src/HOL/BNF/Tools/bnf_fp_rec_sugar.ML
author panny
Fri, 11 Oct 2013 16:31:23 +0200
changeset 55549 92c5bd3b342d
parent 55526 43cdae9524bf
child 55550 07a8145aaeba
permissions -rw-r--r--
prove user-supplied equations for ctr and code reductions, preserving "let"s, "case"s etc.;
generate code-style theorems (currently commented out since this still fails for many cases);
filter tautologies (False ==> ...) out of generated theorems;
     1 (*  Title:      HOL/BNF/Tools/bnf_fp_rec_sugar.ML
     2     Author:     Lorenz Panny, TU Muenchen
     3     Copyright   2013
     4 
     5 Recursor and corecursor sugar.
     6 *)
     7 
     8 signature BNF_FP_REC_SUGAR =
     9 sig
    10   val add_primrec: (binding * typ option * mixfix) list ->
    11     (Attrib.binding * term) list -> local_theory -> (term list * thm list list) * local_theory
    12   val add_primrec_cmd: (binding * string option * mixfix) list ->
    13     (Attrib.binding * string) list -> local_theory -> (term list * thm list list) * local_theory
    14   val add_primrec_global: (binding * typ option * mixfix) list ->
    15     (Attrib.binding * term) list -> theory -> (term list * thm list list) * theory
    16   val add_primrec_overloaded: (string * (string * typ) * bool) list ->
    17     (binding * typ option * mixfix) list ->
    18     (Attrib.binding * term) list -> theory -> (term list * thm list list) * theory
    19   val add_primrec_simple: ((binding * typ) * mixfix) list -> term list ->
    20     local_theory -> (string list * (term list * (int list list * thm list list))) * local_theory
    21   val add_primcorecursive_cmd: bool ->
    22     (binding * string option * mixfix) list * ((Attrib.binding * string) * string option) list ->
    23     Proof.context -> Proof.state
    24   val add_primcorec_cmd: bool ->
    25     (binding * string option * mixfix) list * ((Attrib.binding * string) * string option) list ->
    26     local_theory -> local_theory
    27 end;
    28 
    29 structure BNF_FP_Rec_Sugar : BNF_FP_REC_SUGAR =
    30 struct
    31 
    32 open BNF_Util
    33 open BNF_FP_Util
    34 open BNF_FP_Rec_Sugar_Util
    35 open BNF_FP_Rec_Sugar_Tactics
    36 
    37 val codeN = "code";
    38 val ctrN = "ctr";
    39 val discN = "disc";
    40 val selN = "sel";
    41 
    42 val nitpick_attrs = @{attributes [nitpick_simp]};
    43 val simp_attrs = @{attributes [simp]};
    44 val code_nitpick_attrs = Code.add_default_eqn_attrib :: nitpick_attrs;
    45 val code_nitpick_simp_attrs = Code.add_default_eqn_attrib :: nitpick_attrs @ simp_attrs;
    46 
    47 exception Primrec_Error of string * term list;
    48 
    49 fun primrec_error str = raise Primrec_Error (str, []);
    50 fun primrec_error_eqn str eqn = raise Primrec_Error (str, [eqn]);
    51 fun primrec_error_eqns str eqns = raise Primrec_Error (str, eqns);
    52 
    53 fun finds eq = fold_map (fn x => List.partition (curry eq x) #>> pair x);
    54 
    55 val free_name = try (fn Free (v, _) => v);
    56 val const_name = try (fn Const (v, _) => v);
    57 val undef_const = Const (@{const_name undefined}, dummyT);
    58 
    59 fun permute_args n t = list_comb (t, map Bound (0 :: (n downto 1)))
    60   |> fold (K (Term.abs (Name.uu, dummyT))) (0 upto n);
    61 val abs_tuple = HOLogic.tupled_lambda o HOLogic.mk_tuple;
    62 fun drop_All t = subst_bounds (strip_qnt_vars @{const_name all} t |> map Free |> rev,
    63   strip_qnt_body @{const_name all} t)
    64 fun abstract vs =
    65   let fun a n (t $ u) = a n t $ a n u
    66         | a n (Abs (v, T, b)) = Abs (v, T, a (n + 1) b)
    67         | a n t = let val idx = find_index (equal t) vs in
    68             if idx < 0 then t else Bound (n + idx) end
    69   in a 0 end;
    70 fun mk_prod1 Ts (t, u) = HOLogic.pair_const (fastype_of1 (Ts, t)) (fastype_of1 (Ts, u)) $ t $ u;
    71 fun mk_tuple1 Ts = the_default HOLogic.unit o try (foldr1 (mk_prod1 Ts));
    72 
    73 fun get_indices fixes t = map (fst #>> Binding.name_of #> Free) fixes
    74   |> map_index (fn (i, v) => if exists_subterm (equal v) t then SOME i else NONE)
    75   |> map_filter I;
    76 
    77 
    78 (* Primrec *)
    79 
    80 type eqn_data = {
    81   fun_name: string,
    82   rec_type: typ,
    83   ctr: term,
    84   ctr_args: term list,
    85   left_args: term list,
    86   right_args: term list,
    87   res_type: typ,
    88   rhs_term: term,
    89   user_eqn: term
    90 };
    91 
    92 fun dissect_eqn lthy fun_names eqn' =
    93   let
    94     val eqn = drop_All eqn' |> HOLogic.dest_Trueprop
    95       handle TERM _ =>
    96         primrec_error_eqn "malformed function equation (expected \"lhs = rhs\")" eqn';
    97     val (lhs, rhs) = HOLogic.dest_eq eqn
    98         handle TERM _ =>
    99           primrec_error_eqn "malformed function equation (expected \"lhs = rhs\")" eqn';
   100     val (fun_name, args) = strip_comb lhs
   101       |>> (fn x => if is_Free x then fst (dest_Free x)
   102           else primrec_error_eqn "malformed function equation (does not start with free)" eqn);
   103     val (left_args, rest) = take_prefix is_Free args;
   104     val (nonfrees, right_args) = take_suffix is_Free rest;
   105     val num_nonfrees = length nonfrees;
   106     val _ = num_nonfrees = 1 orelse if num_nonfrees = 0 then
   107       primrec_error_eqn "constructor pattern missing in left-hand side" eqn else
   108       primrec_error_eqn "more than one non-variable argument in left-hand side" eqn;
   109     val _ = member (op =) fun_names fun_name orelse
   110       primrec_error_eqn "malformed function equation (does not start with function name)" eqn
   111 
   112     val (ctr, ctr_args) = strip_comb (the_single nonfrees);
   113     val _ = try (num_binder_types o fastype_of) ctr = SOME (length ctr_args) orelse
   114       primrec_error_eqn "partially applied constructor in pattern" eqn;
   115     val _ = let val d = duplicates (op =) (left_args @ ctr_args @ right_args) in null d orelse
   116       primrec_error_eqn ("duplicate variable \"" ^ Syntax.string_of_term lthy (hd d) ^
   117         "\" in left-hand side") eqn end;
   118     val _ = forall is_Free ctr_args orelse
   119       primrec_error_eqn "non-primitive pattern in left-hand side" eqn;
   120     val _ =
   121       let val b = fold_aterms (fn x as Free (v, _) =>
   122         if (not (member (op =) (left_args @ ctr_args @ right_args) x) andalso
   123         not (member (op =) fun_names v) andalso
   124         not (Variable.is_fixed lthy v)) then cons x else I | _ => I) rhs []
   125       in
   126         null b orelse
   127         primrec_error_eqn ("extra variable(s) in right-hand side: " ^
   128           commas (map (Syntax.string_of_term lthy) b)) eqn
   129       end;
   130   in
   131     {fun_name = fun_name,
   132      rec_type = body_type (type_of ctr),
   133      ctr = ctr,
   134      ctr_args = ctr_args,
   135      left_args = left_args,
