src/Tools/isac/Knowledge/Integrate.thy
author wneuper <Walther.Neuper@jku.at>
Sat, 04 Feb 2023 09:47:27 +0100
changeset 60671 8998cb4818dd
parent 60587 8af797c555a8
child 60674 e5884e07a292
permissions -rw-r--r--
eliminate use of Thy_Info 19: some more uses of UnparseC.term_in_ctxt
     1 (* integration over the reals
     2    author: Walther Neuper
     3    050814, 08:51
     4    (c) due to copyright terms
     5 *)
     6 
     7 theory Integrate imports Diff begin
     8 
     9 consts
    10 
    11   Integral            :: "[real, real]=> real" ("Integral _ D _" 91)
    12   add_new_c          :: "real => real"        ("add'_new'_c _" 66) 
    13   is_f_x            :: "real => bool"        ("_ is'_f'_x" 10)
    14 
    15   (*descriptions in the related problems*)
    16   integrateBy         :: "real => una"
    17   antiDerivative      :: "real => una"
    18   antiDerivativeName  :: "(real => real) => una"
    19 
    20   (*the CAS-command, eg. "Integrate (2*x \<up> 3, x)"*)
    21   Integrate           :: "[real * real] => real"
    22 
    23 axiomatization where
    24 (*stated as axioms, todo: prove as theorems
    25   'bdv' is a constant handled on the meta-level 
    26    specifically as a 'bound variable'            *)
    27 
    28 (*Ambiguous input\<^here> produces 3 parse trees -----------------------------\\*)
    29   integral_const:    "Not (bdv occurs_in u) ==> Integral u D bdv = u * bdv" and
    30   integral_var:      "Integral bdv D bdv = bdv \<up> 2 / 2" and
    31 
    32   integral_add:      "Integral (u + v) D bdv =  
    33 		     (Integral u D bdv) + (Integral v D bdv)" and
    34   integral_mult:     "[| Not (bdv occurs_in u); bdv occurs_in v |] ==>  
    35 		     Integral (u * v) D bdv = u * (Integral v D bdv)" and
    36 (*WN080222: this goes into sub-terms, too ...
    37   call_for_new_c:    "[| Not (matches (u + new_c v) a); Not (a is_f_x) |] ==>  
    38 		     a = a + new_c a"
    39 *)
    40   integral_pow:      "Integral bdv \<up> n D bdv = bdv \<up> (n+1) / (n + 1)"
    41 (*Ambiguous input\<^here> produces 3 parse trees -----------------------------//*)
    42 
    43 ML \<open>
    44 (** eval functions **)
    45 
    46 val c = Free ("c", HOLogic.realT);
    47 (*.create a new unique variable 'c..' in a term; for use by \<^rule_eval> in a rls;
    48    an alternative to do this would be '(Try (Calculate new_c_) (new_c es__))'
    49    in the script; this will be possible if currying doesnt take the value
    50    from a variable, but the value '(new_c es__)' itself.*)
    51 fun new_c term = 
    52     let fun selc var = 
    53 	    case (Symbol.explode o id_of) var of
    54 		"c"::[] => true
    55 	      |	"c"::"_"::is => (case (TermC.int_opt_of_string o implode) is of
    56 				     SOME _ => true
    57 				   | NONE => false)
    58               | _ => false;
    59 	fun get_coeff c = case (Symbol.explode o id_of) c of
    60 	      		      "c"::"_"::is => (the o TermC.int_opt_of_string o implode) is
    61 			    | _ => 0;
    62         val cs = filter selc (TermC.vars term);
    63     in 
    64 	case cs of
    65 	    [] => c
    66 	  | [_] => Free ("c_2", HOLogic.realT)
    67 	  | cs => 
    68 	    let val max_coeff = maxl (map get_coeff cs)
    69 	    in Free ("c_"^string_of_int (max_coeff + 1), HOLogic.realT) end
    70     end;
    71 
    72 (*WN080222:*)
