src/HOL/BNF/More_BNFs.thy
author blanchet
Tue, 19 Nov 2013 14:11:26 +0100
changeset 55863 930409d43211
parent 55862 03ff4d1e6784
child 55912 bbab2ebda234
permissions -rw-r--r--
use suffix '_list' etc. instead of prefix 'list_' for constants not present in the old package
     1 (*  Title:      HOL/BNF/More_BNFs.thy
     2     Author:     Dmitriy Traytel, TU Muenchen
     3     Author:     Andrei Popescu, TU Muenchen
     4     Author:     Andreas Lochbihler, Karlsruhe Institute of Technology
     5     Author:     Jasmin Blanchette, TU Muenchen
     6     Copyright   2012
     7 
     8 Registration of various types as bounded natural functors.
     9 *)
    10 
    11 header {* Registration of Various Types as Bounded Natural Functors *}
    12 
    13 theory More_BNFs
    14 imports
    15   Basic_BNFs
    16   "~~/src/HOL/Library/FSet"
    17   "~~/src/HOL/Library/Multiset"
    18   Countable_Type
    19 begin
    20 
    21 lemma option_rec_conv_option_case: "option_rec = option_case"
    22 by (simp add: fun_eq_iff split: option.split)
    23 
    24 bnf "'a option"
    25   map: Option.map
    26   sets: Option.set
    27   bd: natLeq 
    28   wits: None
    29   rel: option_rel
    30 proof -
    31   show "Option.map id = id" by (simp add: fun_eq_iff Option.map_def split: option.split)
    32 next
    33   fix f g
    34   show "Option.map (g \<circ> f) = Option.map g \<circ> Option.map f"
    35     by (auto simp add: fun_eq_iff Option.map_def split: option.split)
    36 next
    37   fix f g x
    38   assume "\<And>z. z \<in> Option.set x \<Longrightarrow> f z = g z"
    39   thus "Option.map f x = Option.map g x"
    40     by (simp cong: Option.map_cong)
    41 next
    42   fix f
    43   show "Option.set \<circ> Option.map f = op ` f \<circ> Option.set"
    44     by fastforce
    45 next
    46   show "card_order natLeq" by (rule natLeq_card_order)
    47 next
    48   show "cinfinite natLeq" by (rule natLeq_cinfinite)
    49 next
    50   fix x
    51   show "|Option.set x| \<le>o natLeq"
    52     by (cases x) (simp_all add: ordLess_imp_ordLeq finite_iff_ordLess_natLeq[symmetric])
    53 next
    54   fix A B1 B2 f1 f2 p1 p2
    55   assume wpull: "wpull A B1 B2 f1 f2 p1 p2"
    56   show "wpull {x. Option.set x \<subseteq> A} {x. Option.set x \<subseteq> B1} {x. Option.set x \<subseteq> B2}
    57     (Option.map f1) (Option.map f2) (Option.map p1) (Option.map p2)"
    58     (is "wpull ?A ?B1 ?B2 ?f1 ?f2 ?p1 ?p2")
    59     unfolding wpull_def
    60   proof (intro strip, elim conjE)
    61     fix b1 b2
    62     assume "b1 \<in> ?B1" "b2 \<in> ?B2" "?f1 b1 = ?f2 b2"
    63     thus "\<exists>a \<in> ?A. ?p1 a = b1 \<and> ?p2 a = b2" using wpull
    64       unfolding wpull_def by (cases b2) (auto 4 5)
    65   qed
    66 next
    67   fix z
    68   assume "z \<in> Option.set None"
    69   thus False by simp
    70 next
    71   fix R
    72   show "option_rel R =
    73         (Grp {x. Option.set x \<subseteq> Collect (split R)} (Option.map fst))\<inverse>\<inverse> OO
    74          Grp {x. Option.set x \<subseteq> Collect (split R)} (Option.map snd)"
    75   unfolding option_rel_def Grp_def relcompp.simps conversep.simps fun_eq_iff prod.cases
    76   by (auto simp: trans[OF eq_commute option_map_is_None] trans[OF eq_commute option_map_eq_Some]
    77            split: option.splits)
    78 qed
    79 
    80 lemma wpull_map:
    81   assumes "wpull A B1 B2 f1 f2 p1 p2"
    82   shows "wpull {x. set x \<subseteq> A} {x. set x \<subseteq> B1} {x. set x \<subseteq> B2} (map f1) (map f2) (map p1) (map p2)"
    83     (is "wpull ?A ?B1 ?B2 _ _ _ _")
    84 proof (unfold wpull_def)
    85   { fix as bs assume *: "as \<in> ?B1" "bs \<in> ?B2" "map f1 as = map f2 bs"
    86     hence "length as = length bs" by (metis length_map)
    87     hence "\<exists>zs \<in> ?A. map p1 zs = as \<and> map p2 zs = bs" using *
    88     proof (induct as bs rule: list_induct2)
    89       case (Cons a as b bs)
    90       hence "a \<in> B1" "b \<in> B2" "f1 a = f2 b" by auto
    91       with assms obtain z where "z \<in> A" "p1 z = a" "p2 z = b" unfolding wpull_def by blast
    92       moreover
    93       from Cons obtain zs where "zs \<in> ?A" "map p1 zs = as" "map p2 zs = bs" by auto
    94       ultimately have "z # zs \<in> ?A" "map p1 (z # zs) = a # as \<and> map p2 (z # zs) = b # bs" by auto
    95       thus ?case by (rule_tac x = "z # zs" in bexI)
    96     qed simp
    97   }
    98   thus "\<forall>as bs. as \<in> ?B1 \<and> bs \<in> ?B2 \<and> map f1 as = map f2 bs \<longrightarrow>
    99     (\<exists>zs \<in> ?A. map p1 zs = as \<and> map p2 zs = bs)" by blast
   100 qed
   101 
   102 bnf "'a list"
   103   map: map
   104   sets: set
   105   bd: natLeq
   106   wits: Nil
   107   rel: list_all2
   108 proof -
   109   show "map id = id" by (rule List.map.id)
   110 next
   111   fix f g
   112   show "map (g o f) = map g o map f" by (rule List.map.comp[symmetric])
   113 next
   114   fix x f g
   115   assume "\<And>z. z \<in> set x \<Longrightarrow> f z = g z"
   116   thus "map f x = map g x" by simp
   117 next
   118   fix f
   119   show "set o map f = image f o set" by (rule ext, unfold o_apply, rule set_map)
   120 next
   121   show "card_order natLeq" by (rule natLeq_card_order)
   122 next
   123   show "cinfinite natLeq" by (rule natLeq_cinfinite)
   124 next
   125   fix x
   126   show "|set x| \<le>o natLeq"
   127     by (metis List.finite_set finite_iff_ordLess_natLeq ordLess_imp_ordLeq)
   128 next
   129   fix R
   130   show "list_all2 R =
   131          (Grp {x. set x \<subseteq> {(x, y). R x y}} (map fst))\<inverse>\<inverse> OO
   132          Grp {x. set x \<subseteq> {(x, y). R x y}} (map snd)"
   133     unfolding list_all2_def[abs_def] Grp_def fun_eq_iff relcompp.simps conversep.simps
   134     by (force simp: zip_map_fst_snd)
   135 qed (simp add: wpull_map)+
   136 
   137 (* Finite sets *)
   138 
   139 lemma wpull_image:
   140   assumes "wpull A B1 B2 f1 f2 p1 p2"
   141   shows "wpull (Pow A) (Pow B1) (Pow B2) (image f1) (image f2) (image p1) (image p2)"
   142 unfolding wpull_def Pow_def Bex_def mem_Collect_eq proof clarify
   143   fix Y1 Y2 assume Y1: "Y1 \<subseteq> B1" and Y2: "Y2 \<subseteq> B2" and EQ: "f1 ` Y1 = f2 ` Y2"
   144   def X \<equiv> "{a \<in> A. p1 a \<in> Y1 \<and> p2 a \<in> Y2}"
   145   show "\<exists>X\<subseteq>A. p1 ` X = Y1 \<and> p2 ` X = Y2"
   146   proof (rule exI[of _ X], intro conjI)
   147     show "p1 ` X = Y1"
   148     proof
   149       show "Y1 \<subseteq> p1 ` X"
   150       proof safe
   151         fix y1 assume y1: "y1 \<in> Y1"
   152         then obtain y2 where y2: "y2 \<in> Y2" and eq: "f1 y1 = f2 y2" using EQ by auto
   153         then obtain x where "x \<in> A" and "p1 x = y1" and "p2 x = y2"
   154         using assms y1 Y1 Y2 unfolding wpull_def by blast
   155         thus "y1 \<in> p1 ` X" unfolding X_def using y1 y2 by auto
   156       qed
   157     qed(unfold X_def, auto)
   158     show "p2 ` X = Y2"
   159     proof
   160       show "Y2 \<subseteq> p2 ` X"
   161       proof safe
   162         fix y2 assume y2: "y2 \<in> Y2"
   163         then obtain y1 where y1: "y1 \<in> Y1" and eq: "f1 y1 = f2 y2" using EQ by force
   164         then obtain x where "x \<in> A" and "p1 x = y1" and "p2 x = y2"
   165         using assms y2 Y1 Y2 unfolding wpull_def by blast
   166         thus "y2 \<in> p2 ` X" unfolding X_def using y1 y2 by auto
   167       qed
   168     qed(unfold X_def, auto)
   169   qed(unfold X_def, auto)
   170 qed
   171 
   172 context
   173 includes fset.lifting
   174 begin
   175 
   176 lemma fset_rel_alt: "fset_rel R a b \<longleftrightarrow> (\<forall>t \<in> fset a. \<exists>u \<in> fset b. R t u) \<and>
   177                                         (\<forall>t \<in> fset b. \<exists>u \<in> fset a. R u t)"
   178   by transfer (simp add: set_rel_def)
   179 
   180 lemma fset_to_fset: "finite A \<Longrightarrow> fset (the_inv fset A) = A"
   181   apply (rule f_the_inv_into_f[unfolded inj_on_def])
   182   apply (simp add: fset_inject) apply (rule range_eqI Abs_fset_inverse[symmetric] CollectI)+
   183   .
