src/HOL/Codatatype/Tools/bnf_fp_sugar_tactics.ML
author blanchet
Mon, 17 Sep 2012 21:13:30 +0200
changeset 50443 93f158d59ead
parent 50442 b017e1dbc77c
child 50444 64ac3471005a
permissions -rw-r--r--
handle the general case with more than two levels of nesting when discharging induction prem prems
     1 (*  Title:      HOL/Codatatype/Tools/bnf_fp_sugar_tactics.ML
     2     Author:     Jasmin Blanchette, TU Muenchen
     3     Copyright   2012
     4 
     5 Tactics for datatype and codatatype sugar.
     6 *)
     7 
     8 signature BNF_FP_SUGAR_TACTICS =
     9 sig
    10   val mk_case_tac: Proof.context -> int -> int -> int -> thm -> thm -> thm -> tactic
    11   val mk_coiter_like_tac: thm list -> thm list -> thm -> thm -> thm -> Proof.context -> tactic
    12   val mk_exhaust_tac: Proof.context -> int -> thm list -> thm -> thm -> tactic
    13   val mk_fld_iff_unf_tac: Proof.context -> ctyp option list -> cterm -> cterm -> thm -> thm ->
    14     tactic
    15   val mk_half_distinct_tac: Proof.context -> thm -> thm list -> tactic
    16   val mk_induct_tac: Proof.context -> int list -> int list list ->
    17     ((int * int) * (int * int)) list list list -> thm list -> thm -> thm list -> thm list list ->
    18     tactic
    19   val mk_inject_tac: Proof.context -> thm -> thm -> tactic
    20   val mk_iter_like_tac: thm list -> thm list -> thm list -> thm -> thm -> Proof.context -> tactic
    21 end;
    22 
    23 structure BNF_FP_Sugar_Tactics : BNF_FP_SUGAR_TACTICS =
    24 struct
    25 
    26 open BNF_Tactics
    27 open BNF_Util
    28 open BNF_FP_Util
    29 
    30 val meta_mp = @{thm meta_mp};
    31 val meta_spec = @{thm meta_spec};
    32 
    33 fun inst_spurious_fs lthy thm =
    34   let
    35     val fs =
    36       Term.add_vars (prop_of thm) []
    37       |> filter (fn (_, Type (@{type_name fun}, [_, T'])) => T' <> HOLogic.boolT | _ => false);
    38     val cfs =
    39       map (fn f as (_, T) => (certify lthy (Var f), certify lthy (id_abs (domain_type T)))) fs;
    40   in
    41     Drule.cterm_instantiate cfs thm
    42   end;
    43 
    44 val inst_spurious_fs_tac = PRIMITIVE o inst_spurious_fs;
    45 
    46 fun mk_set_rhs def T =
    47   let
    48     val lhs = snd (Logic.dest_equals (prop_of def));
    49     val Type (_, Ts0) = domain_type (fastype_of lhs);
    50     val Type (_, Ts) = domain_type T;
    51   in
    52     Term.subst_atomic_types (Ts0 ~~ Ts) lhs
    53   end;
    54 
    55 val mk_fsts_rhs = mk_set_rhs @{thm fsts_def[abs_def]};
    56 val mk_snds_rhs = mk_set_rhs @{thm snds_def[abs_def]};
    57 val mk_setl_rhs = mk_set_rhs @{thm sum_setl_def[abs_def]};
    58 val mk_setr_rhs = mk_set_rhs @{thm sum_setr_def[abs_def]};
    59 
    60 (* TODO: Put this in "Balanced_Tree" *)
    61 fun balanced_tree_middle n = n div 2;
    62 
    63 val sum_prod_sel_defs =
    64   @{thms fsts_def[abs_def] snds_def[abs_def] sum_setl_def[abs_def] sum_setr_def[abs_def]};
    65 
    66 fun unfold_sum_prod_sets ctxt ms thm =
    67   let
    68     fun unf_prod 0 f = f
    69       | unf_prod 1 f = f