    73 (*("add_new_c", ("Integrate.add_new_c", eval_add_new_c "#add_new_c_"))
    74   add a new c to a term or a fun-equation;
    75   this is _not in_ the term, because only applied to _whole_ term*)
    76 fun eval_add_new_c (_:string) "Integrate.add_new_c" p (_:Proof.context) =
    77     let val p' = case p of
    78 		     Const (\<^const_name>\<open>HOL.eq\<close>, T) $ lh $ rh => 
    79 		     Const (\<^const_name>\<open>HOL.eq\<close>, T) $ lh $ TermC.mk_add rh (new_c rh)
    80 		   | p => TermC.mk_add p (new_c p)
    81     in SOME ((UnparseC.term p) ^ " = " ^ UnparseC.term p',
    82 	  HOLogic.Trueprop $ (TermC.mk_equality (p, p')))
    83     end
    84   | eval_add_new_c _ _ _ _ = NONE;
    85 
    86 
    87 (*("is_f_x", ("Integrate.is_f_x", eval_is_f_x "is_f_x_"))*)
    88 fun eval_is_f_x _ _(p as (Const (\<^const_name>\<open>Integrate.is_f_x\<close>, _)
    89 					   $ arg)) _ =
    90     if TermC.is_f_x arg
    91     then SOME ((UnparseC.term_in_ctxt @{context} p) ^ " = True",
    92 	       HOLogic.Trueprop $ (TermC.mk_equality (p, @{term True})))
    93     else SOME ((UnparseC.term_in_ctxt @{context} p) ^ " = False",
    94 	       HOLogic.Trueprop $ (TermC.mk_equality (p, @{term False})))
    95   | eval_is_f_x _ _ _ _ = NONE;
    96 \<close>
    97 
    98 calculation add_new_c = \<open>eval_add_new_c "add_new_c_"\<close>
    99 calculation is_f_x = \<open>eval_is_f_x "is_f_idextifier_"\<close>
   100 
   101 ML \<open>
   102 (** rulesets **)
   103 
   104 (*.rulesets for integration.*)
   105 val integration_rules = 
   106   Rule_Def.Repeat {id="integration_rules", preconds = [], 
   107     rew_ord = ("termlessI",termlessI), 
   108     asm_rls = Rule_Def.Repeat {id="conditions_in_integration_rules", 
   109    	  preconds = [], 
   110    	  rew_ord = ("termlessI",termlessI), 
   111    	  asm_rls = Rule_Set.Empty, 
   112    	  prog_rls = Rule_Set.Empty, calc = [], errpatts = [],
   113    	  rules = [(*for rewriting conditions in Thm's*)
   114    		   \<^rule_eval>\<open>Prog_Expr.occurs_in\<close> (Prog_Expr.eval_occurs_in "#occurs_in_"),
   115    		   \<^rule_thm>\<open>not_true\<close>,
   116    		   \<^rule_thm>\<open>not_false\<close>],
   117    	  program = Rule.Empty_Prog}, 
   118     prog_rls = Rule_Set.Empty, calc = [], errpatts = [],
   119     rules = [
   120    	  \<^rule_thm>\<open>integral_const\<close>,
   121    	  \<^rule_thm>\<open>integral_var\<close>,
   122    	  \<^rule_thm>\<open>integral_add\<close>,
   123    	  \<^rule_thm>\<open>integral_mult\<close>,
   124    	  \<^rule_thm>\<open>integral_pow\<close>,
   125    	  \<^rule_eval>\<open>plus\<close> (**)(Calc_Binop.numeric "#add_")(*for n+1*)],
   126     program = Rule.Empty_Prog};
   127 \<close>
   128 ML \<open>
   129 val add_new_c = 
   130   Rule_Set.Sequence {id="add_new_c", preconds = [], 
   131     rew_ord = ("termlessI",termlessI), 
   132     asm_rls = Rule_Def.Repeat {id="conditions_in_add_new_c", 
   133       preconds = [], rew_ord = ("termlessI",termlessI), asm_rls = Rule_Set.Empty, 
   134       prog_rls = Rule_Set.Empty, calc = [], errpatts = [],
   135       rules = [
   136         \<^rule_eval>\<open>Prog_Expr.matches\<close> (Prog_Expr.eval_matches""),
   137    	    \<^rule_eval>\<open>Integrate.is_f_x\<close> (eval_is_f_x "is_f_x_"),
   138    	    \<^rule_thm>\<open>not_true\<close>,
   139    	    \<^rule_thm>\<open>not_false\<close>],
   140       program = Rule.Empty_Prog}, 