   136      right_args = right_args,
   137      res_type = map fastype_of (left_args @ right_args) ---> fastype_of rhs,
   138      rhs_term = rhs,
   139      user_eqn = eqn'}
   140   end;
   141 
   142 fun rewrite_map_arg get_ctr_pos rec_type res_type =
   143   let
   144     val pT = HOLogic.mk_prodT (rec_type, res_type);
   145 
   146     val maybe_suc = Option.map (fn x => x + 1);
   147     fun subst d (t as Bound d') = t |> d = SOME d' ? curry (op $) (fst_const pT)
   148       | subst d (Abs (v, T, b)) = Abs (v, if d = SOME ~1 then pT else T, subst (maybe_suc d) b)
   149       | subst d t =
   150         let
   151           val (u, vs) = strip_comb t;
   152           val ctr_pos = try (get_ctr_pos o the) (free_name u) |> the_default ~1;
   153         in
   154           if ctr_pos >= 0 then
   155             if d = SOME ~1 andalso length vs = ctr_pos then
   156               list_comb (permute_args ctr_pos (snd_const pT), vs)
   157             else if length vs > ctr_pos andalso is_some d
   158                 andalso d = try (fn Bound n => n) (nth vs ctr_pos) then
   159               list_comb (snd_const pT $ nth vs ctr_pos, map (subst d) (nth_drop ctr_pos vs))
   160             else
   161               primrec_error_eqn ("recursive call not directly applied to constructor argument") t
   162           else if d = SOME ~1 andalso const_name u = SOME @{const_name comp} then
   163             list_comb (map_types (K dummyT) u, map2 subst [NONE, d] vs)
   164           else
   165             list_comb (u, map (subst (d |> d = SOME ~1 ? K NONE)) vs)
   166         end
   167   in
   168     subst (SOME ~1)
   169   end;
   170 
   171 fun subst_rec_calls lthy get_ctr_pos has_call ctr_args direct_calls indirect_calls t =
   172   let
   173     fun subst bound_Ts (Abs (v, T, b)) = Abs (v, T, subst (T :: bound_Ts) b)
   174       | subst bound_Ts (t as g' $ y) =
   175         let
   176           val maybe_direct_y' = AList.lookup (op =) direct_calls y;
   177           val maybe_indirect_y' = AList.lookup (op =) indirect_calls y;
   178           val (g, g_args) = strip_comb g';
   179           val ctr_pos = try (get_ctr_pos o the) (free_name g) |> the_default ~1;
   180           val _ = ctr_pos < 0 orelse length g_args >= ctr_pos orelse
   181             primrec_error_eqn "too few arguments in recursive call" t;
   182         in
   183           if not (member (op =) ctr_args y) then
   184             pairself (subst bound_Ts) (g', y) |> (op $)
   185           else if ctr_pos >= 0 then
   186             list_comb (the maybe_direct_y', g_args)
   187           else if is_some maybe_indirect_y' then
   188             (if has_call g' then t else y)
   189             |> massage_indirect_rec_call lthy has_call
   190               (rewrite_map_arg get_ctr_pos) bound_Ts y (the maybe_indirect_y')
   191             |> (if has_call g' then I else curry (op $) g')
   192           else
   193             t
   194         end
   195       | subst _ t = t
   196   in
   197     subst [] t
   198     |> tap (fn u => has_call u andalso (* FIXME detect this case earlier *)
   199       primrec_error_eqn "recursive call not directly applied to constructor argument" t)
   200   end;
   201 
   202 fun build_rec_arg lthy (funs_data : eqn_data list list) has_call (ctr_spec : rec_ctr_spec)
   203     (maybe_eqn_data : eqn_data option) =
   204   if is_none maybe_eqn_data then undef_const else
   205     let
   206       val eqn_data = the maybe_eqn_data;
   207       val t = #rhs_term eqn_data;
   208       val ctr_args = #ctr_args eqn_data;
   209 
   210       val calls = #calls ctr_spec;
   211       val n_args = fold (curry (op +) o (fn Direct_Rec _ => 2 | _ => 1)) calls 0;
   212 
   213       val no_calls' = tag_list 0 calls
   214         |> map_filter (try (apsnd (fn No_Rec n => n | Direct_Rec (n, _) => n)));
   215       val direct_calls' = tag_list 0 calls
   216         |> map_filter (try (apsnd (fn Direct_Rec (_, n) => n)));
   217       val indirect_calls' = tag_list 0 calls
   218         |> map_filter (try (apsnd (fn Indirect_Rec n => n)));
   219 
   220       fun make_direct_type _ = dummyT; (* FIXME? *)
   221 
   222       val rec_res_type_list = map (fn (x :: _) => (#rec_type x, #res_type x)) funs_data;
   223 
   224       fun make_indirect_type (Type (Tname, Ts)) = Type (Tname, Ts |> map (fn T =>
   225         let val maybe_res_type = AList.lookup (op =) rec_res_type_list T in
   226           if is_some maybe_res_type
   227           then HOLogic.mk_prodT (T, the maybe_res_type)
   228           else make_indirect_type T end))
   229         | make_indirect_type T = T;
   230 
   231       val args = replicate n_args ("", dummyT)
   232         |> Term.rename_wrt_term t
   233         |> map Free
   234         |> fold (fn (ctr_arg_idx, arg_idx) =>
   235             nth_map arg_idx (K (nth ctr_args ctr_arg_idx)))
   236           no_calls'
   237         |> fold (fn (ctr_arg_idx, arg_idx) =>
   238             nth_map arg_idx (K (nth ctr_args ctr_arg_idx |> map_types make_direct_type)))
   239           direct_calls'
   240         |> fold (fn (ctr_arg_idx, arg_idx) =>
   241             nth_map arg_idx (K (nth ctr_args ctr_arg_idx |> map_types make_indirect_type)))
   242           indirect_calls';
   243 
   244       val fun_name_ctr_pos_list =
   245         map (fn (x :: _) => (#fun_name x, length (#left_args x))) funs_data;
   246       val get_ctr_pos = try (the o AList.lookup (op =) fun_name_ctr_pos_list) #> the_default ~1;
   247       val direct_calls = map (apfst (nth ctr_args) o apsnd (nth args)) direct_calls';
   248       val indirect_calls = map (apfst (nth ctr_args) o apsnd (nth args)) indirect_calls';
   249 
   250       val abstractions = args @ #left_args eqn_data @ #right_args eqn_data;
   251     in
   252       t
   253       |> subst_rec_calls lthy get_ctr_pos has_call ctr_args direct_calls indirect_calls
   254       |> fold_rev lambda abstractions
   255     end;
   256 
   257 fun build_defs lthy bs mxs (funs_data : eqn_data list list) (rec_specs : rec_spec list) has_call =
   258   let
   259     val n_funs = length funs_data;
   260 
   261     val ctr_spec_eqn_data_list' =
   262       (take n_funs rec_specs |> map #ctr_specs) ~~ funs_data
   263       |> maps (uncurry (finds (fn (x, y) => #ctr x = #ctr y))
   264           ##> (fn x => null x orelse
   265             primrec_error_eqns "excess equations in definition" (map #rhs_term x)) #> fst);
   266     val _ = ctr_spec_eqn_data_list' |> map (fn (_, x) => length x <= 1 orelse
   267       primrec_error_eqns ("multiple equations for constructor") (map #user_eqn x));
   268 
   269     val ctr_spec_eqn_data_list =
   270       ctr_spec_eqn_data_list' @ (drop n_funs rec_specs |> maps #ctr_specs |> map (rpair []));
   271 
   272     val recs = take n_funs rec_specs |> map #recx;
   273     val rec_args = ctr_spec_eqn_data_list
