src/HOL/Tools/ATP/atp_translate.ML
author blanchet
Fri, 10 Jun 2011 17:52:09 +0200
changeset 44233 8d3a5b7b9a00
parent 44232 e37b54d429f5
child 44262 5b499c360df6
permissions -rw-r--r--
name tuning
     1 (*  Title:      HOL/Tools/ATP/atp_translate.ML
     2     Author:     Fabian Immler, TU Muenchen
     3     Author:     Makarius
     4     Author:     Jasmin Blanchette, TU Muenchen
     5 
     6 Translation of HOL to FOL for Sledgehammer.
     7 *)
     8 
     9 signature ATP_TRANSLATE =
    10 sig
    11   type 'a fo_term = 'a ATP_Problem.fo_term
    12   type connective = ATP_Problem.connective
    13   type ('a, 'b, 'c) formula = ('a, 'b, 'c) ATP_Problem.formula
    14   type format = ATP_Problem.format
    15   type formula_kind = ATP_Problem.formula_kind
    16   type 'a problem = 'a ATP_Problem.problem
    17 
    18   type name = string * string
    19 
    20   datatype type_literal =
    21     TyLitVar of name * name |
    22     TyLitFree of name * name
    23 
    24   datatype arity_literal =
    25     TConsLit of name * name * name list |
    26     TVarLit of name * name
    27 
    28   type arity_clause =
    29     {name: string,
    30      prem_lits: arity_literal list,
    31      concl_lits: arity_literal}
    32 
    33   type class_rel_clause =
    34     {name: string,
    35      subclass: name,
    36      superclass: name}
    37 
    38   datatype combterm =
    39     CombConst of name * typ * typ list |
    40     CombVar of name * typ |
    41     CombApp of combterm * combterm
    42 
    43   datatype locality = General | Intro | Elim | Simp | Local | Assum | Chained
    44 
    45   datatype polymorphism = Polymorphic | Monomorphic | Mangled_Monomorphic
    46   datatype type_level =
    47     All_Types | Noninf_Nonmono_Types | Fin_Nonmono_Types | Const_Arg_Types |
    48     No_Types
    49   datatype type_heaviness = Heavyweight | Lightweight
    50 
    51   datatype type_sys =
    52     Simple_Types of type_level |
    53     Preds of polymorphism * type_level * type_heaviness |
    54     Tags of polymorphism * type_level * type_heaviness
    55 
    56   val bound_var_prefix : string
    57   val schematic_var_prefix: string
    58   val fixed_var_prefix: string
    59   val tvar_prefix: string
    60   val tfree_prefix: string
    61   val const_prefix: string
    62   val type_const_prefix: string
    63   val class_prefix: string
    64   val skolem_const_prefix : string
    65   val old_skolem_const_prefix : string
    66   val new_skolem_const_prefix : string
    67   val type_decl_prefix : string
    68   val sym_decl_prefix : string
    69   val preds_sym_formula_prefix : string
    70   val lightweight_tags_sym_formula_prefix : string
    71   val fact_prefix : string
    72   val conjecture_prefix : string
    73   val helper_prefix : string
    74   val class_rel_clause_prefix : string
    75   val arity_clause_prefix : string
    76   val tfree_clause_prefix : string
    77   val typed_helper_suffix : string
    78   val untyped_helper_suffix : string
    79   val type_tag_idempotence_helper_name : string
    80   val predicator_name : string
    81   val app_op_name : string
    82   val type_tag_name : string
    83   val type_pred_name : string
    84   val simple_type_prefix : string
    85   val prefixed_predicator_name : string
    86   val prefixed_app_op_name : string
    87   val prefixed_type_tag_name : string
    88   val ascii_of: string -> string
    89   val unascii_of: string -> string
    90   val strip_prefix_and_unascii : string -> string -> string option
    91   val proxy_table : (string * (string * (thm * (string * string)))) list
    92   val proxify_const : string -> (string * string) option
    93   val invert_const: string -> string
    94   val unproxify_const: string -> string
    95   val make_bound_var : string -> string
    96   val make_schematic_var : string * int -> string
    97   val make_fixed_var : string -> string
    98   val make_schematic_type_var : string * int -> string
    99   val make_fixed_type_var : string -> string
   100   val make_fixed_const : string -> string
   101   val make_fixed_type_const : string -> string
   102   val make_type_class : string -> string
   103   val new_skolem_var_name_from_const : string -> string
   104   val num_type_args : theory -> string -> int
   105   val atp_irrelevant_consts : string list
   106   val atp_schematic_consts_of : term -> typ list Symtab.table
   107   val make_arity_clauses :
   108     theory -> string list -> class list -> class list * arity_clause list
   109   val make_class_rel_clauses :
   110     theory -> class list -> class list -> class_rel_clause list
   111   val combtyp_of : combterm -> typ
   112   val strip_combterm_comb : combterm -> combterm * combterm list
   113   val atyps_of : typ -> typ list
   114   val combterm_from_term :
   115     theory -> (string * typ) list -> term -> combterm * typ list
   116   val is_locality_global : locality -> bool
   117   val type_sys_from_string : string -> type_sys
   118   val polymorphism_of_type_sys : type_sys -> polymorphism
   119   val level_of_type_sys : type_sys -> type_level
   120   val is_type_sys_virtually_sound : type_sys -> bool
   121   val is_type_sys_fairly_sound : type_sys -> bool
   122   val choose_format : format list -> type_sys -> format * type_sys
   123   val mk_aconns :
   124     connective -> ('a, 'b, 'c) formula list -> ('a, 'b, 'c) formula
   125   val unmangled_const_name : string -> string
   126   val unmangled_const : string -> string * string fo_term list
   127   val helper_table : ((string * bool) * thm list) list
   128   val should_specialize_helper : type_sys -> term -> bool
   129   val tfree_classes_of_terms : term list -> string list
   130   val tvar_classes_of_terms : term list -> string list
   131   val type_constrs_of_terms : theory -> term list -> string list
   132   val prepare_atp_problem :
   133     Proof.context -> format -> formula_kind -> formula_kind -> type_sys
   134     -> bool -> bool -> bool -> term list -> term
   135     -> ((string * locality) * term) list
   136     -> string problem * string Symtab.table * int * int
   137        * (string * locality) list vector * int list * int Symtab.table
   138   val atp_problem_weights : string problem -> (string * real) list
   139 end;
   140 
   141 structure ATP_Translate : ATP_TRANSLATE =
   142 struct
   143 
   144 open ATP_Util
   145 open ATP_Problem
   146 
   147 type name = string * string
   148 
   149 (* experimental *)
   150 val generate_useful_info = false
   151 
   152 fun useful_isabelle_info s =
   153   if generate_useful_info then
   154     SOME (ATerm ("[]", [ATerm ("isabelle_" ^ s, [])]))
   155   else
   156     NONE
   157 
   158 val intro_info = useful_isabelle_info "intro"
   159 val elim_info = useful_isabelle_info "elim"
   160 val simp_info = useful_isabelle_info "simp"
   161 
   162 val bound_var_prefix = "B_"
   163 val schematic_var_prefix = "V_"
   164 val fixed_var_prefix = "v_"
   165 
   166 val tvar_prefix = "T_"
   167 val tfree_prefix = "t_"
   168 
   169 val const_prefix = "c_"
   170 val type_const_prefix = "tc_"
   171 val class_prefix = "cl_"
   172 
   173 val skolem_const_prefix = "Sledgehammer" ^ Long_Name.separator ^ "Sko"
   174 val old_skolem_const_prefix = skolem_const_prefix ^ "o"
   175 val new_skolem_const_prefix = skolem_const_prefix ^ "n"
   176 
   177 val type_decl_prefix = "ty_"
   178 val sym_decl_prefix = "sy_"
   179 val preds_sym_formula_prefix = "psy_"
   180 val lightweight_tags_sym_formula_prefix = "tsy_"
   181 val fact_prefix = "fact_"
   182 val conjecture_prefix = "conj_"
   183 val helper_prefix = "help_"
   184 val class_rel_clause_prefix = "clar_"
   185 val arity_clause_prefix = "arity_"
   186 val tfree_clause_prefix = "tfree_"
   187 
   188 val typed_helper_suffix = "_T"
   189 val untyped_helper_suffix = "_U"
   190 val type_tag_idempotence_helper_name = helper_prefix ^ "ti_idem"
   191 
   192 val predicator_name = "hBOOL"
   193 val app_op_name = "hAPP"
   194 val type_tag_name = "ti"
   195 val type_pred_name = "is"
   196 val simple_type_prefix = "ty_"
   197 
   198 val prefixed_predicator_name = const_prefix ^ predicator_name
   199 val prefixed_app_op_name = const_prefix ^ app_op_name
   200 val prefixed_type_tag_name = const_prefix ^ type_tag_name
   201 
   202 (* Freshness almost guaranteed! *)
   203 val sledgehammer_weak_prefix = "Sledgehammer:"
   204 
   205 (*Escaping of special characters.