    70       | unf_prod m (t1 $ (t2 $ (t3 $ (t4 $ Const (@{const_name fsts}, T1) $
    71           (t5 $ Const (@{const_name snds}, T2) $ t6)))) $ (t7 $ f $ g)) =
    72         t1 $ (t2 $ (t3 $ (t4 $ mk_fsts_rhs T1 $ (t5 $ mk_snds_rhs T2 $ t6))))
    73           $ (t7 $ f $ unf_prod (m - 1) g)
    74       | unf_prod _ f = f;
    75     fun unf_sum [m] f = unf_prod m f
    76       | unf_sum ms (t1 $ (t2 $ (t3 $ (t4 $ Const (@{const_name sum_setl}, T1) $
    77           (t5 $ Const (@{const_name sum_setr}, T2) $ t6)))) $ (t7 $ f $ g)) =
    78         let val (ms1, ms2) = chop (balanced_tree_middle (length ms)) ms in
    79           t1 $ (t2 $ (t3 $ (t4 $ mk_setl_rhs T1 $ (t5 $ mk_setr_rhs T2 $ t6))))
    80             $ (t7 $ unf_sum ms1 f $ unf_sum ms2 g)
    81         end
    82       | unf_sum _ f = f;
    83 
    84     val P = prop_of thm;
    85     val P' = Logic.dest_equals P ||> unf_sum ms;
    86     val goal = Logic.mk_implies (P, Logic.mk_equals P');
    87   in
    88     Skip_Proof.prove ctxt [] [] goal (fn {context = ctxt, ...} =>
    89       Local_Defs.unfold_tac ctxt sum_prod_sel_defs THEN atac 1)
    90     OF [thm]
    91   end;
    92 
    93 fun mk_case_tac ctxt n k m case_def ctr_def unf_fld =
    94   Local_Defs.unfold_tac ctxt [case_def, ctr_def, unf_fld] THEN
    95   (rtac (mk_sum_casesN_balanced n k RS ssubst) THEN'
    96    REPEAT_DETERM_N (Int.max (0, m - 1)) o rtac (@{thm split} RS ssubst) THEN'
    97    rtac refl) 1;
    98 
    99 fun mk_exhaust_tac ctxt n ctr_defs fld_iff_unf sumEN' =
   100   Local_Defs.unfold_tac ctxt (fld_iff_unf :: ctr_defs) THEN rtac sumEN' 1 THEN
   101   Local_Defs.unfold_tac ctxt @{thms all_prod_eq} THEN
   102   EVERY' (maps (fn k => [select_prem_tac n (rotate_tac 1) k, REPEAT_DETERM o dtac meta_spec,
   103     etac meta_mp, atac]) (1 upto n)) 1;
   104 
   105 fun mk_fld_iff_unf_tac ctxt cTs cfld cunf fld_unf unf_fld =
   106   (rtac iffI THEN'
   107    EVERY' (map3 (fn cTs => fn cx => fn th =>
   108      dtac (Drule.instantiate' cTs [NONE, NONE, SOME cx] arg_cong) THEN'
   109      SELECT_GOAL (Local_Defs.unfold_tac ctxt [th]) THEN'
   110      atac) [rev cTs, cTs] [cunf, cfld] [unf_fld, fld_unf])) 1;
   111 
   112 fun mk_half_distinct_tac ctxt fld_inject ctr_defs =
   113   Local_Defs.unfold_tac ctxt (fld_inject :: @{thms sum.inject} @ ctr_defs) THEN
   114   rtac @{thm sum.distinct(1)} 1;
   115 
   116 fun mk_inject_tac ctxt ctr_def fld_inject =
   117   Local_Defs.unfold_tac ctxt [ctr_def] THEN rtac (fld_inject RS ssubst) 1 THEN
   118   Local_Defs.unfold_tac ctxt @{thms sum.inject Pair_eq conj_assoc} THEN rtac refl 1;
   119 
   120 val iter_like_thms =
   121   @{thms case_unit comp_def convol_def id_apply map_pair_def sum.simps(5,6) sum_map.simps
   122       split_conv};
   123 
   124 fun mk_iter_like_tac pre_map_defs map_ids iter_like_defs fld_iter_like ctr_def ctxt =
   125   Local_Defs.unfold_tac ctxt (ctr_def :: fld_iter_like :: iter_like_defs @ pre_map_defs @ map_ids @
   126     iter_like_thms) THEN Local_Defs.unfold_tac ctxt @{thms id_def} THEN rtac refl 1;