   274       |> sort ((op <) o pairself (#offset o fst) |> make_ord)
   275       |> map (uncurry (build_rec_arg lthy funs_data has_call) o apsnd (try the_single));
   276     val ctr_poss = map (fn x =>
   277       if length (distinct ((op =) o pairself (length o #left_args)) x) <> 1 then
   278         primrec_error ("inconstant constructor pattern position for function " ^
   279           quote (#fun_name (hd x)))
   280       else
   281         hd x |> #left_args |> length) funs_data;
   282   in
   283     (recs, ctr_poss)
   284     |-> map2 (fn recx => fn ctr_pos => list_comb (recx, rec_args) |> permute_args ctr_pos)
   285     |> Syntax.check_terms lthy
   286     |> map3 (fn b => fn mx => fn t => ((b, mx), ((Binding.map_name Thm.def_name b, []), t))) bs mxs
   287   end;
   288 
   289 fun find_rec_calls has_call (eqn_data : eqn_data) =
   290   let
   291     fun find (Abs (_, _, b)) ctr_arg = find b ctr_arg
   292       | find (t as _ $ _) ctr_arg =
   293         let
   294           val (f', args') = strip_comb t;
   295           val n = find_index (equal ctr_arg) args';
   296         in
   297           if n < 0 then
   298             find f' ctr_arg @ maps (fn x => find x ctr_arg) args'
   299           else
   300             let val (f, args) = chop n args' |>> curry list_comb f' in
   301               if has_call f then
   302                 f :: maps (fn x => find x ctr_arg) args
   303               else
   304                 find f ctr_arg @ maps (fn x => find x ctr_arg) args
   305             end
   306         end
   307       | find _ _ = [];
   308   in
   309     map (find (#rhs_term eqn_data)) (#ctr_args eqn_data)
   310     |> (fn [] => NONE | callss => SOME (#ctr eqn_data, callss))
   311   end;
   312 
   313 fun prepare_primrec fixes specs lthy =
   314   let
   315     val (bs, mxs) = map_split (apfst fst) fixes;
   316     val fun_names = map Binding.name_of bs;
   317     val eqns_data = map (dissect_eqn lthy fun_names) specs;
   318     val funs_data = eqns_data
   319       |> partition_eq ((op =) o pairself #fun_name)
   320       |> finds (fn (x, y) => x = #fun_name (hd y)) fun_names |> fst
   321       |> map (fn (x, y) => the_single y handle List.Empty =>
   322           primrec_error ("missing equations for function " ^ quote x));
   323 
   324     val has_call = exists_subterm (map (fst #>> Binding.name_of #> Free) fixes |> member (op =));
   325     val arg_Ts = map (#rec_type o hd) funs_data;
   326     val res_Ts = map (#res_type o hd) funs_data;
   327     val callssss = funs_data
   328       |> map (partition_eq ((op =) o pairself #ctr))
   329       |> map (maps (map_filter (find_rec_calls has_call)));
   330 
   331     val ((n2m, rec_specs, _, induct_thm, induct_thms), lthy') =
   332       rec_specs_of bs arg_Ts res_Ts (get_indices fixes) callssss lthy;
   333 
   334     val actual_nn = length funs_data;
   335 
   336     val _ = let val ctrs = (maps (map #ctr o #ctr_specs) rec_specs) in
   337       map (fn {ctr, user_eqn, ...} => member (op =) ctrs ctr orelse
   338         primrec_error_eqn ("argument " ^ quote (Syntax.string_of_term lthy' ctr) ^
   339           " is not a constructor in left-hand side") user_eqn) eqns_data end;
   340 
   341     val defs = build_defs lthy' bs mxs funs_data rec_specs has_call;
   342 
   343     fun prove lthy def_thms' ({ctr_specs, nested_map_idents, nested_map_comps, ...} : rec_spec)
   344         (fun_data : eqn_data list) =
   345       let
   346         val def_thms = map (snd o snd) def_thms';
   347         val simp_thmss = finds (fn (x, y) => #ctr x = #ctr y) fun_data ctr_specs
   348           |> fst
   349           |> map_filter (try (fn (x, [y]) =>
   350             (#user_eqn x, length (#left_args x) + length (#right_args x), #rec_thm y)))
   351           |> map (fn (user_eqn, num_extra_args, rec_thm) =>
   352             mk_primrec_tac lthy num_extra_args nested_map_idents nested_map_comps def_thms rec_thm
   353             |> K |> Goal.prove lthy [] [] user_eqn);
   354         val poss = find_indices (fn (x, y) => #ctr x = #ctr y) fun_data eqns_data;
   355       in
   356         (poss, simp_thmss)
   357       end;
   358 
   359     val notes =
   360       (if n2m then map2 (fn name => fn thm =>
   361         (name, inductN, [thm], [])) fun_names (take actual_nn induct_thms) else [])
   362       |> map (fn (prefix, thmN, thms, attrs) =>
   363         ((Binding.qualify true prefix (Binding.name thmN), attrs), [(thms, [])]));
   364 
   365     val common_name = mk_common_name fun_names;
   366 
   367     val common_notes =
   368       (if n2m then [(inductN, [induct_thm], [])] else [])
   369       |> map (fn (thmN, thms, attrs) =>
   370         ((Binding.qualify true common_name (Binding.name thmN), attrs), [(thms, [])]));
   371   in
   372     (((fun_names, defs),
   373       fn lthy => fn defs =>
   374         split_list (map2 (prove lthy defs) (take actual_nn rec_specs) funs_data)),
   375       lthy' |> Local_Theory.notes (notes @ common_notes) |> snd)
   376   end;
   377 
   378 (* primrec definition *)
   379 
   380 fun add_primrec_simple fixes ts lthy =
   381   let
   382     val (((names, defs), prove), lthy) = prepare_primrec fixes ts lthy
   383       handle ERROR str => primrec_error str;
   384   in
   385     lthy
   386     |> fold_map Local_Theory.define defs
   387     |-> (fn defs => `(fn lthy => (names, (map fst defs, prove lthy defs))))
   388   end
   389   handle Primrec_Error (str, eqns) =>
   390     if null eqns
   391     then error ("primrec_new error:\n  " ^ str)
   392     else error ("primrec_new error:\n  " ^ str ^ "\nin\n  " ^
   393       space_implode "\n  " (map (quote o Syntax.string_of_term lthy) eqns));
   394 
   395 local
   396 
   397 fun gen_primrec prep_spec (raw_fixes : (binding * 'a option * mixfix) list) raw_spec lthy =
   398   let
   399     val d = duplicates (op =) (map (Binding.name_of o #1) raw_fixes)
   400     val _ = null d orelse primrec_error ("duplicate function name(s): " ^ commas d);
   401 
   402     val (fixes, specs) = fst (prep_spec raw_fixes raw_spec lthy);
   403 
   404     val mk_notes =
   405       flat ooo map3 (fn poss => fn prefix => fn thms =>
   406         let
   407           val (bs, attrss) = map_split (fst o nth specs) poss;
   408           val notes =
   409             map3 (fn b => fn attrs => fn thm =>
   410               ((Binding.qualify false prefix b, code_nitpick_simp_attrs @ attrs), [([thm], [])]))
   411             bs attrss thms;
   412         in
   413           ((Binding.qualify true prefix (Binding.name simpsN), []), [(thms, [])]) :: notes
   414         end);
   415   in
   416     lthy
   417     |> add_primrec_simple fixes (map snd specs)
   418     |-> (fn (names, (ts, (posss, simpss))) =>
   419       Spec_Rules.add Spec_Rules.Equational (ts, flat simpss)
   420       #> Local_Theory.notes (mk_notes posss names simpss)
