x. b) xs)"
  2141 
  2142 lemma listsum_triv: "(\<Sum>x\<leftarrow>xs. r) = of_nat (length xs) * r"
  2143   by (induct xs) (simp_all add: left_distrib)
  2144 
  2145 lemma listsum_0 [simp]: "(\<Sum>x\<leftarrow>xs. 0) = 0"
  2146   by (induct xs) (simp_all add: left_distrib)
  2147 
  2148 text{* For non-Abelian groups @{text xs} needs to be reversed on one side: *}
  2149 lemma uminus_listsum_map:
  2150   fixes f :: "'a \<Rightarrow> 'b\<Colon>ab_group_add"
  2151   shows "- listsum (map f xs) = (listsum (map (uminus o f) xs))"
  2152 by (induct xs) simp_all
  2153 
  2154 
  2155 subsubsection {* @{text upt} *}
  2156 
  2157 lemma upt_rec[code]: "[i..<j] = (if i<j then i#[Suc i..<j] else [])"
  2158 -- {* simp does not terminate! *}
  2159 by (induct j) auto
  2160 
  2161 lemma upt_conv_Nil [simp]: "j <= i ==> [i..<j] = []"
  2162 by (subst upt_rec) simp
  2163 
  2164 lemma upt_eq_Nil_conv[simp]: "([i..<j] = []) = (j = 0 \<or> j <= i)"
  2165 by(induct j)simp_all
  2166 
  2167 lemma upt_eq_Cons_conv:
  2168  "([i..<j] = x#xs) = (i < j & i = x & [i+1..<j] = xs)"
  2169 apply(induct j arbitrary: x xs)
  2170  apply simp
  2171 apply(clarsimp simp add: append_eq_Cons_conv)
  2172 apply arith
  2173 done
  2174 
  2175 lemma upt_Suc_append: "i <= j ==> [i..<(Suc j)] = [i..<j]@[j]"
  2176 -- {* Only needed if @{text upt_Suc} is deleted from the simpset. *}
  2177 by simp
  2178 
  2179 lemma upt_conv_Cons: "i < j ==> [i..<j] = i # [Suc i..<j]"
  2180   by (simp add: upt_rec)
  2181 
  2182 lemma upt_add_eq_append: "i<=j ==> [i..<j+k] = [i..<j]@[j..<j+k]"
  2183 -- {* LOOPS as a simprule, since @{text "j <= j"}. *}
  2184 by (induct k) auto
  2185 
  2186 lemma length_upt [simp]: "length [i..<j] = j - i"
  2187 by (induct j) (auto simp add: Suc_diff_le)
  2188 
  2189 lemma nth_upt [simp]: "i + k < j ==> [i..<j] ! k = i + k"
  2190 apply (induct j)
  2191 apply (auto simp add: less_Suc_eq nth_append split: nat_diff_split)
  2192 done
  2193 
  2194 
  2195 lemma hd_upt[simp]: "i < j \<Longrightarrow> hd[i..<j] = i"
  2196 by(simp add:upt_conv_Cons)
  2197 
  2198 lemma last_upt[simp]: "i < j \<Longrightarrow> last[i..<j] = j - 1"
  2199 apply(cases j)
  2200  apply simp
  2201 by(simp add:upt_Suc_append)
  2202 
  2203 lemma take_upt [simp]: "i+m <= n ==> take m [i..<n] = [i..<i+m]"
  2204 apply (induct m arbitrary: i, simp)
  2205 apply (subst upt_rec)
  2206 apply (rule sym)
  2207 apply (subst upt_rec)
  2208 apply (simp del: upt.simps)
  2209 done
  2210 
  2211 lemma drop_upt[simp]: "drop m [i..<j] = [i+m..<j]"
  2212 apply(induct j)
  2213 apply auto
  2214 done
  2215 
  2216 lemma map_Suc_upt: "map Suc [m..<n] = [Suc m..<Suc n]"
  2217 by (induct n) auto
  2218 
  2219 lemma nth_map_upt: "i < n-m ==> (map f [m..<n]) ! i = f(m+i)"
  2220 apply (induct n m  arbitrary: i rule: diff_induct)
  2221 prefer 3 apply (subst map_Suc_upt[symmetric])
  2222 apply (auto simp add: less_diff_conv nth_upt)
  2223 done
  2224 
  2225 lemma nth_take_lemma:
  2226   "k <= length xs ==> k <= length ys ==>
  2227      (!!i. i < k --> xs!i = ys!i) ==> take k xs = take k ys"
  2228 apply (atomize, induct k arbitrary: xs ys)
  2229 apply (simp_all add: less_Suc_eq_0_disj all_conj_distrib, clarify)
  2230 txt {* Both lists must be non-empty *}
  2231 apply (case_tac xs, simp)
  2232 apply (case_tac ys, clarify)
  2233  apply (simp (no_asm_use))
  2234 apply clarify
  2235 txt {* prenexing's needed, not miniscoping *}
  2236 apply (simp (no_asm_use) add: all_simps [symmetric] del: all_simps)
  2237 apply blast
  2238 done
  2239 
  2240 lemma nth_equalityI:
  2241  "[| length xs = length ys; ALL i < length xs. xs!i = ys!i |] ==> xs = ys"
  2242 apply (frule nth_take_lemma [OF le_refl eq_imp_le])
  2243 apply (simp_all add: take_all)
  2244 done
  2245 
  2246 lemma map_nth:
  2247   "map (\<lambda>i. xs ! i) [0..<length xs] = xs"
  2248   by (rule nth_equalityI, auto)
  2249 
  2250 (* needs nth_equalityI *)
  2251 lemma list_all2_antisym:
  2252   "\<lbrakk> (\<And>x y. \<lbrakk>P x y; Q y x\<rbrakk> \<Longrightarrow> x = y); list_all2 P xs ys; list_all2 Q ys xs \<rbrakk> 
  2253   \<Longrightarrow> xs = ys"
  2254   apply (simp add: list_all2_conv_all_nth) 
  2255   apply (rule nth_equalityI, blast, simp)
  2256   done
  2257 
  2258 lemma take_equalityI: "(\<forall>i. take i xs = take i ys) ==> xs = ys"
  2259 -- {* The famous take-lemma. *}
  2260 apply (drule_tac x = "max (length xs) (length ys)" in spec)
  2261 apply (simp add: le_max_iff_disj take_all)
  2262 done
  2263 
  2264 
  2265 lemma take_Cons':
  2266      "take n (x # xs) = (if n = 0 then [] else x # take (n - 1) xs)"
  2267 by (cases n) simp_all
  2268 
  2269 lemma drop_Cons':
  2270      "drop n (x # xs) = (if n = 0 then x # xs else drop (n - 1) xs)"
  2271 by (cases n) simp_all
  2272 
  2273 lemma nth_Cons': "(x # xs)!n = (if n = 0 then x else xs!(n - 1))"
  2274 by (cases n) simp_all
  2275 
  2276 lemmas take_Cons_number_of = take_Cons'[of "number_of v",standard]
  2277 lemmas drop_Cons_number_of = drop_Cons'[of "number_of v",standard]
  2278 lemmas nth_Cons_number_of = nth_Cons'[of _ _ "number_of v",standard]
  2279 
  2280 declare take_Cons_number_of [simp] 
  2281         drop_Cons_number_of [simp] 
  2282         nth_Cons_number_of [simp] 
  2283 
  2284 
  2285 subsubsection {* @{text "distinct"} and @{text remdups} *}
  2286 
  2287 lemma distinct_append [simp]:
  2288 "distinct (xs @ ys) = (distinct xs \<and> distinct ys \<and> set xs \<inter> set ys = {})"
  2289 by (induct xs) auto
  2290 
  2291 lemma distinct_rev[simp]: "distinct(rev xs) = distinct xs"
  2292 by(induct xs) auto
  2293 
  2294 lemma set_remdups [simp]: "set (remdups xs) = set xs"
  2295 by (induct xs) (auto simp add: insert_absorb)
  2296 
  2297 lemma distinct_remdups [iff]: "distinct (remdups xs)"
  2298 by (induct xs) auto
  2299 
  2300 lemma distinct_remdups_id: "distinct xs ==> remdups xs = xs"
  2301 by (induct xs, auto)
  2302 
  2303 lemma remdups_id_iff_distinct [simp]: "remdups xs = xs \<longleftrightarrow> distinct xs"
  2304 by (metis distinct_remdups distinct_remdups_id)
  2305 
  2306 lemma finite_distinct_list: "finite A \<Longrightarrow> EX xs. set xs = A & distinct xs"
  2307 by (metis distinct_remdups finite_list set_remdups)
  2308 
  2309 lemma remdups_eq_nil_iff [simp]: "(remdups x = []) = (x = [])"
  2310 by (induct x, auto) 
  2311 
  2312 lemma remdups_eq_nil_right_iff [simp]: "([] = remdups x) = (x = [])"
  2313 by (induct x, auto)
  2314 
  2315 lemma length_remdups_leq[iff]: "length(remdups xs) <= length xs"
  2316 by (induct xs) auto
  2317 
  2318 lemma length_remdups_eq[iff]:
  2319   "(length (remdups xs) = length xs) = (remdups xs = xs)"
  2320 apply(induct xs)
  2321  apply auto
  2322 apply(subgoal_tac "length (remdups xs) <= length xs")
  2323  apply arith
  2324 apply(rule length_remdups_leq)
  2325 done
  2326 
  2327 
  2328 lemma distinct_map:
  2329   "distinct(map f xs) = (distinct xs & inj_on f (set xs))"
  2330 by (induct xs) auto
  2331 
  2332 
  2333 lemma distinct_filter [simp]: "distinct xs ==> distinct (filter P xs)"
  2334 by (induct xs) auto
  2335 
  2336 lemma distinct_upt[simp]: "distinct[i..<j]"
  2337 by (induct j) auto
  2338 
  2339 lemma distinct_take[simp]: "distinct xs \<Longrightarrow> distinct (take i xs)"
  2340 apply(induct xs arbitrary: i)
  2341  apply simp
  2342 apply (case_tac i)
  2343  apply simp_all
  2344 apply(blast dest:in_set_takeD)
  2345 done
  2346 
  2347 lemma distinct_drop[simp]: "distinct xs \<Longrightarrow> distinct (drop i xs)"
  2348 apply(induct xs arbitrary: i)
  2349  apply simp
  2350 apply (case_tac i)
  2351  apply simp_all
  2352 done
  2353 
  2354 lemma distinct_list_update:
  2355 assumes d: "distinct xs" and a: "a \<notin> set xs - {xs!i}"
  2356 shows "distinct (xs[i:=a])"
  2357 proof (cases "i < length xs")
  2358   case True
  2359   with a have "a \<notin> set (take i xs @ xs ! i # drop (Suc i) xs) - {xs!i}"
  2360     apply (drule_tac id_take_nth_drop) by simp
  2361   with d True show ?thesis
  2362     apply (simp add: upd_conv_take_nth_drop)
  2363     apply (drule subst [OF id_take_nth_drop]) apply assumption
  2364     apply simp apply (cases "a = xs!i") apply simp by blast
  2365 next
  2366   case False with d show ?thesis by auto
  2367 qed
  2368 
  2369 
  2370 text {* It is best to avoid this indexed version of distinct, but
  2371 sometimes it is useful. *}
  2372 
  2373 lemma distinct_conv_nth:
  2374 "distinct xs = (\<forall>i < size xs. \<forall>j < size xs. i \<noteq> j --> xs!i \<noteq> xs!j)"
  2375 apply (induct xs, simp, simp)
  2376 apply (rule iffI, clarsimp)
  2377  apply (case_tac i)
  2378 apply (case_tac j, simp)
  2379 apply (simp add: set_conv_nth)
  2380  apply (case_tac j)
  2381 apply (clarsimp simp add: set_conv_nth, simp) 
  2382 apply (rule conjI)
  2383 (*TOO SLOW
  2384 apply (metis Zero_neq_Suc gr0_conv_Suc in_set_conv_nth lessI less_trans_Suc nth_Cons' nth_Cons_Suc)
  2385 *)
  2386  apply (clarsimp simp add: set_conv_nth)
  2387  apply (erule_tac x = 0 in allE, simp)
  2388  apply (erule_tac x = "Suc i" in allE, simp, clarsimp)
  2389 (*TOO SLOW
  2390 apply (metis Suc_Suc_eq lessI less_trans_Suc nth_Cons_Suc)
  2391 *)
  2392 apply (erule_tac x = "Suc i" in allE, simp)
  2393 apply (erule_tac x = "Suc j" in allE, simp)
  2394 done
  2395 
  2396 lemma nth_eq_iff_index_eq:
  2397  "\<lbrakk> distinct xs; i < length xs; j < length xs \<rbrakk> \<Longrightarrow> (xs!i = xs!j) = (i = j)"
  2398 by(auto simp: distinct_conv_nth)
  2399 
  2400 lemma distinct_card: "distinct xs ==> card (set xs) = size xs"
  2401 by (induct xs) auto
  2402 
  2403 lemma card_distinct: "card (set xs) = size xs ==> distinct xs"
  2404 proof (induct xs)
  2405   case Nil thus ?case by simp
  2406 next
  2407   case (Cons x xs)
  2408   show ?case
  2409   proof (cases "x \<in> set xs")
  2410     case False with Cons show ?thesis by simp
  2411   next
  2412     case True with Cons.prems
  2413     have "card (set xs) = Suc (length xs)" 
  2414       by (simp add: card_insert_if split: split_if_asm)
  2415     moreover have "card (set xs) \<le> length xs" by (rule card_length)
  2416     ultimately have False by simp
  2417     thus ?thesis ..