   206   Alphanumeric characters are left unchanged.
   207   The character _ goes to __
   208   Characters in the range ASCII space to / go to _A to _P, respectively.
   209   Other characters go to _nnn where nnn is the decimal ASCII code.*)
   210 val upper_a_minus_space = Char.ord #"A" - Char.ord #" "
   211 
   212 fun stringN_of_int 0 _ = ""
   213   | stringN_of_int k n =
   214     stringN_of_int (k - 1) (n div 10) ^ string_of_int (n mod 10)
   215 
   216 fun ascii_of_char c =
   217   if Char.isAlphaNum c then
   218     String.str c
   219   else if c = #"_" then
   220     "__"
   221   else if #" " <= c andalso c <= #"/" then
   222     "_" ^ String.str (Char.chr (Char.ord c + upper_a_minus_space))
   223   else
   224     (* fixed width, in case more digits follow *)
   225     "_" ^ stringN_of_int 3 (Char.ord c)
   226 
   227 val ascii_of = String.translate ascii_of_char
   228 
   229 (** Remove ASCII armoring from names in proof files **)
   230 
   231 (* We don't raise error exceptions because this code can run inside a worker
   232    thread. Also, the errors are impossible. *)
   233 val unascii_of =
   234   let
   235     fun un rcs [] = String.implode(rev rcs)
   236       | un rcs [#"_"] = un (#"_" :: rcs) [] (* ERROR *)
   237         (* Three types of _ escapes: __, _A to _P, _nnn *)
   238       | un rcs (#"_" :: #"_" :: cs) = un (#"_"::rcs) cs
   239       | un rcs (#"_" :: c :: cs) =
   240         if #"A" <= c andalso c<= #"P" then
   241           (* translation of #" " to #"/" *)
   242           un (Char.chr (Char.ord c - upper_a_minus_space) :: rcs) cs
   243         else
   244           let val digits = List.take (c::cs, 3) handle General.Subscript => [] in
   245             case Int.fromString (String.implode digits) of
   246               SOME n => un (Char.chr n :: rcs) (List.drop (cs, 2))
   247             | NONE => un (c:: #"_"::rcs) cs (* ERROR *)
   248           end
   249       | un rcs (c :: cs) = un (c :: rcs) cs
   250   in un [] o String.explode end
   251 
   252 (* If string s has the prefix s1, return the result of deleting it,
   253    un-ASCII'd. *)
   254 fun strip_prefix_and_unascii s1 s =
   255   if String.isPrefix s1 s then
   256     SOME (unascii_of (String.extract (s, size s1, NONE)))
   257   else
   258     NONE
   259 
   260 val proxy_table =
   261   [("c_False", (@{const_name False}, (@{thm fFalse_def},
   262        ("fFalse", @{const_name ATP.fFalse})))),
   263    ("c_True", (@{const_name True}, (@{thm fTrue_def},
   264        ("fTrue", @{const_name ATP.fTrue})))),
   265    ("c_Not", (@{const_name Not}, (@{thm fNot_def},
   266        ("fNot", @{const_name ATP.fNot})))),
   267    ("c_conj", (@{const_name conj}, (@{thm fconj_def},
   268        ("fconj", @{const_name ATP.fconj})))),
   269    ("c_disj", (@{const_name disj}, (@{thm fdisj_def},
   270        ("fdisj", @{const_name ATP.fdisj})))),
   271    ("c_implies", (@{const_name implies}, (@{thm fimplies_def},
   272        ("fimplies", @{const_name ATP.fimplies})))),
   273    ("equal", (@{const_name HOL.eq}, (@{thm fequal_def},
   274        ("fequal", @{const_name ATP.fequal}))))]
   275 
   276 val proxify_const = AList.lookup (op =) proxy_table #> Option.map (snd o snd)
   277 
   278 (* Readable names for the more common symbolic functions. Do not mess with the
   279    table unless you know what you are doing. *)
   280 val const_trans_table =
   281   [(@{type_name Product_Type.prod}, "prod"),
   282    (@{type_name Sum_Type.sum}, "sum"),
   283    (@{const_name False}, "False"),
   284    (@{const_name True}, "True"),
   285    (@{const_name Not}, "Not"),
   286    (@{const_name conj}, "conj"),
   287    (@{const_name disj}, "disj"),
   288    (@{const_name implies}, "implies"),
   289    (@{const_name HOL.eq}, "equal"),
   290    (@{const_name If}, "If"),
   291    (@{const_name Set.member}, "member"),
   292    (@{const_name Meson.COMBI}, "COMBI"),
   293    (@{const_name Meson.COMBK}, "COMBK"),
   294    (@{const_name Meson.COMBB}, "COMBB"),
   295    (@{const_name Meson.COMBC}, "COMBC"),
   296    (@{const_name Meson.COMBS}, "COMBS")]
   297   |> Symtab.make
   298   |> fold (Symtab.update o swap o snd o snd o snd) proxy_table
   299 
   300 (* Invert the table of translations between Isabelle and ATPs. *)
   301 val const_trans_table_inv =
   302   const_trans_table |> Symtab.dest |> map swap |> Symtab.make
   303 val const_trans_table_unprox =
   304   Symtab.empty
   305   |> fold (fn (_, (isa, (_, (_, atp)))) => Symtab.update (atp, isa)) proxy_table
   306 
   307 val invert_const = perhaps (Symtab.lookup const_trans_table_inv)
   308 val unproxify_const = perhaps (Symtab.lookup const_trans_table_unprox)
   309 
   310 fun lookup_const c =
   311   case Symtab.lookup const_trans_table c of
   312     SOME c' => c'
   313   | NONE => ascii_of c
   314 
   315 (*Remove the initial ' character from a type variable, if it is present*)
   316 fun trim_type_var s =
   317   if s <> "" andalso String.sub(s,0) = #"'" then String.extract(s,1,NONE)
   318   else raise Fail ("trim_type: Malformed type variable encountered: " ^ s)
   319 
   320 fun ascii_of_indexname (v,0) = ascii_of v
   321   | ascii_of_indexname (v,i) = ascii_of v ^ "_" ^ string_of_int i
   322 
   323 fun make_bound_var x = bound_var_prefix ^ ascii_of x
   324 fun make_schematic_var v = schematic_var_prefix ^ ascii_of_indexname v
   325 fun make_fixed_var x = fixed_var_prefix ^ ascii_of x
   326 
   327 fun make_schematic_type_var (x,i) =
   328       tvar_prefix ^ (ascii_of_indexname (trim_type_var x, i))
   329 fun make_fixed_type_var x = tfree_prefix ^ (ascii_of (trim_type_var x))
   330 
   331 (* HOL.eq MUST BE "equal" because it's built into ATPs. *)
   332 fun make_fixed_const @{const_name HOL.eq} = "equal"
   333   | make_fixed_const c = const_prefix ^ lookup_const c
   334 
   335 fun make_fixed_type_const c = type_const_prefix ^ lookup_const c
   336 
   337 fun make_type_class clas = class_prefix ^ ascii_of clas
   338 
   339 fun new_skolem_var_name_from_const s =
   340   let val ss = s |> space_explode Long_Name.separator in
   341     nth ss (length ss - 2)
   342   end
   343 
   344 (* The number of type arguments of a constant, zero if it's monomorphic. For
   345    (instances of) Skolem pseudoconstants, this information is encoded in the
   346    constant name. *)
   347 fun num_type_args thy s =
   348   if String.isPrefix skolem_const_prefix s then
   349     s |> space_explode Long_Name.separator |> List.last |> Int.fromString |> the
   350   else
   351     (s, Sign.the_const_type thy s) |> Sign.const_typargs thy |> length
   352 
   353 (* These are either simplified away by "Meson.presimplify" (most of the time) or
   354    handled specially via "fFalse", "fTrue", ..., "fequal". *)
   355 val atp_irrelevant_consts =
   356   [@{const_name False}, @{const_name True}, @{const_name Not},
   357    @{const_name conj}, @{const_name disj}, @{const_name implies},
   358    @{const_name HOL.eq}, @{const_name If}, @{const_name Let}]
   359 
   360 val atp_monomorph_bad_consts =
   361   atp_irrelevant_consts @
   362   (* These are ignored anyway by the relevance filter (unless they appear in
   363      higher-order places) but not by the monomorphizer. *)
   364   [@{const_name all}, @{const_name "==>"}, @{const_name "=="},
   365    @{const_name Trueprop}, @{const_name All}, @{const_name Ex},
   366    @{const_name Ex1}, @{const_name Ball}, @{const_name Bex}]
   367 
   368 fun add_schematic_const (x as (_, T)) =
   369   Monomorph.typ_has_tvars T ? Symtab.insert_list (op =) x
   370 val add_schematic_consts_of =
   371   Term.fold_aterms (fn Const (x as (s, _)) =>
   372                        not (member (op =) atp_monomorph_bad_consts s)
   373                        ? add_schematic_const x
   374                       | _ => I)
   375 fun atp_schematic_consts_of t = add_schematic_consts_of t Symtab.empty
   376 
   377 (** Definitions and functions for FOL clauses and formulas for TPTP **)
   378 
   379 (* The first component is the type class; the second is a "TVar" or "TFree". *)
   380 datatype type_literal =
   381   TyLitVar of name * name |
   382   TyLitFree of name * name
   383 
   384 
   385 (** Isabelle arities **)
   386 
   387 datatype arity_literal =
   388   TConsLit of name * name * name list |
   389   TVarLit of name * name
   390 
   391 fun gen_TVars 0 = []
   392   | gen_TVars n = ("T_" ^ string_of_int n) :: gen_TVars (n-1)
   393 
   394 val type_class = the_single @{sort type}
   395 
   396 fun add_packed_sort tvar =
   397   fold (fn s => s <> type_class ? cons (`make_type_class s, `I tvar))
   398 
   399 type arity_clause =
   400   {name: string,
   401    prem_lits: arity_literal list,
   402    concl_lits: arity_literal}
   403 
   404 (* Arity of type constructor "tcon :: (arg1, ..., argN) res" *)
   405 fun make_axiom_arity_clause (tcons, name, (cls, args)) =
   406   let
   407     val tvars = gen_TVars (length args)
   408     val tvars_srts = ListPair.zip (tvars, args)
   409   in
   410     {name = name,
   411      prem_lits = [] |> fold (uncurry add_packed_sort) tvars_srts |> map TVarLit,
   412      concl_lits = TConsLit (`make_type_class cls,
   413                             `make_fixed_type_const tcons,
   414                             tvars ~~ tvars)}
   415   end
   416 
   417 fun arity_clause _ _ (_, []) = []
   418   | arity_clause seen n (tcons, ("HOL.type",_)::ars) =  (*ignore*)
   419       arity_clause seen n (tcons,ars)
   420   | arity_clause seen n (tcons, (ar as (class,_)) :: ars) =
   421       if member (op =) seen class then (*multiple arities for the same tycon, class pair*)
   422           make_axiom_arity_clause (tcons, lookup_const tcons ^ "_" ^ class ^ "_" ^ string_of_int n, ar) ::
   423           arity_clause seen (n+1) (tcons,ars)
   424       else
   425           make_axiom_arity_clause (tcons, lookup_const tcons ^ "_" ^ class, ar) ::
   426           arity_clause (class::seen) n (tcons,ars)
   427 
   428 fun multi_arity_clause [] = []
   429   | multi_arity_clause ((tcons, ars) :: tc_arlists) =
   430       arity_clause [] 1 (tcons, ars) @ multi_arity_clause tc_arlists
   431 
   432 (*Generate all pairs (tycon,class,sorts) such that tycon belongs to class in theory thy
   433   provided its arguments have the corresponding sorts.*)
   434 fun type_class_pairs thy tycons classes =
   435   let
   436     val alg = Sign.classes_of thy
   437     fun domain_sorts tycon = Sorts.mg_domain alg tycon o single
   438     fun add_class tycon class =
   439       cons (class, domain_sorts tycon class)
   440       handle Sorts.CLASS_ERROR _ => I
   441     fun try_classes tycon = (tycon, fold (add_class tycon) classes [])
   442   in map try_classes tycons end
   443 
   444 (*Proving one (tycon, class) membership may require proving others, so iterate.*)
   445 fun iter_type_class_pairs _ _ [] = ([], [])
   446   | iter_type_class_pairs thy tycons classes =
   447       let
   448         fun maybe_insert_class s =
   449           (s <> type_class andalso not (member (op =) classes s))
   450           ? insert (op =) s
   451         val cpairs = type_class_pairs thy tycons classes
   452         val newclasses =
   453           [] |> fold (fold (fold (fold maybe_insert_class) o snd) o snd) cpairs
   454         val (classes', cpairs') = iter_type_class_pairs thy tycons newclasses
   455       in (classes' @ classes, union (op =) cpairs' cpairs) end
   456 
   457 fun make_arity_clauses thy tycons =
   458   iter_type_class_pairs thy tycons ##> multi_arity_clause
   459 
   460 
   461 (** Isabelle class relations **)
   462 
   463 type class_rel_clause =
   464   {name: string,
   465    subclass: name,
   466    superclass: name}
   467 
   468 (*Generate all pairs (sub,super) such that sub is a proper subclass of super in theory thy.*)
   469 fun class_pairs _ [] _ = []
   470   | class_pairs thy subs supers =
   471       let
   472         val class_less = Sorts.class_less (Sign.classes_of thy)
   473         fun add_super sub super = class_less (sub, super) ? cons (sub, super)
   474         fun add_supers sub = fold (add_super sub) supers
   475       in fold add_supers subs [] end
   476 
   477 fun make_class_rel_clause (sub,super) =
   478   {name = sub ^ "_" ^ super,
   479    subclass = `make_type_class sub,
   480    superclass = `make_type_class super}
   481 
   482 fun make_class_rel_clauses thy subs supers =
   483   map make_class_rel_clause (class_pairs thy subs supers)
   484 
   485 datatype combterm =
   486   CombConst of name * typ * typ list |
   487   CombVar of name * typ |
   488   CombApp of combterm * combterm
   489 
   490 fun combtyp_of (CombConst (_, T, _)) = T
   491   | combtyp_of (CombVar (_, T)) = T
   492   | combtyp_of (CombApp (t1, _)) = snd (dest_funT (combtyp_of t1))
   493 
   494 (*gets the head of a combinator application, along with the list of arguments*)
   495 fun strip_combterm_comb u =
   496     let fun stripc (CombApp(t,u), ts) = stripc (t, u::ts)
   497         |   stripc  x =  x
   498     in stripc(u,[]) end
   499 
   500 fun atyps_of T = fold_atyps (insert (op =)) T []
   501 
   502 fun new_skolem_const_name s num_T_args =
   503   [new_skolem_const_prefix, s, string_of_int num_T_args]
   504   |> space_implode Long_Name.separator
   505 
   506 (* Converts a term (with combinators) into a combterm. Also accumulates sort
   507    infomation. *)
   508 fun combterm_from_term thy bs (P $ Q) =
   509     let
   510       val (P', P_atomics_Ts) = combterm_from_term thy bs P
   511       val (Q', Q_atomics_Ts) = combterm_from_term thy bs Q
   512     in (CombApp (P', Q'), union (op =) P_atomics_Ts Q_atomics_Ts) end
   513   | combterm_from_term thy _ (Const (c, T)) =
   514     let
   515       val tvar_list =
   516         (if String.isPrefix old_skolem_const_prefix c then
   517            [] |> Term.add_tvarsT T |> map TVar
   518          else
   519            (c, T) |> Sign.const_typargs thy)
   520       val c' = CombConst (`make_fixed_const c, T, tvar_list)
   521     in (c', atyps_of T) end
   522   | combterm_from_term _ _ (Free (v, T)) =
   523     (CombConst (`make_fixed_var v, T, []), atyps_of T)
   524   | combterm_from_term _ _ (Var (v as (s, _), T)) =
   525     (if String.isPrefix Meson_Clausify.new_skolem_var_prefix s then
   526        let
   527          val Ts = T |> strip_type |> swap |> op ::
   528          val s' = new_skolem_const_name s (length Ts)
   529        in CombConst (`make_fixed_const s', T, Ts) end
   530      else
   531        CombVar ((make_schematic_var v, s), T), atyps_of T)
   532   | combterm_from_term _ bs (Bound j) =
   533     nth bs j
   534     |> (fn (s, T) => (CombConst (`make_bound_var s, T, []), atyps_of T))
   535   | combterm_from_term _ _ (Abs _) = raise Fail "HOL clause: Abs"
   536 
   537 datatype locality = General | Intro | Elim | Simp | Local | Assum | Chained
   538 
   539 (* (quasi-)underapproximation of the truth *)
   540 fun is_locality_global Local = false
   541   | is_locality_global Assum = false
   542   | is_locality_global Chained = false
   543   | is_locality_global _ = true
   544 
   545 datatype polymorphism = Polymorphic | Monomorphic | Mangled_Monomorphic
   546 datatype type_level =
   547   All_Types | Noninf_Nonmono_Types | Fin_Nonmono_Types | Const_Arg_Types |
   548   No_Types
   549 datatype type_heaviness = Heavyweight | Lightweight
   550 
   551 datatype type_sys =
   552   Simple_Types of type_level |
   553   Preds of polymorphism * type_level * type_heaviness |
   554   Tags of polymorphism * type_level * type_heaviness
   555 
   556 fun try_unsuffixes ss s =
   557   fold (fn s' => fn NONE => try (unsuffix s') s | some => some) ss NONE
   558 
   559 fun type_sys_from_string s =
   560   (case try (unprefix "poly_") s of
   561      SOME s => (SOME Polymorphic, s)
   562    | NONE =>
   563      case try (unprefix "mono_") s of
   564        SOME s => (SOME Monomorphic, s)
   565      | NONE =>
   566        case try (unprefix "mangled_") s of
   567          SOME s => (SOME Mangled_Monomorphic, s)
   568        | NONE => (NONE, s))
   569   ||> (fn s =>
   570           (* "_query" and "_bang" are for the ASCII-challenged Mirabelle. *)
   571           case try_unsuffixes ["?", "_query"] s of
   572             SOME s => (Noninf_Nonmono_Types, s)
   573           | NONE =>
   574             case try_unsuffixes ["!", "_bang"] s of
   575               SOME s => (Fin_Nonmono_Types, s)
   576             | NONE => (All_Types, s))
   577   ||> apsnd (fn s =>
   578                 case try (unsuffix "_heavy") s of
   579                   SOME s => (Heavyweight, s)
   580                 | NONE => (Lightweight, s))
   581   |> (fn (poly, (level, (heaviness, core))) =>
   582          case (core, (poly, level, heaviness)) of
   583            ("simple", (NONE, _, Lightweight)) => Simple_Types level
   584          | ("preds", (SOME poly, _, _)) => Preds (poly, level, heaviness)
   585          | ("tags", (SOME Polymorphic, _, _)) =>
   586            Tags (Polymorphic, level, heaviness)
   587          | ("tags", (SOME poly, _, _)) => Tags (poly, level, heaviness)
   588          | ("args", (SOME poly, All_Types (* naja *), Lightweight)) =>
   589            Preds (poly, Const_Arg_Types, Lightweight)
   590          | ("erased", (NONE, All_Types (* naja *), Lightweight)) =>
   591            Preds (Polymorphic, No_Types, Lightweight)
   592          | _ => raise Same.SAME)
   593   handle Same.SAME => error ("Unknown type system: " ^ quote s ^ ".")