   141     prog_rls = Rule_Set.Empty, calc = [], errpatts = [],
   142     rules = [ (*\<^rule_thm>\<open>call_for_new_c\<close>,*)
   143       Rule.Cal1 ("Integrate.add_new_c", eval_add_new_c "new_c_")],
   144     program = Rule.Empty_Prog};
   145 \<close>
   146 ML \<open>
   147 
   148 (*.rulesets for simplifying Integrals.*)
   149 
   150 (*.for simplify_Integral adapted from 'norm_Rational_rls'.*)
   151 val norm_Rational_rls_noadd_fractions = 
   152   Rule_Def.Repeat {id = "norm_Rational_rls_noadd_fractions", preconds = [], 
   153     rew_ord = ("dummy_ord",Rewrite_Ord.function_empty), 
   154     asm_rls = norm_rat_erls, prog_rls = Rule_Set.Empty, calc = [], errpatts = [],
   155     rules = [(*Rule.Rls_ add_fractions_p_rls,!!!*)
   156   	  Rule.Rls_ (*rat_mult_div_pow original corrected WN051028*)
   157   		(Rule_Def.Repeat {id = "rat_mult_div_pow", preconds = [], 
   158   		   rew_ord = ("dummy_ord",Rewrite_Ord.function_empty), 
   159   		   asm_rls = Rule_Set.append_rules "Rule_Set.empty-is_polyexp" Rule_Set.empty
   160   				 [\<^rule_eval>\<open>is_polyexp\<close> (eval_is_polyexp "")],
   161   			 prog_rls = Rule_Set.Empty, calc = [], errpatts = [],
   162   		   rules = [
   163            \<^rule_thm>\<open>rat_mult\<close>, (*"?a / ?b * (?c / ?d) = ?a * ?c / (?b * ?d)"*)
   164   	       \<^rule_thm>\<open>rat_mult_poly_l\<close>, (*"?c is_polyexp ==> ?c * (?a / ?b) = ?c * ?a / ?b"*)
   165   	       \<^rule_thm>\<open>rat_mult_poly_r\<close>, (*"?c is_polyexp ==> ?a / ?b * ?c = ?a * ?c / ?b"*)
   166   
   167   	       \<^rule_thm>\<open>real_divide_divide1_mg\<close>, (*"y ~= 0 ==> (u / v) / (y / z) = (u * z) / (y * v)"*)
   168   	       \<^rule_thm>\<open>divide_divide_eq_right\<close>, (*"?x / (?y / ?z) = ?x * ?z / ?y"*)
   169   	       \<^rule_thm>\<open>divide_divide_eq_left\<close>, (*"?x / ?y / ?z = ?x / (?y * ?z)"*)
   170   	       \<^rule_eval>\<open>divide\<close> (Prog_Expr.eval_cancel "#divide_e"),
   171   	      
   172   	       \<^rule_thm>\<open>rat_power\<close>], (*"(?a / ?b)  \<up>  ?n = ?a  \<up>  ?n / ?b  \<up>  ?n"*)
   173         program = Rule.Empty_Prog}),
   174   		Rule.Rls_ make_rat_poly_with_parentheses,
   175   		Rule.Rls_ cancel_p_rls,(*FIXME:cancel_p does NOT order sometimes*)
   176   		Rule.Rls_ rat_reduce_1],
   177     program = Rule.Empty_Prog};
   178 
   179 (*.for simplify_Integral adapted from 'norm_Rational'.*)
   180 val norm_Rational_noadd_fractions = 
   181   Rule_Set.Sequence {id = "norm_Rational_noadd_fractions", preconds = [], 
   182     rew_ord = ("dummy_ord",Rewrite_Ord.function_empty), 
   183     asm_rls = norm_rat_erls, prog_rls = Rule_Set.Empty, calc = [], errpatts = [],
   184     rules = [Rule.Rls_ discard_minus,
   185   		Rule.Rls_ rat_mult_poly,(* removes double fractions like a/b/c    *)
   186   		Rule.Rls_ make_rat_poly_with_parentheses, (*WN0510 also in(#)below*)
   187   		Rule.Rls_ cancel_p_rls, (*FIXME.MG:cancel_p does NOT order sometim*)
   188   		Rule.Rls_ norm_Rational_rls_noadd_fractions,(* the main rls (#)   *)
   189   		Rule.Rls_ discard_parentheses1], (* mult only                       *)
   190     program = Rule.Empty_Prog};
   191 
   192 (*.simplify terms before and after Integration such that  
   193    ..a.x^2/2 + b.x^3/3.. is made to ..a/2.x^2 + b/3.x^3.. (and NO
   194    common denominator as done by norm_Rational or make_ratpoly_in.