   421       #>> pair ts o map snd)
   422   end;
   423 
   424 in
   425 
   426 val add_primrec = gen_primrec Specification.check_spec;
   427 val add_primrec_cmd = gen_primrec Specification.read_spec;
   428 
   429 end;
   430 
   431 fun add_primrec_global fixes specs thy =
   432   let
   433     val lthy = Named_Target.theory_init thy;
   434     val ((ts, simps), lthy') = add_primrec fixes specs lthy;
   435     val simps' = burrow (Proof_Context.export lthy' lthy) simps;
   436   in ((ts, simps'), Local_Theory.exit_global lthy') end;
   437 
   438 fun add_primrec_overloaded ops fixes specs thy =
   439   let
   440     val lthy = Overloading.overloading ops thy;
   441     val ((ts, simps), lthy') = add_primrec fixes specs lthy;
   442     val simps' = burrow (Proof_Context.export lthy' lthy) simps;
   443   in ((ts, simps'), Local_Theory.exit_global lthy') end;
   444 
   445 
   446 
   447 (* Primcorec *)
   448 
   449 type co_eqn_data_disc = {
   450   fun_name: string,
   451   fun_T: typ,
   452   fun_args: term list,
   453   ctr: term,
   454   ctr_no: int, (*###*)
   455   disc: term,
   456   prems: term list,
   457   auto_gen: bool,
   458   maybe_ctr_rhs: term option,
   459   maybe_code_rhs: term option,
   460   user_eqn: term
   461 };
   462 
   463 type co_eqn_data_sel = {
   464   fun_name: string,
   465   fun_T: typ,
   466   fun_args: term list,
   467   ctr: term,
   468   sel: term,
   469   rhs_term: term,
   470   user_eqn: term
   471 };
   472 
   473 datatype co_eqn_data =
   474   Disc of co_eqn_data_disc |
   475   Sel of co_eqn_data_sel;
   476 
   477 fun co_dissect_eqn_disc seq fun_names (corec_specs : corec_spec list) maybe_ctr_rhs maybe_code_rhs
   478     prems' concl matchedsss =
   479   let
   480     fun find_subterm p = let (* FIXME \<exists>? *)
   481       fun f (t as u $ v) = if p t then SOME t else merge_options (f u, f v)
   482         | f t = if p t then SOME t else NONE
   483       in f end;
   484 
   485     val applied_fun = concl
   486       |> find_subterm (member ((op =) o apsnd SOME) fun_names o try (fst o dest_Free o head_of))
   487       |> the
   488       handle Option.Option => primrec_error_eqn "malformed discriminator equation" concl;
   489     val ((fun_name, fun_T), fun_args) = strip_comb applied_fun |>> dest_Free;
   490     val {ctr_specs, ...} = the (AList.lookup (op =) (fun_names ~~ corec_specs) fun_name);
   491 
   492     val discs = map #disc ctr_specs;
   493     val ctrs = map #ctr ctr_specs;
   494     val not_disc = head_of concl = @{term Not};
   495     val _ = not_disc andalso length ctrs <> 2 andalso
   496       primrec_error_eqn "\<not>ed discriminator for a type with \<noteq> 2 constructors" concl;
   497     val disc = find_subterm (member (op =) discs o head_of) concl;
   498     val eq_ctr0 = concl |> perhaps (try (HOLogic.dest_not)) |> try (HOLogic.dest_eq #> snd)
   499         |> (fn SOME t => let val n = find_index (equal t) ctrs in
   500           if n >= 0 then SOME n else NONE end | _ => NONE);
   501     val _ = is_some disc orelse is_some eq_ctr0 orelse
   502       primrec_error_eqn "no discriminator in equation" concl;
   503     val ctr_no' =
   504       if is_none disc then the eq_ctr0 else find_index (equal (head_of (the disc))) discs;
   505     val ctr_no = if not_disc then 1 - ctr_no' else ctr_no';
   506     val ctr = #ctr (nth ctr_specs ctr_no);
   507 
   508     val catch_all = try (fst o dest_Free o the_single) prems' = SOME Name.uu_;
   509     val matchedss = AList.lookup (op =) matchedsss fun_name |> the_default [];
   510     val prems = map (abstract (List.rev fun_args)) prems';
   511     val real_prems =
   512       (if catch_all orelse seq then maps s_not_conj matchedss else []) @
   513       (if catch_all then [] else prems);
   514 
   515     val matchedsss' = AList.delete (op =) fun_name matchedsss
   516       |> cons (fun_name, if seq then matchedss @ [prems] else matchedss @ [real_prems]);
   517 
   518     val user_eqn =
   519       (real_prems, concl)
   520       |>> map HOLogic.mk_Trueprop ||> HOLogic.mk_Trueprop o abstract (List.rev fun_args)
   521       |> curry Logic.list_all (map dest_Free fun_args) o Logic.list_implies;
   522   in
   523     (Disc {
   524       fun_name = fun_name,
   525       fun_T = fun_T,
   526       fun_args = fun_args,
   527       ctr = ctr,
   528       ctr_no = ctr_no,
   529       disc = #disc (nth ctr_specs ctr_no),
   530       prems = real_prems,
   531       auto_gen = catch_all,
   532       maybe_ctr_rhs = maybe_ctr_rhs,
   533       maybe_code_rhs = maybe_code_rhs,
   534       user_eqn = user_eqn
   535     }, matchedsss')
   536   end;
   537 
   538 fun co_dissect_eqn_sel fun_names (corec_specs : corec_spec list) eqn' of_spec eqn =
   539   let
   540     val (lhs, rhs) = HOLogic.dest_eq eqn
   541       handle TERM _ =>
   542         primrec_error_eqn "malformed function equation (expected \"lhs = rhs\")" eqn;
   543     val sel = head_of lhs;
   544     val ((fun_name, fun_T), fun_args) = dest_comb lhs |> snd |> strip_comb |> apfst dest_Free
   545       handle TERM _ =>
   546         primrec_error_eqn "malformed selector argument in left-hand side" eqn;
   547     val corec_spec = the (AList.lookup (op =) (fun_names ~~ corec_specs) fun_name)
   548       handle Option.Option => primrec_error_eqn "malformed selector argument in left-hand side" eqn;
   549     val ctr_spec =
   550       if is_some of_spec
   551       then the (find_first (equal (the of_spec) o #ctr) (#ctr_specs corec_spec))
   552       else #ctr_specs corec_spec |> filter (exists (equal sel) o #sels) |> the_single
   553         handle List.Empty => primrec_error_eqn "ambiguous selector - use \"of\"" eqn;
   554     val user_eqn = drop_All eqn';
   555   in
   556     Sel {
   557       fun_name = fun_name,
   558       fun_T = fun_T,
   559       fun_args = fun_args,
   560       ctr = #ctr ctr_spec,
   561       sel = sel,
   562       rhs_term = rhs,
   563       user_eqn = user_eqn
   564     }
   565   end;
   566 
   567 fun co_dissect_eqn_ctr seq fun_names (corec_specs : corec_spec list) eqn' maybe_code_rhs
   568     prems concl matchedsss =
   569   let
   570     val (lhs, rhs) = HOLogic.dest_eq concl;
   571     val (fun_name, fun_args) = strip_comb lhs |>> fst o dest_Free;
   572     val {ctr_specs, ...} = the (AList.lookup (op =) (fun_names ~~ corec_specs) fun_name);
   573     val (ctr, ctr_args) = strip_comb (unfold_let rhs);
   574     val {disc, sels, ...} = the (find_first (equal ctr o #ctr) ctr_specs)
   575       handle Option.Option => primrec_error_eqn "not a constructor" ctr;
   576 
   577     val disc_concl = betapply (disc, lhs);
   578     val (maybe_eqn_data_disc, matchedsss') = if length ctr_specs = 1
   579       then (NONE, matchedsss)
   580       else apfst SOME (co_dissect_eqn_disc seq fun_names corec_specs
   581           (SOME (abstract (List.rev fun_args) rhs)) maybe_code_rhs prems disc_concl matchedsss);