   594 
   595 fun polymorphism_of_type_sys (Simple_Types _) = Mangled_Monomorphic
   596   | polymorphism_of_type_sys (Preds (poly, _, _)) = poly
   597   | polymorphism_of_type_sys (Tags (poly, _, _)) = poly
   598 
   599 fun level_of_type_sys (Simple_Types level) = level
   600   | level_of_type_sys (Preds (_, level, _)) = level
   601   | level_of_type_sys (Tags (_, level, _)) = level
   602 
   603 fun heaviness_of_type_sys (Simple_Types _) = Heavyweight
   604   | heaviness_of_type_sys (Preds (_, _, heaviness)) = heaviness
   605   | heaviness_of_type_sys (Tags (_, _, heaviness)) = heaviness
   606 
   607 fun is_type_level_virtually_sound level =
   608   level = All_Types orelse level = Noninf_Nonmono_Types
   609 val is_type_sys_virtually_sound =
   610   is_type_level_virtually_sound o level_of_type_sys
   611 
   612 fun is_type_level_fairly_sound level =
   613   is_type_level_virtually_sound level orelse level = Fin_Nonmono_Types
   614 val is_type_sys_fairly_sound = is_type_level_fairly_sound o level_of_type_sys
   615 
   616 fun is_setting_higher_order THF (Simple_Types _) = true
   617   | is_setting_higher_order _ _ = false
   618 
   619 fun choose_format formats (Simple_Types level) =
   620     if member (op =) formats THF then (THF, Simple_Types level)
   621     else if member (op =) formats TFF then (TFF, Simple_Types level)
   622     else choose_format formats (Preds (Mangled_Monomorphic, level, Heavyweight))
   623   | choose_format formats type_sys =
   624     (case hd formats of
   625        CNF_UEQ =>
   626        (CNF_UEQ, case type_sys of
   627                    Preds stuff =>
   628                    (if is_type_sys_fairly_sound type_sys then Tags else Preds)
   629                        stuff
   630                  | _ => type_sys)
   631      | format => (format, type_sys))
   632 
   633 type translated_formula =
   634   {name: string,
   635    locality: locality,
   636    kind: formula_kind,
   637    combformula: (name, typ, combterm) formula,
   638    atomic_types: typ list}
   639 
   640 fun update_combformula f ({name, locality, kind, combformula, atomic_types}
   641                           : translated_formula) =
   642   {name = name, locality = locality, kind = kind, combformula = f combformula,
   643    atomic_types = atomic_types} : translated_formula
   644 
   645 fun fact_lift f ({combformula, ...} : translated_formula) = f combformula
   646 
   647 val type_instance = Sign.typ_instance o Proof_Context.theory_of
   648 
   649 fun insert_type ctxt get_T x xs =
   650   let val T = get_T x in
   651     if exists (curry (type_instance ctxt) T o get_T) xs then xs
   652     else x :: filter_out (curry (type_instance ctxt o swap) T o get_T) xs
   653   end
   654 
   655 (* The Booleans indicate whether all type arguments should be kept. *)
   656 datatype type_arg_policy =
   657   Explicit_Type_Args of bool |
   658   Mangled_Type_Args of bool |
   659   No_Type_Args
   660 
   661 fun should_drop_arg_type_args (Simple_Types _) =
   662     false (* since TFF doesn't support overloading *)
   663   | should_drop_arg_type_args type_sys =
   664     level_of_type_sys type_sys = All_Types andalso
   665     heaviness_of_type_sys type_sys = Heavyweight
   666 
   667 fun general_type_arg_policy (Tags (_, All_Types, Heavyweight)) = No_Type_Args
   668   | general_type_arg_policy type_sys =
   669     if level_of_type_sys type_sys = No_Types then
   670       No_Type_Args
   671     else if polymorphism_of_type_sys type_sys = Mangled_Monomorphic then
   672       Mangled_Type_Args (should_drop_arg_type_args type_sys)
   673     else
   674       Explicit_Type_Args (should_drop_arg_type_args type_sys)
   675 
   676 fun type_arg_policy type_sys s =
   677   if s = @{const_name HOL.eq} orelse
   678      (s = app_op_name andalso level_of_type_sys type_sys = Const_Arg_Types) then
   679     No_Type_Args
   680   else if s = type_tag_name then
   681     Explicit_Type_Args false
   682   else
   683     general_type_arg_policy type_sys
   684 
   685 (*Make literals for sorted type variables*)
   686 fun generic_add_sorts_on_type (_, []) = I
   687   | generic_add_sorts_on_type ((x, i), s :: ss) =
   688     generic_add_sorts_on_type ((x, i), ss)
   689     #> (if s = the_single @{sort HOL.type} then
   690           I
   691         else if i = ~1 then
   692           insert (op =) (TyLitFree (`make_type_class s, `make_fixed_type_var x))
   693         else
   694           insert (op =) (TyLitVar (`make_type_class s,
   695                                    (make_schematic_type_var (x, i), x))))
   696 fun add_sorts_on_tfree (TFree (s, S)) = generic_add_sorts_on_type ((s, ~1), S)
   697   | add_sorts_on_tfree _ = I
   698 fun add_sorts_on_tvar (TVar z) = generic_add_sorts_on_type z
   699   | add_sorts_on_tvar _ = I
   700 
   701 fun type_literals_for_types type_sys add_sorts_on_typ Ts =
   702   [] |> level_of_type_sys type_sys <> No_Types ? fold add_sorts_on_typ Ts
   703 
   704 fun mk_aconns c phis =
   705   let val (phis', phi') = split_last phis in
   706     fold_rev (mk_aconn c) phis' phi'
   707   end
   708 fun mk_ahorn [] phi = phi
   709   | mk_ahorn phis psi = AConn (AImplies, [mk_aconns AAnd phis, psi])
   710 fun mk_aquant _ [] phi = phi
   711   | mk_aquant q xs (phi as AQuant (q', xs', phi')) =
   712     if q = q' then AQuant (q, xs @ xs', phi') else AQuant (q, xs, phi)
   713   | mk_aquant q xs phi = AQuant (q, xs, phi)
   714 
   715 fun close_universally atom_vars phi =
   716   let
   717     fun formula_vars bounds (AQuant (_, xs, phi)) =
   718         formula_vars (map fst xs @ bounds) phi
   719       | formula_vars bounds (AConn (_, phis)) = fold (formula_vars bounds) phis
   720       | formula_vars bounds (AAtom tm) =
   721         union (op =) (atom_vars tm []
   722                       |> filter_out (member (op =) bounds o fst))
   723   in mk_aquant AForall (formula_vars [] phi []) phi end
   724 
   725 fun combterm_vars (CombApp (tm1, tm2)) = fold combterm_vars [tm1, tm2]
   726   | combterm_vars (CombConst _) = I
   727   | combterm_vars (CombVar (name, T)) = insert (op =) (name, SOME T)
   728 fun close_combformula_universally phi = close_universally combterm_vars phi
   729 
   730 fun term_vars (ATerm (name as (s, _), tms)) =
   731   is_tptp_variable s ? insert (op =) (name, NONE) #> fold term_vars tms
   732 fun close_formula_universally phi = close_universally term_vars phi
   733 
   734 val homo_infinite_type_name = @{type_name ind} (* any infinite type *)
   735 val homo_infinite_type = Type (homo_infinite_type_name, [])
   736 
   737 fun fo_term_from_typ format type_sys =
   738   let
   739     fun term (Type (s, Ts)) =
   740       ATerm (case (is_setting_higher_order format type_sys, s) of
   741                (true, @{type_name bool}) => `I tptp_bool_type
   742              | (true, @{type_name fun}) => `I tptp_fun_type
   743              | _ => if s = homo_infinite_type_name andalso
   744                        (format = TFF orelse format = THF) then
   745                       `I tptp_individual_type
   746                     else
   747                       `make_fixed_type_const s,
   748              map term Ts)
   749     | term (TFree (s, _)) = ATerm (`make_fixed_type_var s, [])
   750     | term (TVar ((x as (s, _)), _)) =
   751       ATerm ((make_schematic_type_var x, s), [])
   752   in term end
   753 
   754 (* This shouldn't clash with anything else. *)
   755 val mangled_type_sep = "\000"
   756 
   757 fun generic_mangled_type_name f (ATerm (name, [])) = f name
   758   | generic_mangled_type_name f (ATerm (name, tys)) =
   759     f name ^ "(" ^ space_implode "," (map (generic_mangled_type_name f) tys)
   760     ^ ")"
   761 
   762 val bool_atype = AType (`I tptp_bool_type)
   763 
   764 fun make_simple_type s =
   765   if s = tptp_bool_type orelse s = tptp_fun_type orelse
   766      s = tptp_individual_type then
   767     s
   768   else
   769     simple_type_prefix ^ ascii_of s
   770 
   771 fun ho_type_from_fo_term format type_sys pred_sym ary =
   772   let
   773     fun to_atype ty =
   774       AType ((make_simple_type (generic_mangled_type_name fst ty),
   775               generic_mangled_type_name snd ty))
   776     fun to_afun f1 f2 tys = AFun (f1 (hd tys), f2 (nth tys 1))
   777     fun to_fo 0 ty = if pred_sym then bool_atype else to_atype ty
   778       | to_fo ary (ATerm (_, tys)) = to_afun to_atype (to_fo (ary - 1)) tys
   779     fun to_ho (ty as ATerm ((s, _), tys)) =
   780       if s = tptp_fun_type then to_afun to_ho to_ho tys else to_atype ty
   781   in if is_setting_higher_order format type_sys then to_ho else to_fo ary end
   782 
   783 fun mangled_type format type_sys pred_sym ary =
   784   ho_type_from_fo_term format type_sys pred_sym ary
   785   o fo_term_from_typ format type_sys
   786 
   787 fun mangled_const_name format type_sys T_args (s, s') =
   788   let
   789     val ty_args = map (fo_term_from_typ format type_sys) T_args
   790     fun type_suffix f g =
   791       fold_rev (curry (op ^) o g o prefix mangled_type_sep
   792                 o generic_mangled_type_name f) ty_args ""
   793   in (s ^ type_suffix fst ascii_of, s' ^ type_suffix snd I) end
   794 
   795 val parse_mangled_ident =
   796   Scan.many1 (not o member (op =) ["(", ")", ","]) >> implode
   797 
   798 fun parse_mangled_type x =
   799   (parse_mangled_ident
   800    -- Scan.optional ($$ "(" |-- Scan.optional parse_mangled_types [] --| $$ ")")
   801                     [] >> ATerm) x