  2418   qed
  2419 qed
  2420 
  2421 lemma not_distinct_decomp: "~ distinct ws ==> EX xs ys zs y. ws = xs@[y]@ys@[y]@zs"
  2422 apply (induct n == "length ws" arbitrary:ws) apply simp
  2423 apply(case_tac ws) apply simp
  2424 apply (simp split:split_if_asm)
  2425 apply (metis Cons_eq_appendI eq_Nil_appendI split_list)
  2426 done
  2427 
  2428 lemma length_remdups_concat:
  2429  "length(remdups(concat xss)) = card(\<Union>xs \<in> set xss. set xs)"
  2430 by(simp add: set_concat distinct_card[symmetric])
  2431 
  2432 
  2433 subsubsection {* @{text remove1} *}
  2434 
  2435 lemma remove1_append:
  2436   "remove1 x (xs @ ys) =
  2437   (if x \<in> set xs then remove1 x xs @ ys else xs @ remove1 x ys)"
  2438 by (induct xs) auto
  2439 
  2440 lemma in_set_remove1[simp]:
  2441   "a \<noteq> b \<Longrightarrow> a : set(remove1 b xs) = (a : set xs)"
  2442 apply (induct xs)
  2443 apply auto
  2444 done
  2445 
  2446 lemma set_remove1_subset: "set(remove1 x xs) <= set xs"
  2447 apply(induct xs)
  2448  apply simp
  2449 apply simp
  2450 apply blast
  2451 done
  2452 
  2453 lemma set_remove1_eq [simp]: "distinct xs ==> set(remove1 x xs) = set xs - {x}"
  2454 apply(induct xs)
  2455  apply simp
  2456 apply simp
  2457 apply blast
  2458 done
  2459 
  2460 lemma length_remove1:
  2461   "length(remove1 x xs) = (if x : set xs then length xs - 1 else length xs)"
  2462 apply (induct xs)
  2463  apply (auto dest!:length_pos_if_in_set)
  2464 done
  2465 
  2466 lemma remove1_filter_not[simp]:
  2467   "\<not> P x \<Longrightarrow> remove1 x (filter P xs) = filter P xs"
  2468 by(induct xs) auto
  2469 
  2470 lemma notin_set_remove1[simp]: "x ~: set xs ==> x ~: set(remove1 y xs)"
  2471 apply(insert set_remove1_subset)
  2472 apply fast
  2473 done
  2474 
  2475 lemma distinct_remove1[simp]: "distinct xs ==> distinct(remove1 x xs)"
  2476 by (induct xs) simp_all
  2477 
  2478 
  2479 subsubsection {* @{text removeAll} *}
  2480 
  2481 lemma removeAll_append[simp]:
  2482   "removeAll x (xs @ ys) = removeAll x xs @ removeAll x ys"
  2483 by (induct xs) auto
  2484 
  2485 lemma set_removeAll[simp]: "set(removeAll x xs) = set xs - {x}"
  2486 by (induct xs) auto
  2487 
  2488 lemma removeAll_id[simp]: "x \<notin> set xs \<Longrightarrow> removeAll x xs = xs"
  2489 by (induct xs) auto
  2490 
  2491 (* Needs count:: 'a \<Rightarrow> a' list \<Rightarrow> nat
  2492 lemma length_removeAll:
  2493   "length(removeAll x xs) = length xs - count x xs"
  2494 *)
  2495 
  2496 lemma removeAll_filter_not[simp]:
  2497   "\<not> P x \<Longrightarrow> removeAll x (filter P xs) = filter P xs"
  2498 by(induct xs) auto
  2499 
  2500 
  2501 lemma distinct_remove1_removeAll:
  2502   "distinct xs ==> remove1 x xs = removeAll x xs"
  2503 by (induct xs) simp_all
  2504 
  2505 lemma map_removeAll_inj_on: "inj_on f (insert x (set xs)) \<Longrightarrow>
  2506   map f (removeAll x xs) = removeAll (f x) (map f xs)"
  2507 by (induct xs) (simp_all add:inj_on_def)
  2508 
  2509 lemma map_removeAll_inj: "inj f \<Longrightarrow>
  2510   map f (removeAll x xs) = removeAll (f x) (map f xs)"
  2511 by(metis map_removeAll_inj_on subset_inj_on subset_UNIV)
  2512 
  2513 
  2514 subsubsection {* @{text replicate} *}
  2515 
  2516 lemma length_replicate [simp]: "length (replicate n x) = n"
  2517 by (induct n) auto
  2518 
  2519 lemma map_replicate [simp]: "map f (replicate n x) = replicate n (f x)"
  2520 by (induct n) auto
  2521 
  2522 lemma replicate_app_Cons_same:
  2523 "(replicate n x) @ (x # xs) = x # replicate n x @ xs"
  2524 by (induct n) auto
  2525 
  2526 lemma rev_replicate [simp]: "rev (replicate n x) = replicate n x"
  2527 apply (induct n, simp)
  2528 apply (simp add: replicate_app_Cons_same)
  2529 done
  2530 
  2531 lemma replicate_add: "replicate (n + m) x = replicate n x @ replicate m x"
  2532 by (induct n) auto
  2533 
  2534 text{* Courtesy of Matthias Daum: *}
  2535 lemma append_replicate_commute:
  2536   "replicate n x @ replicate k x = replicate k x @ replicate n x"
  2537 apply (simp add: replicate_add [THEN sym])
  2538 apply (simp add: add_commute)
  2539 done
  2540 
  2541 lemma hd_replicate [simp]: "n \<noteq> 0 ==> hd (replicate n x) = x"
  2542 by (induct n) auto
  2543 
  2544 lemma tl_replicate [simp]: "n \<noteq> 0 ==> tl (replicate n x) = replicate (n - 1) x"
  2545 by (induct n) auto
  2546 
  2547 lemma last_replicate [simp]: "n \<noteq> 0 ==> last (replicate n x) = x"
  2548 by (atomize (full), induct n) auto
  2549 
  2550 lemma nth_replicate[simp]: "i < n ==> (replicate n x)!i = x"
  2551 apply (induct n arbitrary: i, simp)
  2552 apply (simp add: nth_Cons split: nat.split)
  2553 done
  2554 
  2555 text{* Courtesy of Matthias Daum (2 lemmas): *}
  2556 lemma take_replicate[simp]: "take i (replicate k x) = replicate (min i k) x"
  2557 apply (case_tac "k \<le> i")
  2558  apply  (simp add: min_def)
  2559 apply (drule not_leE)
  2560 apply (simp add: min_def)
  2561 apply (subgoal_tac "replicate k x = replicate i x @ replicate (k - i) x")
  2562  apply  simp
  2563 apply (simp add: replicate_add [symmetric])
  2564 done
  2565 
  2566 lemma drop_replicate[simp]: "drop i (replicate k x) = replicate (k-i) x"
  2567 apply (induct k arbitrary: i)
  2568  apply simp
  2569 apply clarsimp
  2570 apply (case_tac i)
  2571  apply simp
  2572 apply clarsimp
  2573 done
  2574 
  2575 
  2576 lemma set_replicate_Suc: "set (replicate (Suc n) x) = {x}"
  2577 by (induct n) auto
  2578 
  2579 lemma set_replicate [simp]: "n \<noteq> 0 ==> set (replicate n x) = {x}"
  2580 by (fast dest!: not0_implies_Suc intro!: set_replicate_Suc)
  2581 
  2582 lemma set_replicate_conv_if: "set (replicate n x) = (if n = 0 then {} else {x})"
  2583 by auto
  2584 
  2585 lemma in_set_replicateD: "x : set (replicate n y) ==> x = y"
  2586 by (simp add: set_replicate_conv_if split: split_if_asm)
  2587 
  2588 lemma replicate_append_same:
  2589   "replicate i x @ [x] = x # replicate i x"
  2590   by (induct i) simp_all
  2591 
  2592 lemma map_replicate_trivial:
  2593   "map (\<lambda>i. x) [0..<i] = replicate i x"
  2594   by (induct i) (simp_all add: replicate_append_same)
  2595 
  2596 
  2597 lemma replicate_empty[simp]: "(replicate n x = []) \<longleftrightarrow> n=0"
  2598 by (induct n) auto
  2599 
  2600 lemma empty_replicate[simp]: "([] = replicate n x) \<longleftrightarrow> n=0"
  2601 by (induct n) auto
  2602 
  2603 lemma replicate_eq_replicate[simp]:
  2604   "(replicate m x = replicate n y) \<longleftrightarrow> (m=n & (m\<noteq>0 \<longrightarrow> x=y))"
  2605 apply(induct m arbitrary: n)
  2606  apply simp
  2607 apply(induct_tac n)
  2608 apply auto
  2609 done
  2610 
  2611 
  2612 subsubsection{*@{text rotate1} and @{text rotate}*}
  2613 
  2614 lemma rotate_simps[simp]: "rotate1 [] = [] \<and> rotate1 (x#xs) = xs @ [x]"
  2615 by(simp add:rotate1_def)
  2616 
  2617 lemma rotate0[simp]: "rotate 0 = id"
  2618 by(simp add:rotate_def)
  2619 
  2620 lemma rotate_Suc[simp]: "rotate (Suc n) xs = rotate1(rotate n xs)"
  2621 by(simp add:rotate_def)
  2622 
  2623 lemma rotate_add:
  2624   "rotate (m+n) = rotate m o rotate n"
  2625 by(simp add:rotate_def funpow_add)
  2626 
  2627 lemma rotate_rotate: "rotate m (rotate n xs) = rotate (m+n) xs"
  2628 by(simp add:rotate_add)
  2629 