   195    This is a copy from 'make_ratpoly_in' with respective reduction of rules and
   196    *1* expand the term, ie. distribute * and / over +
   197 .*)
   198 val separate_bdv2 =
   199    Rule_Set.append_rules "separate_bdv2" collect_bdv [
   200     \<^rule_thm>\<open>separate_bdv\<close>, (*"?a * ?bdv / ?b = ?a / ?b * ?bdv"*)
   201 		\<^rule_thm>\<open>separate_bdv_n\<close>,
   202 		\<^rule_thm>\<open>separate_1_bdv\<close>, (*"?bdv / ?b = (1 / ?b) * ?bdv"*)
   203 		\<^rule_thm>\<open>separate_1_bdv_n\<close> (*"?bdv  \<up>  ?n / ?b = 1 / ?b * ?bdv  \<up>  ?n"*)
   204     (*
   205 		rule_thm>\<open>add_divide_distrib\<close> (*"(?x + ?y) / ?z = ?x / ?z + ?y / ?z"*)*)
   206 		];
   207 val simplify_Integral = 
   208   Rule_Set.Sequence {id = "simplify_Integral", preconds = []:term list, 
   209     rew_ord = ("dummy_ord", Rewrite_Ord.function_empty),
   210     asm_rls = Atools_erls, prog_rls = Rule_Set.Empty,
   211     calc = [],  errpatts = [],
   212     rules = [
   213       \<^rule_thm>\<open>distrib_right\<close>, (*"(?z1.0 + ?z2.0) * ?w = ?z1.0 * ?w + ?z2.0 * ?w"*)
   214 	    \<^rule_thm>\<open>add_divide_distrib\<close>, (*"(?x + ?y) / ?z = ?x / ?z + ?y / ?z"*)
   215 	     (*^^^^^ *1* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^*)
   216 	    Rule.Rls_ norm_Rational_noadd_fractions,
   217 	    Rule.Rls_ order_add_mult_in,
   218 	    Rule.Rls_ discard_parentheses,
   219 	    (*Rule.Rls_ collect_bdv, from make_polynomial_in*)
   220 	    Rule.Rls_ separate_bdv2,
   221 	    \<^rule_eval>\<open>divide\<close> (Prog_Expr.eval_cancel "#divide_e")],
   222     program = Rule.Empty_Prog};      
   223 
   224 val integration =
   225   Rule_Set.Sequence {
   226      id="integration", preconds = [], rew_ord = ("termlessI",termlessI), 
   227   	 asm_rls = Rule_Def.Repeat {
   228        id="conditions_in_integration",  preconds = [], rew_ord = ("termlessI",termlessI), 
   229   		 asm_rls = Rule_Set.Empty, prog_rls = Rule_Set.Empty, calc = [], errpatts = [],
   230   		 rules = [], program = Rule.Empty_Prog}, 
   231   	 prog_rls = Rule_Set.Empty, calc = [], errpatts = [],
   232   	 rules = [
   233       Rule.Rls_ integration_rules,
   234   		 Rule.Rls_ add_new_c,
   235   		 Rule.Rls_ simplify_Integral],
   236   	 program = Rule.Empty_Prog};
   237 
   238 val prep_rls' = Auto_Prog.prep_rls @{theory};
   239 \<close>
   240 rule_set_knowledge
   241   integration_rules = \<open>prep_rls' integration_rules\<close> and
   242   add_new_c = \<open>prep_rls' add_new_c\<close> and
   243   simplify_Integral = \<open>prep_rls' simplify_Integral\<close> and