   184 
   185 lemma fset_rel_aux:
   186 "(\<forall>t \<in> fset a. \<exists>u \<in> fset b. R t u) \<and> (\<forall>u \<in> fset b. \<exists>t \<in> fset a. R t u) \<longleftrightarrow>
   187  ((Grp {a. fset a \<subseteq> {(a, b). R a b}} (fimage fst))\<inverse>\<inverse> OO
   188   Grp {a. fset a \<subseteq> {(a, b). R a b}} (fimage snd)) a b" (is "?L = ?R")
   189 proof
   190   assume ?L
   191   def R' \<equiv> "the_inv fset (Collect (split R) \<inter> (fset a \<times> fset b))" (is "the_inv fset ?L'")
   192   have "finite ?L'" by (intro finite_Int[OF disjI2] finite_cartesian_product) (transfer, simp)+
   193   hence *: "fset R' = ?L'" unfolding R'_def by (intro fset_to_fset)
   194   show ?R unfolding Grp_def relcompp.simps conversep.simps
   195   proof (intro CollectI prod_caseI exI[of _ a] exI[of _ b] exI[of _ R'] conjI refl)
   196     from * show "a = fimage fst R'" using conjunct1[OF `?L`]
   197       by (transfer, auto simp add: image_def Int_def split: prod.splits)
   198     from * show "b = fimage snd R'" using conjunct2[OF `?L`]
   199       by (transfer, auto simp add: image_def Int_def split: prod.splits)
   200   qed (auto simp add: *)
   201 next
   202   assume ?R thus ?L unfolding Grp_def relcompp.simps conversep.simps
   203   apply (simp add: subset_eq Ball_def)
   204   apply (rule conjI)
   205   apply (transfer, clarsimp, metis snd_conv)
   206   by (transfer, clarsimp, metis fst_conv)
   207 qed
   208 
   209 lemma wpull_fimage:
   210   assumes "wpull A B1 B2 f1 f2 p1 p2"
   211   shows "wpull {x. fset x \<subseteq> A} {x. fset x \<subseteq> B1} {x. fset x \<subseteq> B2}
   212               (fimage f1) (fimage f2) (fimage p1) (fimage p2)"
   213 unfolding wpull_def Pow_def Bex_def mem_Collect_eq proof clarify
   214   fix y1 y2
   215   assume Y1: "fset y1 \<subseteq> B1" and Y2: "fset y2 \<subseteq> B2"
   216   assume "fimage f1 y1 = fimage f2 y2"
   217   hence EQ: "f1 ` (fset y1) = f2 ` (fset y2)" by transfer simp
   218   with Y1 Y2 obtain X where X: "X \<subseteq> A" and Y1: "p1 ` X = fset y1" and Y2: "p2 ` X = fset y2"
   219     using wpull_image[OF assms] unfolding wpull_def Pow_def
   220     by (auto elim!: allE[of _ "fset y1"] allE[of _ "fset y2"])
   221   have "\<forall> y1' \<in> fset y1. \<exists> x. x \<in> X \<and> y1' = p1 x" using Y1 by auto
   222   then obtain q1 where q1: "\<forall> y1' \<in> fset y1. q1 y1' \<in> X \<and> y1' = p1 (q1 y1')" by metis
   223   have "\<forall> y2' \<in> fset y2. \<exists> x. x \<in> X \<and> y2' = p2 x" using Y2 by auto
   224   then obtain q2 where q2: "\<forall> y2' \<in> fset y2. q2 y2' \<in> X \<and> y2' = p2 (q2 y2')" by metis
   225   def X' \<equiv> "q1 ` (fset y1) \<union> q2 ` (fset y2)"
   226   have X': "X' \<subseteq> A" and Y1: "p1 ` X' = fset y1" and Y2: "p2 ` X' = fset y2"
   227   using X Y1 Y2 q1 q2 unfolding X'_def by auto
   228   have fX': "finite X'" unfolding X'_def by transfer simp
   229   then obtain x where X'eq: "X' = fset x" by transfer simp
   230   show "\<exists>x. fset x \<subseteq> A \<and> fimage p1 x = y1 \<and> fimage p2 x = y2"
   231      using X' Y1 Y2 by (auto simp: X'eq intro!: exI[of _ "x"]) (transfer, blast)+
   232 qed
   233 
   234 bnf "'a fset"
   235   map: fimage
   236   sets: fset 
   237   bd: natLeq
   238   wits: "{||}"
   239   rel: fset_rel
   240 apply -
   241           apply transfer' apply simp
   242          apply transfer' apply force
   243         apply transfer apply force
   244        apply transfer' apply force
   245       apply (rule natLeq_card_order)
   246      apply (rule natLeq_cinfinite)
   247     apply transfer apply (metis ordLess_imp_ordLeq finite_iff_ordLess_natLeq)
   248   apply (erule wpull_fimage)
   249  apply (simp add: Grp_def relcompp.simps conversep.simps fun_eq_iff fset_rel_alt fset_rel_aux) 
   250 apply transfer apply simp
   251 done
   252 
   253 lemma fset_rel_fset: "set_rel \<chi> (fset A1) (fset A2) = fset_rel \<chi> A1 A2"
   254   by transfer (rule refl)
   255 
   256 end
   257 
   258 lemmas [simp] = fset.map_comp fset.map_id fset.set_map
   259 
   260 (* Countable sets *)
   261 
   262 lemma card_of_countable_sets_range:
   263 fixes A :: "'a set"
   264 shows "|{X. X \<subseteq> A \<and> countable X \<and> X \<noteq> {}}| \<le>o |{f::nat \<Rightarrow> 'a. range f \<subseteq> A}|"
   265 apply(rule card_of_ordLeqI[of from_nat_into]) using inj_on_from_nat_into
   266 unfolding inj_on_def by auto
   267 
   268 lemma card_of_countable_sets_Func:
   269 "|{X. X \<subseteq> A \<and> countable X \<and> X \<noteq> {}}| \<le>o |A| ^c natLeq"
   270 using card_of_countable_sets_range card_of_Func_UNIV[THEN ordIso_symmetric]
   271 unfolding cexp_def Field_natLeq Field_card_of
   272 by (rule ordLeq_ordIso_trans)
   273 
   274 lemma ordLeq_countable_subsets:
   275 "|A| \<le>o |{X. X \<subseteq> A \<and> countable X}|"
   276 apply (rule card_of_ordLeqI[of "\<lambda> a. {a}"]) unfolding inj_on_def by auto
   277 
   278 lemma finite_countable_subset:
   279 "finite {X. X \<subseteq> A \<and> countable X} \<longleftrightarrow> finite A"
   280 apply default
   281  apply (erule contrapos_pp)
   282  apply (rule card_of_ordLeq_infinite)
   283  apply (rule ordLeq_countable_subsets)
   284  apply assumption
   285 apply (rule finite_Collect_conjI)
   286 apply (rule disjI1)
   287 by (erule finite_Collect_subsets)
   288 
   289 lemma rcset_to_rcset: "countable A \<Longrightarrow> rcset (the_inv rcset A) = A"
   290   apply (rule f_the_inv_into_f[unfolded inj_on_def image_iff])
   291    apply transfer' apply simp
   292   apply transfer' apply simp
   293   done
   294 
   295 lemma Collect_Int_Times:
   296 "{(x, y). R x y} \<inter> A \<times> B = {(x, y). R x y \<and> x \<in> A \<and> y \<in> B}"
   297 by auto
   298 
   299 definition cset_rel :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a cset \<Rightarrow> 'b cset \<Rightarrow> bool" where
   300 "cset_rel R a b \<longleftrightarrow>
   301  (\<forall>t \<in> rcset a. \<exists>u \<in> rcset b. R t u) \<and>
   302  (\<forall>t \<in> rcset b. \<exists>u \<in> rcset a. R u t)"
   303 
   304 lemma cset_rel_aux:
   305 "(\<forall>t \<in> rcset a. \<exists>u \<in> rcset b. R t u) \<and> (\<forall>t \<in> rcset b. \<exists>u \<in> rcset a. R u t) \<longleftrightarrow>
   306  ((Grp {x. rcset x \<subseteq> {(a, b). R a b}} (cimage fst))\<inverse>\<inverse> OO
   307           Grp {x. rcset x \<subseteq> {(a, b). R a b}} (cimage snd)) a b" (is "?L = ?R")
   308 proof
   309   assume ?L
   310   def R' \<equiv> "the_inv rcset (Collect (split R) \<inter> (rcset a \<times> rcset b))"
   311   (is "the_inv rcset ?L'")
   312   have L: "countable ?L'" by auto
   313   hence *: "rcset R' = ?L'" unfolding R'_def using fset_to_fset by (intro rcset_to_rcset)
   314   thus ?R unfolding Grp_def relcompp.simps conversep.simps
   315   proof (intro CollectI prod_caseI exI[of _ a] exI[of _ b] exI[of _ R'] conjI refl)
   316     from * `?L` show "a = cimage fst R'" by transfer (auto simp: image_def Collect_Int_Times)
   317   next
   318     from * `?L` show "b = cimage snd R'" by transfer (auto simp: image_def Collect_Int_Times)
   319   qed simp_all
   320 next
   321   assume ?R thus ?L unfolding Grp_def relcompp.simps conversep.simps
   322     by transfer force
   323 qed
   324 
   325 bnf "'a cset"
   326   map: cimage
   327   sets: rcset
   328   bd: natLeq
   329   wits: "cempty"
   330   rel: cset_rel
   331 proof -
   332   show "cimage id = id" by transfer' simp
   333 next
   334   fix f g show "cimage (g \<circ> f) = cimage g \<circ> cimage f" by transfer' fastforce
   335 next
   336   fix C f g assume eq: "\<And>a. a \<in> rcset C \<Longrightarrow> f a = g a"
   337   thus "cimage f C = cimage g C" by transfer force
   338 next
   339   fix f show "rcset \<circ> cimage f = op ` f \<circ> rcset" by transfer' fastforce
   340 next
   341   show "card_order natLeq" by (rule natLeq_card_order)
   342 next
   343   show "cinfinite natLeq" by (rule natLeq_cinfinite)
   344 next
   345   fix C show "|rcset C| \<le>o natLeq" by transfer (unfold countable_card_le_natLeq)
   346 next