   802 and parse_mangled_types x =
   803   (parse_mangled_type ::: Scan.repeat ($$ "," |-- parse_mangled_type)) x
   804 
   805 fun unmangled_type s =
   806   s |> suffix ")" |> raw_explode
   807     |> Scan.finite Symbol.stopper
   808            (Scan.error (!! (fn _ => raise Fail ("unrecognized mangled type " ^
   809                                                 quote s)) parse_mangled_type))
   810     |> fst
   811 
   812 val unmangled_const_name = space_explode mangled_type_sep #> hd
   813 fun unmangled_const s =
   814   let val ss = space_explode mangled_type_sep s in
   815     (hd ss, map unmangled_type (tl ss))
   816   end
   817 
   818 fun introduce_proxies format type_sys =
   819   let
   820     fun intro top_level (CombApp (tm1, tm2)) =
   821         CombApp (intro top_level tm1, intro false tm2)
   822       | intro top_level (CombConst (name as (s, _), T, T_args)) =
   823         (case proxify_const s of
   824            SOME proxy_base =>
   825            if top_level orelse is_setting_higher_order format type_sys then
   826              case (top_level, s) of
   827                (_, "c_False") => (`I tptp_false, [])
   828              | (_, "c_True") => (`I tptp_true, [])
   829              | (false, "c_Not") => (`I tptp_not, [])
   830              | (false, "c_conj") => (`I tptp_and, [])
   831              | (false, "c_disj") => (`I tptp_or, [])
   832              | (false, "c_implies") => (`I tptp_implies, [])
   833              | (false, s) =>
   834                if is_tptp_equal s then (`I tptp_equal, [])
   835                else (proxy_base |>> prefix const_prefix, T_args)
   836              | _ => (name, [])
   837            else
   838              (proxy_base |>> prefix const_prefix, T_args)
   839           | NONE => (name, T_args))
   840         |> (fn (name, T_args) => CombConst (name, T, T_args))
   841       | intro _ tm = tm
   842   in intro true end
   843 
   844 fun combformula_from_prop thy format type_sys eq_as_iff =
   845   let
   846     fun do_term bs t atomic_types =
   847       combterm_from_term thy bs (Envir.eta_contract t)
   848       |>> (introduce_proxies format type_sys #> AAtom)
   849       ||> union (op =) atomic_types
   850     fun do_quant bs q s T t' =
   851       let val s = singleton (Name.variant_list (map fst bs)) s in
   852         do_formula ((s, T) :: bs) t'
   853         #>> mk_aquant q [(`make_bound_var s, SOME T)]
   854       end
   855     and do_conn bs c t1 t2 =
   856       do_formula bs t1 ##>> do_formula bs t2 #>> uncurry (mk_aconn c)
   857     and do_formula bs t =
   858       case t of
   859         @{const Trueprop} $ t1 => do_formula bs t1
   860       | @{const Not} $ t1 => do_formula bs t1 #>> mk_anot
   861       | Const (@{const_name All}, _) $ Abs (s, T, t') =>
   862         do_quant bs AForall s T t'
   863       | Const (@{const_name Ex}, _) $ Abs (s, T, t') =>
   864         do_quant bs AExists s T t'
   865       | @{const HOL.conj} $ t1 $ t2 => do_conn bs AAnd t1 t2
   866       | @{const HOL.disj} $ t1 $ t2 => do_conn bs AOr t1 t2
   867       | @{const HOL.implies} $ t1 $ t2 => do_conn bs AImplies t1 t2
   868       | Const (@{const_name HOL.eq}, Type (_, [@{typ bool}, _])) $ t1 $ t2 =>
   869         if eq_as_iff then do_conn bs AIff t1 t2 else do_term bs t
   870       | _ => do_term bs t
   871   in do_formula [] end
   872 
   873 fun presimplify_term _ [] t = t
   874   | presimplify_term ctxt presimp_consts t =
   875     t |> exists_Const (member (op =) presimp_consts o fst) t
   876          ? (Skip_Proof.make_thm (Proof_Context.theory_of ctxt)
   877             #> Meson.presimplify ctxt
   878             #> prop_of)
   879 
   880 fun concealed_bound_name j = sledgehammer_weak_prefix ^ string_of_int j
   881 fun conceal_bounds Ts t =
   882   subst_bounds (map (Free o apfst concealed_bound_name)
   883                     (0 upto length Ts - 1 ~~ Ts), t)
   884 fun reveal_bounds Ts =
   885   subst_atomic (map (fn (j, T) => (Free (concealed_bound_name j, T), Bound j))
   886                     (0 upto length Ts - 1 ~~ Ts))
   887 
   888 fun is_fun_equality (@{const_name HOL.eq},
   889                      Type (_, [Type (@{type_name fun}, _), _])) = true
   890   | is_fun_equality _ = false
   891 
   892 fun extensionalize_term ctxt t =
   893   if exists_Const is_fun_equality t then
   894     let val thy = Proof_Context.theory_of ctxt in
   895       t |> cterm_of thy |> Meson.extensionalize_conv ctxt
   896         |> prop_of |> Logic.dest_equals |> snd
   897     end
   898   else
   899     t
   900 
   901 fun introduce_combinators_in_term ctxt kind t =
   902   let val thy = Proof_Context.theory_of ctxt in
   903     if Meson.is_fol_term thy t then
   904       t
   905     else
   906       let
   907         fun aux Ts t =
   908           case t of
   909             @{const Not} $ t1 => @{const Not} $ aux Ts t1
   910           | (t0 as Const (@{const_name All}, _)) $ Abs (s, T, t') =>
   911             t0 $ Abs (s, T, aux (T :: Ts) t')
   912           | (t0 as Const (@{const_name All}, _)) $ t1 =>
   913             aux Ts (t0 $ eta_expand Ts t1 1)
   914           | (t0 as Const (@{const_name Ex}, _)) $ Abs (s, T, t') =>
   915             t0 $ Abs (s, T, aux (T :: Ts) t')
   916           | (t0 as Const (@{const_name Ex}, _)) $ t1 =>
   917             aux Ts (t0 $ eta_expand Ts t1 1)
   918           | (t0 as @{const HOL.conj}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
   919           | (t0 as @{const HOL.disj}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
   920           | (t0 as @{const HOL.implies}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
   921           | (t0 as Const (@{const_name HOL.eq}, Type (_, [@{typ bool}, _])))
   922               $ t1 $ t2 =>
   923             t0 $ aux Ts t1 $ aux Ts t2
   924           | _ => if not (exists_subterm (fn Abs _ => true | _ => false) t) then
   925                    t
   926                  else
   927                    t |> conceal_bounds Ts
   928                      |> Envir.eta_contract
   929                      |> cterm_of thy
   930                      |> Meson_Clausify.introduce_combinators_in_cterm
   931                      |> prop_of |> Logic.dest_equals |> snd
   932                      |> reveal_bounds Ts
   933         val (t, ctxt') = Variable.import_terms true [t] ctxt |>> the_single
   934       in t |> aux [] |> singleton (Variable.export_terms ctxt' ctxt) end
   935       handle THM _ =>
   936              (* A type variable of sort "{}" will make abstraction fail. *)
   937              if kind = Conjecture then HOLogic.false_const
   938              else HOLogic.true_const
   939   end
   940 
   941 (* Metis's use of "resolve_tac" freezes the schematic variables. We simulate the
   942    same in Sledgehammer to prevent the discovery of unreplayable proofs. *)
   943 fun freeze_term t =
   944   let
   945     fun aux (t $ u) = aux t $ aux u
   946       | aux (Abs (s, T, t)) = Abs (s, T, aux t)
   947       | aux (Var ((s, i), T)) =
   948         Free (sledgehammer_weak_prefix ^ s ^ "_" ^ string_of_int i, T)
   949       | aux t = t
   950   in t |> exists_subterm is_Var t ? aux end
   951 
   952 fun preprocess_prop ctxt presimp_consts kind t =
   953   let
   954     val thy = Proof_Context.theory_of ctxt
   955     val t = t |> Envir.beta_eta_contract
   956               |> transform_elim_prop
   957               |> Object_Logic.atomize_term thy
   958     val need_trueprop = (fastype_of t = @{typ bool})
   959   in
   960     t |> need_trueprop ? HOLogic.mk_Trueprop
   961       |> Raw_Simplifier.rewrite_term thy (Meson.unfold_set_const_simps ctxt) []
   962       |> extensionalize_term ctxt
   963       |> presimplify_term ctxt presimp_consts
   964       |> perhaps (try (HOLogic.dest_Trueprop))
   965       |> introduce_combinators_in_term ctxt kind
   966   end
   967 
   968 (* making fact and conjecture formulas *)
   969 fun make_formula thy format type_sys eq_as_iff name loc kind t =
   970   let
   971     val (combformula, atomic_types) =
   972       combformula_from_prop thy format type_sys eq_as_iff t []
   973   in
   974     {name = name, locality = loc, kind = kind, combformula = combformula,
   975      atomic_types = atomic_types}
   976   end
   977 
   978 fun make_fact ctxt format type_sys eq_as_iff preproc presimp_consts
   979               ((name, loc), t) =
   980   let val thy = Proof_Context.theory_of ctxt in
   981     case t |> preproc ? preprocess_prop ctxt presimp_consts Axiom
   982            |> make_formula thy format type_sys (eq_as_iff andalso format <> CNF)
   983                            name loc Axiom of
   984       formula as {combformula = AAtom (CombConst ((s, _), _, _)), ...} =>
   985       if s = tptp_true then NONE else SOME formula
   986     | formula => SOME formula
   987   end
   988 
   989 fun make_conjecture ctxt format prem_kind type_sys preproc presimp_consts ts =
   990   let
   991     val thy = Proof_Context.theory_of ctxt
   992     val last = length ts - 1
   993   in
   994     map2 (fn j => fn t =>
   995              let
   996                val (kind, maybe_negate) =
   997                  if j = last then
   998                    (Conjecture, I)
   999                  else
  1000                    (prem_kind,
  1001                     if prem_kind = Conjecture then update_combformula mk_anot
  1002                     else I)
  1003               in
  1004                 t |> preproc ?
