src/HOL/Library/Cset.thy
author Andreas Lochbihler
Mon, 25 Jul 2011 16:55:48 +0200
changeset 44842 892030194015
parent 44082 93b1183e43e5
child 45426 da75ffe3d988
permissions -rw-r--r--
added operations to Cset with code equations in backing implementations
     1 
     2 (* Author: Florian Haftmann, TU Muenchen *)
     3 
     4 header {* A dedicated set type which is executable on its finite part *}
     5 
     6 theory Cset
     7 imports More_Set More_List
     8 begin
     9 
    10 subsection {* Lifting *}
    11 
    12 typedef (open) 'a set = "UNIV :: 'a set set"
    13   morphisms member Set by rule+
    14 hide_type (open) set
    15 
    16 lemma member_Set [simp]:
    17   "member (Set A) = A"
    18   by (rule Set_inverse) rule
    19 
    20 lemma Set_member [simp]:
    21   "Set (member A) = A"
    22   by (fact member_inverse)
    23 
    24 lemma Set_inject [simp]:
    25   "Set A = Set B \<longleftrightarrow> A = B"
    26   by (simp add: Set_inject)
    27 
    28 lemma set_eq_iff:
    29   "A = B \<longleftrightarrow> member A = member B"
    30   by (simp add: member_inject)
    31 hide_fact (open) set_eq_iff
    32 
    33 lemma set_eqI:
    34   "member A = member B \<Longrightarrow> A = B"
    35   by (simp add: Cset.set_eq_iff)
    36 hide_fact (open) set_eqI
    37 
    38 subsection {* Lattice instantiation *}
    39 
    40 instantiation Cset.set :: (type) boolean_algebra
    41 begin
    42 
    43 definition less_eq_set :: "'a Cset.set \<Rightarrow> 'a Cset.set \<Rightarrow> bool" where
    44   [simp]: "A \<le> B \<longleftrightarrow> member A \<subseteq> member B"
    45 
    46 definition less_set :: "'a Cset.set \<Rightarrow> 'a Cset.set \<Rightarrow> bool" where
    47   [simp]: "A < B \<longleftrightarrow> member A \<subset> member B"
    48 
    49 definition inf_set :: "'a Cset.set \<Rightarrow> 'a Cset.set \<Rightarrow> 'a Cset.set" where
    50   [simp]: "inf A B = Set (member A \<inter> member B)"
    51 
    52 definition sup_set :: "'a Cset.set \<Rightarrow> 'a Cset.set \<Rightarrow> 'a Cset.set" where
    53   [simp]: "sup A B = Set (member A \<union> member B)"
    54 
    55 definition bot_set :: "'a Cset.set" where
    56   [simp]: "bot = Set {}"
    57 
    58 definition top_set :: "'a Cset.set" where
    59   [simp]: "top = Set UNIV"
    60 
    61 definition uminus_set :: "'a Cset.set \<Rightarrow> 'a Cset.set" where
    62   [simp]: "- A = Set (- (member A))"
    63 
    64 definition minus_set :: "'a Cset.set \<Rightarrow> 'a Cset.set \<Rightarrow> 'a Cset.set" where
    65   [simp]: "A - B = Set (member A - member B)"
    66 
    67 instance proof
    68 qed (auto intro: Cset.set_eqI)
    69 
    70 end
    71 
    72 instantiation Cset.set :: (type) complete_lattice
    73 begin
    74 
    75 definition Inf_set :: "'a Cset.set set \<Rightarrow> 'a Cset.set" where
    76   [simp]: "Inf_set As = Set (Inf (image member As))"
    77 
    78 definition Sup_set :: "'a Cset.set set \<Rightarrow> 'a Cset.set" where
    79   [simp]: "Sup_set As = Set (Sup (image member As))"
    80 
    81 instance proof
    82 qed (auto simp add: le_fun_def le_bool_def)
    83 
    84 end
    85 
    86 
    87 subsection {* Basic operations *}
    88 
    89 abbreviation empty :: "'a Cset.set" where "empty \<equiv> bot"
    90 hide_const (open) empty
    91 
    92 abbreviation UNIV :: "'a Cset.set" where "UNIV \<equiv> top"
    93 hide_const (open) UNIV
    94 
    95 definition is_empty :: "'a Cset.set \<Rightarrow> bool" where
    96   [simp]: "is_empty A \<longleftrightarrow> More_Set.is_empty (member A)"
    97 
    98 definition insert :: "'a \<Rightarrow> 'a Cset.set \<Rightarrow> 'a Cset.set" where