   347   fix A B1 B2 f1 f2 p1 p2
   348   assume wp: "wpull A B1 B2 f1 f2 p1 p2"
   349   show "wpull {x. rcset x \<subseteq> A} {x. rcset x \<subseteq> B1} {x. rcset x \<subseteq> B2}
   350               (cimage f1) (cimage f2) (cimage p1) (cimage p2)"
   351   unfolding wpull_def proof safe
   352     fix y1 y2
   353     assume Y1: "rcset y1 \<subseteq> B1" and Y2: "rcset y2 \<subseteq> B2"
   354     assume "cimage f1 y1 = cimage f2 y2"
   355     hence EQ: "f1 ` (rcset y1) = f2 ` (rcset y2)" by transfer
   356     with Y1 Y2 obtain X where X: "X \<subseteq> A"
   357     and Y1: "p1 ` X = rcset y1" and Y2: "p2 ` X = rcset y2"
   358     using wpull_image[OF wp] unfolding wpull_def Pow_def Bex_def mem_Collect_eq
   359       by (auto elim!: allE[of _ "rcset y1"] allE[of _ "rcset y2"])
   360     have "\<forall> y1' \<in> rcset y1. \<exists> x. x \<in> X \<and> y1' = p1 x" using Y1 by auto
   361     then obtain q1 where q1: "\<forall> y1' \<in> rcset y1. q1 y1' \<in> X \<and> y1' = p1 (q1 y1')" by metis
   362     have "\<forall> y2' \<in> rcset y2. \<exists> x. x \<in> X \<and> y2' = p2 x" using Y2 by auto
   363     then obtain q2 where q2: "\<forall> y2' \<in> rcset y2. q2 y2' \<in> X \<and> y2' = p2 (q2 y2')" by metis
   364     def X' \<equiv> "q1 ` (rcset y1) \<union> q2 ` (rcset y2)"
   365     have X': "X' \<subseteq> A" and Y1: "p1 ` X' = rcset y1" and Y2: "p2 ` X' = rcset y2"
   366     using X Y1 Y2 q1 q2 unfolding X'_def by fast+
   367     have fX': "countable X'" unfolding X'_def by simp
   368     then obtain x where X'eq: "X' = rcset x" by transfer blast
   369     show "\<exists>x\<in>{x. rcset x \<subseteq> A}. cimage p1 x = y1 \<and> cimage p2 x = y2"
   370       using X' Y1 Y2 unfolding X'eq by (intro bexI[of _ "x"]) (transfer, auto)
   371   qed
   372 next
   373   fix R
   374   show "cset_rel R =
   375         (Grp {x. rcset x \<subseteq> Collect (split R)} (cimage fst))\<inverse>\<inverse> OO
   376          Grp {x. rcset x \<subseteq> Collect (split R)} (cimage snd)"
   377   unfolding cset_rel_def[abs_def] cset_rel_aux by simp
   378 qed (transfer, simp)
   379 
   380 
   381 (* Multisets *)
   382 
   383 lemma setsum_gt_0_iff:
   384 fixes f :: "'a \<Rightarrow> nat" assumes "finite A"
   385 shows "setsum f A > 0 \<longleftrightarrow> (\<exists> a \<in> A. f a > 0)"
   386 (is "?L \<longleftrightarrow> ?R")
   387 proof-
   388   have "?L \<longleftrightarrow> \<not> setsum f A = 0" by fast
   389   also have "... \<longleftrightarrow> (\<exists> a \<in> A. f a \<noteq> 0)" using assms by simp
   390   also have "... \<longleftrightarrow> ?R" by simp
   391   finally show ?thesis .
   392 qed
   393 
   394 lift_definition mmap :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a multiset \<Rightarrow> 'b multiset" is
   395   "\<lambda>h f b. setsum f {a. h a = b \<and> f a > 0} :: nat"
   396 unfolding multiset_def proof safe
   397   fix h :: "'a \<Rightarrow> 'b" and f :: "'a \<Rightarrow> nat"
   398   assume fin: "finite {a. 0 < f a}"  (is "finite ?A")
   399   show "finite {b. 0 < setsum f {a. h a = b \<and> 0 < f a}}"
   400   (is "finite {b. 0 < setsum f (?As b)}")
   401   proof- let ?B = "{b. 0 < setsum f (?As b)}"
   402     have "\<And> b. finite (?As b)" using fin by simp
   403     hence B: "?B = {b. ?As b \<noteq> {}}" by (auto simp add: setsum_gt_0_iff)
   404     hence "?B \<subseteq> h ` ?A" by auto
   405     thus ?thesis using finite_surj[OF fin] by auto
   406   qed
   407 qed
   408 
   409 lemma mmap_id0: "mmap id = id"
   410 proof (intro ext multiset_eqI)
   411   fix f a show "count (mmap id f) a = count (id f) a"
   412   proof (cases "count f a = 0")
   413     case False
   414     hence 1: "{aa. aa = a \<and> aa \<in># f} = {a}" by auto
   415     thus ?thesis by transfer auto
   416   qed (transfer, simp)
   417 qed
   418 
   419 lemma inj_on_setsum_inv:
   420 assumes 1: "(0::nat) < setsum (count f) {a. h a = b' \<and> a \<in># f}" (is "0 < setsum (count f) ?A'")
   421 and     2: "{a. h a = b \<and> a \<in># f} = {a. h a = b' \<and> a \<in># f}" (is "?A = ?A'")
   422 shows "b = b'"
   423 using assms by (auto simp add: setsum_gt_0_iff)
   424 
   425 lemma mmap_comp:
   426 fixes h1 :: "'a \<Rightarrow> 'b" and h2 :: "'b \<Rightarrow> 'c"
   427 shows "mmap (h2 o h1) = mmap h2 o mmap h1"
   428 proof (intro ext multiset_eqI)
   429   fix f :: "'a multiset" fix c :: 'c
   430   let ?A = "{a. h2 (h1 a) = c \<and> a \<in># f}"
   431   let ?As = "\<lambda> b. {a. h1 a = b \<and> a \<in># f}"
   432   let ?B = "{b. h2 b = c \<and> 0 < setsum (count f) (?As b)}"
   433   have 0: "{?As b | b.  b \<in> ?B} = ?As ` ?B" by auto
   434   have "\<And> b. finite (?As b)" by transfer (simp add: multiset_def)
   435   hence "?B = {b. h2 b = c \<and> ?As b \<noteq> {}}" by (auto simp add: setsum_gt_0_iff)
   436   hence A: "?A = \<Union> {?As b | b.  b \<in> ?B}" by auto
   437   have "setsum (count f) ?A = setsum (setsum (count f)) {?As b | b.  b \<in> ?B}"
   438     unfolding A by transfer (intro setsum_Union_disjoint, auto simp: multiset_def)
   439   also have "... = setsum (setsum (count f)) (?As ` ?B)" unfolding 0 ..
   440   also have "... = setsum (setsum (count f) o ?As) ?B"
   441     by(intro setsum_reindex) (auto simp add: setsum_gt_0_iff inj_on_def)
   442   also have "... = setsum (\<lambda> b. setsum (count f) (?As b)) ?B" unfolding comp_def ..
   443   finally have "setsum (count f) ?A = setsum (\<lambda> b. setsum (count f) (?As b)) ?B" .
   444   thus "count (mmap (h2 \<circ> h1) f) c = count ((mmap h2 \<circ> mmap h1) f) c"
   445     by transfer (unfold o_apply, blast)
   446 qed
   447 
   448 lemma mmap_cong:
   449 assumes "\<And>a. a \<in># M \<Longrightarrow> f a = g a"
   450 shows "mmap f M = mmap g M"
   451 using assms by transfer (auto intro!: setsum_cong)
   452 
   453 context
   454 begin
   455 interpretation lifting_syntax .
   456 
   457 lemma set_of_transfer[transfer_rule]: "(pcr_multiset op = ===> op =) (\<lambda>f. {a. 0 < f a}) set_of"
   458   unfolding set_of_def pcr_multiset_def cr_multiset_def fun_rel_def by auto
   459 
   460 end
   461 
   462 lemma set_of_mmap: "set_of o mmap h = image h o set_of"
   463 proof (rule ext, unfold o_apply)
   464   fix M show "set_of (mmap h M) = h ` set_of M"
   465     by transfer (auto simp add: multiset_def setsum_gt_0_iff)
   466 qed
   467 
   468 lemma multiset_of_surj:
   469   "multiset_of ` {as. set as \<subseteq> A} = {M. set_of M \<subseteq> A}"
   470 proof safe
   471   fix M assume M: "set_of M \<subseteq> A"
   472   obtain as where eq: "M = multiset_of as" using surj_multiset_of unfolding surj_def by auto
   473   hence "set as \<subseteq> A" using M by auto
   474   thus "M \<in> multiset_of ` {as. set as \<subseteq> A}" using eq by auto
   475 next
   476   show "\<And>x xa xb. \<lbrakk>set xa \<subseteq> A; xb \<in> set_of (multiset_of xa)\<rbrakk> \<Longrightarrow> xb \<in> A"
   477   by (erule set_mp) (unfold set_of_multiset_of)
   478 qed
   479 
   480 lemma card_of_set_of:
   481 "|{M. set_of M \<subseteq> A}| \<le>o |{as. set as \<subseteq> A}|"
   482 apply(rule card_of_ordLeqI2[of _ multiset_of]) using multiset_of_surj by auto
   483 
   484 lemma nat_sum_induct:
   485 assumes "\<And>n1 n2. (\<And> m1 m2. m1 + m2 < n1 + n2 \<Longrightarrow> phi m1 m2) \<Longrightarrow> phi n1 n2"
   486 shows "phi (n1::nat) (n2::nat)"
   487 proof-
   488   let ?chi = "\<lambda> n1n2 :: nat * nat. phi (fst n1n2) (snd n1n2)"
   489   have "?chi (n1,n2)"
   490   apply(induct rule: measure_induct[of "\<lambda> n1n2. fst n1n2 + snd n1n2" ?chi])
   491   using assms by (metis fstI sndI)
   492   thus ?thesis by simp
   493 qed
   494 
   495 lemma matrix_count:
   496 fixes ct1 ct2 :: "nat \<Rightarrow> nat"
   497 assumes "setsum ct1 {..<Suc n1} = setsum ct2 {..<Suc n2}"
   498 shows
   499 "\<exists> ct. (\<forall> i1 \<le> n1. setsum (\<lambda> i2. ct i1 i2) {..<Suc n2} = ct1 i1) \<and>
   500        (\<forall> i2 \<le> n2. setsum (\<lambda> i1. ct i1 i2) {..<Suc n1} = ct2 i2)"
   501 (is "?phi ct1 ct2 n1 n2")
   502 proof-
   503   have "\<forall> ct1 ct2 :: nat \<Rightarrow> nat.