  1005                      (preprocess_prop ctxt presimp_consts kind #> freeze_term)
  1006                   |> make_formula thy format type_sys (format <> CNF)
  1007                                   (string_of_int j) Local kind
  1008                   |> maybe_negate
  1009               end)
  1010          (0 upto last) ts
  1011   end
  1012 
  1013 (** Finite and infinite type inference **)
  1014 
  1015 fun deep_freeze_atyp (TVar (_, S)) = TFree ("v", S)
  1016   | deep_freeze_atyp T = T
  1017 val deep_freeze_type = map_atyps deep_freeze_atyp
  1018 
  1019 (* Finite types such as "unit", "bool", "bool * bool", and "bool => bool" are
  1020    dangerous because their "exhaust" properties can easily lead to unsound ATP
  1021    proofs. On the other hand, all HOL infinite types can be given the same
  1022    models in first-order logic (via Löwenheim-Skolem). *)
  1023 
  1024 fun should_encode_type ctxt (nonmono_Ts as _ :: _) _ T =
  1025     exists (curry (type_instance ctxt) (deep_freeze_type T)) nonmono_Ts
  1026   | should_encode_type _ _ All_Types _ = true
  1027   | should_encode_type ctxt _ Fin_Nonmono_Types T = is_type_surely_finite ctxt T
  1028   | should_encode_type _ _ _ _ = false
  1029 
  1030 fun should_predicate_on_type ctxt nonmono_Ts (Preds (_, level, heaviness))
  1031                              should_predicate_on_var T =
  1032     (heaviness = Heavyweight orelse should_predicate_on_var ()) andalso
  1033     should_encode_type ctxt nonmono_Ts level T
  1034   | should_predicate_on_type _ _ _ _ _ = false
  1035 
  1036 fun is_var_or_bound_var (CombConst ((s, _), _, _)) =
  1037     String.isPrefix bound_var_prefix s
  1038   | is_var_or_bound_var (CombVar _) = true
  1039   | is_var_or_bound_var _ = false
  1040 
  1041 datatype tag_site =
  1042   Top_Level of bool option |
  1043   Eq_Arg of bool option |
  1044   Elsewhere
  1045 
  1046 fun should_tag_with_type _ _ _ (Top_Level _) _ _ = false
  1047   | should_tag_with_type ctxt nonmono_Ts (Tags (poly, level, heaviness)) site
  1048                          u T =
  1049     (case heaviness of
  1050        Heavyweight => should_encode_type ctxt nonmono_Ts level T
  1051      | Lightweight =>
  1052        case (site, is_var_or_bound_var u) of
  1053          (Eq_Arg pos, true) =>
  1054          (* The first disjunct prevents a subtle soundness issue explained in
  1055             Blanchette's Ph.D. thesis. See also
  1056             "formula_lines_for_lightweight_tags_sym_decl". *)
  1057          (pos <> SOME false andalso poly = Polymorphic andalso
  1058           level <> All_Types andalso heaviness = Lightweight andalso
  1059           exists (fn T' => type_instance ctxt (T', T)) nonmono_Ts) orelse
  1060          should_encode_type ctxt nonmono_Ts level T
  1061        | _ => false)
  1062   | should_tag_with_type _ _ _ _ _ _ = false
  1063 
  1064 fun homogenized_type ctxt nonmono_Ts level =
  1065   let
  1066     val should_encode = should_encode_type ctxt nonmono_Ts level
  1067     fun homo 0 T = if should_encode T then T else homo_infinite_type
  1068       | homo ary (Type (@{type_name fun}, [T1, T2])) =
  1069         homo 0 T1 --> homo (ary - 1) T2
  1070       | homo _ _ = raise Fail "expected function type"
  1071   in homo end
  1072 
  1073 (** "hBOOL" and "hAPP" **)
  1074 
  1075 type sym_info =
  1076   {pred_sym : bool, min_ary : int, max_ary : int, types : typ list}
  1077 
  1078 fun add_combterm_syms_to_table ctxt explicit_apply =
  1079   let
  1080     fun consider_var_arity const_T var_T max_ary =
  1081       let
  1082         fun iter ary T =
  1083           if ary = max_ary orelse type_instance ctxt (var_T, T) orelse
  1084              type_instance ctxt (T, var_T) then
  1085             ary
  1086           else
  1087             iter (ary + 1) (range_type T)
  1088       in iter 0 const_T end
  1089     fun add_var_or_bound_var T (accum as ((bool_vars, fun_var_Ts), sym_tab)) =
  1090       if explicit_apply = NONE andalso
  1091          (can dest_funT T orelse T = @{typ bool}) then
  1092         let
  1093           val bool_vars' = bool_vars orelse body_type T = @{typ bool}
  1094           fun repair_min_arity {pred_sym, min_ary, max_ary, types} =
  1095             {pred_sym = pred_sym andalso not bool_vars',
  1096              min_ary = fold (fn T' => consider_var_arity T' T) types min_ary,
  1097              max_ary = max_ary, types = types}
  1098           val fun_var_Ts' =
  1099             fun_var_Ts |> can dest_funT T ? insert_type ctxt I T
  1100         in
  1101           if bool_vars' = bool_vars andalso
  1102              pointer_eq (fun_var_Ts', fun_var_Ts) then
  1103             accum
  1104           else
  1105             ((bool_vars', fun_var_Ts'), Symtab.map (K repair_min_arity) sym_tab)
  1106         end
  1107       else
  1108         accum
  1109     fun add top_level tm (accum as ((bool_vars, fun_var_Ts), sym_tab)) =
  1110       let val (head, args) = strip_combterm_comb tm in
  1111         (case head of
  1112            CombConst ((s, _), T, _) =>
  1113            if String.isPrefix bound_var_prefix s then
  1114              add_var_or_bound_var T accum
  1115            else
  1116              let val ary = length args in
  1117                ((bool_vars, fun_var_Ts),
  1118                 case Symtab.lookup sym_tab s of
  1119                   SOME {pred_sym, min_ary, max_ary, types} =>
  1120                   let
  1121                     val pred_sym =
  1122                       pred_sym andalso top_level andalso not bool_vars
  1123                     val types' = types |> insert_type ctxt I T
  1124                     val min_ary =
  1125                       if is_some explicit_apply orelse
  1126                          pointer_eq (types', types) then
  1127                         min_ary
  1128                       else
  1129                         fold (consider_var_arity T) fun_var_Ts min_ary
  1130                   in
  1131                     Symtab.update (s, {pred_sym = pred_sym,
  1132                                        min_ary = Int.min (ary, min_ary),
  1133                                        max_ary = Int.max (ary, max_ary),
  1134                                        types = types'})
  1135                                   sym_tab
  1136                   end
  1137                 | NONE =>
  1138                   let
  1139                     val pred_sym = top_level andalso not bool_vars
  1140                     val min_ary =
  1141                       case explicit_apply of
  1142                         SOME true => 0
  1143                       | SOME false => ary
  1144                       | NONE => fold (consider_var_arity T) fun_var_Ts ary
  1145                   in
  1146                     Symtab.update_new (s, {pred_sym = pred_sym,
  1147                                            min_ary = min_ary, max_ary = ary,
  1148                                            types = [T]})
  1149                                       sym_tab
  1150                   end)
  1151              end
  1152          | CombVar (_, T) => add_var_or_bound_var T accum
  1153          | _ => accum)
  1154         |> fold (add false) args
  1155       end
  1156   in add true end
  1157 fun add_fact_syms_to_table ctxt explicit_apply =
  1158   fact_lift (formula_fold NONE
  1159                           (K (add_combterm_syms_to_table ctxt explicit_apply)))
  1160 
  1161 val default_sym_tab_entries : (string * sym_info) list =
  1162   (prefixed_predicator_name,
  1163    {pred_sym = true, min_ary = 1, max_ary = 1, types = []}) ::
  1164   ([tptp_false, tptp_true]
  1165    |> map (rpair {pred_sym = true, min_ary = 0, max_ary = 0, types = []})) @
  1166   ([tptp_equal, tptp_old_equal]
  1167    |> map (rpair {pred_sym = true, min_ary = 2, max_ary = 2, types = []}))
  1168 
  1169 fun sym_table_for_facts ctxt explicit_apply facts =
  1170   ((false, []), Symtab.empty)
  1171   |> fold (add_fact_syms_to_table ctxt explicit_apply) facts |> snd
  1172   |> fold Symtab.update default_sym_tab_entries
  1173 
  1174 fun min_arity_of sym_tab s =
  1175   case Symtab.lookup sym_tab s of
  1176     SOME ({min_ary, ...} : sym_info) => min_ary
  1177   | NONE =>
  1178     case strip_prefix_and_unascii const_prefix s of
  1179       SOME s =>
  1180       let val s = s |> unmangled_const_name |> invert_const in
  1181         if s = predicator_name then 1
  1182         else if s = app_op_name then 2
  1183         else if s = type_pred_name then 1
  1184         else 0
  1185       end
  1186     | NONE => 0
  1187 
  1188 (* True if the constant ever appears outside of the top-level position in
  1189    literals, or if it appears with different arities (e.g., because of different
  1190    type instantiations). If false, the constant always receives all of its
  1191    arguments and is used as a predicate. *)
  1192 fun is_pred_sym sym_tab s =
  1193   case Symtab.lookup sym_tab s of
  1194     SOME ({pred_sym, min_ary, max_ary, ...} : sym_info) =>
  1195     pred_sym andalso min_ary = max_ary
  1196   | NONE => false
  1197 
  1198 val predicator_combconst =
  1199   CombConst (`make_fixed_const predicator_name, @{typ "bool => bool"}, [])
  1200 fun predicator tm = CombApp (predicator_combconst, tm)
  1201 
  1202 fun introduce_predicators_in_combterm sym_tab tm =
  1203   case strip_combterm_comb tm of
  1204     (CombConst ((s, _), _, _), _) =>
  1205     if is_pred_sym sym_tab s then tm else predicator tm
  1206   | _ => predicator tm
  1207 
  1208 fun list_app head args = fold (curry (CombApp o swap)) args head
  1209 
  1210 val app_op = `make_fixed_const app_op_name
  1211 
  1212 fun explicit_app arg head =
  1213   let
  1214     val head_T = combtyp_of head
  1215     val (arg_T, res_T) = dest_funT head_T
  1216     val explicit_app =
  1217       CombConst (app_op, head_T --> head_T, [arg_T, res_T])
  1218   in list_app explicit_app [head, arg] end
  1219 fun list_explicit_app head args = fold explicit_app args head
  1220 
  1221 fun introduce_explicit_apps_in_combterm sym_tab =
  1222   let
  1223     fun aux tm =
  1224       case strip_combterm_comb tm of
  1225         (head as CombConst ((s, _), _, _), args) =>
  1226         args |> map aux
  1227              |> chop (min_arity_of sym_tab s)
  1228              |>> list_app head
  1229              |-> list_explicit_app
  1230       | (head, args) => list_explicit_app head (map aux args)
  1231   in aux end
  1232 
  1233 fun chop_fun 0 T = ([], T)
  1234   | chop_fun n (Type (@{type_name fun}, [dom_T, ran_T])) =
  1235     chop_fun (n - 1) ran_T |>> cons dom_T
  1236   | chop_fun _ _ = raise Fail "unexpected non-function"
  1237 
  1238 fun filter_type_args _ _ _ [] = []
  1239   | filter_type_args thy s arity T_args =
  1240     let
  1241       (* will throw "TYPE" for pseudo-constants *)
  1242       val U = if s = app_op_name then
  1243                 @{typ "('a => 'b) => 'a => 'b"} |> Logic.varifyT_global
  1244               else
  1245                 s |> Sign.the_const_type thy
  1246     in
  1247       case Term.add_tvarsT (U |> chop_fun arity |> snd) [] of
  1248         [] => []
  1249       | res_U_vars =>
  1250         let val U_args = (s, U) |> Sign.const_typargs thy in
  1251           U_args ~~ T_args
  1252           |> map_filter (fn (U, T) =>
  1253                             if member (op =) res_U_vars (dest_TVar U) then
  1254                               SOME T
  1255                             else
  1256                               NONE)
  1257         end
  1258     end
  1259     handle TYPE _ => T_args
  1260 
  1261 fun enforce_type_arg_policy_in_combterm ctxt format type_sys =
  1262   let
  1263     val thy = Proof_Context.theory_of ctxt
  1264     fun aux arity (CombApp (tm1, tm2)) =
  1265         CombApp (aux (arity + 1) tm1, aux 0 tm2)
  1266       | aux arity (CombConst (name as (s, _), T, T_args)) =
  1267         (case strip_prefix_and_unascii const_prefix s of
  1268            NONE => (name, T_args)
  1269          | SOME s'' =>
  1270            let
  1271              val s'' = invert_const s''
  1272              fun filtered_T_args false = T_args
  1273                | filtered_T_args true = filter_type_args thy s'' arity T_args
  1274            in
  1275              case type_arg_policy type_sys s'' of
  1276                Explicit_Type_Args drop_args =>
  1277                (name, filtered_T_args drop_args)
  1278              | Mangled_Type_Args drop_args =>
  1279                (mangled_const_name format type_sys (filtered_T_args drop_args)
  1280                                    name, [])
  1281              | No_Type_Args => (name, [])
  1282            end)
  1283         |> (fn (name, T_args) => CombConst (name, T, T_args))
  1284       | aux _ tm = tm
  1285   in aux 0 end
  1286 
  1287 fun repair_combterm ctxt format type_sys sym_tab =
  1288   not (is_setting_higher_order format type_sys)
  1289   ? (introduce_explicit_apps_in_combterm sym_tab
  1290      #> introduce_predicators_in_combterm sym_tab)
  1291   #> enforce_type_arg_policy_in_combterm ctxt format type_sys
  1292 fun repair_fact ctxt format type_sys sym_tab =
  1293   update_combformula (formula_map
  1294       (repair_combterm ctxt format type_sys sym_tab))
  1295 
  1296 (** Helper facts **)
  1297 
  1298 (* The Boolean indicates that a fairly sound type encoding is needed. *)
  1299 val helper_table =
  1300   [(("COMBI", false), @{thms Meson.COMBI_def}),
  1301    (("COMBK", false), @{thms Meson.COMBK_def}),
  1302    (("COMBB", false), @{thms Meson.COMBB_def}),
  1303    (("COMBC", false), @{thms Meson.COMBC_def}),
  1304    (("COMBS", false), @{thms Meson.COMBS_def}),
  1305    (("fequal", true),
  1306     (* This is a lie: Higher-order equality doesn't need a sound type encoding.