   582 
   583     val sel_concls = (sels ~~ ctr_args)
   584       |> map (fn (sel, ctr_arg) => HOLogic.mk_eq (betapply (sel, lhs), ctr_arg));
   585 
   586 (*
   587 val _ = tracing ("reduced\n    " ^ Syntax.string_of_term @{context} concl ^ "\nto\n    \<cdot> " ^
   588  (is_some maybe_eqn_data_disc ? K (Syntax.string_of_term @{context} disc_concl ^ "\n    \<cdot> ")) "" ^
   589  space_implode "\n    \<cdot> " (map (Syntax.string_of_term @{context}) sel_concls) ^
   590  "\nfor premise(s)\n    \<cdot> " ^
   591  space_implode "\n    \<cdot> " (map (Syntax.string_of_term @{context}) prems));
   592 *)
   593 
   594     val eqns_data_sel = map (co_dissect_eqn_sel fun_names corec_specs eqn' (SOME ctr)) sel_concls;
   595   in
   596     (the_list maybe_eqn_data_disc @ eqns_data_sel, matchedsss')
   597   end;
   598 
   599 fun co_dissect_eqn_code lthy has_call fun_names corec_specs eqn' concl matchedsss =
   600   let
   601     val (lhs, (rhs', rhs)) = HOLogic.dest_eq concl ||> `(expand_corec_code_rhs lthy has_call []);
   602     val (fun_name, fun_args) = strip_comb lhs |>> fst o dest_Free;
   603     val {ctr_specs, ...} = the (AList.lookup (op =) (fun_names ~~ corec_specs) fun_name);
   604 
   605     val cond_ctrs = fold_rev_corec_code_rhs lthy (fn cs => fn ctr => fn _ =>
   606         if member ((op =) o apsnd #ctr) ctr_specs ctr
   607         then cons (ctr, cs)
   608         else primrec_error_eqn "not a constructor" ctr) [] rhs' []
   609       |> AList.group (op =);
   610 
   611     val ctr_premss = (case cond_ctrs of [_] => [[]] | _ => map (s_dnf o snd) cond_ctrs);
   612     val ctr_concls = cond_ctrs |> map (fn (ctr, _) =>
   613         binder_types (fastype_of ctr)
   614         |> map_index (fn (n, T) => massage_corec_code_rhs lthy (fn _ => fn ctr' => fn args =>
   615           if ctr' = ctr then nth args n else Const (@{const_name undefined}, T)) [] rhs')
   616         |> curry list_comb ctr
   617         |> curry HOLogic.mk_eq lhs);
   618   in
   619     fold_map2 (co_dissect_eqn_ctr false fun_names corec_specs eqn'
   620         (SOME (abstract (List.rev fun_args) rhs)))
   621       ctr_premss ctr_concls matchedsss
   622   end;
   623 
   624 fun co_dissect_eqn lthy seq has_call fun_names (corec_specs : corec_spec list) eqn' of_spec
   625     matchedsss =
   626   let
   627     val eqn = drop_All eqn'
   628       handle TERM _ => primrec_error_eqn "malformed function equation" eqn';
   629     val (prems, concl) = Logic.strip_horn eqn
   630       |> apfst (map HOLogic.dest_Trueprop) o apsnd HOLogic.dest_Trueprop;
   631 
   632     val head = concl
   633       |> perhaps (try HOLogic.dest_not) |> perhaps (try (fst o HOLogic.dest_eq))
   634       |> head_of;
   635 
   636     val maybe_rhs = concl |> perhaps (try (HOLogic.dest_not)) |> try (snd o HOLogic.dest_eq);
   637 
   638     val discs = maps #ctr_specs corec_specs |> map #disc;
   639     val sels = maps #ctr_specs corec_specs |> maps #sels;
   640     val ctrs = maps #ctr_specs corec_specs |> map #ctr;
   641   in
   642     if member (op =) discs head orelse
   643       is_some maybe_rhs andalso
   644         member (op =) (filter (null o binder_types o fastype_of) ctrs) (the maybe_rhs) then
   645       co_dissect_eqn_disc seq fun_names corec_specs NONE NONE prems concl matchedsss
   646       |>> single
   647     else if member (op =) sels head then
   648       ([co_dissect_eqn_sel fun_names corec_specs eqn' of_spec concl], matchedsss)
   649     else if is_Free head andalso member (op =) fun_names (fst (dest_Free head)) andalso
   650       member (op =) ctrs (head_of (unfold_let (the maybe_rhs))) then
   651       co_dissect_eqn_ctr seq fun_names corec_specs eqn' NONE prems concl matchedsss
   652     else if is_Free head andalso member (op =) fun_names (fst (dest_Free head)) andalso
   653       null prems then
   654       co_dissect_eqn_code lthy has_call fun_names corec_specs eqn' concl matchedsss
   655       |>> flat
   656     else
   657       primrec_error_eqn "malformed function equation" eqn
   658   end;
   659 
   660 fun build_corec_arg_disc (ctr_specs : corec_ctr_spec list)
   661     ({fun_args, ctr_no, prems, ...} : co_eqn_data_disc) =
   662   if is_none (#pred (nth ctr_specs ctr_no)) then I else
   663     s_conjs prems
   664     |> curry subst_bounds (List.rev fun_args)
   665     |> HOLogic.tupled_lambda (HOLogic.mk_tuple fun_args)
   666     |> K |> nth_map (the (#pred (nth ctr_specs ctr_no)));
   667 
   668 fun build_corec_arg_no_call (sel_eqns : co_eqn_data_sel list) sel =
   669   find_first (equal sel o #sel) sel_eqns
   670   |> try (fn SOME {fun_args, rhs_term, ...} => abs_tuple fun_args rhs_term)
   671   |> the_default undef_const
   672   |> K;
   673 
   674 fun build_corec_args_direct_call lthy has_call (sel_eqns : co_eqn_data_sel list) sel =
   675   let
   676     val maybe_sel_eqn = find_first (equal sel o #sel) sel_eqns;
   677   in
   678     if is_none maybe_sel_eqn then (I, I, I) else
   679     let
   680       val {fun_args, rhs_term, ... } = the maybe_sel_eqn;
   681       val bound_Ts = List.rev (map fastype_of fun_args);
   682       fun rewrite_q _ t = if has_call t then @{term False} else @{term True};
   683       fun rewrite_g _ t = if has_call t then undef_const else t;
   684       fun rewrite_h bound_Ts t =
   685         if has_call t then mk_tuple1 bound_Ts (snd (strip_comb t)) else undef_const;
   686       fun massage f _ = massage_direct_corec_call lthy has_call f bound_Ts rhs_term
   687         |> abs_tuple fun_args;
   688     in
   689       (massage rewrite_q,
   690        massage rewrite_g,
   691        massage rewrite_h)
   692     end
   693   end;
   694 
   695 fun build_corec_arg_indirect_call lthy has_call (sel_eqns : co_eqn_data_sel list) sel =
   696   let
   697     val maybe_sel_eqn = find_first (equal sel o #sel) sel_eqns;
   698   in
   699     if is_none maybe_sel_eqn then I else
   700     let
   701       val {fun_args, rhs_term, ...} = the maybe_sel_eqn;
   702       val bound_Ts = List.rev (map fastype_of fun_args);
   703       fun rewrite bound_Ts U T (Abs (v, V, b)) = Abs (v, V, rewrite (V :: bound_Ts) U T b)
   704         | rewrite bound_Ts U T (t as _ $ _) =
   705           let val (u, vs) = strip_comb t in
   706             if is_Free u andalso has_call u then
   707               Inr_const U T $ mk_tuple1 bound_Ts vs
   708             else if try (fst o dest_Const) u = SOME @{const_name prod_case} then
   709               map (rewrite bound_Ts U T) vs |> chop 1 |>> HOLogic.mk_split o the_single |> list_comb
   710             else
   711               list_comb (rewrite bound_Ts U T u, map (rewrite bound_Ts U T) vs)
   712           end
   713         | rewrite _ U T t =
   714           if is_Free t andalso has_call t then Inr_const U T $ HOLogic.unit else t;
   715       fun massage t =
   716         rhs_term