    99   [simp]: "insert x A = Set (Set.insert x (member A))"
   100 
   101 definition remove :: "'a \<Rightarrow> 'a Cset.set \<Rightarrow> 'a Cset.set" where
   102   [simp]: "remove x A = Set (More_Set.remove x (member A))"
   103 
   104 definition map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a Cset.set \<Rightarrow> 'b Cset.set" where
   105   [simp]: "map f A = Set (image f (member A))"
   106 
   107 enriched_type map: map
   108   by (simp_all add: fun_eq_iff image_compose)
   109 
   110 definition filter :: "('a \<Rightarrow> bool) \<Rightarrow> 'a Cset.set \<Rightarrow> 'a Cset.set" where
   111   [simp]: "filter P A = Set (More_Set.project P (member A))"
   112 
   113 definition forall :: "('a \<Rightarrow> bool) \<Rightarrow> 'a Cset.set \<Rightarrow> bool" where
   114   [simp]: "forall P A \<longleftrightarrow> Ball (member A) P"
   115 
   116 definition exists :: "('a \<Rightarrow> bool) \<Rightarrow> 'a Cset.set \<Rightarrow> bool" where
   117   [simp]: "exists P A \<longleftrightarrow> Bex (member A) P"
   118 
   119 definition card :: "'a Cset.set \<Rightarrow> nat" where
   120   [simp]: "card A = Finite_Set.card (member A)"
   121   
   122 context complete_lattice
   123 begin
   124 
   125 definition Infimum :: "'a Cset.set \<Rightarrow> 'a" where
   126   [simp]: "Infimum A = Inf (member A)"
   127 
   128 definition Supremum :: "'a Cset.set \<Rightarrow> 'a" where
   129   [simp]: "Supremum A = Sup (member A)"
   130 
   131 end
   132 
   133 subsection {* More operations *}
   134 
   135 text {* conversion from @{typ "'a list"} *}
   136 
   137 definition set :: "'a list \<Rightarrow> 'a Cset.set" where
   138   "set xs = Set (List.set xs)"
   139 hide_const (open) set
   140 
   141 text {* conversion from @{typ "'a Predicate.pred"} *}
   142 
   143 definition pred_of_cset :: "'a Cset.set \<Rightarrow> 'a Predicate.pred"
   144 where [code del]: "pred_of_cset = Predicate.Pred \<circ> Cset.member"
   145 
   146 definition of_pred :: "'a Predicate.pred \<Rightarrow> 'a Cset.set"
   147 where "of_pred = Cset.Set \<circ> Predicate.eval"
   148 
   149 definition of_seq :: "'a Predicate.seq \<Rightarrow> 'a Cset.set"
   150 where "of_seq = of_pred \<circ> Predicate.pred_of_seq"
   151 
   152 text {* monad operations *}
   153 
   154 definition single :: "'a \<Rightarrow> 'a Cset.set" where
   155   "single a = Set {a}"
   156 
   157 definition bind :: "'a Cset.set \<Rightarrow> ('a \<Rightarrow> 'b Cset.set) \<Rightarrow> 'b Cset.set"
   158                 (infixl "\<guillemotright>=" 70)
   159   where "A \<guillemotright>= f = Set (\<Union>x \<in> member A. member (f x))"
   160 
   161 subsection {* Simplified simprules *}
   162 
   163 lemma empty_simp [simp]: "member Cset.empty = {}"
   164   by(simp)
   165 
   166 lemma UNIV_simp [simp]: "member Cset.UNIV = UNIV"
   167   by simp
   168 
   169 lemma is_empty_simp [simp]:
   170   "is_empty A \<longleftrightarrow> member A = {}"
   171   by (simp add: More_Set.is_empty_def)
   172 declare is_empty_def [simp del]
   173 
   174 lemma remove_simp [simp]:
   175   "remove x A = Set (member A - {x})"
   176   by (simp add: More_Set.remove_def)
   177 declare remove_def [simp del]
   178 
   179 lemma filter_simp [simp]:
   180   "filter P A = Set {x \<in> member A. P x}"
   181   by (simp add: More_Set.project_def)
   182 declare filter_def [simp del]
   183 
   184 lemma member_set [simp]:
   185   "member (Cset.set xs) = set xs"
   186   by (simp add: set_def)
   187 hide_fact (open) member_set set_def
   188 
   189 lemma set_simps [simp]:
   190   "Cset.set [] = Cset.empty"
   191   "Cset.set (x # xs) = insert x (Cset.set xs)"