   127 
   128 val coiter_like_ss = ss_only @{thms if_True if_False};
   129 val coiter_like_thms = @{thms id_apply map_pair_def sum_map.simps prod.cases};
   130 
   131 fun mk_coiter_like_tac coiter_like_defs map_ids fld_unf_coiter_like pre_map_def ctr_def ctxt =
   132   Local_Defs.unfold_tac ctxt (ctr_def :: coiter_like_defs) THEN
   133   subst_tac ctxt [fld_unf_coiter_like] 1 THEN asm_simp_tac coiter_like_ss 1 THEN
   134   Local_Defs.unfold_tac ctxt (pre_map_def :: coiter_like_thms @ map_ids) THEN
   135   Local_Defs.unfold_tac ctxt @{thms id_def} THEN
   136   TRY ((rtac refl ORELSE' subst_tac ctxt @{thms unit_eq} THEN' rtac refl) 1);
   137 
   138 val maybe_singletonI_tac = atac ORELSE' rtac @{thm singletonI};
   139 
   140 fun solve_prem_prem_tac ctxt =
   141   SELECT_GOAL (Local_Defs.unfold_tac ctxt
   142     @{thms Un_iff eq_UN_compreh_Un mem_Collect_eq mem_UN_compreh_eq}) THEN'
   143   REPEAT o (etac @{thm rev_bexI} ORELSE' resolve_tac @{thms disjI1 disjI2}) THEN'
   144   (atac ORELSE' rtac refl ORELSE' rtac @{thm singletonI});
   145 
   146 val induct_prem_prem_thms =
   147   @{thms SUP_empty Sup_empty Sup_insert UN_compreh_bex_eq_empty UN_compreh_bex_eq_singleton
   148       UN_insert Un_assoc Un_empty_left Un_empty_right Union_Un_distrib collect_def[abs_def] fst_conv
   149       image_def o_apply snd_conv snd_prod_fun sum.cases sup_bot_right fst_map_pair map_pair_simp
   150       sum_map.simps};
   151 
   152 fun mk_induct_leverage_prem_prems_tac ctxt nn ppjjqqkks set_natural's pre_set_defs =
   153   EVERY' (maps (fn ((pp, jj), (qq, kk)) =>
   154     [select_prem_tac nn (dtac meta_spec) kk, etac meta_mp,
   155      SELECT_GOAL (Local_Defs.unfold_tac ctxt
   156        (pre_set_defs @ set_natural's @ induct_prem_prem_thms)),
   157      solve_prem_prem_tac ctxt]) (rev ppjjqqkks)) 1;
   158 
   159 fun mk_induct_discharge_prem_tac ctxt nn n set_natural's pre_set_defs m k ppjjqqkks =
   160   let val r = length ppjjqqkks in
   161     EVERY' [select_prem_tac n (rotate_tac 1) k, rotate_tac ~1, hyp_subst_tac,
   162       REPEAT_DETERM_N m o (dtac meta_spec THEN' rotate_tac ~1)] 1 THEN
   163     EVERY [REPEAT_DETERM_N r
   164         (rotate_tac ~1 1 THEN dtac meta_mp 1 THEN rotate_tac 1 1 THEN prefer_tac 2),
   165       if r > 0 then PRIMITIVE Raw_Simplifier.norm_hhf else all_tac, atac 1,
   166       mk_induct_leverage_prem_prems_tac ctxt nn ppjjqqkks set_natural's pre_set_defs]
   167   end;
   168 
   169 fun mk_induct_tac ctxt ns mss ppjjqqkksss ctr_defs fld_induct' set_natural's pre_set_defss =
   170   let
   171     val nn = length ns;
   172     val n = Integer.sum ns;
   173     val pre_set_defss' = map2 (map o unfold_sum_prod_sets ctxt) mss pre_set_defss;
   174   in
   175     Local_Defs.unfold_tac ctxt ctr_defs THEN rtac fld_induct' 1 THEN inst_spurious_fs_tac ctxt THEN
   176     EVERY (map4 (EVERY oooo map3 o mk_induct_discharge_prem_tac ctxt nn n set_natural's)
   177       pre_set_defss' mss (unflat mss (1 upto n)) ppjjqqkksss)
   178   end;
   179 
   180 end;