  1307        However, this is done so for backward compatibility: Including the
  1308        equality helpers by default in Metis breaks a few existing proofs. *)
  1309     @{thms fequal_def [THEN Meson.iff_to_disjD, THEN conjunct1]
  1310            fequal_def [THEN Meson.iff_to_disjD, THEN conjunct2]}),
  1311    (("fFalse", false), [@{lemma "~ fFalse" by (unfold fFalse_def) fast}]),
  1312    (("fFalse", true), @{thms True_or_False}),
  1313    (("fTrue", false), [@{lemma "fTrue" by (unfold fTrue_def) fast}]),
  1314    (("fTrue", true), @{thms True_or_False}),
  1315    (("fNot", false),
  1316     @{thms fNot_def [THEN Meson.iff_to_disjD, THEN conjunct1]
  1317            fNot_def [THEN Meson.iff_to_disjD, THEN conjunct2]}),
  1318    (("fconj", false),
  1319     @{lemma "~ P | ~ Q | fconj P Q" "~ fconj P Q | P" "~ fconj P Q | Q"
  1320         by (unfold fconj_def) fast+}),
  1321    (("fdisj", false),
  1322     @{lemma "~ P | fdisj P Q" "~ Q | fdisj P Q" "~ fdisj P Q | P | Q"
  1323         by (unfold fdisj_def) fast+}),
  1324    (("fimplies", false),
  1325     @{lemma "P | fimplies P Q" "~ Q | fimplies P Q" "~ fimplies P Q | ~ P | Q"
  1326         by (unfold fimplies_def) fast+}),
  1327    (("If", true), @{thms if_True if_False True_or_False})]
  1328   |> map (apsnd (map zero_var_indexes))
  1329 
  1330 val type_tag = `make_fixed_const type_tag_name
  1331 
  1332 fun type_tag_idempotence_fact () =
  1333   let
  1334     fun var s = ATerm (`I s, [])
  1335     fun tag tm = ATerm (type_tag, [var "T", tm])
  1336     val tagged_a = tag (var "A")
  1337   in
  1338     Formula (type_tag_idempotence_helper_name, Axiom,
  1339              AAtom (ATerm (`I tptp_equal, [tag tagged_a, tagged_a]))
  1340              |> close_formula_universally, simp_info, NONE)
  1341   end
  1342 
  1343 fun should_specialize_helper type_sys t =
  1344   case general_type_arg_policy type_sys of
  1345     Mangled_Type_Args _ => not (null (Term.hidden_polymorphism t))
  1346   | _ => false
  1347 
  1348 fun helper_facts_for_sym ctxt format type_sys (s, {types, ...} : sym_info) =
  1349   case strip_prefix_and_unascii const_prefix s of
  1350     SOME mangled_s =>
  1351     let
  1352       val thy = Proof_Context.theory_of ctxt
  1353       val unmangled_s = mangled_s |> unmangled_const_name
  1354       fun dub_and_inst needs_fairly_sound (th, j) =
  1355         ((unmangled_s ^ "_" ^ string_of_int j ^
  1356           (if mangled_s = unmangled_s then "" else "_" ^ ascii_of mangled_s) ^
  1357           (if needs_fairly_sound then typed_helper_suffix
  1358            else untyped_helper_suffix),
  1359           General),
  1360          let val t = th |> prop_of in
  1361            t |> should_specialize_helper type_sys t
  1362                 ? (case types of
  1363                      [T] => specialize_type thy (invert_const unmangled_s, T)
  1364                    | _ => I)
  1365          end)
  1366       val make_facts =
  1367         map_filter (make_fact ctxt format type_sys false false [])
  1368       val fairly_sound = is_type_sys_fairly_sound type_sys
  1369     in
  1370       helper_table
  1371       |> maps (fn ((helper_s, needs_fairly_sound), ths) =>
  1372                   if helper_s <> unmangled_s orelse
  1373                      (needs_fairly_sound andalso not fairly_sound) then
  1374                     []
  1375                   else
  1376                     ths ~~ (1 upto length ths)
  1377                     |> map (dub_and_inst needs_fairly_sound)
  1378                     |> make_facts)
  1379     end
  1380   | NONE => []
  1381 fun helper_facts_for_sym_table ctxt format type_sys sym_tab =
  1382   Symtab.fold_rev (append o helper_facts_for_sym ctxt format type_sys) sym_tab
  1383                   []
  1384 
  1385 (***************************************************************)
  1386 (* Type Classes Present in the Axiom or Conjecture Clauses     *)
  1387 (***************************************************************)
  1388 
  1389 fun set_insert (x, s) = Symtab.update (x, ()) s
  1390 
  1391 fun add_classes (sorts, cset) = List.foldl set_insert cset (flat sorts)
  1392 
  1393 (* Remove this trivial type class (FIXME: similar code elsewhere) *)
  1394 fun delete_type cset = Symtab.delete_safe (the_single @{sort HOL.type}) cset
  1395 
  1396 fun classes_of_terms get_Ts =
  1397   map (map snd o get_Ts)
  1398   #> List.foldl add_classes Symtab.empty
  1399   #> delete_type #> Symtab.keys
  1400 
  1401 val tfree_classes_of_terms = classes_of_terms OldTerm.term_tfrees
  1402 val tvar_classes_of_terms = classes_of_terms OldTerm.term_tvars
  1403 
  1404 (*fold type constructors*)
  1405 fun fold_type_constrs f (Type (a, Ts)) x =
  1406     fold (fold_type_constrs f) Ts (f (a,x))
  1407   | fold_type_constrs _ _ x = x
  1408 
  1409 (*Type constructors used to instantiate overloaded constants are the only ones needed.*)
  1410 fun add_type_constrs_in_term thy =
  1411   let
  1412     fun add (Const (@{const_name Meson.skolem}, _) $ _) = I
  1413       | add (t $ u) = add t #> add u
  1414       | add (Const (x as (s, _))) =
  1415         if String.isPrefix skolem_const_prefix s then I
  1416         else x |> Sign.const_typargs thy |> fold (fold_type_constrs set_insert)
  1417       | add (Abs (_, _, u)) = add u
  1418       | add _ = I
  1419   in add end
  1420 
  1421 fun type_constrs_of_terms thy ts =
  1422   Symtab.keys (fold (add_type_constrs_in_term thy) ts Symtab.empty)
  1423 
  1424 fun translate_formulas ctxt format prem_kind type_sys preproc hyp_ts concl_t
  1425                        facts =
  1426   let
  1427     val thy = Proof_Context.theory_of ctxt
  1428     val fact_ts = facts |> map snd
  1429     val presimp_consts = Meson.presimplified_consts ctxt
  1430     val make_fact = make_fact ctxt format type_sys true preproc presimp_consts
  1431     val (facts, fact_names) =
  1432       facts |> map (fn (name, t) => (name, t) |> make_fact |> rpair name)
  1433             |> map_filter (try (apfst the))
  1434             |> ListPair.unzip
  1435     (* Remove existing facts from the conjecture, as this can dramatically
  1436        boost an ATP's performance (for some reason). *)
  1437     val hyp_ts =
  1438       hyp_ts
  1439       |> map (fn t => if member (op aconv) fact_ts t then @{prop True} else t)
  1440     val goal_t = Logic.list_implies (hyp_ts, concl_t)
  1441     val all_ts = goal_t :: fact_ts
  1442     val subs = tfree_classes_of_terms all_ts
  1443     val supers = tvar_classes_of_terms all_ts
  1444     val tycons = type_constrs_of_terms thy all_ts
  1445     val conjs =
  1446       hyp_ts @ [concl_t]
  1447       |> make_conjecture ctxt format prem_kind type_sys preproc presimp_consts
  1448     val (supers', arity_clauses) =
  1449       if level_of_type_sys type_sys = No_Types then ([], [])
  1450       else make_arity_clauses thy tycons supers
  1451     val class_rel_clauses = make_class_rel_clauses thy subs supers'
  1452   in
  1453     (fact_names |> map single, (conjs, facts, class_rel_clauses, arity_clauses))
  1454   end
  1455 
  1456 fun fo_literal_from_type_literal (TyLitVar (class, name)) =
  1457     (true, ATerm (class, [ATerm (name, [])]))
  1458   | fo_literal_from_type_literal (TyLitFree (class, name)) =
  1459     (true, ATerm (class, [ATerm (name, [])]))
  1460 
  1461 fun formula_from_fo_literal (pos, t) = AAtom t |> not pos ? mk_anot
  1462 
  1463 val type_pred = `make_fixed_const type_pred_name
  1464 
  1465 fun type_pred_combterm ctxt format type_sys T tm =
  1466   CombApp (CombConst (type_pred, T --> @{typ bool}, [T])
  1467            |> enforce_type_arg_policy_in_combterm ctxt format type_sys, tm)
  1468 
  1469 fun var_occurs_positively_naked_in_term _ (SOME false) _ accum = accum
  1470   | var_occurs_positively_naked_in_term name _ (ATerm ((s, _), tms)) accum =
  1471     accum orelse (is_tptp_equal s andalso member (op =) tms (ATerm (name, [])))
  1472 fun is_var_nonmonotonic_in_formula _ _ (SOME false) _ = false
  1473   | is_var_nonmonotonic_in_formula pos phi _ name =
  1474     formula_fold pos (var_occurs_positively_naked_in_term name) phi false
  1475 
  1476 fun mk_const_aterm format type_sys x T_args args =
  1477   ATerm (x, map (fo_term_from_typ format type_sys) T_args @ args)
  1478 
  1479 fun tag_with_type ctxt format nonmono_Ts type_sys pos T tm =
  1480   CombConst (type_tag, T --> T, [T])
  1481   |> enforce_type_arg_policy_in_combterm ctxt format type_sys
  1482   |> term_from_combterm ctxt format nonmono_Ts type_sys (Top_Level pos)
  1483   |> (fn ATerm (s, tms) => ATerm (s, tms @ [tm]))
  1484 and term_from_combterm ctxt format nonmono_Ts type_sys =
  1485   let
  1486     fun aux site u =
  1487       let
  1488         val (head, args) = strip_combterm_comb u
  1489         val (x as (s, _), T_args) =
  1490           case head of
  1491             CombConst (name, _, T_args) => (name, T_args)
  1492           | CombVar (name, _) => (name, [])
  1493           | CombApp _ => raise Fail "impossible \"CombApp\""
  1494         val (pos, arg_site) =
  1495           case site of
  1496             Top_Level pos =>
  1497             (pos, if is_tptp_equal s then Eq_Arg pos else Elsewhere)
  1498           | Eq_Arg pos => (pos, Elsewhere)
  1499           | Elsewhere => (NONE, Elsewhere)
  1500         val t = mk_const_aterm format type_sys x T_args
  1501                     (map (aux arg_site) args)
  1502         val T = combtyp_of u
  1503       in
  1504         t |> (if should_tag_with_type ctxt nonmono_Ts type_sys site u T then
  1505                 tag_with_type ctxt format nonmono_Ts type_sys pos T
  1506               else
  1507                 I)
  1508       end
  1509   in aux end
  1510 and formula_from_combformula ctxt format nonmono_Ts type_sys
  1511                              should_predicate_on_var =
  1512   let
  1513     fun do_term pos =
  1514       term_from_combterm ctxt format nonmono_Ts type_sys (Top_Level pos)
  1515     val do_bound_type =
  1516       case type_sys of
  1517         Simple_Types level =>
  1518         homogenized_type ctxt nonmono_Ts level 0
  1519         #> mangled_type format type_sys false 0 #> SOME
  1520       | _ => K NONE
  1521     fun do_out_of_bound_type pos phi universal (name, T) =
  1522       if should_predicate_on_type ctxt nonmono_Ts type_sys
  1523              (fn () => should_predicate_on_var pos phi universal name) T then
  1524         CombVar (name, T)
  1525         |> type_pred_combterm ctxt format type_sys T
  1526         |> do_term pos |> AAtom |> SOME
  1527       else
  1528         NONE
  1529     fun do_formula pos (AQuant (q, xs, phi)) =
  1530         let
  1531           val phi = phi |> do_formula pos
  1532           val universal = Option.map (q = AExists ? not) pos
  1533         in
  1534           AQuant (q, xs |> map (apsnd (fn NONE => NONE