  2630 lemma rotate1_rotate_swap: "rotate1 (rotate n xs) = rotate n (rotate1 xs)"
  2631 by(simp add:rotate_def funpow_swap1)
  2632 
  2633 lemma rotate1_length01[simp]: "length xs <= 1 \<Longrightarrow> rotate1 xs = xs"
  2634 by(cases xs) simp_all
  2635 
  2636 lemma rotate_length01[simp]: "length xs <= 1 \<Longrightarrow> rotate n xs = xs"
  2637 apply(induct n)
  2638  apply simp
  2639 apply (simp add:rotate_def)
  2640 done
  2641 
  2642 lemma rotate1_hd_tl: "xs \<noteq> [] \<Longrightarrow> rotate1 xs = tl xs @ [hd xs]"
  2643 by(simp add:rotate1_def split:list.split)
  2644 
  2645 lemma rotate_drop_take:
  2646   "rotate n xs = drop (n mod length xs) xs @ take (n mod length xs) xs"
  2647 apply(induct n)
  2648  apply simp
  2649 apply(simp add:rotate_def)
  2650 apply(cases "xs = []")
  2651  apply (simp)
  2652 apply(case_tac "n mod length xs = 0")
  2653  apply(simp add:mod_Suc)
  2654  apply(simp add: rotate1_hd_tl drop_Suc take_Suc)
  2655 apply(simp add:mod_Suc rotate1_hd_tl drop_Suc[symmetric] drop_tl[symmetric]
  2656                 take_hd_drop linorder_not_le)
  2657 done
  2658 
  2659 lemma rotate_conv_mod: "rotate n xs = rotate (n mod length xs) xs"
  2660 by(simp add:rotate_drop_take)
  2661 
  2662 lemma rotate_id[simp]: "n mod length xs = 0 \<Longrightarrow> rotate n xs = xs"
  2663 by(simp add:rotate_drop_take)
  2664 
  2665 lemma length_rotate1[simp]: "length(rotate1 xs) = length xs"
  2666 by(simp add:rotate1_def split:list.split)
  2667 
  2668 lemma length_rotate[simp]: "length(rotate n xs) = length xs"
  2669 by (induct n arbitrary: xs) (simp_all add:rotate_def)
  2670 
  2671 lemma distinct1_rotate[simp]: "distinct(rotate1 xs) = distinct xs"
  2672 by(simp add:rotate1_def split:list.split) blast
  2673 
  2674 lemma distinct_rotate[simp]: "distinct(rotate n xs) = distinct xs"
  2675 by (induct n) (simp_all add:rotate_def)
  2676 
  2677 lemma rotate_map: "rotate n (map f xs) = map f (rotate n xs)"
  2678 by(simp add:rotate_drop_take take_map drop_map)
  2679 
  2680 lemma set_rotate1[simp]: "set(rotate1 xs) = set xs"
  2681 by(simp add:rotate1_def split:list.split)
  2682 
  2683 lemma set_rotate[simp]: "set(rotate n xs) = set xs"
  2684 by (induct n) (simp_all add:rotate_def)
  2685 
  2686 lemma rotate1_is_Nil_conv[simp]: "(rotate1 xs = []) = (xs = [])"
  2687 by(simp add:rotate1_def split:list.split)
  2688 
  2689 lemma rotate_is_Nil_conv[simp]: "(rotate n xs = []) = (xs = [])"
  2690 by (induct n) (simp_all add:rotate_def)
  2691 
  2692 lemma rotate_rev:
  2693   "rotate n (rev xs) = rev(rotate (length xs - (n mod length xs)) xs)"
  2694 apply(simp add:rotate_drop_take rev_drop rev_take)
  2695 apply(cases "length xs = 0")
  2696  apply simp
  2697 apply(cases "n mod length xs = 0")
  2698  apply simp
  2699 apply(simp add:rotate_drop_take rev_drop rev_take)
  2700 done
  2701 
  2702 lemma hd_rotate_conv_nth: "xs \<noteq> [] \<Longrightarrow> hd(rotate n xs) = xs!(n mod length xs)"
  2703 apply(simp add:rotate_drop_take hd_append hd_drop_conv_nth hd_conv_nth)
  2704 apply(subgoal_tac "length xs \<noteq> 0")
  2705  prefer 2 apply simp
  2706 using mod_less_divisor[of "length xs" n] by arith
  2707 
  2708 
  2709 subsubsection {* @{text sublist} --- a generalization of @{text nth} to sets *}
  2710 
  2711 lemma sublist_empty [simp]: "sublist xs {} = []"
  2712 by (auto simp add: sublist_def)
  2713 
  2714 lemma sublist_nil [simp]: "sublist [] A = []"
  2715 by (auto simp add: sublist_def)
  2716 
  2717 lemma length_sublist:
  2718   "length(sublist xs I) = card{i. i < length xs \<and> i : I}"
  2719 by(simp add: sublist_def length_filter_conv_card cong:conj_cong)
  2720 
  2721 lemma sublist_shift_lemma_Suc:
  2722   "map fst (filter (%p. P(Suc(snd p))) (zip xs is)) =
  2723    map fst (filter (%p. P(snd p)) (zip xs (map Suc is)))"
  2724 apply(induct xs arbitrary: "is")
  2725  apply simp
  2726 apply (case_tac "is")
  2727  apply simp
  2728 apply simp
  2729 done
  2730 
  2731 lemma sublist_shift_lemma:
  2732      "map fst [p<-zip xs [i..<i + length xs] . snd p : A] =
  2733       map fst [p<-zip xs [0..<length xs] . snd p + i : A]"
  2734 by (induct xs rule: rev_induct) (simp_all add: add_commute)
  2735 
  2736 lemma sublist_append:
  2737      "sublist (l @ l') A = sublist l A @ sublist l' {j. j + length l : A}"
  2738 apply (unfold sublist_def)
  2739 apply (induct l' rule: rev_induct, simp)
  2740 apply (simp add: upt_add_eq_append[of 0] zip_append sublist_shift_lemma)
  2741 apply (simp add: add_commute)
  2742 done
  2743 
  2744 lemma sublist_Cons:
  2745 "sublist (x # l) A = (if 0:A then [x] else []) @ sublist l {j. Suc j : A}"
  2746 apply (induct l rule: rev_induct)
  2747  apply (simp add: sublist_def)
  2748 apply (simp del: append_Cons add: append_Cons[symmetric] sublist_append)
  2749 done
  2750 
  2751 lemma set_sublist: "set(sublist xs I) = {xs!i|i. i<size xs \<and> i \<in> I}"
  2752 apply(induct xs arbitrary: I)
  2753 apply(auto simp: sublist_Cons nth_Cons split:nat.split dest!: gr0_implies_Suc)
  2754 done
  2755 
  2756 lemma set_sublist_subset: "set(sublist xs I) \<subseteq> set xs"
  2757 by(auto simp add:set_sublist)
  2758 
  2759 lemma notin_set_sublistI[simp]: "x \<notin> set xs \<Longrightarrow> x \<notin> set(sublist xs I)"
  2760 by(auto simp add:set_sublist)
  2761 
  2762 lemma in_set_sublistD: "x \<in> set(sublist xs I) \<Longrightarrow> x \<in> set xs"
  2763 by(auto simp add:set_sublist)
  2764 
  2765 lemma sublist_singleton [simp]: "sublist [x] A = (if 0 : A then [x] else [])"
  2766 by (simp add: sublist_Cons)
  2767 
  2768 
  2769 lemma distinct_sublistI[simp]: "distinct xs \<Longrightarrow> distinct(sublist xs I)"
  2770 apply(induct xs arbitrary: I)
  2771  apply simp
  2772 apply(auto simp add:sublist_Cons)
  2773 done
  2774 
  2775 
  2776 lemma sublist_upt_eq_take [simp]: "sublist l {..<n} = take n l"
  2777 apply (induct l rule: rev_induct, simp)
  2778 apply (simp split: nat_diff_split add: sublist_append)
  2779 done
  2780 
  2781 lemma filter_in_sublist:
  2782  "distinct xs \<Longrightarrow> filter (%x. x \<in> set(sublist xs s)) xs = sublist xs s"
  2783 proof (induct xs arbitrary: s)
  2784   case Nil thus ?case by simp
  2785 next
  2786   case (Cons a xs)
  2787   moreover hence "!x. x: set xs \<longrightarrow> x \<noteq> a" by auto
  2788   ultimately show ?case by(simp add: sublist_Cons cong:filter_cong)
  2789 qed
  2790 
  2791 
  2792 subsubsection {* @{const splice} *}
  2793 
  2794 lemma splice_Nil2 [simp, code]:
  2795  "splice xs [] = xs"
  2796 by (cases xs) simp_all
  2797 
  2798 lemma splice_Cons_Cons [simp, code]:
  2799  "splice (x#xs) (y#ys) = x # y # splice xs ys"
  2800 by simp
  2801 
  2802 declare splice.simps(2) [simp del, code del]
  2803 
  2804 lemma length_splice[simp]: "length(splice xs ys) = length xs + length ys"
  2805 apply(induct xs arbitrary: ys) apply simp
  2806 apply(case_tac ys)
  2807  apply auto
  2808 done
  2809 
  2810 
  2811 subsubsection {* Infiniteness *}
  2812 
  2813 lemma finite_maxlen:
  2814   "finite (M::'a list set) ==> EX n. ALL s:M. size s < n"
  2815 proof (induct rule: finite.induct)
  2816   case emptyI show ?case by simp
  2817 next
  2818   case (insertI M xs)
  2819   then obtain n where "\<forall>s\<in>M. length s < n" by blast
  2820   hence "ALL s:insert xs M. size s < max n (size xs) + 1" by auto
  2821   thus ?case ..