   717         |> massage_indirect_corec_call lthy has_call rewrite bound_Ts (range_type (fastype_of t))
   718         |> abs_tuple fun_args;
   719     in
   720       massage
   721     end
   722   end;
   723 
   724 fun build_corec_args_sel lthy has_call (all_sel_eqns : co_eqn_data_sel list)
   725     (ctr_spec : corec_ctr_spec) =
   726   let val sel_eqns = filter (equal (#ctr ctr_spec) o #ctr) all_sel_eqns in
   727     if null sel_eqns then I else
   728       let
   729         val sel_call_list = #sels ctr_spec ~~ #calls ctr_spec;
   730 
   731         val no_calls' = map_filter (try (apsnd (fn No_Corec n => n))) sel_call_list;
   732         val direct_calls' = map_filter (try (apsnd (fn Direct_Corec n => n))) sel_call_list;
   733         val indirect_calls' = map_filter (try (apsnd (fn Indirect_Corec n => n))) sel_call_list;
   734       in
   735         I
   736         #> fold (fn (sel, n) => nth_map n (build_corec_arg_no_call sel_eqns sel)) no_calls'
   737         #> fold (fn (sel, (q, g, h)) =>
   738           let val (fq, fg, fh) = build_corec_args_direct_call lthy has_call sel_eqns sel in
   739             nth_map q fq o nth_map g fg o nth_map h fh end) direct_calls'
   740         #> fold (fn (sel, n) => nth_map n
   741           (build_corec_arg_indirect_call lthy has_call sel_eqns sel)) indirect_calls'
   742       end
   743   end;
   744 
   745 fun co_build_defs lthy bs mxs has_call arg_Tss (corec_specs : corec_spec list)
   746     (disc_eqnss : co_eqn_data_disc list list) (sel_eqnss : co_eqn_data_sel list list) =
   747   let
   748     val corec_specs' = take (length bs) corec_specs;
   749     val corecs = map #corec corec_specs';
   750     val ctr_specss = map #ctr_specs corec_specs';
   751     val corec_args = hd corecs
   752       |> fst o split_last o binder_types o fastype_of
   753       |> map (Const o pair @{const_name undefined})
   754       |> fold2 (fold o build_corec_arg_disc) ctr_specss disc_eqnss
   755       |> fold2 (fold o build_corec_args_sel lthy has_call) sel_eqnss ctr_specss;
   756     fun currys [] t = t
   757       | currys Ts t = t $ mk_tuple1 (List.rev Ts) (map Bound (length Ts - 1 downto 0))
   758           |> fold_rev (Term.abs o pair Name.uu) Ts;
   759 
   760 (*
   761 val _ = tracing ("corecursor arguments:\n    \<cdot> " ^
   762  space_implode "\n    \<cdot> " (map (Syntax.string_of_term lthy) corec_args));
   763 *)
   764 
   765     val exclss' =
   766       disc_eqnss
   767       |> map (map (fn x => (#fun_args x, #ctr_no x, #prems x, #auto_gen x))
   768         #> fst o (fn xs => fold_map (fn x => fn ys => ((x, ys), ys @ [x])) xs [])
   769         #> maps (uncurry (map o pair)
   770           #> map (fn ((fun_args, c, x, a), (_, c', y, a')) =>
   771               ((c, c', a orelse a'), (x, s_not (s_conjs y)))
   772             ||> apfst (map HOLogic.mk_Trueprop) o apsnd HOLogic.mk_Trueprop
   773             ||> Logic.list_implies
   774             ||> curry Logic.list_all (map dest_Free fun_args))))
   775   in
   776     map (list_comb o rpair corec_args) corecs
   777     |> map2 (fn Ts => fn t => if length Ts = 0 then t $ HOLogic.unit else t) arg_Tss
   778     |> map2 currys arg_Tss
   779     |> Syntax.check_terms lthy
   780     |> map3 (fn b => fn mx => fn t => ((b, mx), ((Binding.map_name Thm.def_name b, []), t))) bs mxs
   781     |> rpair exclss'
   782   end;
   783 
   784 fun mk_real_disc_eqns fun_binding arg_Ts ({ctr_specs, ...} : corec_spec)
   785     (sel_eqns : co_eqn_data_sel list) (disc_eqns : co_eqn_data_disc list) =
   786   if length disc_eqns <> length ctr_specs - 1 then disc_eqns else
   787     let
   788       val n = 0 upto length ctr_specs
   789         |> the o find_first (fn idx => not (exists (equal idx o #ctr_no) disc_eqns));
   790       val fun_args = (try (#fun_args o hd) disc_eqns, try (#fun_args o hd) sel_eqns)
   791         |> the_default (map (curry Free Name.uu) arg_Ts) o merge_options;
   792       val extra_disc_eqn = {
   793         fun_name = Binding.name_of fun_binding,
   794         fun_T = arg_Ts ---> body_type (fastype_of (#ctr (hd ctr_specs))),
   795         fun_args = fun_args,
   796         ctr = #ctr (nth ctr_specs n),
   797         ctr_no = n,
   798         disc = #disc (nth ctr_specs n),
   799         prems = maps (s_not_conj o #prems) disc_eqns,
   800         auto_gen = true,
   801         maybe_ctr_rhs = NONE,
   802         maybe_code_rhs = NONE,
   803         user_eqn = undef_const};
   804     in
   805       chop n disc_eqns ||> cons extra_disc_eqn |> (op @)
   806     end;
   807 
   808 fun add_primcorec simple seq fixes specs of_specs lthy =
   809   let
   810     val (bs, mxs) = map_split (apfst fst) fixes;
   811     val (arg_Ts, res_Ts) = map (strip_type o snd o fst #>> HOLogic.mk_tupleT) fixes |> split_list;
   812 
   813     val callssss = []; (* FIXME *)
   814 
   815     val ((n2m, corec_specs', _, coinduct_thm, strong_coinduct_thm, coinduct_thms,
   816           strong_coinduct_thms), lthy') =
   817       corec_specs_of bs arg_Ts res_Ts (get_indices fixes) callssss lthy;
   818 
   819     val actual_nn = length bs;
   820     val fun_names = map Binding.name_of bs;
   821     val corec_specs = take actual_nn corec_specs'; (*###*)
   822 
   823     val has_call = exists_subterm (map (fst #>> Binding.name_of #> Free) fixes |> member (op =));
   824     val eqns_data =
   825       fold_map2 (co_dissect_eqn lthy seq has_call fun_names corec_specs)
   826         (map snd specs) of_specs []
   827       |> flat o fst;
   828 
   829     val disc_eqnss' = map_filter (try (fn Disc x => x)) eqns_data
   830       |> partition_eq ((op =) o pairself #fun_name)
   831       |> fst o finds (fn (x, ({fun_name, ...} :: _)) => x = fun_name) fun_names
   832       |> map (sort ((op <) o pairself #ctr_no |> make_ord) o flat o snd);
   833     val _ = disc_eqnss' |> map (fn x =>
   834       let val d = duplicates ((op =) o pairself #ctr_no) x in null d orelse
   835         primrec_error_eqns "excess discriminator equations in definition"
   836           (maps (fn t => filter (equal (#ctr_no t) o #ctr_no) x) d |> map #user_eqn) end);
   837 
   838     val sel_eqnss = map_filter (try (fn Sel x => x)) eqns_data
   839       |> partition_eq ((op =) o pairself #fun_name)
   840       |> fst o finds (fn (x, ({fun_name, ...} :: _)) => x = fun_name) fun_names
   841       |> map (flat o snd);
   842 
   843     val arg_Tss = map (binder_types o snd o fst) fixes;
   844     val disc_eqnss = map5 mk_real_disc_eqns bs arg_Tss corec_specs sel_eqnss disc_eqnss';
   845     val (defs, exclss') =
   846       co_build_defs lthy' bs mxs has_call arg_Tss corec_specs disc_eqnss sel_eqnss;
   847 
   848     fun excl_tac (c, c', a) =
   849       if a orelse c = c' orelse seq then
   850         SOME (K (HEADGOAL (mk_primcorec_assumption_tac lthy [])))
   851       else if simple then
   852         SOME (K (auto_tac lthy))