  1535                                         | SOME T => do_bound_type T)),
  1536                   (if q = AForall then mk_ahorn else fold_rev (mk_aconn AAnd))
  1537                       (map_filter
  1538                            (fn (_, NONE) => NONE
  1539                              | (s, SOME T) =>
  1540                                do_out_of_bound_type pos phi universal (s, T))
  1541                            xs)
  1542                       phi)
  1543         end
  1544       | do_formula pos (AConn conn) = aconn_map pos do_formula conn
  1545       | do_formula pos (AAtom tm) = AAtom (do_term pos tm)
  1546   in do_formula o SOME end
  1547 
  1548 fun bound_tvars type_sys Ts =
  1549   mk_ahorn (map (formula_from_fo_literal o fo_literal_from_type_literal)
  1550                 (type_literals_for_types type_sys add_sorts_on_tvar Ts))
  1551 
  1552 fun formula_for_fact ctxt format nonmono_Ts type_sys
  1553                      ({combformula, atomic_types, ...} : translated_formula) =
  1554   combformula
  1555   |> close_combformula_universally
  1556   |> formula_from_combformula ctxt format nonmono_Ts type_sys
  1557                               is_var_nonmonotonic_in_formula true
  1558   |> bound_tvars type_sys atomic_types
  1559   |> close_formula_universally
  1560 
  1561 (* Each fact is given a unique fact number to avoid name clashes (e.g., because
  1562    of monomorphization). The TPTP explicitly forbids name clashes, and some of
  1563    the remote provers might care. *)
  1564 fun formula_line_for_fact ctxt format prefix encode freshen nonmono_Ts type_sys
  1565                           (j, formula as {name, locality, kind, ...}) =
  1566   Formula (prefix ^ (if freshen then string_of_int j ^ "_" else "") ^
  1567            encode name,
  1568            kind, formula_for_fact ctxt format nonmono_Ts type_sys formula, NONE,
  1569            case locality of
  1570              Intro => intro_info
  1571            | Elim => elim_info
  1572            | Simp => simp_info
  1573            | _ => NONE)
  1574 
  1575 fun formula_line_for_class_rel_clause ({name, subclass, superclass, ...}
  1576                                        : class_rel_clause) =
  1577   let val ty_arg = ATerm (`I "T", []) in
  1578     Formula (class_rel_clause_prefix ^ ascii_of name, Axiom,
  1579              AConn (AImplies, [AAtom (ATerm (subclass, [ty_arg])),
  1580                                AAtom (ATerm (superclass, [ty_arg]))])
  1581              |> close_formula_universally, intro_info, NONE)
  1582   end
  1583 
  1584 fun fo_literal_from_arity_literal (TConsLit (c, t, args)) =
  1585     (true, ATerm (c, [ATerm (t, map (fn arg => ATerm (arg, [])) args)]))
  1586   | fo_literal_from_arity_literal (TVarLit (c, sort)) =
  1587     (false, ATerm (c, [ATerm (sort, [])]))
  1588 
  1589 fun formula_line_for_arity_clause ({name, prem_lits, concl_lits, ...}
  1590                                    : arity_clause) =
  1591   Formula (arity_clause_prefix ^ ascii_of name, Axiom,
  1592            mk_ahorn (map (formula_from_fo_literal o apfst not
  1593                           o fo_literal_from_arity_literal) prem_lits)
  1594                     (formula_from_fo_literal
  1595                          (fo_literal_from_arity_literal concl_lits))
  1596            |> close_formula_universally, intro_info, NONE)
  1597 
  1598 fun formula_line_for_conjecture ctxt format nonmono_Ts type_sys
  1599         ({name, kind, combformula, atomic_types, ...} : translated_formula) =
  1600   Formula (conjecture_prefix ^ name, kind,
  1601            formula_from_combformula ctxt format nonmono_Ts type_sys
  1602                is_var_nonmonotonic_in_formula false
  1603                (close_combformula_universally combformula)
  1604            |> bound_tvars type_sys atomic_types
  1605            |> close_formula_universally, NONE, NONE)
  1606 
  1607 fun free_type_literals type_sys ({atomic_types, ...} : translated_formula) =
  1608   atomic_types |> type_literals_for_types type_sys add_sorts_on_tfree
  1609                |> map fo_literal_from_type_literal
  1610 
  1611 fun formula_line_for_free_type j lit =
  1612   Formula (tfree_clause_prefix ^ string_of_int j, Hypothesis,
  1613            formula_from_fo_literal lit, NONE, NONE)
  1614 fun formula_lines_for_free_types type_sys facts =
  1615   let
  1616     val litss = map (free_type_literals type_sys) facts
  1617     val lits = fold (union (op =)) litss []
  1618   in map2 formula_line_for_free_type (0 upto length lits - 1) lits end
  1619 
  1620 (** Symbol declarations **)
  1621 
  1622 fun should_declare_sym type_sys pred_sym s =
  1623   is_tptp_user_symbol s andalso not (String.isPrefix bound_var_prefix s) andalso
  1624   (case type_sys of
  1625      Simple_Types _ => true
  1626    | Tags (_, _, Lightweight) => true
  1627    | _ => not pred_sym)
  1628 
  1629 fun sym_decl_table_for_facts ctxt type_sys repaired_sym_tab (conjs, facts) =
  1630   let
  1631     fun add_combterm in_conj tm =
  1632       let val (head, args) = strip_combterm_comb tm in
  1633         (case head of
  1634            CombConst ((s, s'), T, T_args) =>
  1635            let val pred_sym = is_pred_sym repaired_sym_tab s in
  1636              if should_declare_sym type_sys pred_sym s then
  1637                Symtab.map_default (s, [])
  1638                    (insert_type ctxt #3 (s', T_args, T, pred_sym, length args,
  1639                                          in_conj))
  1640              else
  1641                I
  1642            end
  1643          | _ => I)
  1644         #> fold (add_combterm in_conj) args
  1645       end
  1646     fun add_fact in_conj =
  1647       fact_lift (formula_fold NONE (K (add_combterm in_conj)))
  1648   in
  1649     Symtab.empty
  1650     |> is_type_sys_fairly_sound type_sys
  1651        ? (fold (add_fact true) conjs #> fold (add_fact false) facts)
  1652   end
  1653 
  1654 (* These types witness that the type classes they belong to allow infinite
  1655    models and hence that any types with these type classes is monotonic. *)
  1656 val known_infinite_types =
  1657   [@{typ nat}, Type ("Int.int", []), @{typ "nat => bool"}]
  1658 
  1659 (* This inference is described in section 2.3 of Claessen et al.'s "Sorting it
  1660    out with monotonicity" paper presented at CADE 2011. *)
  1661 fun add_combterm_nonmonotonic_types _ _ _ (SOME false) _ = I
  1662   | add_combterm_nonmonotonic_types ctxt level locality _
  1663         (CombApp (CombApp (CombConst ((s, _), Type (_, [T, _]), _), tm1),
  1664                            tm2)) =
  1665     (is_tptp_equal s andalso exists is_var_or_bound_var [tm1, tm2] andalso
  1666      (case level of
  1667         Noninf_Nonmono_Types =>
  1668         not (is_locality_global locality) orelse
  1669         not (is_type_surely_infinite ctxt known_infinite_types T)
  1670       | Fin_Nonmono_Types => is_type_surely_finite ctxt T
  1671       | _ => true)) ? insert_type ctxt I (deep_freeze_type T)
  1672   | add_combterm_nonmonotonic_types _ _ _ _ _ = I
  1673 fun add_fact_nonmonotonic_types ctxt level ({kind, locality, combformula, ...}
  1674                                             : translated_formula) =
  1675   formula_fold (SOME (kind <> Conjecture))
  1676                (add_combterm_nonmonotonic_types ctxt level locality) combformula
  1677 fun nonmonotonic_types_for_facts ctxt type_sys facts =
  1678   let val level = level_of_type_sys type_sys in
  1679     if level = Noninf_Nonmono_Types orelse level = Fin_Nonmono_Types then
  1680       [] |> fold (add_fact_nonmonotonic_types ctxt level) facts
  1681          (* We must add "bool" in case the helper "True_or_False" is added
  1682             later. In addition, several places in the code rely on the list of
  1683             nonmonotonic types not being empty. *)
  1684          |> insert_type ctxt I @{typ bool}
  1685     else
  1686       []
  1687   end
  1688 
  1689 fun decl_line_for_sym ctxt format nonmono_Ts type_sys s
  1690                       (s', T_args, T, pred_sym, ary, _) =
  1691   let
  1692     val (T_arg_Ts, level) =
  1693       case type_sys of
  1694         Simple_Types level => ([], level)
  1695       | _ => (replicate (length T_args) homo_infinite_type, No_Types)
  1696   in
  1697     Decl (sym_decl_prefix ^ s, (s, s'),
  1698           (T_arg_Ts ---> (T |> homogenized_type ctxt nonmono_Ts level ary))
  1699           |> mangled_type format type_sys pred_sym (length T_arg_Ts + ary))
  1700   end
  1701 
  1702 fun is_polymorphic_type T = fold_atyps (fn TVar _ => K true | _ => I) T false
  1703 
  1704 fun formula_line_for_preds_sym_decl ctxt format conj_sym_kind nonmono_Ts
  1705         type_sys n s j (s', T_args, T, _, ary, in_conj) =
  1706   let
  1707     val (kind, maybe_negate) =
  1708       if in_conj then (conj_sym_kind, conj_sym_kind = Conjecture ? mk_anot)
  1709       else (Axiom, I)
  1710     val (arg_Ts, res_T) = chop_fun ary T
  1711     val bound_names =
  1712       1 upto length arg_Ts |> map (`I o make_bound_var o string_of_int)
  1713     val bounds =
  1714       bound_names ~~ arg_Ts |> map (fn (name, T) => CombConst (name, T, []))
  1715     val bound_Ts =
  1716       arg_Ts |> map (fn T => if n > 1 orelse is_polymorphic_type T then SOME T
  1717                              else NONE)
  1718   in
  1719     Formula (preds_sym_formula_prefix ^ s ^
  1720              (if n > 1 then "_" ^ string_of_int j else ""), kind,
  1721              CombConst ((s, s'), T, T_args)
  1722              |> fold (curry (CombApp o swap)) bounds
  1723              |> type_pred_combterm ctxt format type_sys res_T
  1724              |> AAtom |> mk_aquant AForall (bound_names ~~ bound_Ts)
  1725              |> formula_from_combformula ctxt format nonmono_Ts type_sys
  1726                                          (K (K (K (K true)))) true
  1727              |> n > 1 ? bound_tvars type_sys (atyps_of T)
  1728              |> close_formula_universally
  1729              |> maybe_negate,
  1730              intro_info, NONE)
  1731   end
  1732 
  1733 fun formula_lines_for_lightweight_tags_sym_decl ctxt format conj_sym_kind
  1734         nonmono_Ts type_sys n s (j, (s', T_args, T, pred_sym, ary, in_conj)) =
  1735   let
  1736     val ident_base =
  1737       lightweight_tags_sym_formula_prefix ^ s ^
  1738       (if n > 1 then "_" ^ string_of_int j else "")
  1739     val (kind, maybe_negate) =
  1740       if in_conj then (conj_sym_kind, conj_sym_kind = Conjecture ? mk_anot)
  1741       else (Axiom, I)
  1742     val (arg_Ts, res_T) = chop_fun ary T
  1743     val bound_names =
  1744       1 upto length arg_Ts |> map (`I o make_bound_var o string_of_int)
  1745     val bounds = bound_names |> map (fn name => ATerm (name, []))
  1746     val cst = mk_const_aterm format type_sys (s, s') T_args