  2822 qed
  2823 
  2824 lemma infinite_UNIV_listI: "~ finite(UNIV::'a list set)"
  2825 apply(rule notI)
  2826 apply(drule finite_maxlen)
  2827 apply (metis UNIV_I length_replicate less_not_refl)
  2828 done
  2829 
  2830 
  2831 subsection {*Sorting*}
  2832 
  2833 text{* Currently it is not shown that @{const sort} returns a
  2834 permutation of its input because the nicest proof is via multisets,
  2835 which are not yet available. Alternatively one could define a function
  2836 that counts the number of occurrences of an element in a list and use
  2837 that instead of multisets to state the correctness property. *}
  2838 
  2839 context linorder
  2840 begin
  2841 
  2842 lemma sorted_Cons: "sorted (x#xs) = (sorted xs & (ALL y:set xs. x <= y))"
  2843 apply(induct xs arbitrary: x) apply simp
  2844 by simp (blast intro: order_trans)
  2845 
  2846 lemma sorted_append:
  2847   "sorted (xs@ys) = (sorted xs & sorted ys & (\<forall>x \<in> set xs. \<forall>y \<in> set ys. x\<le>y))"
  2848 by (induct xs) (auto simp add:sorted_Cons)
  2849 
  2850 lemma set_insort: "set(insort x xs) = insert x (set xs)"
  2851 by (induct xs) auto
  2852 
  2853 lemma set_sort[simp]: "set(sort xs) = set xs"
  2854 by (induct xs) (simp_all add:set_insort)
  2855 
  2856 lemma distinct_insort: "distinct (insort x xs) = (x \<notin> set xs \<and> distinct xs)"
  2857 by(induct xs)(auto simp:set_insort)
  2858 
  2859 lemma distinct_sort[simp]: "distinct (sort xs) = distinct xs"
  2860 by(induct xs)(simp_all add:distinct_insort set_sort)
  2861 
  2862 lemma sorted_insort: "sorted (insort x xs) = sorted xs"
  2863 apply (induct xs)
  2864  apply(auto simp:sorted_Cons set_insort)
  2865 done
  2866 
  2867 theorem sorted_sort[simp]: "sorted (sort xs)"
  2868 by (induct xs) (auto simp:sorted_insort)
  2869 
  2870 lemma insort_is_Cons: "\<forall>x\<in>set xs. a \<le> x \<Longrightarrow> insort a xs = a # xs"
  2871 by (cases xs) auto
  2872 
  2873 lemma sorted_remove1: "sorted xs \<Longrightarrow> sorted (remove1 a xs)"
  2874 by (induct xs, auto simp add: sorted_Cons)
  2875 
  2876 lemma insort_remove1: "\<lbrakk> a \<in> set xs; sorted xs \<rbrakk> \<Longrightarrow> insort a (remove1 a xs) = xs"
  2877 by (induct xs, auto simp add: sorted_Cons insort_is_Cons)
  2878 
  2879 lemma sorted_remdups[simp]:
  2880   "sorted l \<Longrightarrow> sorted (remdups l)"
  2881 by (induct l) (auto simp: sorted_Cons)
  2882 
  2883 lemma sorted_distinct_set_unique:
  2884 assumes "sorted xs" "distinct xs" "sorted ys" "distinct ys" "set xs = set ys"
  2885 shows "xs = ys"
  2886 proof -
  2887   from assms have 1: "length xs = length ys" by (auto dest!: distinct_card)
  2888   from assms show ?thesis
  2889   proof(induct rule:list_induct2[OF 1])
  2890     case 1 show ?case by simp
  2891   next
  2892     case 2 thus ?case by (simp add:sorted_Cons)
  2893        (metis Diff_insert_absorb antisym insertE insert_iff)
  2894   qed
  2895 qed
  2896 
  2897 lemma finite_sorted_distinct_unique:
  2898 shows "finite A \<Longrightarrow> EX! xs. set xs = A & sorted xs & distinct xs"
  2899 apply(drule finite_distinct_list)
  2900 apply clarify
  2901 apply(rule_tac a="sort xs" in ex1I)
  2902 apply (auto simp: sorted_distinct_set_unique)
  2903 done
  2904 
  2905 lemma sorted_take:
  2906   "sorted xs \<Longrightarrow> sorted (take n xs)"
  2907 proof (induct xs arbitrary: n rule: sorted.induct)
  2908   case 1 show ?case by simp
  2909 next
  2910   case 2 show ?case by (cases n) simp_all
  2911 next
  2912   case (3 x y xs)
  2913   then have "x \<le> y" by simp
  2914   show ?case proof (cases n)
  2915     case 0 then show ?thesis by simp
  2916   next
  2917     case (Suc m) 
  2918     with 3 have "sorted (take m (y # xs))" by simp
  2919     with Suc  `x \<le> y` show ?thesis by (cases m) simp_all
  2920   qed
  2921 qed
  2922 
  2923 lemma sorted_drop:
  2924   "sorted xs \<Longrightarrow> sorted (drop n xs)"
  2925 proof (induct xs arbitrary: n rule: sorted.induct)
  2926   case 1 show ?case by simp
  2927 next
  2928   case 2 show ?case by (cases n) simp_all
  2929 next
  2930   case 3 then show ?case by (cases n) simp_all
  2931 qed
  2932 
  2933 
  2934 end
  2935 
  2936 lemma sorted_upt[simp]: "sorted[i..<j]"
  2937 by (induct j) (simp_all add:sorted_append)
  2938 
  2939 
  2940 subsubsection {* @{text sorted_list_of_set} *}
  2941 
  2942 text{* This function maps (finite) linearly ordered sets to sorted
  2943 lists. Warning: in most cases it is not a good idea to convert from
  2944 sets to lists but one should convert in the other direction (via
  2945 @{const set}). *}
  2946 
  2947 
  2948 context linorder
  2949 begin
  2950 
  2951 definition
  2952  sorted_list_of_set :: "'a set \<Rightarrow> 'a list" where
  2953  [code del]: "sorted_list_of_set A == THE xs. set xs = A & sorted xs & distinct xs"
  2954 
  2955 lemma sorted_list_of_set[simp]: "finite A \<Longrightarrow>
  2956   set(sorted_list_of_set A) = A &
  2957   sorted(sorted_list_of_set A) & distinct(sorted_list_of_set A)"
  2958 apply(simp add:sorted_list_of_set_def)
  2959 apply(rule the1I2)
  2960  apply(simp_all add: finite_sorted_distinct_unique)
  2961 done
  2962 
  2963 lemma sorted_list_of_empty[simp]: "sorted_list_of_set {} = []"
  2964 unfolding sorted_list_of_set_def
  2965 apply(subst the_equality[of _ "[]"])
  2966 apply simp_all
  2967 done
  2968 
  2969 end
  2970 
  2971 
  2972 subsubsection {* @{text upto}: the generic interval-list *}
  2973 
  2974 class finite_intvl_succ = linorder +
  2975 fixes successor :: "'a \<Rightarrow> 'a"
  2976 assumes finite_intvl: "finite{a..b}"
  2977 and successor_incr: "a < successor a"
  2978 and ord_discrete: "\<not>(\<exists>x. a < x & x < successor a)"
  2979 
  2980 context finite_intvl_succ
  2981 begin
  2982 
  2983 definition
  2984  upto :: "'a \<Rightarrow> 'a \<Rightarrow> 'a list" ("(1[_../_])") where
  2985 "upto i j == sorted_list_of_set {i..j}"
  2986 
  2987 lemma upto[simp]: "set[a..b] = {a..b} & sorted[a..b] & distinct[a..b]"
  2988 by(simp add:upto_def finite_intvl)
  2989 
  2990 lemma insert_intvl: "i \<le> j \<Longrightarrow> insert i {successor i..j} = {i..j}"
  2991 apply(insert successor_incr[of i])
  2992 apply(auto simp: atLeastAtMost_def atLeast_def atMost_def)
  2993 apply(metis ord_discrete less_le not_le)
  2994 done
  2995 
  2996 lemma sorted_list_of_set_rec: "i \<le> j \<Longrightarrow>
  2997   sorted_list_of_set {i..j} = i # sorted_list_of_set {successor i..j}"
  2998 apply(simp add:sorted_list_of_set_def upto_def)
  2999 apply (rule the1_equality[OF finite_sorted_distinct_unique])
  3000  apply (simp add:finite_intvl)
  3001 apply(rule the1I2[OF finite_sorted_distinct_unique])
  3002  apply (simp add:finite_intvl)
  3003 apply (simp add: sorted_Cons insert_intvl Ball_def)
  3004 apply (metis successor_incr leD less_imp_le order_trans)
  3005 done
  3006 
  3007 lemma sorted_list_of_set_rec2: "i \<le> j \<Longrightarrow>
  3008   sorted_list_of_set {i..successor j} =
  3009   sorted_list_of_set {i..j} @ [successor j]"
  3010 apply(simp add:sorted_list_of_set_def upto_def)
  3011 apply (rule the1_equality[OF finite_sorted_distinct_unique])
  3012  apply (simp add:finite_intvl)
  3013 apply(rule the1I2[OF finite_sorted_distinct_unique])
  3014  apply (simp add:finite_intvl)
  3015 apply (simp add: sorted_append Ball_def expand_set_eq)
  3016 apply(rule conjI)
  3017 apply (metis eq_iff leD linear not_leE ord_discrete order_trans successor_incr)
  3018 apply (metis leD linear order_trans successor_incr)
  3019 done
  3020 
  3021 lemma upto_rec[code]: "[i..j] = (if i \<le> j then i # [successor i..j] else [])"
  3022 by(simp add: upto_def sorted_list_of_set_rec)
  3023 
  3024 lemma upto_empty[simp]: "j < i \<Longrightarrow> [i..j] = []"
  3025 by(simp add: upto_rec)
  3026 
  3027 lemma upto_rec2: "i \<le> j \<Longrightarrow> [i..successor j] = [i..j] @ [successor j]"
  3028 by(simp add: upto_def sorted_list_of_set_rec2)
