src/Tools/isac/Interpret/solve-step.sml
author Walther Neuper <walther.neuper@jku.at>
Mon, 04 May 2020 09:25:51 +0200
changeset 59932 87336f3b021f
parent 59931 cc5b51681c4b
child 59933 92214be419b2
permissions -rw-r--r--
separate Solve_Step.add, rearrange code, prep. Specify_Step
     1 (* Title:  Specify/solve-step.sml
     2    Author: Walther Neuper
     3    (c) due to copyright terms
     4 
     5 Code for the solve-phase in analogy to structure Specify_Step for the specify-phase.
     6 *)
     7 
     8 signature SOLVE_STEP =
     9 sig
    10   val check: Tactic.input -> Calc.T -> Applicable.T
    11   val add: Tactic.T -> Istate_Def.T * Proof.context -> Calc.T -> Generate.test_out
    12   val add_general: Tactic.T -> Istate_Def.T * Proof.context -> Calc.T -> Generate.test_out
    13   val s_add_general: State_Steps.T ->
    14     Ctree.ctree * Pos.pos' list * Pos.pos' -> Ctree.ctree * Pos.pos' list * Pos.pos'
    15 
    16 (* ---- for tests only: shifted from below to remove the Warning "unused" at fun.def. --------- *)
    17   (*NONE*)                                                     
    18 (*/-------------------------------------------------------- ! aktivate for Test_Isac BEGIN ---\* )
    19   (*NONE*)                                                     
    20 ( *\--- ! aktivate for Test_Isac END ----------------------------------------------------------/*)
    21 end
    22 
    23 (**)
    24 structure Solve_Step(** ): SOLVE_STEP( **) =
    25 struct
    26 (**)
    27 
    28 (*
    29   check tactics (input by the user, mostly) for applicability
    30   and determine as much of the result of the tactic as possible initially.
    31 *)
    32 fun check (Tactic.Apply_Method mI) (pt, (p, _)) =
    33       let
    34         val (dI, pI, probl, ctxt) = case Ctree.get_obj I pt p of
    35           Ctree.PblObj {origin = (_, (dI, pI, _), _), probl, ctxt, ...} => (dI, pI, probl, ctxt)
    36         | _ => raise ERROR "Specify_Step.check Apply_Method: uncovered case Ctree.get_obj"
    37         val {where_, ...} = Specify.get_pbt pI
    38         val pres = map (Model.mk_env probl |> subst_atomic) where_
    39         val ctxt = if ContextC.is_empty ctxt (*vvvvvvvvvvvvvv DO THAT EARLIER?!?*)
    40           then ThyC.get_theory dI |> Proof_Context.init_global |> ContextC.insert_assumptions pres
    41           else ctxt
    42       in
    43         Applicable.Yes (Tactic.Apply_Method' (mI, NONE, Istate_Def.empty (*filled later*), ctxt))
    44       end
    45   | check (Tactic.Calculate op_) (cs as (pt, (p, _))) =
    46       let 
    47         val (msg, thy', isa_fn) = ApplicableOLD.from_pblobj_or_detail_calc op_ p pt;
    48         val f = Calc.current_formula cs;
    49       in
    50         if msg = "OK"
    51         then
    52     	    case Rewrite.calculate_ (ThyC.get_theory thy') isa_fn f of
    53     	      SOME (f', (id, thm))
    54     	        => Applicable.Yes (Tactic.Calculate' (thy', op_, f, (f', (id, thm))))
    55     	    | NONE => Applicable.No ("'calculate " ^ op_ ^ "' not applicable") 
    56         else Applicable.No msg                                              
    57       end
    58   | check (Tactic.Check_Postcond pI) (_, _) = (*TODO: only applicable, if evaluating to True*)
    59       Applicable.Yes (Tactic.Check_Postcond' (pI, TermC.empty))
    60   | check (Tactic.Check_elementwise pred) cs =
    61       let 
    62         val f = Calc.current_formula cs;
    63       in
    64         Applicable.Yes (Tactic.Check_elementwise' (f, pred, (f, [])))
    65       end
    66   | check Tactic.Empty_Tac _ = Applicable.No "Empty_Tac is not applicable"
    67   | check (Tactic.Free_Solve) _ = Applicable.Yes (Tactic.Free_Solve')
    68   | check Tactic.Or_to_List cs =
    69        let 
    70         val f = Calc.current_formula cs;