   504         setsum ct1 {..<Suc n1} = setsum ct2 {..<Suc n2} \<longrightarrow> ?phi ct1 ct2 n1 n2"
   505   proof(induct rule: nat_sum_induct[of
   506 "\<lambda> n1 n2. \<forall> ct1 ct2 :: nat \<Rightarrow> nat.
   507      setsum ct1 {..<Suc n1} = setsum ct2 {..<Suc n2} \<longrightarrow> ?phi ct1 ct2 n1 n2"],
   508       clarify)
   509   fix n1 n2 :: nat and ct1 ct2 :: "nat \<Rightarrow> nat"
   510   assume IH: "\<And> m1 m2. m1 + m2 < n1 + n2 \<Longrightarrow>
   511                 \<forall> dt1 dt2 :: nat \<Rightarrow> nat.
   512                 setsum dt1 {..<Suc m1} = setsum dt2 {..<Suc m2} \<longrightarrow> ?phi dt1 dt2 m1 m2"
   513   and ss: "setsum ct1 {..<Suc n1} = setsum ct2 {..<Suc n2}"
   514   show "?phi ct1 ct2 n1 n2"
   515   proof(cases n1)
   516     case 0 note n1 = 0
   517     show ?thesis
   518     proof(cases n2)
   519       case 0 note n2 = 0
   520       let ?ct = "\<lambda> i1 i2. ct2 0"
   521       show ?thesis apply(rule exI[of _ ?ct]) using n1 n2 ss by simp
   522     next
   523       case (Suc m2) note n2 = Suc
   524       let ?ct = "\<lambda> i1 i2. ct2 i2"
   525       show ?thesis apply(rule exI[of _ ?ct]) using n1 n2 ss by auto
   526     qed
   527   next
   528     case (Suc m1) note n1 = Suc
   529     show ?thesis
   530     proof(cases n2)
   531       case 0 note n2 = 0
   532       let ?ct = "\<lambda> i1 i2. ct1 i1"
   533       show ?thesis apply(rule exI[of _ ?ct]) using n1 n2 ss by auto
   534     next
   535       case (Suc m2) note n2 = Suc
   536       show ?thesis
   537       proof(cases "ct1 n1 \<le> ct2 n2")
   538         case True
   539         def dt2 \<equiv> "\<lambda> i2. if i2 = n2 then ct2 i2 - ct1 n1 else ct2 i2"
   540         have "setsum ct1 {..<Suc m1} = setsum dt2 {..<Suc n2}"
   541         unfolding dt2_def using ss n1 True by auto
   542         hence "?phi ct1 dt2 m1 n2" using IH[of m1 n2] n1 by simp
   543         then obtain dt where
   544         1: "\<And> i1. i1 \<le> m1 \<Longrightarrow> setsum (\<lambda> i2. dt i1 i2) {..<Suc n2} = ct1 i1" and
   545         2: "\<And> i2. i2 \<le> n2 \<Longrightarrow> setsum (\<lambda> i1. dt i1 i2) {..<Suc m1} = dt2 i2" by auto
   546         let ?ct = "\<lambda> i1 i2. if i1 = n1 then (if i2 = n2 then ct1 n1 else 0)
   547                                        else dt i1 i2"
   548         show ?thesis apply(rule exI[of _ ?ct])
   549         using n1 n2 1 2 True unfolding dt2_def by simp
   550       next
   551         case False
   552         hence False: "ct2 n2 < ct1 n1" by simp
   553         def dt1 \<equiv> "\<lambda> i1. if i1 = n1 then ct1 i1 - ct2 n2 else ct1 i1"
   554         have "setsum dt1 {..<Suc n1} = setsum ct2 {..<Suc m2}"
   555         unfolding dt1_def using ss n2 False by auto
   556         hence "?phi dt1 ct2 n1 m2" using IH[of n1 m2] n2 by simp
   557         then obtain dt where
   558         1: "\<And> i1. i1 \<le> n1 \<Longrightarrow> setsum (\<lambda> i2. dt i1 i2) {..<Suc m2} = dt1 i1" and
   559         2: "\<And> i2. i2 \<le> m2 \<Longrightarrow> setsum (\<lambda> i1. dt i1 i2) {..<Suc n1} = ct2 i2" by force
   560         let ?ct = "\<lambda> i1 i2. if i2 = n2 then (if i1 = n1 then ct2 n2 else 0)
   561                                        else dt i1 i2"
   562         show ?thesis apply(rule exI[of _ ?ct])
   563         using n1 n2 1 2 False unfolding dt1_def by simp
   564       qed
   565     qed
   566   qed
   567   qed
   568   thus ?thesis using assms by auto
   569 qed
   570 
   571 definition
   572 "inj2 u B1 B2 \<equiv>
   573  \<forall> b1 b1' b2 b2'. {b1,b1'} \<subseteq> B1 \<and> {b2,b2'} \<subseteq> B2 \<and> u b1 b2 = u b1' b2'
   574                   \<longrightarrow> b1 = b1' \<and> b2 = b2'"
   575 
   576 lemma matrix_setsum_finite:
   577 assumes B1: "B1 \<noteq> {}" "finite B1" and B2: "B2 \<noteq> {}" "finite B2" and u: "inj2 u B1 B2"
   578 and ss: "setsum N1 B1 = setsum N2 B2"
   579 shows "\<exists> M :: 'a \<Rightarrow> nat.
   580             (\<forall> b1 \<in> B1. setsum (\<lambda> b2. M (u b1 b2)) B2 = N1 b1) \<and>
   581             (\<forall> b2 \<in> B2. setsum (\<lambda> b1. M (u b1 b2)) B1 = N2 b2)"
   582 proof-
   583   obtain n1 where "card B1 = Suc n1" using B1 by (metis card_insert finite.simps)
   584   then obtain e1 where e1: "bij_betw e1 {..<Suc n1} B1"
   585   using ex_bij_betw_finite_nat[OF B1(2)] by (metis atLeast0LessThan bij_betw_the_inv_into)
   586   hence e1_inj: "inj_on e1 {..<Suc n1}" and e1_surj: "e1 ` {..<Suc n1} = B1"
   587   unfolding bij_betw_def by auto
   588   def f1 \<equiv> "inv_into {..<Suc n1} e1"
   589   have f1: "bij_betw f1 B1 {..<Suc n1}"
   590   and f1e1[simp]: "\<And> i1. i1 < Suc n1 \<Longrightarrow> f1 (e1 i1) = i1"
   591   and e1f1[simp]: "\<And> b1. b1 \<in> B1 \<Longrightarrow> e1 (f1 b1) = b1" unfolding f1_def
   592   apply (metis bij_betw_inv_into e1, metis bij_betw_inv_into_left e1 lessThan_iff)
   593   by (metis e1_surj f_inv_into_f)
   594   (*  *)
   595   obtain n2 where "card B2 = Suc n2" using B2 by (metis card_insert finite.simps)
   596   then obtain e2 where e2: "bij_betw e2 {..<Suc n2} B2"
   597   using ex_bij_betw_finite_nat[OF B2(2)] by (metis atLeast0LessThan bij_betw_the_inv_into)
   598   hence e2_inj: "inj_on e2 {..<Suc n2}" and e2_surj: "e2 ` {..<Suc n2} = B2"
   599   unfolding bij_betw_def by auto
   600   def f2 \<equiv> "inv_into {..<Suc n2} e2"
   601   have f2: "bij_betw f2 B2 {..<Suc n2}"
   602   and f2e2[simp]: "\<And> i2. i2 < Suc n2 \<Longrightarrow> f2 (e2 i2) = i2"
   603   and e2f2[simp]: "\<And> b2. b2 \<in> B2 \<Longrightarrow> e2 (f2 b2) = b2" unfolding f2_def
   604   apply (metis bij_betw_inv_into e2, metis bij_betw_inv_into_left e2 lessThan_iff)
   605   by (metis e2_surj f_inv_into_f)
   606   (*  *)
   607   let ?ct1 = "N1 o e1"  let ?ct2 = "N2 o e2"
   608   have ss: "setsum ?ct1 {..<Suc n1} = setsum ?ct2 {..<Suc n2}"
   609   unfolding setsum_reindex[OF e1_inj, symmetric] setsum_reindex[OF e2_inj, symmetric]
   610   e1_surj e2_surj using ss .