  3029 
  3030 end
  3031 
  3032 text{* The integers are an instance of the above class: *}
  3033 
  3034 instantiation int:: finite_intvl_succ
  3035 begin
  3036 
  3037 definition
  3038 successor_int_def: "successor = (%i\<Colon>int. i+1)"
  3039 
  3040 instance
  3041 by intro_classes (simp_all add: successor_int_def)
  3042 
  3043 end
  3044 
  3045 text{* Now @{term"[i..j::int]"} is defined for integers. *}
  3046 
  3047 hide (open) const successor
  3048 
  3049 lemma upto_rec2_int: "(i::int) \<le> j \<Longrightarrow> [i..j+1] = [i..j] @ [j+1]"
  3050 by(rule upto_rec2[where 'a = int, simplified successor_int_def])
  3051 
  3052 
  3053 subsubsection {* @{text lists}: the list-forming operator over sets *}
  3054 
  3055 inductive_set
  3056   lists :: "'a set => 'a list set"
  3057   for A :: "'a set"
  3058 where
  3059     Nil [intro!]: "[]: lists A"
  3060   | Cons [intro!,noatp]: "[| a: A; l: lists A|] ==> a#l : lists A"
  3061 
  3062 inductive_cases listsE [elim!,noatp]: "x#l : lists A"
  3063 inductive_cases listspE [elim!,noatp]: "listsp A (x # l)"
  3064 
  3065 lemma listsp_mono [mono]: "A \<le> B ==> listsp A \<le> listsp B"
  3066 by (rule predicate1I, erule listsp.induct, blast+)
  3067 
  3068 lemmas lists_mono = listsp_mono [to_set pred_subset_eq]
  3069 
  3070 lemma listsp_infI:
  3071   assumes l: "listsp A l" shows "listsp B l ==> listsp (inf A B) l" using l
  3072 by induct blast+
  3073 
  3074 lemmas lists_IntI = listsp_infI [to_set]
  3075 
  3076 lemma listsp_inf_eq [simp]: "listsp (inf A B) = inf (listsp A) (listsp B)"
  3077 proof (rule mono_inf [where f=listsp, THEN order_antisym])
  3078   show "mono listsp" by (simp add: mono_def listsp_mono)
  3079   show "inf (listsp A) (listsp B) \<le> listsp (inf A B)" by (blast intro!: listsp_infI predicate1I)
  3080 qed
  3081 
  3082 lemmas listsp_conj_eq [simp] = listsp_inf_eq [simplified inf_fun_eq inf_bool_eq]
  3083 
  3084 lemmas lists_Int_eq [simp] = listsp_inf_eq [to_set pred_equals_eq]
  3085 
  3086 lemma append_in_listsp_conv [iff]:
  3087      "(listsp A (xs @ ys)) = (listsp A xs \<and> listsp A ys)"
  3088 by (induct xs) auto
  3089 
  3090 lemmas append_in_lists_conv [iff] = append_in_listsp_conv [to_set]
  3091 
  3092 lemma in_listsp_conv_set: "(listsp A xs) = (\<forall>x \<in> set xs. A x)"
  3093 -- {* eliminate @{text listsp} in favour of @{text set} *}
  3094 by (induct xs) auto
  3095 
  3096 lemmas in_lists_conv_set = in_listsp_conv_set [to_set]
  3097 
  3098 lemma in_listspD [dest!,noatp]: "listsp A xs ==> \<forall>x\<in>set xs. A x"
  3099 by (rule in_listsp_conv_set [THEN iffD1])
  3100 
  3101 lemmas in_listsD [dest!,noatp] = in_listspD [to_set]
  3102 
  3103 lemma in_listspI [intro!,noatp]: "\<forall>x\<in>set xs. A x ==> listsp A xs"
  3104 by (rule in_listsp_conv_set [THEN iffD2])
  3105 
  3106 lemmas in_listsI [intro!,noatp] = in_listspI [to_set]
  3107 
  3108 lemma lists_UNIV [simp]: "lists UNIV = UNIV"
  3109 by auto
  3110 
  3111 
  3112 
  3113 subsubsection{* Inductive definition for membership *}
  3114 
  3115 inductive ListMem :: "'a \<Rightarrow> 'a list \<Rightarrow> bool"
  3116 where
  3117     elem:  "ListMem x (x # xs)"
  3118   | insert:  "ListMem x xs \<Longrightarrow> ListMem x (y # xs)"
  3119 
  3120 lemma ListMem_iff: "(ListMem x xs) = (x \<in> set xs)"
  3121 apply (rule iffI)
  3122  apply (induct set: ListMem)
  3123   apply auto
  3124 apply (induct xs)
  3125  apply (auto intro: ListMem.intros)
  3126 done
  3127 
  3128 
  3129 
  3130 subsubsection{*Lists as Cartesian products*}
  3131 
  3132 text{*@{text"set_Cons A Xs"}: the set of lists with head drawn from
  3133 @{term A} and tail drawn from @{term Xs}.*}
  3134 
  3135 constdefs
  3136   set_Cons :: "'a set \<Rightarrow> 'a list set \<Rightarrow> 'a list set"
  3137   "set_Cons A XS == {z. \<exists>x xs. z = x#xs & x \<in> A & xs \<in> XS}"
  3138 declare set_Cons_def [code del]
  3139 
  3140 lemma set_Cons_sing_Nil [simp]: "set_Cons A {[]} = (%x. [x])`A"
  3141 by (auto simp add: set_Cons_def)
  3142 
  3143 text{*Yields the set of lists, all of the same length as the argument and
  3144 with elements drawn from the corresponding element of the argument.*}
  3145 
  3146 consts  listset :: "'a set list \<Rightarrow> 'a list set"
  3147 primrec
  3148    "listset []    = {[]}"
  3149    "listset(A#As) = set_Cons A (listset As)"
  3150 
  3151 
  3152 subsection{*Relations on Lists*}
  3153 
  3154 subsubsection {* Length Lexicographic Ordering *}
  3155 
  3156 text{*These orderings preserve well-foundedness: shorter lists 
  3157   precede longer lists. These ordering are not used in dictionaries.*}
  3158 
  3159 consts lexn :: "('a * 'a)set => nat => ('a list * 'a list)set"
  3160         --{*The lexicographic ordering for lists of the specified length*}
  3161 primrec
  3162   "lexn r 0 = {}"
  3163   "lexn r (Suc n) =
  3164     (prod_fun (%(x,xs). x#xs) (%(x,xs). x#xs) ` (r <*lex*> lexn r n)) Int
  3165     {(xs,ys). length xs = Suc n \<and> length ys = Suc n}"
  3166 
  3167 constdefs
  3168   lex :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
  3169     "lex r == \<Union>n. lexn r n"
  3170         --{*Holds only between lists of the same length*}
  3171 
  3172   lenlex :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
  3173     "lenlex r == inv_image (less_than <*lex*> lex r) (%xs. (length xs, xs))"
  3174         --{*Compares lists by their length and then lexicographically*}
  3175 
  3176 declare lex_def [code del]
  3177 
  3178 
  3179 lemma wf_lexn: "wf r ==> wf (lexn r n)"
  3180 apply (induct n, simp, simp)
  3181 apply(rule wf_subset)
  3182  prefer 2 apply (rule Int_lower1)
  3183 apply(rule wf_prod_fun_image)
  3184  prefer 2 apply (rule inj_onI, auto)
  3185 done
  3186 
  3187 lemma lexn_length:
  3188   "(xs, ys) : lexn r n ==> length xs = n \<and> length ys = n"
  3189 by (induct n arbitrary: xs ys) auto
  3190 
  3191 lemma wf_lex [intro!]: "wf r ==> wf (lex r)"
  3192 apply (unfold lex_def)
  3193 apply (rule wf_UN)
  3194 apply (blast intro: wf_lexn, clarify)
  3195 apply (rename_tac m n)
  3196 apply (subgoal_tac "m \<noteq> n")
  3197  prefer 2 apply blast
  3198 apply (blast dest: lexn_length not_sym)
  3199 done
  3200 
  3201 lemma lexn_conv:
  3202   "lexn r n =
  3203     {(xs,ys). length xs = n \<and> length ys = n \<and>
  3204     (\<exists>xys x y xs' ys'. xs= xys @ x#xs' \<and> ys= xys @ y # ys' \<and> (x, y):r)}"
  3205 apply (induct n, simp)
  3206 apply (simp add: image_Collect lex_prod_def, safe, blast)
  3207  apply (rule_tac x = "ab # xys" in exI, simp)
  3208 apply (case_tac xys, simp_all, blast)
  3209 done
  3210 
  3211 lemma lex_conv:
  3212   "lex r =
  3213     {(xs,ys). length xs = length ys \<and>
  3214     (\<exists>xys x y xs' ys'. xs = xys @ x # xs' \<and> ys = xys @ y # ys' \<and> (x, y):r)}"
  3215 by (force simp add: lex_def lexn_conv)
  3216 
  3217 lemma wf_lenlex [intro!]: "wf r ==> wf (lenlex r)"
  3218 by (unfold lenlex_def) blast
  3219 
  3220 lemma lenlex_conv:
  3221     "lenlex r = {(xs,ys). length xs < length ys |
  3222                  length xs = length ys \<and> (xs, ys) : lex r}"
  3223 by (simp add: lenlex_def diag_def lex_prod_def inv_image_def)
  3224 
  3225 lemma Nil_notin_lex [iff]: "([], ys) \<notin> lex r"
  3226 by (simp add: lex_conv)
  3227 
  3228 lemma Nil2_notin_lex [iff]: "(xs, []) \<notin> lex r"
  3229 by (simp add:lex_conv)
  3230 
  3231 lemma Cons_in_lex [simp]:
  3232     "((x # xs, y # ys) : lex r) =
  3233       ((x, y) : r \<and> length xs = length ys | x = y \<and> (xs, ys) : lex r)"
  3234 apply (simp add: lex_conv)
  3235 apply (rule iffI)
  3236  prefer 2 apply (blast intro: Cons_eq_appendI, clarify)
  3237 apply (case_tac xys, simp, simp)
  3238 apply blast
  3239 done
  3240 
  3241 
  3242 subsubsection {* Lexicographic Ordering *}
  3243 
  3244 text {* Classical lexicographic ordering on lists, ie. "a" < "ab" < "b".