    71         val ls = Prog_Expr.or2list f;
    72       in
    73         Applicable.Yes (Tactic.Or_to_List' (f, ls))
    74       end
    75   | check (Tactic.Rewrite thm) (cs as (pt, (p, _))) = 
    76       let
    77         val (msg, thy', ro, rls', _) = ApplicableOLD.from_pblobj_or_detail_thm thm p pt;
    78         val thy = ThyC.get_theory thy';
    79         val f = Calc.current_formula cs;
    80       in
    81         if msg = "OK" 
    82         then
    83           case Rewrite.rewrite_ thy (Rewrite_Ord.assoc_rew_ord ro) rls' false (snd thm) f of
    84             SOME (f',asm) => Applicable.Yes (Tactic.Rewrite' (thy', ro, rls', false, thm, f, (f', asm)))
    85           | NONE => Applicable.No ((thm |> fst |> quote) ^ " not applicable") 
    86         else Applicable.No msg
    87       end
    88   | check (Tactic.Rewrite_Inst (subs, thm)) (cs as (pt, (p, _))) = 
    89       let 
    90         val pp = Ctree.par_pblobj pt p;
    91         val thy' = Ctree.get_obj Ctree.g_domID pt pp;
    92         val thy = ThyC.get_theory thy';
    93         val {rew_ord' = ro', erls = erls, ...} = Specify.get_met (Ctree.get_obj Ctree.g_metID pt pp);
    94         val f = Calc.current_formula cs;
    95         val subst = Subst.T_from_input thy subs; (*TODO: input requires parse _: _ -> _ option*)
    96       in 
    97         case Rewrite.rewrite_inst_ thy (Rewrite_Ord.assoc_rew_ord ro') erls false subst (snd thm) f of
    98           SOME (f', asm) =>
    99             Applicable.Yes (Tactic.Rewrite_Inst' (thy', ro', erls, false, subst, thm, f, (f', asm)))
   100         | NONE => Applicable.No (fst thm ^ " not applicable")
   101       end
   102   | check (Tactic.Rewrite_Set rls) (cs as (pt, (p, _))) =
   103       let 
   104         val pp = Ctree.par_pblobj pt p; 
   105         val thy' = Ctree.get_obj Ctree.g_domID pt pp;
   106         val f = Calc.current_formula cs;
   107       in
   108         case Rewrite.rewrite_set_ (ThyC.get_theory thy') false (assoc_rls rls) f of
   109           SOME (f', asm)
   110             => Applicable.Yes (Tactic.Rewrite_Set' (thy', false, assoc_rls rls, f, (f', asm)))
   111           | NONE => Applicable.No (rls ^ " not applicable")
   112       end
   113   | check (Tactic.Rewrite_Set_Inst (subs, rls)) (cs as (pt, (p, _))) =
   114       let 
   115         val pp = Ctree.par_pblobj pt p;
   116         val thy' = Ctree.get_obj Ctree.g_domID pt pp;
   117         val thy = ThyC.get_theory thy';
   118         val f = Calc.current_formula cs;
   119     	  val subst = Subst.T_from_input thy subs; (*TODO: input requires parse _: _ -> _ option*)
   120       in 
   121         case Rewrite.rewrite_set_inst_ thy false subst (assoc_rls rls) f of
   122           SOME (f', asm)
   123             => Applicable.Yes (Tactic.Rewrite_Set_Inst' (thy', false, subst, assoc_rls rls, f, (f', asm)))
   124         | NONE => Applicable.No (rls ^ " not applicable")
   125       end
   126   | check (Tactic.Subproblem (domID, pblID)) (_, _) = 
   127       Applicable.Yes (Tactic.Subproblem' ((domID, pblID, Method.id_empty), [], 
   128 			  TermC.empty, [], ContextC.empty, Auto_Prog.subpbl domID pblID))
   129    | check (Tactic.Substitute sube) (cs as (pt, (p, _))) =
   130       let
   131         val pp = Ctree.par_pblobj pt p
   132         val thy = ThyC.get_theory (Ctree.get_obj Ctree.g_domID pt pp)
   133         val f = Calc.current_formula cs;
   134 		    val {rew_ord', erls, ...} = Specify.get_met (Ctree.get_obj Ctree.g_metID pt pp)
   135 		    val subte = Subst.input_to_terms sube (*TODO: input requires parse _: _ -> _ option*)
   136 		    val subst = Subst.T_from_string_eqs thy sube
   137 		    val ro = Rewrite_Ord.assoc_rew_ord rew_ord'
   138 		  in
   139 		    if foldl and_ (true, map TermC.contains_Var subte)
   140 		    then (*1*)
   141 		      let val f' = subst_atomic subst f