   611   obtain ct where
   612   ct1: "\<And> i1. i1 \<le> n1 \<Longrightarrow> setsum (\<lambda> i2. ct i1 i2) {..<Suc n2} = ?ct1 i1" and
   613   ct2: "\<And> i2. i2 \<le> n2 \<Longrightarrow> setsum (\<lambda> i1. ct i1 i2) {..<Suc n1} = ?ct2 i2"
   614   using matrix_count[OF ss] by blast
   615   (*  *)
   616   def A \<equiv> "{u b1 b2 | b1 b2. b1 \<in> B1 \<and> b2 \<in> B2}"
   617   have "\<forall> a \<in> A. \<exists> b1b2 \<in> B1 <*> B2. u (fst b1b2) (snd b1b2) = a"
   618   unfolding A_def Ball_def mem_Collect_eq by auto
   619   then obtain h1h2 where h12:
   620   "\<And>a. a \<in> A \<Longrightarrow> u (fst (h1h2 a)) (snd (h1h2 a)) = a \<and> h1h2 a \<in> B1 <*> B2" by metis
   621   def h1 \<equiv> "fst o h1h2"  def h2 \<equiv> "snd o h1h2"
   622   have h12[simp]: "\<And>a. a \<in> A \<Longrightarrow> u (h1 a) (h2 a) = a"
   623                   "\<And> a. a \<in> A \<Longrightarrow> h1 a \<in> B1"  "\<And> a. a \<in> A \<Longrightarrow> h2 a \<in> B2"
   624   using h12 unfolding h1_def h2_def by force+
   625   {fix b1 b2 assume b1: "b1 \<in> B1" and b2: "b2 \<in> B2"
   626    hence inA: "u b1 b2 \<in> A" unfolding A_def by auto
   627    hence "u b1 b2 = u (h1 (u b1 b2)) (h2 (u b1 b2))" by auto
   628    moreover have "h1 (u b1 b2) \<in> B1" "h2 (u b1 b2) \<in> B2" using inA by auto
   629    ultimately have "h1 (u b1 b2) = b1 \<and> h2 (u b1 b2) = b2"
   630    using u b1 b2 unfolding inj2_def by fastforce
   631   }
   632   hence h1[simp]: "\<And> b1 b2. \<lbrakk>b1 \<in> B1; b2 \<in> B2\<rbrakk> \<Longrightarrow> h1 (u b1 b2) = b1" and
   633         h2[simp]: "\<And> b1 b2. \<lbrakk>b1 \<in> B1; b2 \<in> B2\<rbrakk> \<Longrightarrow> h2 (u b1 b2) = b2" by auto
   634   def M \<equiv> "\<lambda> a. ct (f1 (h1 a)) (f2 (h2 a))"
   635   show ?thesis
   636   apply(rule exI[of _ M]) proof safe
   637     fix b1 assume b1: "b1 \<in> B1"
   638     hence f1b1: "f1 b1 \<le> n1" using f1 unfolding bij_betw_def
   639     by (metis image_eqI lessThan_iff less_Suc_eq_le)
   640     have "(\<Sum>b2\<in>B2. M (u b1 b2)) = (\<Sum>i2<Suc n2. ct (f1 b1) (f2 (e2 i2)))"
   641     unfolding e2_surj[symmetric] setsum_reindex[OF e2_inj]
   642     unfolding M_def comp_def apply(intro setsum_cong) apply force
   643     by (metis e2_surj b1 h1 h2 imageI)
   644     also have "... = N1 b1" using b1 ct1[OF f1b1] by simp
   645     finally show "(\<Sum>b2\<in>B2. M (u b1 b2)) = N1 b1" .
   646   next
   647     fix b2 assume b2: "b2 \<in> B2"
   648     hence f2b2: "f2 b2 \<le> n2" using f2 unfolding bij_betw_def
   649     by (metis image_eqI lessThan_iff less_Suc_eq_le)
   650     have "(\<Sum>b1\<in>B1. M (u b1 b2)) = (\<Sum>i1<Suc n1. ct (f1 (e1 i1)) (f2 b2))"
   651     unfolding e1_surj[symmetric] setsum_reindex[OF e1_inj]
   652     unfolding M_def comp_def apply(intro setsum_cong) apply force
   653     by (metis e1_surj b2 h1 h2 imageI)
   654     also have "... = N2 b2" using b2 ct2[OF f2b2] by simp
   655     finally show "(\<Sum>b1\<in>B1. M (u b1 b2)) = N2 b2" .
   656   qed
   657 qed
   658 
   659 lemma supp_vimage_mmap: "set_of M \<subseteq> f -` (set_of (mmap f M))"
   660   by transfer (auto simp: multiset_def setsum_gt_0_iff)
   661 
   662 lemma mmap_ge_0: "b \<in># mmap f M \<longleftrightarrow> (\<exists>a. a \<in># M \<and> f a = b)"
   663   by transfer (auto simp: multiset_def setsum_gt_0_iff)
   664 
   665 lemma finite_twosets:
   666 assumes "finite B1" and "finite B2"
   667 shows "finite {u b1 b2 |b1 b2. b1 \<in> B1 \<and> b2 \<in> B2}"  (is "finite ?A")
   668 proof-
   669   have A: "?A = (\<lambda> b1b2. u (fst b1b2) (snd b1b2)) ` (B1 <*> B2)" by force
   670   show ?thesis unfolding A using finite_cartesian_product[OF assms] by auto
   671 qed
   672 
   673 lemma wpull_mmap:
   674 fixes A :: "'a set" and B1 :: "'b1 set" and B2 :: "'b2 set"
   675 assumes wp: "wpull A B1 B2 f1 f2 p1 p2"
   676 shows
   677 "wpull {M. set_of M \<subseteq> A}
   678        {N1. set_of N1 \<subseteq> B1} {N2. set_of N2 \<subseteq> B2}
   679        (mmap f1) (mmap f2) (mmap p1) (mmap p2)"
   680 unfolding wpull_def proof (safe, unfold Bex_def mem_Collect_eq)
   681   fix N1 :: "'b1 multiset" and N2 :: "'b2 multiset"
   682   assume mmap': "mmap f1 N1 = mmap f2 N2"
   683   and N1[simp]: "set_of N1 \<subseteq> B1"
   684   and N2[simp]: "set_of N2 \<subseteq> B2"
   685   def P \<equiv> "mmap f1 N1"
   686   have P1: "P = mmap f1 N1" and P2: "P = mmap f2 N2" unfolding P_def using mmap' by auto
   687   note P = P1 P2
   688   have fin_N1[simp]: "finite (set_of N1)"
   689    and fin_N2[simp]: "finite (set_of N2)"
   690    and fin_P[simp]: "finite (set_of P)" by auto
   691   (*  *)
   692   def set1 \<equiv> "\<lambda> c. {b1 \<in> set_of N1. f1 b1 = c}"
   693   have set1[simp]: "\<And> c b1. b1 \<in> set1 c \<Longrightarrow> f1 b1 = c" unfolding set1_def by auto
   694   have fin_set1: "\<And> c. c \<in> set_of P \<Longrightarrow> finite (set1 c)"
   695     using N1(1) unfolding set1_def multiset_def by auto
   696   have set1_NE: "\<And> c. c \<in> set_of P \<Longrightarrow> set1 c \<noteq> {}"
   697    unfolding set1_def set_of_def P mmap_ge_0 by auto
   698   have supp_N1_set1: "set_of N1 = (\<Union> c \<in> set_of P. set1 c)"
   699     using supp_vimage_mmap[of N1 f1] unfolding set1_def P1 by auto
   700   hence set1_inclN1: "\<And>c. c \<in> set_of P \<Longrightarrow> set1 c \<subseteq> set_of N1" by auto
   701   hence set1_incl: "\<And> c. c \<in> set_of P \<Longrightarrow> set1 c \<subseteq> B1" using N1 by blast
   702   have set1_disj: "\<And> c c'. c \<noteq> c' \<Longrightarrow> set1 c \<inter> set1 c' = {}"
   703     unfolding set1_def by auto
   704   have setsum_set1: "\<And> c. setsum (count N1) (set1 c) = count P c"
   705     unfolding P1 set1_def by transfer (auto intro: setsum_cong)
   706   (*  *)
   707   def set2 \<equiv> "\<lambda> c. {b2 \<in> set_of N2. f2 b2 = c}"
   708   have set2[simp]: "\<And> c b2. b2 \<in> set2 c \<Longrightarrow> f2 b2 = c" unfolding set2_def by auto
   709   have fin_set2: "\<And> c. c \<in> set_of P \<Longrightarrow> finite (set2 c)"
   710   using N2(1) unfolding set2_def multiset_def by auto
   711   have set2_NE: "\<And> c. c \<in> set_of P \<Longrightarrow> set2 c \<noteq> {}"
   712     unfolding set2_def P2 mmap_ge_0 set_of_def by auto
   713   have supp_N2_set2: "set_of N2 = (\<Union> c \<in> set_of P. set2 c)"
   714     using supp_vimage_mmap[of N2 f2] unfolding set2_def P2 by auto
   715   hence set2_inclN2: "\<And>c. c \<in> set_of P \<Longrightarrow> set2 c \<subseteq> set_of N2" by auto
   716   hence set2_incl: "\<And> c. c \<in> set_of P \<Longrightarrow> set2 c \<subseteq> B2" using N2 by blast
   717   have set2_disj: "\<And> c c'. c \<noteq> c' \<Longrightarrow> set2 c \<inter> set2 c' = {}"
   718     unfolding set2_def by auto
   719   have setsum_set2: "\<And> c. setsum (count N2) (set2 c) = count P c"
   720     unfolding P2 set2_def by transfer (auto intro: setsum_cong)
   721   (*  *)
   722   have ss: "\<And> c. c \<in> set_of P \<Longrightarrow> setsum (count N1) (set1 c) = setsum (count N2) (set2 c)"
   723     unfolding setsum_set1 setsum_set2 ..
   724   have "\<forall> c \<in> set_of P. \<forall> b1b2 \<in> (set1 c) \<times> (set2 c).
   725           \<exists> a \<in> A. p1 a = fst b1b2 \<and> p2 a = snd b1b2"
   726     using wp set1_incl set2_incl unfolding wpull_def Ball_def mem_Collect_eq
   727     by simp (metis set1 set2 set_rev_mp)
   728   then obtain uu where uu:
   729   "\<forall> c \<in> set_of P. \<forall> b1b2 \<in> (set1 c) \<times> (set2 c).