  3245     This ordering does \emph{not} preserve well-foundedness.
  3246      Author: N. Voelker, March 2005. *} 
  3247 
  3248 constdefs 
  3249   lexord :: "('a * 'a)set \<Rightarrow> ('a list * 'a list) set" 
  3250   "lexord  r == {(x,y). \<exists> a v. y = x @ a # v \<or> 
  3251             (\<exists> u a b v w. (a,b) \<in> r \<and> x = u @ (a # v) \<and> y = u @ (b # w))}"
  3252 declare lexord_def [code del]
  3253 
  3254 lemma lexord_Nil_left[simp]:  "([],y) \<in> lexord r = (\<exists> a x. y = a # x)"
  3255 by (unfold lexord_def, induct_tac y, auto) 
  3256 
  3257 lemma lexord_Nil_right[simp]: "(x,[]) \<notin> lexord r"
  3258 by (unfold lexord_def, induct_tac x, auto)
  3259 
  3260 lemma lexord_cons_cons[simp]:
  3261      "((a # x, b # y) \<in> lexord r) = ((a,b)\<in> r | (a = b & (x,y)\<in> lexord r))"
  3262   apply (unfold lexord_def, safe, simp_all)
  3263   apply (case_tac u, simp, simp)
  3264   apply (case_tac u, simp, clarsimp, blast, blast, clarsimp)
  3265   apply (erule_tac x="b # u" in allE)
  3266   by force
  3267 
  3268 lemmas lexord_simps = lexord_Nil_left lexord_Nil_right lexord_cons_cons
  3269 
  3270 lemma lexord_append_rightI: "\<exists> b z. y = b # z \<Longrightarrow> (x, x @ y) \<in> lexord r"
  3271 by (induct_tac x, auto)  
  3272 
  3273 lemma lexord_append_left_rightI:
  3274      "(a,b) \<in> r \<Longrightarrow> (u @ a # x, u @ b # y) \<in> lexord r"
  3275 by (induct_tac u, auto)
  3276 
  3277 lemma lexord_append_leftI: " (u,v) \<in> lexord r \<Longrightarrow> (x @ u, x @ v) \<in> lexord r"
  3278 by (induct x, auto)
  3279 
  3280 lemma lexord_append_leftD:
  3281      "\<lbrakk> (x @ u, x @ v) \<in> lexord r; (! a. (a,a) \<notin> r) \<rbrakk> \<Longrightarrow> (u,v) \<in> lexord r"
  3282 by (erule rev_mp, induct_tac x, auto)
  3283 
  3284 lemma lexord_take_index_conv: 
  3285    "((x,y) : lexord r) = 
  3286     ((length x < length y \<and> take (length x) y = x) \<or> 
  3287      (\<exists>i. i < min(length x)(length y) & take i x = take i y & (x!i,y!i) \<in> r))"
  3288   apply (unfold lexord_def Let_def, clarsimp) 
  3289   apply (rule_tac f = "(% a b. a \<or> b)" in arg_cong2)
  3290   apply auto 
  3291   apply (rule_tac x="hd (drop (length x) y)" in exI)
  3292   apply (rule_tac x="tl (drop (length x) y)" in exI)
  3293   apply (erule subst, simp add: min_def) 
  3294   apply (rule_tac x ="length u" in exI, simp) 
  3295   apply (rule_tac x ="take i x" in exI) 
  3296   apply (rule_tac x ="x ! i" in exI) 
  3297   apply (rule_tac x ="y ! i" in exI, safe) 
  3298   apply (rule_tac x="drop (Suc i) x" in exI)
  3299   apply (drule sym, simp add: drop_Suc_conv_tl) 
  3300   apply (rule_tac x="drop (Suc i) y" in exI)
  3301   by (simp add: drop_Suc_conv_tl) 
  3302 
  3303 -- {* lexord is extension of partial ordering List.lex *} 
  3304 lemma lexord_lex: " (x,y) \<in> lex r = ((x,y) \<in> lexord r \<and> length x = length y)"
  3305   apply (rule_tac x = y in spec) 
  3306   apply (induct_tac x, clarsimp) 
  3307   by (clarify, case_tac x, simp, force)
  3308 
  3309 lemma lexord_irreflexive: "(! x. (x,x) \<notin> r) \<Longrightarrow> (y,y) \<notin> lexord r"
  3310   by (induct y, auto)
  3311 
  3312 lemma lexord_trans: 
  3313     "\<lbrakk> (x, y) \<in> lexord r; (y, z) \<in> lexord r; trans r \<rbrakk> \<Longrightarrow> (x, z) \<in> lexord r"
  3314    apply (erule rev_mp)+
  3315    apply (rule_tac x = x in spec) 
  3316   apply (rule_tac x = z in spec) 
  3317   apply ( induct_tac y, simp, clarify)
  3318   apply (case_tac xa, erule ssubst) 
  3319   apply (erule allE, erule allE) -- {* avoid simp recursion *} 
  3320   apply (case_tac x, simp, simp) 
  3321   apply (case_tac x, erule allE, erule allE, simp)
  3322   apply (erule_tac x = listb in allE) 
  3323   apply (erule_tac x = lista in allE, simp)
  3324   apply (unfold trans_def)
  3325   by blast
  3326 
  3327 lemma lexord_transI:  "trans r \<Longrightarrow> trans (lexord r)"
  3328 by (rule transI, drule lexord_trans, blast) 
  3329 
  3330 lemma lexord_linear: "(! a b. (a,b)\<in> r | a = b | (b,a) \<in> r) \<Longrightarrow> (x,y) : lexord r | x = y | (y,x) : lexord r"
  3331   apply (rule_tac x = y in spec) 
  3332   apply (induct_tac x, rule allI) 
  3333   apply (case_tac x, simp, simp) 
  3334   apply (rule allI, case_tac x, simp, simp) 
  3335   by blast
  3336 
  3337 
  3338 subsection {* Lexicographic combination of measure functions *}
  3339 
  3340 text {* These are useful for termination proofs *}
  3341 
  3342 definition
  3343   "measures fs = inv_image (lex less_than) (%a. map (%f. f a) fs)"
  3344 
  3345 lemma wf_measures[recdef_wf, simp]: "wf (measures fs)"
  3346 unfolding measures_def
  3347 by blast
  3348 
  3349 lemma in_measures[simp]: 
  3350   "(x, y) \<in> measures [] = False"
  3351   "(x, y) \<in> measures (f # fs)
  3352          = (f x < f y \<or> (f x = f y \<and> (x, y) \<in> measures fs))"  
  3353 unfolding measures_def
  3354 by auto
  3355 
  3356 lemma measures_less: "f x < f y ==> (x, y) \<in> measures (f#fs)"
  3357 by simp
  3358 
  3359 lemma measures_lesseq: "f x <= f y ==> (x, y) \<in> measures fs ==> (x, y) \<in> measures (f#fs)"
  3360 by auto
  3361 
  3362 
  3363 subsubsection{*Lifting a Relation on List Elements to the Lists*}
  3364 
  3365 inductive_set
  3366   listrel :: "('a * 'a)set => ('a list * 'a list)set"
  3367   for r :: "('a * 'a)set"
  3368 where
  3369     Nil:  "([],[]) \<in> listrel r"
  3370   | Cons: "[| (x,y) \<in> r; (xs,ys) \<in> listrel r |] ==> (x#xs, y#ys) \<in> listrel r"
  3371 
  3372 inductive_cases listrel_Nil1 [elim!]: "([],xs) \<in> listrel r"
  3373 inductive_cases listrel_Nil2 [elim!]: "(xs,[]) \<in> listrel r"
  3374 inductive_cases listrel_Cons1 [elim!]: "(y#ys,xs) \<in> listrel r"
  3375 inductive_cases listrel_Cons2 [elim!]: "(xs,y#ys) \<in> listrel r"
  3376 
  3377 
  3378 lemma listrel_mono: "r \<subseteq> s \<Longrightarrow> listrel r \<subseteq> listrel s"
  3379 apply clarify  
  3380 apply (erule listrel.induct)
  3381 apply (blast intro: listrel.intros)+
  3382 done
  3383 
  3384 lemma listrel_subset: "r \<subseteq> A \<times> A \<Longrightarrow> listrel r \<subseteq> lists A \<times> lists A"
  3385 apply clarify 
  3386 apply (erule listrel.induct, auto) 
  3387 done
  3388 
  3389 lemma listrel_refl: "refl A r \<Longrightarrow> refl (lists A) (listrel r)" 
  3390 apply (simp add: refl_def listrel_subset Ball_def)
  3391 apply (rule allI) 
  3392 apply (induct_tac x) 
  3393 apply (auto intro: listrel.intros)
  3394 done
  3395 
  3396 lemma listrel_sym: "sym r \<Longrightarrow> sym (listrel r)" 
  3397 apply (auto simp add: sym_def)
  3398 apply (erule listrel.induct) 
  3399 apply (blast intro: listrel.intros)+
  3400 done
  3401 
  3402 lemma listrel_trans: "trans r \<Longrightarrow> trans (listrel r)" 
  3403 apply (simp add: trans_def)
  3404 apply (intro allI) 
  3405 apply (rule impI) 
  3406 apply (erule listrel.induct) 
  3407 apply (blast intro: listrel.intros)+
  3408 done
  3409 
  3410 theorem equiv_listrel: "equiv A r \<Longrightarrow> equiv (lists A) (listrel r)"
  3411 by (simp add: equiv_def listrel_refl listrel_sym listrel_trans) 
  3412 
  3413 lemma listrel_Nil [simp]: "listrel r `` {[]} = {[]}"
  3414 by (blast intro: listrel.intros)
  3415 
  3416 lemma listrel_Cons:
  3417      "listrel r `` {x#xs} = set_Cons (r``{x}) (listrel r `` {xs})";
  3418 by (auto simp add: set_Cons_def intro: listrel.intros) 
  3419 
  3420 
  3421 subsection{*Miscellany*}
  3422 
  3423 subsubsection {* Characters and strings *}
  3424 
  3425 datatype nibble =
  3426     Nibble0 | Nibble1 | Nibble2 | Nibble3 | Nibble4 | Nibble5 | Nibble6 | Nibble7
  3427   | Nibble8 | Nibble9 | NibbleA | NibbleB | NibbleC | NibbleD | NibbleE | NibbleF
  3428 
  3429 lemma UNIV_nibble:
  3430   "UNIV = {Nibble0, Nibble1, Nibble2, Nibble3, Nibble4, Nibble5, Nibble6, Nibble7,
  3431     Nibble8, Nibble9, NibbleA, NibbleB, NibbleC, NibbleD, NibbleE, NibbleF}" (is "_ = ?A")
  3432 proof (rule UNIV_eq_I)
  3433   fix x show "x \<in> ?A" by (cases x) simp_all
  3434 qed
  3435 
  3436 instance nibble :: finite
  3437   by default (simp add: UNIV_nibble)
  3438 
  3439 datatype char = Char nibble nibble
  3440   -- "Note: canonical order of character encoding coincides with standard term ordering"
  3441 
  3442 lemma UNIV_char:
  3443   "UNIV = image (split Char) (UNIV \<times> UNIV)"
  3444 proof (rule UNIV_eq_I)
  3445   fix x show "x \<in> image (split Char) (UNIV \<times> UNIV)" by (cases x) auto
  3446 qed
  3447 
  3448 instance char :: finite
  3449   by default (simp add: UNIV_char)
  3450 
  3451 lemma size_char [code, simp]:
  3452   "size (c::char) = 0" by (cases c) simp
  3453 
  3454 lemma char_size [code, simp]:
  3455   "char_size (c::char) = 0" by (cases c) simp
  3456 
  3457 primrec nibble_pair_of_char :: "char \<Rightarrow> nibble \<times> nibble" where
  3458   "nibble_pair_of_char (Char n m) = (n, m)"
  3459 
  3460 declare nibble_pair_of_char.simps [code del]
  3461 
  3462 setup {*
  3463 let