   244   integration = \<open>prep_rls' integration\<close> and
   245   separate_bdv2 = \<open>prep_rls' separate_bdv2\<close> and
   246   norm_Rational_noadd_fractions = \<open>prep_rls' norm_Rational_noadd_fractions\<close> and
   247   norm_Rational_rls_noadd_fractions = \<open>prep_rls' norm_Rational_rls_noadd_fractions\<close>
   248 
   249 (** problems **)
   250 
   251 problem pbl_fun_integ : "integrate/function" =
   252   \<open>Rule_Set.append_rules "empty" Rule_Set.empty [(*for preds in where_*)]\<close>
   253   Method_Ref: "diff/integration"
   254   CAS: "Integrate (f_f, v_v)"
   255   Given: "functionTerm f_f" "integrateBy v_v"
   256   Find: "antiDerivative F_F"
   257 
   258 problem pbl_fun_integ_nam : "named/integrate/function" =
   259   (*here "named" is used differently from Differentiation"*)
   260   \<open>Rule_Set.append_rules "empty" Rule_Set.empty [(*for preds in where_*)]\<close>
   261   Method_Ref: "diff/integration/named"
   262   CAS: "Integrate (f_f, v_v)"
   263   Given: "functionTerm f_f" "integrateBy v_v"
   264   Find: "antiDerivativeName F_F"
   265 
   266 (** methods **)
   267 
   268 partial_function (tailrec) integrate :: "real \<Rightarrow> real \<Rightarrow> real"
   269   where
   270 "integrate f_f v_v = (
   271   let
   272     t_t = Take (Integral f_f D v_v)
   273   in
   274     (Rewrite_Set_Inst [(''bdv'', v_v)] ''integration'') t_t)"
   275 
   276 method met_diffint : "diff/integration" =
   277   \<open>{rew_ord="tless_true", rls'=Atools_erls, calc = [], prog_rls = Rule_Set.empty, where_rls=Rule_Set.empty,
   278 	  errpats = [], rew_rls = Rule_Set.empty}\<close>
   279   Program: integrate.simps
   280   Given: "functionTerm f_f" "integrateBy v_v"
   281   Find: "antiDerivative F_F"
   282 
   283 partial_function (tailrec) intergrate_named :: "real \<Rightarrow> real \<Rightarrow> (real \<Rightarrow> real) \<Rightarrow> bool"
   284   where
   285 "intergrate_named f_f v_v F_F =(
   286   let
   287     t_t = Take (F_F v_v = Integral f_f D v_v)
   288   in (
   289     (Try (Rewrite_Set_Inst [(''bdv'', v_v)] ''simplify_Integral'')) #>
   290     (Rewrite_Set_Inst [(''bdv'', v_v)] ''integration'')
   291     ) t_t)"
   292 
   293 method met_diffint_named : "diff/integration/named" =
   294   \<open>{rew_ord="tless_true", rls'=Atools_erls, calc = [], prog_rls = Rule_Set.empty, where_rls=Rule_Set.empty,
   295     errpats = [], rew_rls = Rule_Set.empty}\<close>
   296   Program: intergrate_named.simps
   297   Given: "functionTerm f_f" "integrateBy v_v"
   298   Find: "antiDerivativeName F_F"
   299 
   300 ML \<open>
   301 \<close> ML \<open>
   302 \<close>
   303 
   304 end