   730      uu c b1b2 \<in> A \<and> p1 (uu c b1b2) = fst b1b2 \<and> p2 (uu c b1b2) = snd b1b2" by metis
   731   def u \<equiv> "\<lambda> c b1 b2. uu c (b1,b2)"
   732   have u[simp]:
   733   "\<And> c b1 b2. \<lbrakk>c \<in> set_of P; b1 \<in> set1 c; b2 \<in> set2 c\<rbrakk> \<Longrightarrow> u c b1 b2 \<in> A"
   734   "\<And> c b1 b2. \<lbrakk>c \<in> set_of P; b1 \<in> set1 c; b2 \<in> set2 c\<rbrakk> \<Longrightarrow> p1 (u c b1 b2) = b1"
   735   "\<And> c b1 b2. \<lbrakk>c \<in> set_of P; b1 \<in> set1 c; b2 \<in> set2 c\<rbrakk> \<Longrightarrow> p2 (u c b1 b2) = b2"
   736     using uu unfolding u_def by auto
   737   {fix c assume c: "c \<in> set_of P"
   738    have "inj2 (u c) (set1 c) (set2 c)" unfolding inj2_def proof clarify
   739      fix b1 b1' b2 b2'
   740      assume "{b1, b1'} \<subseteq> set1 c" "{b2, b2'} \<subseteq> set2 c" and 0: "u c b1 b2 = u c b1' b2'"
   741      hence "p1 (u c b1 b2) = b1 \<and> p2 (u c b1 b2) = b2 \<and>
   742             p1 (u c b1' b2') = b1' \<and> p2 (u c b1' b2') = b2'"
   743      using u(2)[OF c] u(3)[OF c] by simp metis
   744      thus "b1 = b1' \<and> b2 = b2'" using 0 by auto
   745    qed
   746   } note inj = this
   747   def sset \<equiv> "\<lambda> c. {u c b1 b2 | b1 b2. b1 \<in> set1 c \<and> b2 \<in> set2 c}"
   748   have fin_sset[simp]: "\<And> c. c \<in> set_of P \<Longrightarrow> finite (sset c)" unfolding sset_def
   749     using fin_set1 fin_set2 finite_twosets by blast
   750   have sset_A: "\<And> c. c \<in> set_of P \<Longrightarrow> sset c \<subseteq> A" unfolding sset_def by auto
   751   {fix c a assume c: "c \<in> set_of P" and ac: "a \<in> sset c"
   752    then obtain b1 b2 where b1: "b1 \<in> set1 c" and b2: "b2 \<in> set2 c"
   753    and a: "a = u c b1 b2" unfolding sset_def by auto
   754    have "p1 a \<in> set1 c" and p2a: "p2 a \<in> set2 c"
   755    using ac a b1 b2 c u(2) u(3) by simp+
   756    hence "u c (p1 a) (p2 a) = a" unfolding a using b1 b2 inj[OF c]
   757    unfolding inj2_def by (metis c u(2) u(3))
   758   } note u_p12[simp] = this
   759   {fix c a assume c: "c \<in> set_of P" and ac: "a \<in> sset c"
   760    hence "p1 a \<in> set1 c" unfolding sset_def by auto
   761   }note p1[simp] = this
   762   {fix c a assume c: "c \<in> set_of P" and ac: "a \<in> sset c"
   763    hence "p2 a \<in> set2 c" unfolding sset_def by auto
   764   }note p2[simp] = this
   765   (*  *)
   766   {fix c assume c: "c \<in> set_of P"
   767    hence "\<exists> M. (\<forall> b1 \<in> set1 c. setsum (\<lambda> b2. M (u c b1 b2)) (set2 c) = count N1 b1) \<and>
   768                (\<forall> b2 \<in> set2 c. setsum (\<lambda> b1. M (u c b1 b2)) (set1 c) = count N2 b2)"
   769    unfolding sset_def
   770    using matrix_setsum_finite[OF set1_NE[OF c] fin_set1[OF c]
   771                                  set2_NE[OF c] fin_set2[OF c] inj[OF c] ss[OF c]] by auto
   772   }
   773   then obtain Ms where
   774   ss1: "\<And> c b1. \<lbrakk>c \<in> set_of P; b1 \<in> set1 c\<rbrakk> \<Longrightarrow>
   775                    setsum (\<lambda> b2. Ms c (u c b1 b2)) (set2 c) = count N1 b1" and
   776   ss2: "\<And> c b2. \<lbrakk>c \<in> set_of P; b2 \<in> set2 c\<rbrakk> \<Longrightarrow>
   777                    setsum (\<lambda> b1. Ms c (u c b1 b2)) (set1 c) = count N2 b2"
   778   by metis
   779   def SET \<equiv> "\<Union> c \<in> set_of P. sset c"
   780   have fin_SET[simp]: "finite SET" unfolding SET_def apply(rule finite_UN_I) by auto
   781   have SET_A: "SET \<subseteq> A" unfolding SET_def using sset_A by blast
   782   have u_SET[simp]: "\<And> c b1 b2. \<lbrakk>c \<in> set_of P; b1 \<in> set1 c; b2 \<in> set2 c\<rbrakk> \<Longrightarrow> u c b1 b2 \<in> SET"
   783     unfolding SET_def sset_def by blast
   784   {fix c a assume c: "c \<in> set_of P" and a: "a \<in> SET" and p1a: "p1 a \<in> set1 c"
   785    then obtain c' where c': "c' \<in> set_of P" and ac': "a \<in> sset c'"
   786     unfolding SET_def by auto
   787    hence "p1 a \<in> set1 c'" unfolding sset_def by auto
   788    hence eq: "c = c'" using p1a c c' set1_disj by auto
   789    hence "a \<in> sset c" using ac' by simp
   790   } note p1_rev = this
   791   {fix c a assume c: "c \<in> set_of P" and a: "a \<in> SET" and p2a: "p2 a \<in> set2 c"
   792    then obtain c' where c': "c' \<in> set_of P" and ac': "a \<in> sset c'"
   793    unfolding SET_def by auto
   794    hence "p2 a \<in> set2 c'" unfolding sset_def by auto
   795    hence eq: "c = c'" using p2a c c' set2_disj by auto
   796    hence "a \<in> sset c" using ac' by simp
   797   } note p2_rev = this
   798   (*  *)
   799   have "\<forall> a \<in> SET. \<exists> c \<in> set_of P. a \<in> sset c" unfolding SET_def by auto
   800   then obtain h where h: "\<forall> a \<in> SET. h a \<in> set_of P \<and> a \<in> sset (h a)" by metis
   801   have h_u[simp]: "\<And> c b1 b2. \<lbrakk>c \<in> set_of P; b1 \<in> set1 c; b2 \<in> set2 c\<rbrakk>
   802                       \<Longrightarrow> h (u c b1 b2) = c"
   803   by (metis h p2 set2 u(3) u_SET)
   804   have h_u1: "\<And> c b1 b2. \<lbrakk>c \<in> set_of P; b1 \<in> set1 c; b2 \<in> set2 c\<rbrakk>
   805                       \<Longrightarrow> h (u c b1 b2) = f1 b1"
   806   using h unfolding sset_def by auto
   807   have h_u2: "\<And> c b1 b2. \<lbrakk>c \<in> set_of P; b1 \<in> set1 c; b2 \<in> set2 c\<rbrakk>
   808                       \<Longrightarrow> h (u c b1 b2) = f2 b2"
   809   using h unfolding sset_def by auto
   810   def M \<equiv>
   811     "Abs_multiset (\<lambda> a. if a \<in> SET \<and> p1 a \<in> set_of N1 \<and> p2 a \<in> set_of N2 then Ms (h a) a else 0)"
   812   have "(\<lambda> a. if a \<in> SET \<and> p1 a \<in> set_of N1 \<and> p2 a \<in> set_of N2 then Ms (h a) a else 0) \<in> multiset"
   813     unfolding multiset_def by auto
   814   hence [transfer_rule]: "pcr_multiset op = (\<lambda> a. if a \<in> SET \<and> p1 a \<in> set_of N1 \<and> p2 a \<in> set_of N2 then Ms (h a) a else 0) M"
   815     unfolding M_def pcr_multiset_def cr_multiset_def by (auto simp: Abs_multiset_inverse)
   816   have sM: "set_of M \<subseteq> SET" "set_of M \<subseteq> p1 -` (set_of N1)" "set_of M \<subseteq> p2 -` set_of N2"
   817     by (transfer, auto split: split_if_asm)+
   818   show "\<exists>M. set_of M \<subseteq> A \<and> mmap p1 M = N1 \<and> mmap p2 M = N2"
   819   proof(rule exI[of _ M], safe)
   820     fix a assume *: "a \<in> set_of M"
   821     from SET_A show "a \<in> A"
   822     proof (cases "a \<in> SET")
   823       case False thus ?thesis using * by transfer' auto
   824     qed blast
   825   next
   826     show "mmap p1 M = N1"
   827     proof(intro multiset_eqI)
   828       fix b1
   829       let ?K = "{a. p1 a = b1 \<and> a \<in># M}"
   830       have "setsum (count M) ?K = count N1 b1"
   831       proof(cases "b1 \<in> set_of N1")
   832         case False
   833         hence "?K = {}" using sM(2) by auto
   834         thus ?thesis using False by auto
   835       next
   836         case True
   837         def c \<equiv> "f1 b1"
   838         have c: "c \<in> set_of P" and b1: "b1 \<in> set1 c"
   839           unfolding set1_def c_def P1 using True by (auto simp: o_eq_dest[OF set_of_mmap])
   840         with sM(1) have "setsum (count M) ?K = setsum (count M) {a. p1 a = b1 \<and> a \<in> SET}"
   841           by transfer (force intro: setsum_mono_zero_cong_left split: split_if_asm)
   842         also have "... = setsum (count M) ((\<lambda> b2. u c b1 b2) ` (set2 c))"
   843           apply(rule setsum_cong) using c b1 proof safe
   844           fix a assume p1a: "p1 a \<in> set1 c" and "c \<in> set_of P" and "a \<in> SET"
   845           hence ac: "a \<in> sset c" using p1_rev by auto
   846           hence "a = u c (p1 a) (p2 a)" using c by auto
   847           moreover have "p2 a \<in> set2 c" using ac c by auto
   848           ultimately show "a \<in> u c (p1 a) ` set2 c" by auto
   849         qed auto
   850         also have "... = setsum (\<lambda> b2. count M (u c b1 b2)) (set2 c)"
   851           unfolding comp_def[symmetric] apply(rule setsum_reindex)
   852           using inj unfolding inj_on_def inj2_def using b1 c u(3) by blast
   853         also have "... = count N1 b1" unfolding ss1[OF c b1, symmetric]
   854           apply(rule setsum_cong[OF refl]) apply (transfer fixing: Ms u c b1 set2)
   855           using True h_u[OF c b1] set2_def u(2,3)[OF c b1] u_SET[OF c b1] by fastforce
   856         finally show ?thesis .