   142 		      in if f = f'
   143 		        then Applicable.No (Subst.string_eqs_to_string sube ^ " not applicable")
   144 		        else Applicable.Yes (Tactic.Substitute' (ro, erls, subte, f, f'))
   145 		      end
   146 		    else (*2*)
   147 		      case Rewrite.rewrite_terms_ thy ro erls subte f of
   148 		        SOME (f', _) =>  Applicable.Yes (Tactic.Substitute' (ro, erls, subte, f, f'))
   149 		      | NONE => Applicable.No (Subst.string_eqs_to_string sube ^ " not applicable")
   150 		  end
   151   | check (Tactic.Tac id) (cs as (pt, (p, _))) =
   152       let 
   153         val pp = Ctree.par_pblobj pt p; 
   154         val thy' = Ctree.get_obj Ctree.g_domID pt pp;
   155         val thy = ThyC.get_theory thy';
   156         val f = Calc.current_formula cs;
   157       in case id of
   158         "subproblem_equation_dummy" =>
   159     	  if TermC.is_expliceq f
   160     	  then Applicable.Yes (Tactic.Tac_ (thy, UnparseC.term f, id, "subproblem_equation_dummy (" ^ UnparseC.term f ^ ")"))
   161     	  else Applicable.No "applicable only to equations made explicit"
   162       | "solve_equation_dummy" =>
   163     	  let val (id', f') = ApplicableOLD.split_dummy (UnparseC.term f);
   164     	  in
   165     	    if id' <> "subproblem_equation_dummy"
   166     	    then Applicable.No "no subproblem"
   167     	    else if (ThyC.to_ctxt thy, f') |-> TermC.parseNEW |> the |> TermC.is_expliceq
   168     		    then Applicable.Yes (Tactic.Tac_ (thy, UnparseC.term f, id, "[" ^ f' ^ "]"))
   169     		    else error ("Solve_Step.check: f= " ^ f')
   170         end
   171       | _ => Applicable.Yes (Tactic.Tac_ (thy, UnparseC.term f, id, UnparseC.term f))
   172       end
   173   | check (Tactic.Take str) _ = Applicable.Yes (Tactic.Take' (TermC.str2term str)) (* always applicable ?*)
   174   | check (Tactic.Begin_Trans) cs =
   175       Applicable.Yes (Tactic.Begin_Trans' (Calc.current_formula cs))
   176   | check (Tactic.End_Trans) (pt, (p, p_)) = (*TODO: check parent branches*)
   177     if p_ = Pos.Res 
   178 	  then Applicable.Yes (Tactic.End_Trans' (Ctree.get_obj Ctree.g_result pt p))
   179     else Applicable.No "'End_Trans' is not applicable at the beginning of a transitive sequence"
   180   | check Tactic.End_Proof' _ = Applicable.Yes Tactic.End_Proof''
   181   | check m _ = raise ERROR ("Solve_Step.check called for " ^ Tactic.input_to_string m);
   182 
   183 fun add (Tactic.Apply_Method' (_, topt, is, _)) (_, ctxt) (pt, pos as (p, _)) = 
   184     (case topt of 
   185       SOME t => 
   186         let val (pt, c) = Ctree.cappend_form pt p (is, ctxt) t
   187         in (pos, c, Generate.EmptyMout, pt) end
   188     | NONE => (pos, [], Generate.EmptyMout, pt))
   189   | add (Tactic.Take' t) l (pt, (p, _)) = (* val (Take' t) = m; *)
   190     let
   191       val p =
   192         let val (ps, p') = split_last p (* no connex to prev.ppobj *)
   193 	      in if p' = 0 then ps @ [1] else p end
   194       val (pt, c) = Ctree.cappend_form pt p l t
   195     in
   196       ((p, Pos.Frm), c, Generate.FormKF (UnparseC.term t), pt)
   197     end
   198   | add (Tactic.Begin_Trans' t) l (pt, (p, Pos.Frm)) =
   199     let
   200       val (pt, c) = Ctree.cappend_form pt p l t
   201       val pt = Ctree.update_branch pt p Ctree.TransitiveB (*040312*)
   202       (* replace the old PrfOjb ~~~~~ *)
   203       val p = (Pos.lev_on o Pos.lev_dn (* starts with [...,0] *)) p
   204       val (pt, c') = Ctree.cappend_form pt p l t (*FIXME.0402 same istate ???*)
   205     in
   206       ((p, Pos.Frm), c @ c', Generate.FormKF (UnparseC.term t), pt)
   207     end
   208   | add (Tactic.Begin_Trans' t) l (pt, (p, Pos.Res)) = 
   209     (*append after existing PrfObj    vvvvvvvvvvvvv*)
   210     add (Tactic.Begin_Trans' t) l (pt, (Pos.lev_on p, Pos.Frm))
