src/HOL/Lifting_Sum.thy
author blanchet
Mon, 20 Jan 2014 20:42:43 +0100
changeset 56426 8ee9aabb2bca
parent 56425 0a689157e3ce
child 56756 eab03e9cee8a
permissions -rw-r--r--
rationalized lemmas
     1 (*  Title:      HOL/Lifting_Sum.thy
     2     Author:     Brian Huffman and Ondrej Kuncar
     3 *)
     4 
     5 header {* Setup for Lifting/Transfer for the sum type *}
     6 
     7 theory Lifting_Sum
     8 imports Lifting Basic_BNFs
     9 begin
    10 
    11 subsection {* Relator and predicator properties *}
    12 
    13 abbreviation (input) "sum_pred \<equiv> sum_case"
    14 
    15 lemmas sum_rel_eq[relator_eq] = sum.rel_eq
    16 lemmas sum_rel_mono[relator_mono] = sum.rel_mono
    17 
    18 lemma sum_rel_OO[relator_distr]:
    19   "(sum_rel A B) OO (sum_rel C D) = sum_rel (A OO C) (B OO D)"
    20   by (rule ext)+ (auto simp add: sum_rel_def OO_def split_sum_ex split: sum.split)
    21 
    22 lemma Domainp_sum[relator_domain]:
    23   assumes "Domainp R1 = P1"
    24   assumes "Domainp R2 = P2"
    25   shows "Domainp (sum_rel R1 R2) = (sum_pred P1 P2)"
    26 using assms
    27 by (auto simp add: Domainp_iff split_sum_ex iff: fun_eq_iff split: sum.split)
    28 
    29 lemma reflp_sum_rel[reflexivity_rule]:
    30   "reflp R1 \<Longrightarrow> reflp R2 \<Longrightarrow> reflp (sum_rel R1 R2)"
    31   unfolding reflp_def split_sum_all sum_rel_simps by fast
    32 
    33 lemma left_total_sum_rel[reflexivity_rule]:
    34   "left_total R1 \<Longrightarrow> left_total R2 \<Longrightarrow> left_total (sum_rel R1 R2)"
    35   using assms unfolding left_total_def split_sum_all split_sum_ex by simp
    36 
    37 lemma left_unique_sum_rel [reflexivity_rule]:
    38   "left_unique R1 \<Longrightarrow> left_unique R2 \<Longrightarrow> left_unique (sum_rel R1 R2)"
    39   using assms unfolding left_unique_def split_sum_all by simp
    40 
    41 lemma right_total_sum_rel [transfer_rule]:
    42   "right_total R1 \<Longrightarrow> right_total R2 \<Longrightarrow> right_total (sum_rel R1 R2)"
    43   unfolding right_total_def split_sum_all split_sum_ex by simp
    44 
    45 lemma right_unique_sum_rel [transfer_rule]:
    46   "right_unique R1 \<Longrightarrow> right_unique R2 \<Longrightarrow> right_unique (sum_rel R1 R2)"
    47   unfolding right_unique_def split_sum_all by simp
    48 
    49 lemma bi_total_sum_rel [transfer_rule]:
    50   "bi_total R1 \<Longrightarrow> bi_total R2 \<Longrightarrow> bi_total (sum_rel R1 R2)"
    51   using assms unfolding bi_total_def split_sum_all split_sum_ex by simp
    52 
    53 lemma bi_unique_sum_rel [transfer_rule]:
    54   "bi_unique R1 \<Longrightarrow> bi_unique R2 \<Longrightarrow> bi_unique (sum_rel R1 R2)"
    55   using assms unfolding bi_unique_def split_sum_all by simp
    56 
    57 lemma sum_invariant_commute [invariant_commute]: 
    58   "sum_rel (Lifting.invariant P1) (Lifting.invariant P2) = Lifting.invariant (sum_pred P1 P2)"
    59   by (auto simp add: fun_eq_iff Lifting.invariant_def sum_rel_def split: sum.split)
    60 
    61 subsection {* Quotient theorem for the Lifting package *}
    62 
    63 lemma Quotient_sum[quot_map]:
    64   assumes "Quotient R1 Abs1 Rep1 T1"
    65   assumes "Quotient R2 Abs2 Rep2 T2"
    66   shows "Quotient (sum_rel R1 R2) (sum_map Abs1 Abs2)
    67     (sum_map Rep1 Rep2) (sum_rel T1 T2)"
    68   using assms unfolding Quotient_alt_def
    69   by (simp add: split_sum_all)
    70 
    71 subsection {* Transfer rules for the Transfer package *}
    72 
    73 context
    74 begin
    75 interpretation lifting_syntax .
    76 
    77 lemma Inl_transfer [transfer_rule]: "(A ===> sum_rel A B) Inl Inl"
    78   unfolding fun_rel_def by simp
    79 
    80 lemma Inr_transfer [transfer_rule]: "(B ===> sum_rel A B) Inr Inr"
    81   unfolding fun_rel_def by simp
    82 
    83 lemma sum_case_transfer [transfer_rule]:
    84   "((A ===> C) ===> (B ===> C) ===> sum_rel A B ===> C) sum_case sum_case"
    85   unfolding fun_rel_def sum_rel_def by (simp split: sum.split)
    86 
    87 end
    88 
    89 end