   857       qed
   858       thus "count (mmap p1 M) b1 = count N1 b1" by transfer
   859     qed
   860   next
   861 next
   862     show "mmap p2 M = N2"
   863     proof(intro multiset_eqI)
   864       fix b2
   865       let ?K = "{a. p2 a = b2 \<and> a \<in># M}"
   866       have "setsum (count M) ?K = count N2 b2"
   867       proof(cases "b2 \<in> set_of N2")
   868         case False
   869         hence "?K = {}" using sM(3) by auto
   870         thus ?thesis using False by auto
   871       next
   872         case True
   873         def c \<equiv> "f2 b2"
   874         have c: "c \<in> set_of P" and b2: "b2 \<in> set2 c"
   875           unfolding set2_def c_def P2 using True by (auto simp: o_eq_dest[OF set_of_mmap])
   876         with sM(1) have "setsum (count M) ?K = setsum (count M) {a. p2 a = b2 \<and> a \<in> SET}"
   877           by transfer (force intro: setsum_mono_zero_cong_left split: split_if_asm)
   878         also have "... = setsum (count M) ((\<lambda> b1. u c b1 b2) ` (set1 c))"
   879           apply(rule setsum_cong) using c b2 proof safe
   880           fix a assume p2a: "p2 a \<in> set2 c" and "c \<in> set_of P" and "a \<in> SET"
   881           hence ac: "a \<in> sset c" using p2_rev by auto
   882           hence "a = u c (p1 a) (p2 a)" using c by auto
   883           moreover have "p1 a \<in> set1 c" using ac c by auto
   884           ultimately show "a \<in> (\<lambda>x. u c x (p2 a)) ` set1 c" by auto
   885         qed auto
   886         also have "... = setsum (count M o (\<lambda> b1. u c b1 b2)) (set1 c)"
   887           apply(rule setsum_reindex)
   888           using inj unfolding inj_on_def inj2_def using b2 c u(2) by blast
   889         also have "... = setsum (\<lambda> b1. count M (u c b1 b2)) (set1 c)" by simp
   890         also have "... = count N2 b2" unfolding ss2[OF c b2, symmetric] o_def
   891           apply(rule setsum_cong[OF refl]) apply (transfer fixing: Ms u c b2 set1)
   892           using True h_u1[OF c _ b2] u(2,3)[OF c _ b2] u_SET[OF c _ b2] set1_def by fastforce
   893         finally show ?thesis .
   894       qed
   895       thus "count (mmap p2 M) b2 = count N2 b2" by transfer
   896     qed
   897   qed
   898 qed
   899 
   900 lemma set_of_bd: "|set_of x| \<le>o natLeq"
   901   by transfer
   902     (auto intro!: ordLess_imp_ordLeq simp: finite_iff_ordLess_natLeq[symmetric] multiset_def)
   903 
   904 bnf "'a multiset"
   905   map: mmap
   906   sets: set_of 
   907   bd: natLeq
   908   wits: "{#}"
   909 by (auto simp add: mmap_id0 mmap_comp set_of_mmap natLeq_card_order natLeq_cinfinite set_of_bd
   910   intro: mmap_cong wpull_mmap)
   911 
   912 inductive rel_multiset' where
   913 Zero: "rel_multiset' R {#} {#}"
   914 |
   915 Plus: "\<lbrakk>R a b; rel_multiset' R M N\<rbrakk> \<Longrightarrow> rel_multiset' R (M + {#a#}) (N + {#b#})"
   916 
   917 lemma map_multiset_Zero_iff[simp]: "mmap f M = {#} \<longleftrightarrow> M = {#}"
   918 by (metis image_is_empty multiset.set_map set_of_eq_empty_iff)
   919 
   920 lemma map_multiset_Zero[simp]: "mmap f {#} = {#}" by simp
   921 
   922 lemma rel_multiset_Zero: "rel_multiset R {#} {#}"
   923 unfolding rel_multiset_def Grp_def by auto
   924 
   925 declare multiset.count[simp]
   926 declare Abs_multiset_inverse[simp]
   927 declare multiset.count_inverse[simp]
   928 declare union_preserves_multiset[simp]
   929 
   930 
   931 lemma map_multiset_Plus[simp]: "mmap f (M1 + M2) = mmap f M1 + mmap f M2"
   932 proof (intro multiset_eqI, transfer fixing: f)
   933   fix x :: 'a and M1 M2 :: "'b \<Rightarrow> nat"
   934   assume "M1 \<in> multiset" "M2 \<in> multiset"
   935   hence "setsum M1 {a. f a = x \<and> 0 < M1 a} = setsum M1 {a. f a = x \<and> 0 < M1 a + M2 a}"
   936         "setsum M2 {a. f a = x \<and> 0 < M2 a} = setsum M2 {a. f a = x \<and> 0 < M1 a + M2 a}"
   937     by (auto simp: multiset_def intro!: setsum_mono_zero_cong_left)
   938   then show "(\<Sum>a | f a = x \<and> 0 < M1 a + M2 a. M1 a + M2 a) =
   939        setsum M1 {a. f a = x \<and> 0 < M1 a} +
   940        setsum M2 {a. f a = x \<and> 0 < M2 a}"
   941     by (auto simp: setsum.distrib[symmetric])
   942 qed
   943 
   944 lemma map_multiset_singl[simp]: "mmap f {#a#} = {#f a#}"
   945   by transfer auto
   946 
   947 lemma rel_multiset_Plus:
   948 assumes ab: "R a b" and MN: "rel_multiset R M N"
   949 shows "rel_multiset R (M + {#a#}) (N + {#b#})"
   950 proof-
   951   {fix y assume "R a b" and "set_of y \<subseteq> {(x, y). R x y}"
   952    hence "\<exists>ya. mmap fst y + {#a#} = mmap fst ya \<and>
   953                mmap snd y + {#b#} = mmap snd ya \<and>
   954                set_of ya \<subseteq> {(x, y). R x y}"
   955    apply(intro exI[of _ "y + {#(a,b)#}"]) by auto
   956   }
   957   thus ?thesis
   958   using assms
   959   unfolding rel_multiset_def Grp_def by force
   960 qed
   961 
   962 lemma rel_multiset'_imp_rel_multiset:
   963 "rel_multiset' R M N \<Longrightarrow> rel_multiset R M N"
   964 apply(induct rule: rel_multiset'.induct)
   965 using rel_multiset_Zero rel_multiset_Plus by auto
   966 
   967 lemma mcard_mmap[simp]: "mcard (mmap f M) = mcard M"
   968 proof -
   969   def A \<equiv> "\<lambda> b. {a. f a = b \<and> a \<in># M}"
   970   let ?B = "{b. 0 < setsum (count M) (A b)}"
   971   have "{b. \<exists>a. f a = b \<and> a \<in># M} \<subseteq> f ` {a. a \<in># M}" by auto
   972   moreover have "finite (f ` {a. a \<in># M})" apply(rule finite_imageI)
   973   using finite_Collect_mem .
   974   ultimately have fin: "finite {b. \<exists>a. f a = b \<and> a \<in># M}" by(rule finite_subset)
   975   have i: "inj_on A ?B" unfolding inj_on_def A_def apply clarsimp
   976     by (metis (lifting, full_types) mem_Collect_eq neq0_conv setsum.neutral)
   977   have 0: "\<And> b. 0 < setsum (count M) (A b) \<longleftrightarrow> (\<exists> a \<in> A b. count M a > 0)"
   978   apply safe
   979     apply (metis less_not_refl setsum_gt_0_iff setsum_infinite)
   980     by (metis A_def finite_Collect_conjI finite_Collect_mem setsum_gt_0_iff)
   981   hence AB: "A ` ?B = {A b | b. \<exists> a \<in> A b. count M a > 0}" by auto
   982 
   983   have "setsum (\<lambda> x. setsum (count M) (A x)) ?B = setsum (setsum (count M) o A) ?B"
   984   unfolding comp_def ..
   985   also have "... = (\<Sum>x\<in> A ` ?B. setsum (count M) x)"
   986   unfolding setsum.reindex [OF i, symmetric] ..
   987   also have "... = setsum (count M) (\<Union>x\<in>A ` {b. 0 < setsum (count M) (A b)}. x)"
   988   (is "_ = setsum (count M) ?J")
   989   apply(rule setsum.UNION_disjoint[symmetric])
   990   using 0 fin unfolding A_def by auto
   991   also have "?J = {a. a \<in># M}" unfolding AB unfolding A_def by auto
   992   finally have "setsum (\<lambda> x. setsum (count M) (A x)) ?B =
   993                 setsum (count M) {a. a \<in># M}" .