   192 by(simp_all add: Cset.set_def)
   193 
   194 lemma member_SUPR [simp]:
   195   "member (SUPR A f) = SUPR A (member \<circ> f)"
   196 unfolding SUPR_def by simp
   197 
   198 lemma member_bind [simp]:
   199   "member (P \<guillemotright>= f) = member (SUPR (member P) f)"
   200 by (simp add: bind_def Cset.set_eq_iff)
   201 
   202 lemma member_single [simp]:
   203   "member (single a) = {a}"
   204 by(simp add: single_def)
   205 
   206 lemma single_sup_simps [simp]:
   207   shows single_sup: "sup (single a) A = insert a A"
   208   and sup_single: "sup A (single a) = insert a A"
   209 by(auto simp add: Cset.set_eq_iff)
   210 
   211 lemma single_bind [simp]:
   212   "single a \<guillemotright>= B = B a"
   213 by(simp add: bind_def single_def)
   214 
   215 lemma bind_bind:
   216   "(A \<guillemotright>= B) \<guillemotright>= C = A \<guillemotright>= (\<lambda>x. B x \<guillemotright>= C)"
   217 by(simp add: bind_def)
   218 
   219 lemma bind_single [simp]:
   220   "A \<guillemotright>= single = A"
   221 by(simp add: bind_def single_def)
   222 
   223 lemma bind_const: "A \<guillemotright>= (\<lambda>_. B) = (if Cset.is_empty A then Cset.empty else B)"
   224 by(auto simp add: Cset.set_eq_iff)
   225 
   226 lemma empty_bind [simp]:
   227   "Cset.empty \<guillemotright>= f = Cset.empty"
   228 by(simp add: Cset.set_eq_iff)
   229 
   230 lemma member_of_pred [simp]:
   231   "member (of_pred P) = {x. Predicate.eval P x}"
   232 by(simp add: of_pred_def Collect_def)
   233 
   234 lemma member_of_seq [simp]:
   235   "member (of_seq xq) = {x. Predicate.member xq x}"
   236 by(simp add: of_seq_def eval_member)
   237 
   238 lemma eval_pred_of_cset [simp]: 
   239   "Predicate.eval (pred_of_cset A) = Cset.member A"
   240 by(simp add: pred_of_cset_def)
   241 
   242 subsection {* Default implementations *}
   243 
   244 lemma set_code [code]:
   245   "Cset.set = foldl (\<lambda>A x. insert x A) Cset.empty"
   246 proof(rule ext, rule Cset.set_eqI)
   247   fix xs
   248   show "member (Cset.set xs) = member (foldl (\<lambda>A x. insert x A) Cset.empty xs)"
   249     by(induct xs rule: rev_induct)(simp_all)
   250 qed
   251 
   252 lemma single_code [code]:
   253   "single a = insert a Cset.empty"
   254 by(simp add: Cset.single_def)
   255 
   256 lemma of_pred_code [code]:
   257   "of_pred (Predicate.Seq f) = (case f () of
   258      Predicate.Empty \<Rightarrow> Cset.empty
   259    | Predicate.Insert x P \<Rightarrow> Cset.insert x (of_pred P)
   260    | Predicate.Join P xq \<Rightarrow> sup (of_pred P) (of_seq xq))"
   261 by(auto split: seq.split 
   262         simp add: Predicate.Seq_def of_pred_def eval_member Cset.set_eq_iff)
   263 
   264 lemma of_seq_code [code]:
   265   "of_seq Predicate.Empty = Cset.empty"
   266   "of_seq (Predicate.Insert x P) = Cset.insert x (of_pred P)"
   267   "of_seq (Predicate.Join P xq) = sup (of_pred P) (of_seq xq)"
   268 by(auto simp add: of_seq_def of_pred_def Cset.set_eq_iff)
   269 
   270 declare mem_def [simp del]
   271 
   272 no_notation bind (infixl "\<guillemotright>=" 70)
   273 
   274 hide_const (open) is_empty insert remove map filter forall exists card
   275   Inter Union bind single of_pred of_seq
   276 
   277 hide_fact (open) set_def pred_of_cset_def of_pred_def of_seq_def single_def 
   278   bind_def empty_simp UNIV_simp member_set set_simps member_SUPR member_bind 
   279   member_single single_sup_simps single_sup sup_single single_bind
   280   bind_bind bind_single bind_const empty_bind member_of_pred member_of_seq
   281   eval_pred_of_cset set_code single_code of_pred_code of_seq_code
   282 
   283 end