   853       else
   854         NONE;
   855 
   856 (*
   857 val _ = tracing ("exclusiveness properties:\n    \<cdot> " ^
   858  space_implode "\n    \<cdot> " (maps (map (Syntax.string_of_term lthy o snd)) exclss'));
   859 *)
   860 
   861     val exclss'' = exclss' |> map (map (fn (idx, t) =>
   862       (idx, (Option.map (Goal.prove lthy [] [] t) (excl_tac idx), t))));
   863     val taut_thmss = map (map (apsnd (the o fst)) o filter (is_some o fst o snd)) exclss'';
   864     val (obligation_idxss, obligationss) = exclss''
   865       |> map (map (apsnd (rpair [] o snd)) o filter (is_none o fst o snd))
   866       |> split_list o map split_list;
   867 
   868     fun prove thmss' def_thms' lthy =
   869       let
   870         val def_thms = map (snd o snd) def_thms';
   871 
   872         val exclss' = map (op ~~) (obligation_idxss ~~ thmss');
   873         fun mk_exclsss excls n =
   874           (excls, map (fn k => replicate k [TrueI] @ replicate (n - k) []) (0 upto n - 1))
   875           |-> fold (fn ((c, c', _), thm) => nth_map c (nth_map c' (K [thm])));
   876         val exclssss = (exclss' ~~ taut_thmss |> map (op @), fun_names ~~ corec_specs)
   877           |-> map2 (fn excls => fn (_, {ctr_specs, ...}) => mk_exclsss excls (length ctr_specs));
   878 
   879         fun prove_disc ({ctr_specs, ...} : corec_spec) exclsss
   880             ({fun_name, fun_T, fun_args, ctr_no, prems, ...} : co_eqn_data_disc) =
   881           if Term.aconv_untyped (#disc (nth ctr_specs ctr_no), @{term "\<lambda>x. x = x"}) then [] else
   882             let
   883               val {disc_corec, ...} = nth ctr_specs ctr_no;
   884               val k = 1 + ctr_no;
   885               val m = length prems;
   886               val t =
   887                 list_comb (Free (fun_name, fun_T), map Bound (length fun_args - 1 downto 0))
   888                 |> curry betapply (#disc (nth ctr_specs ctr_no)) (*###*)
   889                 |> HOLogic.mk_Trueprop
   890                 |> curry Logic.list_implies (map HOLogic.mk_Trueprop prems)
   891                 |> curry Logic.list_all (map dest_Free fun_args);
   892             in
   893               if prems = [@{term False}] then [] else
   894               mk_primcorec_disc_tac lthy def_thms disc_corec k m exclsss
   895               |> K |> Goal.prove lthy [] [] t
   896               |> pair (#disc (nth ctr_specs ctr_no))
   897               |> single
   898             end;
   899 
   900         fun prove_sel ({nested_maps, nested_map_idents, nested_map_comps, ctr_specs, ...}
   901             : corec_spec) (disc_eqns : co_eqn_data_disc list) exclsss
   902             ({fun_name, fun_T, fun_args, ctr, sel, rhs_term, ...} : co_eqn_data_sel) =
   903           let
   904             val SOME ctr_spec = find_first (equal ctr o #ctr) ctr_specs;
   905             val ctr_no = find_index (equal ctr o #ctr) ctr_specs;
   906             val prems = the_default (maps (s_not_conj o #prems) disc_eqns)
   907                 (find_first (equal ctr_no o #ctr_no) disc_eqns |> Option.map #prems);
   908             val sel_corec = find_index (equal sel) (#sels ctr_spec)
   909               |> nth (#sel_corecs ctr_spec);
   910             val k = 1 + ctr_no;
   911             val m = length prems;
   912             val t =
   913               list_comb (Free (fun_name, fun_T), map Bound (length fun_args - 1 downto 0))
   914               |> curry betapply sel
   915               |> rpair (abstract (List.rev fun_args) rhs_term)
   916               |> HOLogic.mk_Trueprop o HOLogic.mk_eq
   917               |> curry Logic.list_implies (map HOLogic.mk_Trueprop prems)
   918               |> curry Logic.list_all (map dest_Free fun_args);
   919             val (distincts, _, sel_splits, sel_split_asms) = case_thms_of_term lthy [] rhs_term;
   920           in
   921             mk_primcorec_sel_tac lthy def_thms distincts sel_splits sel_split_asms nested_maps
   922               nested_map_idents nested_map_comps sel_corec k m exclsss
   923             |> K |> Goal.prove lthy [] [] t
   924             |> pair sel
   925           end;
   926 
   927         fun prove_ctr disc_alist sel_alist (disc_eqns : co_eqn_data_disc list)
   928             (sel_eqns : co_eqn_data_sel list) ({ctr, disc, sels, collapse, ...} : corec_ctr_spec) =
   929           (* don't try to prove theorems when some sel_eqns are missing *)
   930           if not (exists (equal ctr o #ctr) disc_eqns)
   931               andalso not (exists (equal ctr o #ctr) sel_eqns)
   932             orelse
   933               filter (equal ctr o #ctr) sel_eqns
   934               |> fst o finds ((op =) o apsnd #sel) sels
   935               |> exists (null o snd)
   936           then [] else
   937             let
   938               val (fun_name, fun_T, fun_args, prems, maybe_rhs) =
   939                 (find_first (equal ctr o #ctr) disc_eqns, find_first (equal ctr o #ctr) sel_eqns)
   940                 |>> Option.map (fn x => (#fun_name x, #fun_T x, #fun_args x, #prems x,
   941                   #maybe_ctr_rhs x))
   942                 ||> Option.map (fn x => (#fun_name x, #fun_T x, #fun_args x, [], NONE))
   943                 |> the o merge_options;
   944               val m = length prems;
   945               val t = (if is_some maybe_rhs then the maybe_rhs else
   946                   filter (equal ctr o #ctr) sel_eqns
   947                   |> fst o finds ((op =) o apsnd #sel) sels
   948                   |> map (snd #> (fn [x] => (List.rev (#fun_args x), #rhs_term x)) #-> abstract)
   949                   |> curry list_comb ctr)
   950                 |> curry HOLogic.mk_eq (list_comb (Free (fun_name, fun_T),
   951                   map Bound (length fun_args - 1 downto 0)))
   952                 |> HOLogic.mk_Trueprop
   953                 |> curry Logic.list_implies (map HOLogic.mk_Trueprop prems)
   954                 |> curry Logic.list_all (map dest_Free fun_args);
   955               val maybe_disc_thm = AList.lookup (op =) disc_alist disc;
   956               val sel_thms = map snd (filter (member (op =) sels o fst) sel_alist);
   957             in
   958               if prems = [@{term False}] then [] else
   959                 mk_primcorec_ctr_of_dtr_tac lthy m collapse maybe_disc_thm sel_thms
   960                 |> K |> Goal.prove lthy [] [] t
   961                 |> pair ctr
   962                 |> single
   963             end;
   964 
   965         fun prove_code disc_eqns sel_eqns ctr_alist
   966             {distincts, sel_splits, sel_split_asms, ctr_specs, ...} =
   967 (* FIXME doesn't work reliably yet *)
   968 [](*          let
   969             val (fun_name, fun_T, fun_args, maybe_rhs) =
   970               (find_first (member (op =) (map #ctr ctr_specs) o #ctr) disc_eqns,
   971                find_first (member (op =) (map #ctr ctr_specs) o #ctr) sel_eqns)