   994   then show ?thesis unfolding mcard_unfold_setsum A_def by transfer
   995 qed
   996 
   997 lemma rel_multiset_mcard:
   998 assumes "rel_multiset R M N"
   999 shows "mcard M = mcard N"
  1000 using assms unfolding rel_multiset_def Grp_def by auto
  1001 
  1002 lemma multiset_induct2[case_names empty addL addR]:
  1003 assumes empty: "P {#} {#}"
  1004 and addL: "\<And>M N a. P M N \<Longrightarrow> P (M + {#a#}) N"
  1005 and addR: "\<And>M N a. P M N \<Longrightarrow> P M (N + {#a#})"
  1006 shows "P M N"
  1007 apply(induct N rule: multiset_induct)
  1008   apply(induct M rule: multiset_induct, rule empty, erule addL)
  1009   apply(induct M rule: multiset_induct, erule addR, erule addR)
  1010 done
  1011 
  1012 lemma multiset_induct2_mcard[consumes 1, case_names empty add]:
  1013 assumes c: "mcard M = mcard N"
  1014 and empty: "P {#} {#}"
  1015 and add: "\<And>M N a b. P M N \<Longrightarrow> P (M + {#a#}) (N + {#b#})"
  1016 shows "P M N"
  1017 using c proof(induct M arbitrary: N rule: measure_induct_rule[of mcard])
  1018   case (less M)  show ?case
  1019   proof(cases "M = {#}")
  1020     case True hence "N = {#}" using less.prems by auto
  1021     thus ?thesis using True empty by auto
  1022   next
  1023     case False then obtain M1 a where M: "M = M1 + {#a#}" by (metis multi_nonempty_split)
  1024     have "N \<noteq> {#}" using False less.prems by auto
  1025     then obtain N1 b where N: "N = N1 + {#b#}" by (metis multi_nonempty_split)
  1026     have "mcard M1 = mcard N1" using less.prems unfolding M N by auto
  1027     thus ?thesis using M N less.hyps add by auto
  1028   qed
  1029 qed
  1030 
  1031 lemma msed_map_invL:
  1032 assumes "mmap f (M + {#a#}) = N"
  1033 shows "\<exists> N1. N = N1 + {#f a#} \<and> mmap f M = N1"
  1034 proof-
  1035   have "f a \<in># N"
  1036   using assms multiset.set_map[of f "M + {#a#}"] by auto
  1037   then obtain N1 where N: "N = N1 + {#f a#}" using multi_member_split by metis
  1038   have "mmap f M = N1" using assms unfolding N by simp
  1039   thus ?thesis using N by blast
  1040 qed
  1041 
  1042 lemma msed_map_invR:
  1043 assumes "mmap f M = N + {#b#}"
  1044 shows "\<exists> M1 a. M = M1 + {#a#} \<and> f a = b \<and> mmap f M1 = N"
  1045 proof-
  1046   obtain a where a: "a \<in># M" and fa: "f a = b"
  1047   using multiset.set_map[of f M] unfolding assms
  1048   by (metis image_iff mem_set_of_iff union_single_eq_member)
  1049   then obtain M1 where M: "M = M1 + {#a#}" using multi_member_split by metis
  1050   have "mmap f M1 = N" using assms unfolding M fa[symmetric] by simp
  1051   thus ?thesis using M fa by blast
  1052 qed
  1053 
  1054 lemma msed_rel_invL:
  1055 assumes "rel_multiset R (M + {#a#}) N"
  1056 shows "\<exists> N1 b. N = N1 + {#b#} \<and> R a b \<and> rel_multiset R M N1"
  1057 proof-
  1058   obtain K where KM: "mmap fst K = M + {#a#}"
  1059   and KN: "mmap snd K = N" and sK: "set_of K \<subseteq> {(a, b). R a b}"
  1060   using assms
  1061   unfolding rel_multiset_def Grp_def by auto
  1062   obtain K1 ab where K: "K = K1 + {#ab#}" and a: "fst ab = a"
  1063   and K1M: "mmap fst K1 = M" using msed_map_invR[OF KM] by auto
  1064   obtain N1 where N: "N = N1 + {#snd ab#}" and K1N1: "mmap snd K1 = N1"
  1065   using msed_map_invL[OF KN[unfolded K]] by auto
  1066   have Rab: "R a (snd ab)" using sK a unfolding K by auto
  1067   have "rel_multiset R M N1" using sK K1M K1N1
  1068   unfolding K rel_multiset_def Grp_def by auto
  1069   thus ?thesis using N Rab by auto
  1070 qed
  1071 
  1072 lemma msed_rel_invR:
  1073 assumes "rel_multiset R M (N + {#b#})"
  1074 shows "\<exists> M1 a. M = M1 + {#a#} \<and> R a b \<and> rel_multiset R M1 N"
  1075 proof-
  1076   obtain K where KN: "mmap snd K = N + {#b#}"
  1077   and KM: "mmap fst K = M" and sK: "set_of K \<subseteq> {(a, b). R a b}"
  1078   using assms
  1079   unfolding rel_multiset_def Grp_def by auto
  1080   obtain K1 ab where K: "K = K1 + {#ab#}" and b: "snd ab = b"
  1081   and K1N: "mmap snd K1 = N" using msed_map_invR[OF KN] by auto
  1082   obtain M1 where M: "M = M1 + {#fst ab#}" and K1M1: "mmap fst K1 = M1"
  1083   using msed_map_invL[OF KM[unfolded K]] by auto
  1084   have Rab: "R (fst ab) b" using sK b unfolding K by auto
  1085   have "rel_multiset R M1 N" using sK K1N K1M1
  1086   unfolding K rel_multiset_def Grp_def by auto
  1087   thus ?thesis using M Rab by auto
  1088 qed
  1089 
  1090 lemma rel_multiset_imp_rel_multiset':
  1091 assumes "rel_multiset R M N"
  1092 shows "rel_multiset' R M N"
  1093 using assms proof(induct M arbitrary: N rule: measure_induct_rule[of mcard])
  1094   case (less M)
  1095   have c: "mcard M = mcard N" using rel_multiset_mcard[OF less.prems] .
  1096   show ?case
  1097   proof(cases "M = {#}")
  1098     case True hence "N = {#}" using c by simp
  1099     thus ?thesis using True rel_multiset'.Zero by auto
  1100   next
  1101     case False then obtain M1 a where M: "M = M1 + {#a#}" by (metis multi_nonempty_split)
  1102     obtain N1 b where N: "N = N1 + {#b#}" and R: "R a b" and ms: "rel_multiset R M1 N1"
  1103     using msed_rel_invL[OF less.prems[unfolded M]] by auto
  1104     have "rel_multiset' R M1 N1" using less.hyps[of M1 N1] ms unfolding M by simp
  1105     thus ?thesis using rel_multiset'.Plus[of R a b, OF R] unfolding M N by simp
  1106   qed
  1107 qed
  1108 
  1109 lemma rel_multiset_rel_multiset':
  1110 "rel_multiset R M N = rel_multiset' R M N"
  1111 using  rel_multiset_imp_rel_multiset' rel_multiset'_imp_rel_multiset by auto
  1112 
  1113 (* The main end product for rel_multiset: inductive characterization *)
  1114 theorems rel_multiset_induct[case_names empty add, induct pred: rel_multiset] =
  1115          rel_multiset'.induct[unfolded rel_multiset_rel_multiset'[symmetric]]
  1116 
  1117 
  1118 
  1119 (* Advanced relator customization *)
  1120 
  1121 (* Set vs. sum relators: *)
  1122 (* FIXME: All such facts should be declared as simps: *)
  1123 declare sum_rel_simps[simp]
  1124 
  1125 lemma set_rel_sum_rel[simp]: 
  1126 "set_rel (sum_rel \<chi> \<phi>) A1 A2 \<longleftrightarrow> 
  1127  set_rel \<chi> (Inl -` A1) (Inl -` A2) \<and> set_rel \<phi> (Inr -` A1) (Inr -` A2)"
  1128 (is "?L \<longleftrightarrow> ?Rl \<and> ?Rr")
  1129 proof safe
  1130   assume L: "?L"
  1131   show ?Rl unfolding set_rel_def Bex_def vimage_eq proof safe
  1132     fix l1 assume "Inl l1 \<in> A1"
  1133     then obtain a2 where a2: "a2 \<in> A2" and "sum_rel \<chi> \<phi> (Inl l1) a2"
  1134     using L unfolding set_rel_def by auto
  1135     then obtain l2 where "a2 = Inl l2 \<and> \<chi> l1 l2" by (cases a2, auto)
  1136     thus "\<exists> l2. Inl l2 \<in> A2 \<and> \<chi> l1 l2" using a2 by auto
  1137   next
  1138     fix l2 assume "Inl l2 \<in> A2"
  1139     then obtain a1 where a1: "a1 \<in> A1" and "sum_rel \<chi> \<phi> a1 (Inl l2)"
  1140     using L unfolding set_rel_def by auto
  1141     then obtain l1 where "a1 = Inl l1 \<and> \<chi> l1 l2" by (cases a1, auto)
  1142     thus "\<exists> l1. Inl l1 \<in> A1 \<and> \<chi> l1 l2" using a1 by auto
  1143   qed
  1144   show ?Rr unfolding set_rel_def Bex_def vimage_eq proof safe
  1145     fix r1 assume "Inr r1 \<in> A1"
  1146     then obtain a2 where a2: "a2 \<in> A2" and "sum_rel \<chi> \<phi> (Inr r1) a2"
  1147     using L unfolding set_rel_def by auto
  1148     then obtain r2 where "a2 = Inr r2 \<and> \<phi> r1 r2" by (cases a2, auto)
  1149     thus "\<exists> r2. Inr r2 \<in> A2 \<and> \<phi> r1 r2" using a2 by auto
  1150   next
  1151     fix r2 assume "Inr r2 \<in> A2"
  1152     then obtain a1 where a1: "a1 \<in> A1" and "sum_rel \<chi> \<phi> a1 (Inr r2)"
  1153     using L unfolding set_rel_def by auto
  1154     then obtain r1 where "a1 = Inr r1 \<and> \<phi> r1 r2" by (cases a1, auto)
  1155     thus "\<exists> r1. Inr r1 \<in> A1 \<and> \<phi> r1 r2" using a1 by auto
  1156   qed
  1157 next
  1158   assume Rl: "?Rl" and Rr: "?Rr"
  1159   show ?L unfolding set_rel_def Bex_def vimage_eq proof safe
  1160     fix a1 assume a1: "a1 \<in> A1"
  1161     show "\<exists> a2. a2 \<in> A2 \<and> sum_rel \<chi> \<phi> a1 a2"
  1162     proof(cases a1)
  1163       case (Inl l1) then obtain l2 where "Inl l2 \<in> A2 \<and> \<chi> l1 l2"
  1164       using Rl a1 unfolding set_rel_def by blast
  1165       thus ?thesis unfolding Inl by auto
  1166     next
  1167       case (Inr r1) then obtain r2 where "Inr r2 \<in> A2 \<and> \<phi> r1 r2"
  1168       using Rr a1 unfolding set_rel_def by blast
  1169       thus ?thesis unfolding Inr by auto
  1170     qed
  1171   next
  1172     fix a2 assume a2: "a2 \<in> A2"
  1173     show "\<exists> a1. a1 \<in> A1 \<and> sum_rel \<chi> \<phi> a1 a2"
  1174     proof(cases a2)
  1175       case (Inl l2) then obtain l1 where "Inl l1 \<in> A1 \<and> \<chi> l1 l2"
  1176       using Rl a2 unfolding set_rel_def by blast
  1177       thus ?thesis unfolding Inl by auto
  1178     next
  1179       case (Inr r2) then obtain r1 where "Inr r1 \<in> A1 \<and> \<phi> r1 r2"
  1180       using Rr a2 unfolding set_rel_def by blast
  1181       thus ?thesis unfolding Inr by auto
  1182     qed
  1183   qed
  1184 qed
  1185 
  1186 end