  3464   val nibbles = map (Thm.cterm_of @{theory} o HOLogic.mk_nibble) (0 upto 15);
  3465   val thms = map_product
  3466    (fn n => fn m => Drule.instantiate' [] [SOME n, SOME m] @{thm nibble_pair_of_char.simps})
  3467       nibbles nibbles;
  3468 in
  3469   PureThy.note_thmss Thm.lemmaK [((Binding.name "nibble_pair_of_char_simps", []), [(thms, [])])]
  3470   #-> (fn [(_, thms)] => fold_rev Code.add_eqn thms)
  3471 end
  3472 *}
  3473 
  3474 lemma char_case_nibble_pair [code, code inline]:
  3475   "char_case f = split f o nibble_pair_of_char"
  3476   by (simp add: expand_fun_eq split: char.split)
  3477 
  3478 lemma char_rec_nibble_pair [code, code inline]:
  3479   "char_rec f = split f o nibble_pair_of_char"
  3480   unfolding char_case_nibble_pair [symmetric]
  3481   by (simp add: expand_fun_eq split: char.split)
  3482 
  3483 types string = "char list"
  3484 
  3485 syntax
  3486   "_Char" :: "xstr => char"    ("CHR _")
  3487   "_String" :: "xstr => string"    ("_")
  3488 
  3489 setup StringSyntax.setup
  3490 
  3491 
  3492 subsection {* Size function *}
  3493 
  3494 lemma [measure_function]: "is_measure f \<Longrightarrow> is_measure (list_size f)"
  3495 by (rule is_measure_trivial)
  3496 
  3497 lemma [measure_function]: "is_measure f \<Longrightarrow> is_measure (option_size f)"
  3498 by (rule is_measure_trivial)
  3499 
  3500 lemma list_size_estimation[termination_simp]: 
  3501   "x \<in> set xs \<Longrightarrow> y < f x \<Longrightarrow> y < list_size f xs"
  3502 by (induct xs) auto
  3503 
  3504 lemma list_size_estimation'[termination_simp]: 
  3505   "x \<in> set xs \<Longrightarrow> y \<le> f x \<Longrightarrow> y \<le> list_size f xs"
  3506 by (induct xs) auto
  3507 
  3508 lemma list_size_map[simp]: "list_size f (map g xs) = list_size (f o g) xs"
  3509 by (induct xs) auto
  3510 
  3511 lemma list_size_pointwise[termination_simp]: 
  3512   "(\<And>x. x \<in> set xs \<Longrightarrow> f x < g x) \<Longrightarrow> list_size f xs \<le> list_size g xs"
  3513 by (induct xs) force+
  3514 
  3515 subsection {* Code generator *}
  3516 
  3517 subsubsection {* Setup *}
  3518 
  3519 types_code
  3520   "list" ("_ list")
  3521 attach (term_of) {*
  3522 fun term_of_list f T = HOLogic.mk_list T o map f;
  3523 *}
  3524 attach (test) {*
  3525 fun gen_list' aG aT i j = frequency
  3526   [(i, fn () =>
  3527       let
  3528         val (x, t) = aG j;
  3529         val (xs, ts) = gen_list' aG aT (i-1) j
  3530       in (x :: xs, fn () => HOLogic.cons_const aT $ t () $ ts ()) end),
  3531    (1, fn () => ([], fn () => HOLogic.nil_const aT))] ()
  3532 and gen_list aG aT i = gen_list' aG aT i i;
  3533 *}
  3534   "char" ("string")
  3535 attach (term_of) {*
  3536 val term_of_char = HOLogic.mk_char o ord;
  3537 *}
  3538 attach (test) {*
  3539 fun gen_char i =
  3540   let val j = random_range (ord "a") (Int.min (ord "a" + i, ord "z"))
  3541   in (chr j, fn () => HOLogic.mk_char j) end;
  3542 *}
  3543 
  3544 consts_code "Cons" ("(_ ::/ _)")
  3545 
  3546 code_type list
  3547   (SML "_ list")
  3548   (OCaml "_ list")
  3549   (Haskell "![_]")
  3550 
  3551 code_reserved SML
  3552   list
  3553 
  3554 code_reserved OCaml
  3555   list
  3556 
  3557 code_const Nil
  3558   (SML "[]")
  3559   (OCaml "[]")
  3560   (Haskell "[]")
  3561 
  3562 ML {*
  3563 local
  3564 
  3565 open Basic_Code_Thingol;
  3566 
  3567 fun implode_list (nil', cons') t =
  3568   let
  3569     fun dest_cons (IConst (c, _) `$ t1 `$ t2) =
  3570           if c = cons'
  3571           then SOME (t1, t2)
  3572           else NONE
  3573       | dest_cons _ = NONE;
  3574     val (ts, t') = Code_Thingol.unfoldr dest_cons t;
  3575   in case t'
  3576    of IConst (c, _) => if c = nil' then SOME ts else NONE
  3577     | _ => NONE
  3578   end;
  3579 
  3580 fun decode_char nibbles' (IConst (c1, _), IConst (c2, _)) =
  3581       let
  3582         fun idx c = find_index (curry (op =) c) nibbles';
  3583         fun decode ~1 _ = NONE
  3584           | decode _ ~1 = NONE
  3585           | decode n m = SOME (chr (n * 16 + m));
  3586       in decode (idx c1) (idx c2) end
  3587   | decode_char _ _ = NONE;
  3588 
  3589 fun implode_string (char', nibbles') mk_char mk_string ts =
  3590   let
  3591     fun implode_char (IConst (c, _) `$ t1 `$ t2) =
  3592           if c = char' then decode_char nibbles' (t1, t2) else NONE
  3593       | implode_char _ = NONE;
  3594     val ts' = map implode_char ts;
  3595   in if forall is_some ts'
  3596     then (SOME o Code_Printer.str o mk_string o implode o map_filter I) ts'
  3597     else NONE
  3598   end;
  3599 
  3600 fun list_names naming = pairself (the o Code_Thingol.lookup_const naming)
  3601   (@{const_name Nil}, @{const_name Cons});
  3602 fun char_name naming = (the o Code_Thingol.lookup_const naming)
  3603   @{const_name Char}
  3604 fun nibble_names naming = map (the o Code_Thingol.lookup_const naming)
  3605   [@{const_name Nibble0}, @{const_name Nibble1},
  3606    @{const_name Nibble2}, @{const_name Nibble3},
  3607    @{const_name Nibble4}, @{const_name Nibble5},
  3608    @{const_name Nibble6}, @{const_name Nibble7},
  3609    @{const_name Nibble8}, @{const_name Nibble9},
  3610    @{const_name NibbleA}, @{const_name NibbleB},
  3611    @{const_name NibbleC}, @{const_name NibbleD},
  3612    @{const_name NibbleE}, @{const_name NibbleF}];
  3613 
  3614 fun default_list (target_fxy, target_cons) pr fxy t1 t2 =
  3615   Code_Printer.brackify_infix (target_fxy, Code_Printer.R) fxy [
  3616     pr (Code_Printer.INFX (target_fxy, Code_Printer.X)) t1,
  3617     Code_Printer.str target_cons,
  3618     pr (Code_Printer.INFX (target_fxy, Code_Printer.R)) t2
  3619   ];
  3620 
  3621 fun pretty_list literals =
  3622   let
  3623     val mk_list = Code_Printer.literal_list literals;
  3624     fun pretty pr naming thm vars fxy [(t1, _), (t2, _)] =
  3625       case Option.map (cons t1) (implode_list (list_names naming) t2)
  3626        of SOME ts => mk_list (map (pr vars Code_Printer.NOBR) ts)
  3627         | NONE => default_list (Code_Printer.infix_cons literals) (pr vars) fxy t1 t2;
  3628   in (2, pretty) end;
  3629 
  3630 fun pretty_list_string literals =
  3631   let
  3632     val mk_list = Code_Printer.literal_list literals;
  3633     val mk_char = Code_Printer.literal_char literals;
  3634     val mk_string = Code_Printer.literal_string literals;
  3635     fun pretty pr naming thm vars fxy [(t1, _), (t2, _)] =
  3636       case Option.map (cons t1) (implode_list (list_names naming) t2)
  3637        of SOME ts => (case implode_string (char_name naming, nibble_names naming) mk_char mk_string ts
  3638            of SOME p => p
  3639             | NONE => mk_list (map (pr vars Code_Printer.NOBR) ts))
  3640         | NONE => default_list (Code_Printer.infix_cons literals) (pr vars) fxy t1 t2;
  3641   in (2, pretty) end;
  3642 
  3643 fun pretty_char literals =
  3644   let
  3645     val mk_char = Code_Printer.literal_char literals;
  3646     fun pretty _ naming thm _ _ [(t1, _), (t2, _)] =
  3647       case decode_char (nibble_names naming) (t1, t2)
  3648        of SOME c => (Code_Printer.str o mk_char) c
  3649         | NONE => Code_Printer.nerror thm "Illegal character expression";
  3650   in (2, pretty) end;
  3651 
  3652 fun pretty_message literals =
  3653   let
  3654     val mk_char = Code_Printer.literal_char literals;
  3655     val mk_string = Code_Printer.literal_string literals;
  3656     fun pretty _ naming thm _ _ [(t, _)] =
  3657       case implode_list (list_names naming) t
  3658        of SOME ts => (case implode_string (char_name naming, nibble_names naming) mk_char mk_string ts
  3659            of SOME p => p
  3660             | NONE => Code_Printer.nerror thm "Illegal message expression")
  3661         | NONE => Code_Printer.nerror thm "Illegal message expression";
  3662   in (1, pretty) end;
  3663 
  3664 in
  3665 
  3666 fun add_literal_list target thy =
  3667   let
  3668     val pr = pretty_list (Code_Target.the_literals thy target);
  3669   in
  3670     thy
  3671     |> Code_Target.add_syntax_const target @{const_name Cons} (SOME pr)
  3672   end;
  3673 
  3674 fun add_literal_list_string target thy =
  3675   let
  3676     val pr = pretty_list_string (Code_Target.the_literals thy target);
  3677   in
  3678     thy
  3679     |> Code_Target.add_syntax_const target @{const_name Cons} (SOME pr)
  3680   end;
  3681 
  3682 fun add_literal_char target thy =
  3683   let
  3684     val pr = pretty_char (Code_Target.the_literals thy target);
  3685   in
  3686     thy
  3687     |> Code_Target.add_syntax_const target @{const_name Char} (SOME pr)
  3688   end;
  3689 
  3690 fun add_literal_message str target thy =
  3691   let
  3692     val pr = pretty_message (Code_Target.the_literals thy target);
  3693   in
  3694     thy
  3695     |> Code_Target.add_syntax_const target str (SOME pr)
  3696   end;
  3697 
  3698 end;
  3699 *}
  3700 
  3701 setup {*
  3702   fold (fn target => add_literal_list target) ["SML", "OCaml", "Haskell"]