   972               |>> Option.map (fn x => (#fun_name x, #fun_T x, #fun_args x, #maybe_code_rhs x))
   973               ||> Option.map (fn x => (#fun_name x, #fun_T x, #fun_args x, NONE))
   974               |> the o merge_options;
   975 
   976             val maybe_rhs' = if is_some maybe_rhs then maybe_rhs else
   977               let
   978                 fun prove_code_ctr {ctr, disc, sels, ...} =
   979                   if not (exists (equal ctr o fst) ctr_alist) then NONE else
   980                     let
   981                       val (fun_name, fun_T, fun_args, prems) =
   982                         (find_first (equal ctr o #ctr) disc_eqns,
   983                          find_first (equal ctr o #ctr) sel_eqns)
   984                         |>> Option.map (fn x => (#fun_name x, #fun_T x, #fun_args x, #prems x))
   985                         ||> Option.map (fn x => (#fun_name x, #fun_T x, #fun_args x, []))
   986                         |> the o merge_options;
   987                       val m = length prems;
   988                       val t =
   989                         filter (equal ctr o #ctr) sel_eqns
   990                         |> fst o finds ((op =) o apsnd #sel) sels
   991                         |> map (snd #> (fn [x] => (List.rev (#fun_args x), #rhs_term x)) #-> abstract)
   992                         |> curry list_comb ctr;
   993                     in
   994                       SOME (prems, t)
   995                     end;
   996                 val maybe_ctr_conds_argss = map prove_code_ctr ctr_specs;
   997               in
   998                 if exists is_none maybe_ctr_conds_argss then NONE else
   999                   fold_rev (fn SOME (prems, u) => fn t => mk_If (s_conjs prems) u t)
  1000                     maybe_ctr_conds_argss (Const (@{const_name undefined}, body_type fun_T))
  1001                   |> SOME
  1002               end;
  1003           in
  1004             if is_none maybe_rhs' then [] else
  1005               let
  1006                 val rhs = the maybe_rhs';
  1007                 val bound_Ts = List.rev (map fastype_of fun_args);
  1008                 val rhs' = expand_corec_code_rhs lthy has_call bound_Ts rhs;
  1009                 val cond_ctrs = fold_rev_corec_code_rhs lthy (K oo (cons oo pair)) bound_Ts rhs' [];
  1010                 val ctr_thms = map (the o AList.lookup (op =) ctr_alist o snd) cond_ctrs;
  1011                 val ms = map (Logic.count_prems o prop_of) ctr_thms;
  1012                 val (t', t) = (rhs', rhs)
  1013                   |> pairself
  1014                     (curry HOLogic.mk_eq (list_comb (Free (fun_name, fun_T),
  1015                       map Bound (length fun_args - 1 downto 0)))
  1016                     #> HOLogic.mk_Trueprop
  1017                     #> curry Logic.list_all (map dest_Free fun_args));
  1018                 val discIs = map #discI ctr_specs;
  1019                 val raw_code = mk_primcorec_raw_code_of_ctr_tac lthy distincts discIs sel_splits
  1020                     sel_split_asms ms ctr_thms
  1021                   |> K |> Goal.prove lthy [] [] t';
  1022               in
  1023                 mk_primcorec_code_of_raw_code_tac sel_splits raw_code
  1024                 |> K |> Goal.prove lthy [] [] t
  1025                 |> single
  1026               end
  1027           end;*)
  1028 
  1029         val disc_alists = map3 (maps oo prove_disc) corec_specs exclssss disc_eqnss;
  1030         val sel_alists = map4 (map ooo prove_sel) corec_specs disc_eqnss exclssss sel_eqnss;
  1031         val disc_thmss = map (map snd) disc_alists;
  1032         val sel_thmss = map (map snd) sel_alists;
  1033 
  1034         val ctr_alists = map5 (maps oooo prove_ctr) disc_alists sel_alists disc_eqnss sel_eqnss
  1035           (map #ctr_specs corec_specs);
  1036         val ctr_thmss = map (map snd) ctr_alists;
  1037 
  1038         val code_thmss = map4 prove_code disc_eqnss sel_eqnss ctr_alists corec_specs;
  1039 
  1040         val simp_thmss = map2 append disc_thmss sel_thmss
  1041 
  1042         val common_name = mk_common_name fun_names;
  1043 
  1044         val notes =
  1045           [(coinductN, map (if n2m then single else K []) coinduct_thms, []),
  1046            (codeN, code_thmss, code_nitpick_attrs),
  1047            (ctrN, ctr_thmss, []),
  1048            (discN, disc_thmss, simp_attrs),
  1049            (selN, sel_thmss, simp_attrs),
  1050            (simpsN, simp_thmss, []),
  1051            (strong_coinductN, map (if n2m then single else K []) strong_coinduct_thms, [])]
  1052           |> maps (fn (thmN, thmss, attrs) =>
  1053             map2 (fn fun_name => fn thms =>
  1054                 ((Binding.qualify true fun_name (Binding.name thmN), attrs), [(thms, [])]))
  1055               fun_names (take actual_nn thmss))
  1056           |> filter_out (null o fst o hd o snd);
  1057 
  1058         val common_notes =
  1059           [(coinductN, if n2m then [coinduct_thm] else [], []),
  1060            (strong_coinductN, if n2m then [strong_coinduct_thm] else [], [])]
  1061           |> filter_out (null o #2)
  1062           |> map (fn (thmN, thms, attrs) =>
  1063             ((Binding.qualify true common_name (Binding.name thmN), attrs), [(thms, [])]));
  1064       in
  1065         lthy |> Local_Theory.notes (notes @ common_notes) |> snd
  1066       end;
  1067 
  1068     fun after_qed thmss' = fold_map Local_Theory.define defs #-> prove thmss';
  1069 
  1070     val _ = if not simple orelse forall null obligationss then () else
  1071       primrec_error "need exclusiveness proofs - use primcorecursive instead of primcorec";
  1072   in
  1073     if simple then
  1074       lthy'
  1075       |> after_qed (map (fn [] => []) obligationss)
  1076       |> pair NONE o SOME
  1077     else
  1078       lthy'
  1079       |> Proof.theorem NONE after_qed obligationss
  1080       |> Proof.refine (Method.primitive_text I)
  1081       |> Seq.hd
  1082       |> rpair NONE o SOME
  1083   end;
  1084 
  1085 fun add_primcorec_ursive_cmd simple seq (raw_fixes, raw_specs') lthy =
  1086   let
  1087     val (raw_specs, of_specs) = split_list raw_specs' ||> map (Option.map (Syntax.read_term lthy));
  1088     val ((fixes, specs), _) = Specification.read_spec raw_fixes raw_specs lthy;
  1089   in
  1090     add_primcorec simple seq fixes specs of_specs lthy
  1091     handle ERROR str => primrec_error str
  1092   end
  1093   handle Primrec_Error (str, eqns) =>
  1094     if null eqns
  1095     then error ("primcorec error:\n  " ^ str)
  1096     else error ("primcorec error:\n  " ^ str ^ "\nin\n  " ^
  1097       space_implode "\n  " (map (quote o Syntax.string_of_term lthy) eqns));
  1098 
  1099 val add_primcorecursive_cmd = (the o fst) ooo add_primcorec_ursive_cmd false;
  1100 val add_primcorec_cmd = (the o snd) ooo add_primcorec_ursive_cmd true;
  1101 
  1102 end;