  1747     val atomic_Ts = atyps_of T
  1748     fun eq tms =
  1749       (if pred_sym then AConn (AIff, map AAtom tms)
  1750        else AAtom (ATerm (`I tptp_equal, tms)))
  1751       |> bound_tvars type_sys atomic_Ts
  1752       |> close_formula_universally
  1753       |> maybe_negate
  1754     (* See also "should_tag_with_type". *)
  1755     fun should_encode T =
  1756       should_encode_type ctxt nonmono_Ts All_Types T orelse
  1757       (case type_sys of
  1758          Tags (Polymorphic, level, Lightweight) =>
  1759          level <> All_Types andalso Monomorph.typ_has_tvars T
  1760        | _ => false)
  1761     val tag_with = tag_with_type ctxt format nonmono_Ts type_sys NONE
  1762     val add_formula_for_res =
  1763       if should_encode res_T then
  1764         cons (Formula (ident_base ^ "_res", kind,
  1765                        eq [tag_with res_T (cst bounds), cst bounds],
  1766                        simp_info, NONE))
  1767       else
  1768         I
  1769     fun add_formula_for_arg k =
  1770       let val arg_T = nth arg_Ts k in
  1771         if should_encode arg_T then
  1772           case chop k bounds of
  1773             (bounds1, bound :: bounds2) =>
  1774             cons (Formula (ident_base ^ "_arg" ^ string_of_int (k + 1), kind,
  1775                            eq [cst (bounds1 @ tag_with arg_T bound :: bounds2),
  1776                                cst bounds],
  1777                            simp_info, NONE))
  1778           | _ => raise Fail "expected nonempty tail"
  1779         else
  1780           I
  1781       end
  1782   in
  1783     [] |> not pred_sym ? add_formula_for_res
  1784        |> fold add_formula_for_arg (ary - 1 downto 0)
  1785   end
  1786 
  1787 fun result_type_of_decl (_, _, T, _, ary, _) = chop_fun ary T |> snd
  1788 
  1789 fun problem_lines_for_sym_decls ctxt format conj_sym_kind nonmono_Ts type_sys
  1790                                 (s, decls) =
  1791   case type_sys of
  1792     Simple_Types _ =>
  1793     decls |> map (decl_line_for_sym ctxt format nonmono_Ts type_sys s)
  1794   | Preds _ =>
  1795     let
  1796       val decls =
  1797         case decls of
  1798           decl :: (decls' as _ :: _) =>
  1799           let val T = result_type_of_decl decl in
  1800             if forall (curry (type_instance ctxt o swap) T
  1801                        o result_type_of_decl) decls' then
  1802               [decl]
  1803             else
  1804               decls
  1805           end
  1806         | _ => decls
  1807       val n = length decls
  1808       val decls =
  1809         decls
  1810         |> filter (should_predicate_on_type ctxt nonmono_Ts type_sys (K true)
  1811                    o result_type_of_decl)
  1812     in
  1813       (0 upto length decls - 1, decls)
  1814       |-> map2 (formula_line_for_preds_sym_decl ctxt format conj_sym_kind
  1815                                                 nonmono_Ts type_sys n s)
  1816     end
  1817   | Tags (_, _, heaviness) =>
  1818     (case heaviness of
  1819        Heavyweight => []
  1820      | Lightweight =>
  1821        let val n = length decls in
  1822          (0 upto n - 1 ~~ decls)
  1823          |> maps (formula_lines_for_lightweight_tags_sym_decl ctxt format
  1824                       conj_sym_kind nonmono_Ts type_sys n s)
  1825        end)
  1826 
  1827 fun problem_lines_for_sym_decl_table ctxt format conj_sym_kind nonmono_Ts
  1828                                      type_sys sym_decl_tab =
  1829   sym_decl_tab
  1830   |> Symtab.dest
  1831   |> sort_wrt fst
  1832   |> rpair []
  1833   |-> fold_rev (append o problem_lines_for_sym_decls ctxt format conj_sym_kind
  1834                                                      nonmono_Ts type_sys)
  1835 
  1836 fun needs_type_tag_idempotence (Tags (poly, level, heaviness)) =
  1837     poly <> Mangled_Monomorphic andalso
  1838     ((level = All_Types andalso heaviness = Lightweight) orelse
  1839      level = Noninf_Nonmono_Types orelse level = Fin_Nonmono_Types)
  1840   | needs_type_tag_idempotence _ = false
  1841 
  1842 fun offset_of_heading_in_problem _ [] j = j
  1843   | offset_of_heading_in_problem needle ((heading, lines) :: problem) j =
  1844     if heading = needle then j
  1845     else offset_of_heading_in_problem needle problem (j + length lines)
  1846 
  1847 val implicit_declsN = "Should-be-implicit typings"
  1848 val explicit_declsN = "Explicit typings"
  1849 val factsN = "Relevant facts"
  1850 val class_relsN = "Class relationships"
  1851 val aritiesN = "Arities"
  1852 val helpersN = "Helper facts"
  1853 val conjsN = "Conjectures"
  1854 val free_typesN = "Type variables"
  1855 
  1856 val explicit_apply = NONE (* for experimental purposes *)
  1857 
  1858 fun prepare_atp_problem ctxt format conj_sym_kind prem_kind type_sys
  1859         freshen_facts readable_names preproc hyp_ts concl_t facts =
  1860   let
  1861     val (format, type_sys) = choose_format [format] type_sys
  1862     val (fact_names, (conjs, facts, class_rel_clauses, arity_clauses)) =
  1863       translate_formulas ctxt format prem_kind type_sys preproc hyp_ts concl_t
  1864                          facts
  1865     val sym_tab = conjs @ facts |> sym_table_for_facts ctxt explicit_apply
  1866     val nonmono_Ts = conjs @ facts |> nonmonotonic_types_for_facts ctxt type_sys
  1867     val repair = repair_fact ctxt format type_sys sym_tab
  1868     val (conjs, facts) = (conjs, facts) |> pairself (map repair)
  1869     val repaired_sym_tab =
  1870       conjs @ facts |> sym_table_for_facts ctxt (SOME false)
  1871     val helpers =
  1872       repaired_sym_tab |> helper_facts_for_sym_table ctxt format type_sys
  1873                        |> map repair
  1874     val lavish_nonmono_Ts =
  1875       if null nonmono_Ts orelse nonmono_Ts = [@{typ bool}] orelse
  1876          polymorphism_of_type_sys type_sys <> Polymorphic then
  1877         nonmono_Ts
  1878       else
  1879         [TVar (("'a", 0), HOLogic.typeS)]
  1880     val sym_decl_lines =
  1881       (conjs, helpers @ facts)
  1882       |> sym_decl_table_for_facts ctxt type_sys repaired_sym_tab
  1883       |> problem_lines_for_sym_decl_table ctxt format conj_sym_kind
  1884                                           lavish_nonmono_Ts type_sys
  1885     val helper_lines =
  1886       0 upto length helpers - 1 ~~ helpers
  1887       |> map (formula_line_for_fact ctxt format helper_prefix I false
  1888                                     lavish_nonmono_Ts type_sys)
  1889       |> (if needs_type_tag_idempotence type_sys then
  1890             cons (type_tag_idempotence_fact ())
  1891           else
  1892             I)
  1893     (* Reordering these might confuse the proof reconstruction code or the SPASS
  1894        FLOTTER hack. *)
  1895     val problem =
  1896       [(explicit_declsN, sym_decl_lines),
  1897        (factsN,
  1898         map (formula_line_for_fact ctxt format fact_prefix ascii_of
  1899                                    freshen_facts nonmono_Ts type_sys)
  1900             (0 upto length facts - 1 ~~ facts)),
  1901        (class_relsN, map formula_line_for_class_rel_clause class_rel_clauses),
  1902        (aritiesN, map formula_line_for_arity_clause arity_clauses),
  1903        (helpersN, helper_lines),
  1904        (conjsN,
  1905         map (formula_line_for_conjecture ctxt format nonmono_Ts type_sys)
  1906             conjs),
  1907        (free_typesN, formula_lines_for_free_types type_sys (facts @ conjs))]
  1908     val problem =
  1909       problem
  1910       |> (case format of
  1911             CNF => ensure_cnf_problem
  1912           | CNF_UEQ => filter_cnf_ueq_problem
  1913           | _ => I)
  1914       |> (if is_format_typed format then
  1915             declare_undeclared_syms_in_atp_problem type_decl_prefix
  1916                                                    implicit_declsN
  1917           else
  1918             I)
  1919     val (problem, pool) = problem |> nice_atp_problem readable_names
  1920     val helpers_offset = offset_of_heading_in_problem helpersN problem 0
  1921     val typed_helpers =
  1922       map_filter (fn (j, {name, ...}) =>
  1923                      if String.isSuffix typed_helper_suffix name then SOME j
  1924                      else NONE)
  1925                  ((helpers_offset + 1 upto helpers_offset + length helpers)
  1926                   ~~ helpers)
  1927     fun add_sym_arity (s, {min_ary, ...} : sym_info) =
  1928       if min_ary > 0 then
  1929         case strip_prefix_and_unascii const_prefix s of
  1930           SOME s => Symtab.insert (op =) (s, min_ary)
  1931         | NONE => I
  1932       else
  1933         I
  1934   in
  1935     (problem,
  1936      case pool of SOME the_pool => snd the_pool | NONE => Symtab.empty,
  1937      offset_of_heading_in_problem conjsN problem 0,
  1938      offset_of_heading_in_problem factsN problem 0,
  1939      fact_names |> Vector.fromList,
  1940      typed_helpers,
  1941      Symtab.empty |> Symtab.fold add_sym_arity sym_tab)
  1942   end
  1943 
  1944 (* FUDGE *)
  1945 val conj_weight = 0.0
  1946 val hyp_weight = 0.1
  1947 val fact_min_weight = 0.2
  1948 val fact_max_weight = 1.0
  1949 val type_info_default_weight = 0.8
  1950 
  1951 fun add_term_weights weight (ATerm (s, tms)) =
  1952   is_tptp_user_symbol s ? Symtab.default (s, weight)
  1953   #> fold (add_term_weights weight) tms
  1954 fun add_problem_line_weights weight (Formula (_, _, phi, _, _)) =
  1955     formula_fold NONE (K (add_term_weights weight)) phi
  1956   | add_problem_line_weights _ _ = I
  1957 
  1958 fun add_conjectures_weights [] = I
  1959   | add_conjectures_weights conjs =
  1960     let val (hyps, conj) = split_last conjs in
  1961       add_problem_line_weights conj_weight conj
  1962       #> fold (add_problem_line_weights hyp_weight) hyps
  1963     end
  1964 
  1965 fun add_facts_weights facts =
  1966   let
  1967     val num_facts = length facts
  1968     fun weight_of j =
  1969       fact_min_weight + (fact_max_weight - fact_min_weight) * Real.fromInt j
  1970                         / Real.fromInt num_facts
  1971   in
  1972     map weight_of (0 upto num_facts - 1) ~~ facts
  1973     |> fold (uncurry add_problem_line_weights)
  1974   end
  1975 
  1976 (* Weights are from 0.0 (most important) to 1.0 (least important). *)
  1977 fun atp_problem_weights problem =
  1978   let val get = these o AList.lookup (op =) problem in
  1979     Symtab.empty
  1980     |> add_conjectures_weights (get free_typesN @ get conjsN)
  1981     |> add_facts_weights (get factsN)
  1982     |> fold (fold (add_problem_line_weights type_info_default_weight) o get)
  1983             [explicit_declsN, class_relsN, aritiesN]
  1984     |> Symtab.dest
  1985     |> sort (prod_ord Real.compare string_ord o pairself swap)
  1986   end
  1987 
  1988 end;