  3703 *}
  3704 
  3705 code_instance list :: eq
  3706   (Haskell -)
  3707 
  3708 code_const "eq_class.eq \<Colon> 'a\<Colon>eq list \<Rightarrow> 'a list \<Rightarrow> bool"
  3709   (Haskell infixl 4 "==")
  3710 
  3711 setup {*
  3712 let
  3713 
  3714 fun list_codegen thy defs dep thyname b t gr =
  3715   let
  3716     val ts = HOLogic.dest_list t;
  3717     val (_, gr') = Codegen.invoke_tycodegen thy defs dep thyname false
  3718       (fastype_of t) gr;
  3719     val (ps, gr'') = fold_map
  3720       (Codegen.invoke_codegen thy defs dep thyname false) ts gr'
  3721   in SOME (Pretty.list "[" "]" ps, gr'') end handle TERM _ => NONE;
  3722 
  3723 fun char_codegen thy defs dep thyname b t gr =
  3724   let
  3725     val i = HOLogic.dest_char t;
  3726     val (_, gr') = Codegen.invoke_tycodegen thy defs dep thyname false
  3727       (fastype_of t) gr;
  3728   in SOME (Codegen.str (ML_Syntax.print_string (chr i)), gr')
  3729   end handle TERM _ => NONE;
  3730 
  3731 in
  3732   Codegen.add_codegen "list_codegen" list_codegen
  3733   #> Codegen.add_codegen "char_codegen" char_codegen
  3734 end;
  3735 *}
  3736 
  3737 
  3738 subsubsection {* Generation of efficient code *}
  3739 
  3740 primrec
  3741   member :: "'a \<Rightarrow> 'a list \<Rightarrow> bool" (infixl "mem" 55)
  3742 where 
  3743   "x mem [] \<longleftrightarrow> False"
  3744   | "x mem (y#ys) \<longleftrightarrow> x = y \<or> x mem ys"
  3745 
  3746 primrec
  3747   null:: "'a list \<Rightarrow> bool"
  3748 where
  3749   "null [] = True"
  3750   | "null (x#xs) = False"
  3751 
  3752 primrec
  3753   list_inter :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"
  3754 where
  3755   "list_inter [] bs = []"
  3756   | "list_inter (a#as) bs =
  3757      (if a \<in> set bs then a # list_inter as bs else list_inter as bs)"
  3758 
  3759 primrec
  3760   list_all :: "('a \<Rightarrow> bool) \<Rightarrow> ('a list \<Rightarrow> bool)"
  3761 where
  3762   "list_all P [] = True"
  3763   | "list_all P (x#xs) = (P x \<and> list_all P xs)"
  3764 
  3765 primrec
  3766   list_ex :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool"
  3767 where
  3768   "list_ex P [] = False"
  3769   | "list_ex P (x#xs) = (P x \<or> list_ex P xs)"
  3770 
  3771 primrec
  3772   filtermap :: "('a \<Rightarrow> 'b option) \<Rightarrow> 'a list \<Rightarrow> 'b list"
  3773 where
  3774   "filtermap f [] = []"
  3775   | "filtermap f (x#xs) =
  3776      (case f x of None \<Rightarrow> filtermap f xs
  3777       | Some y \<Rightarrow> y # filtermap f xs)"
  3778 
  3779 primrec
  3780   map_filter :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'b list"
  3781 where
  3782   "map_filter f P [] = []"
  3783   | "map_filter f P (x#xs) =
  3784      (if P x then f x # map_filter f P xs else map_filter f P xs)"
  3785 
  3786 primrec
  3787   length_unique :: "'a list \<Rightarrow> nat"
  3788 where
  3789   "length_unique [] = 0"
  3790   | "length_unique (x#xs) =
  3791       (if x \<in> set xs then length_unique xs else Suc (length_unique xs))"
  3792 
  3793 text {*
  3794   Only use @{text mem} for generating executable code.  Otherwise use
  3795   @{prop "x : set xs"} instead --- it is much easier to reason about.
  3796   The same is true for @{const list_all} and @{const list_ex}: write
  3797   @{text "\<forall>x\<in>set xs"} and @{text "\<exists>x\<in>set xs"} instead because the HOL
  3798   quantifiers are aleady known to the automatic provers. In fact, the
  3799   declarations in the code subsection make sure that @{text "\<in>"},
  3800   @{text "\<forall>x\<in>set xs"} and @{text "\<exists>x\<in>set xs"} are implemented
  3801   efficiently.
  3802 
  3803   Efficient emptyness check is implemented by @{const null}.
  3804 
  3805   The functions @{const filtermap} and @{const map_filter} are just
  3806   there to generate efficient code. Do not use
  3807   them for modelling and proving.
  3808 *}
  3809 
  3810 lemma rev_foldl_cons [code]:
  3811   "rev xs = foldl (\<lambda>xs x. x # xs) [] xs"
  3812 proof (induct xs)
  3813   case Nil then show ?case by simp
  3814 next
  3815   case Cons
  3816   {
  3817     fix x xs ys
  3818     have "foldl (\<lambda>xs x. x # xs) ys xs @ [x]
  3819       = foldl (\<lambda>xs x. x # xs) (ys @ [x]) xs"
  3820     by (induct xs arbitrary: ys) auto
  3821   }
  3822   note aux = this
  3823   show ?case by (induct xs) (auto simp add: Cons aux)
  3824 qed
  3825 
  3826 lemma mem_iff [code post]:
  3827   "x mem xs \<longleftrightarrow> x \<in> set xs"
  3828 by (induct xs) auto
  3829 
  3830 lemmas in_set_code [code unfold] = mem_iff [symmetric]
  3831 
  3832 lemma empty_null [code inline]:
  3833   "xs = [] \<longleftrightarrow> null xs"
  3834 by (cases xs) simp_all
  3835 
  3836 lemmas null_empty [code post] =
  3837   empty_null [symmetric]
  3838 
  3839 lemma list_inter_conv:
  3840   "set (list_inter xs ys) = set xs \<inter> set ys"
  3841 by (induct xs) auto
  3842 
  3843 lemma list_all_iff [code post]:
  3844   "list_all P xs \<longleftrightarrow> (\<forall>x \<in> set xs. P x)"
  3845 by (induct xs) auto
  3846 
  3847 lemmas list_ball_code [code unfold] = list_all_iff [symmetric]
  3848 
  3849 lemma list_all_append [simp]:
  3850   "list_all P (xs @ ys) \<longleftrightarrow> (list_all P xs \<and> list_all P ys)"
  3851 by (induct xs) auto
  3852 
  3853 lemma list_all_rev [simp]:
  3854   "list_all P (rev xs) \<longleftrightarrow> list_all P xs"
  3855 by (simp add: list_all_iff)
  3856 
  3857 lemma list_all_length:
  3858   "list_all P xs \<longleftrightarrow> (\<forall>n < length xs. P (xs ! n))"
  3859   unfolding list_all_iff by (auto intro: all_nth_imp_all_set)
  3860 
  3861 lemma list_ex_iff [code post]:
  3862   "list_ex P xs \<longleftrightarrow> (\<exists>x \<in> set xs. P x)"
  3863 by (induct xs) simp_all
  3864 
  3865 lemmas list_bex_code [code unfold] =
  3866   list_ex_iff [symmetric]
  3867 
  3868 lemma list_ex_length:
  3869   "list_ex P xs \<longleftrightarrow> (\<exists>n < length xs. P (xs ! n))"
  3870   unfolding list_ex_iff set_conv_nth by auto
  3871 
  3872 lemma filtermap_conv:
  3873    "filtermap f xs = map (\<lambda>x. the (f x)) (filter (\<lambda>x. f x \<noteq> None) xs)"
  3874 by (induct xs) (simp_all split: option.split) 
  3875 
  3876 lemma map_filter_conv [simp]:
  3877   "map_filter f P xs = map f (filter P xs)"
  3878 by (induct xs) auto
  3879 
  3880 lemma length_remdups_length_unique [code inline]:
  3881   "length (remdups xs) = length_unique xs"
  3882   by (induct xs) simp_all
  3883 
  3884 hide (open) const length_unique
  3885 
  3886 
  3887 text {* Code for bounded quantification and summation over nats. *}
  3888 
  3889 lemma atMost_upto [code unfold]:
  3890   "{..n} = set [0..<Suc n]"
  3891 by auto
  3892 
  3893 lemma atLeast_upt [code unfold]:
  3894   "{..<n} = set [0..<n]"
  3895 by auto
  3896 
  3897 lemma greaterThanLessThan_upt [code unfold]:
  3898   "{n<..<m} = set [Suc n..<m]"
  3899 by auto
  3900 
  3901 lemma atLeastLessThan_upt [code unfold]:
  3902   "{n..<m} = set [n..<m]"
  3903 by auto
  3904 
  3905 lemma greaterThanAtMost_upt [code unfold]:
  3906   "{n<..m} = set [Suc n..<Suc m]"
  3907 by auto
  3908 
  3909 lemma atLeastAtMost_upt [code unfold]:
  3910   "{n..m} = set [n..<Suc m]"
  3911 by auto
  3912 
  3913 lemma all_nat_less_eq [code unfold]:
  3914   "(\<forall>m<n\<Colon>nat. P m) \<longleftrightarrow> (\<forall>m \<in> {0..<n}. P m)"
  3915 by auto
  3916 
  3917 lemma ex_nat_less_eq [code unfold]:
  3918   "(\<exists>m<n\<Colon>nat. P m) \<longleftrightarrow> (\<exists>m \<in> {0..<n}. P m)"
  3919 by auto
  3920 
  3921 lemma all_nat_less [code unfold]:
  3922   "(\<forall>m\<le>n\<Colon>nat. P m) \<longleftrightarrow> (\<forall>m \<in> {0..n}. P m)"
  3923 by auto
  3924 
  3925 lemma ex_nat_less [code unfold]:
  3926   "(\<exists>m\<le>n\<Colon>nat. P m) \<longleftrightarrow> (\<exists>m \<in> {0..n}. P m)"
  3927 by auto
  3928 
  3929 lemma setsum_set_distinct_conv_listsum:
  3930   "distinct xs \<Longrightarrow> setsum f (set xs) = listsum (map f xs)"
  3931 by (induct xs) simp_all
  3932 
  3933 lemma setsum_set_upt_conv_listsum [code unfold]:
  3934   "setsum f (set [m..<n]) = listsum (map f [m..<n])"
  3935 by (rule setsum_set_distinct_conv_listsum) simp
  3936 
  3937 
  3938 text {* Code for summation over ints. *}
  3939 
  3940 lemma greaterThanLessThan_upto [code unfold]:
  3941   "{i<..<j::int} = set [i+1..j - 1]"
  3942 by auto
  3943 
  3944 lemma atLeastLessThan_upto [code unfold]:
  3945   "{i..<j::int} = set [i..j - 1]"
  3946 by auto
  3947 
  3948 lemma greaterThanAtMost_upto [code unfold]:
  3949   "{i<..j::int} = set [i+1..j]"
  3950 by auto
  3951 
  3952 lemma atLeastAtMost_upto [code unfold]:
  3953   "{i..j::int} = set [i..j]"
  3954 by auto
  3955 
  3956 lemma setsum_set_upto_conv_listsum [code unfold]:
  3957   "setsum f (set [i..j::int]) = listsum (map f [i..j])"
  3958 by (rule setsum_set_distinct_conv_listsum) simp
  3959 
  3960 end