   211   | add (Tactic.End_Trans' tasm) l (pt, (p, _)) =
   212     let
   213       val p' = Pos.lev_up p
   214       val (pt, c) = Ctree.append_result pt p' l tasm Ctree.Complete
   215     in
   216       ((p', Pos.Res), c, Generate.FormKF "DUMMY" (*term2str t ..ERROR (t) has not been declared*), pt)
   217     end
   218   | add (Tactic.Rewrite_Inst' (_, _, _, _, subs', thm', f, (f', asm))) (is, ctxt) (pt, (p, _)) =
   219     let
   220       val (pt, c) = Ctree.cappend_atomic pt p (is, ctxt) f
   221         (Tactic.Rewrite_Inst (Subst.T_to_input subs', thm')) (f',asm) Ctree.Complete;
   222       val pt = Ctree.update_branch pt p Ctree.TransitiveB
   223     in
   224       ((p, Pos.Res), c, Generate.FormKF (UnparseC.term f'), pt)
   225     end
   226  | add (Tactic.Rewrite' (_, _, _, _, thm', f, (f', asm))) (is, ctxt) (pt, (p, _)) =
   227    let
   228      val (pt, c) = Ctree.cappend_atomic pt p (is, ctxt) f (Tactic.Rewrite thm') (f', asm) Ctree.Complete
   229      val pt = Ctree.update_branch pt p Ctree.TransitiveB
   230    in
   231     ((p, Pos.Res), c, Generate.FormKF (UnparseC.term f'), pt)
   232    end
   233   | add (Tactic.Rewrite_Set_Inst' (_, _, subs', rls', f, (f', asm))) (is, ctxt) (pt, (p, _)) =
   234     let
   235       val (pt, c) = Ctree.cappend_atomic pt p (is, ctxt) f 
   236         (Tactic.Rewrite_Set_Inst (Subst.T_to_input subs', Rule_Set.id rls')) (f', asm) Ctree.Complete
   237       val pt = Ctree.update_branch pt p Ctree.TransitiveB
   238     in
   239       ((p, Pos.Res), c, Generate.FormKF (UnparseC.term f'), pt)
   240     end
   241   | add (Tactic.Rewrite_Set' (_, _, rls', f, (f', asm))) (is, ctxt) (pt, (p, _)) =
   242     let
   243       val (pt, c) = Ctree.cappend_atomic pt p (is, ctxt) f 
   244         (Tactic.Rewrite_Set (Rule_Set.id rls')) (f', asm) Ctree.Complete
   245       val pt = Ctree.update_branch pt p Ctree.TransitiveB
   246     in
   247       ((p, Pos.Res), c, Generate.FormKF (UnparseC.term f'), pt)
   248     end
   249   | add (Tactic.Check_Postcond' (_, scval)) l (pt, (p, _)) =
   250       let
   251         val (pt, c) = Ctree.append_result pt p l (scval, []) Ctree.Complete
   252       in
   253         ((p, Pos.Res), c, Generate.FormKF (UnparseC.term scval), pt)
   254       end
   255   | add (Tactic.Calculate' (_, op_, f, (f', _))) l (pt, (p, _)) =
   256       let
   257         val (pt,c) = Ctree.cappend_atomic pt p l f (Tactic.Calculate op_) (f', []) Ctree.Complete
   258       in
   259         ((p, Pos.Res), c, Generate.FormKF (UnparseC.term f'), pt)
   260       end
   261   | add (Tactic.Check_elementwise' (consts, pred, (f', asm))) l (pt, (p, _)) =
   262       let
   263         val (pt,c) = Ctree.cappend_atomic pt p l consts (Tactic.Check_elementwise pred) (f', asm) Ctree.Complete
   264       in
   265         ((p, Pos.Res), c, Generate.FormKF (UnparseC.term f'), pt)
   266       end
   267   | add (Tactic.Or_to_List' (ors, list)) l (pt, (p, _)) =
   268       let
   269         val (pt,c) = Ctree.cappend_atomic pt p l ors Tactic.Or_to_List (list, []) Ctree.Complete
   270       in
   271         ((p, Pos.Res), c, Generate.FormKF (UnparseC.term list), pt)
   272       end
   273   | add (Tactic.Substitute' (_, _, subte, t, t')) l (pt, (p, _)) =
   274       let
   275         val (pt,c) =
   276           Ctree.cappend_atomic pt p l t (Tactic.Substitute (Subst.eqs_to_input subte)) (t',[]) Ctree.Complete
   277         in ((p, Pos.Res), c, Generate.FormKF (UnparseC.term t'), pt) 
   278         end
   279   | add (Tactic.Tac_ (_, f, id, f')) l (pt, (p, _)) =
   280       let
   281         val (pt, c) = Ctree.cappend_atomic pt p l (TermC.str2term f) (Tactic.Tac id) (TermC.str2term f', []) Ctree.Complete
   282       in
   283         ((p,Pos.Res), c, Generate.FormKF f', pt)
   284       end
   285   | add (Tactic.Subproblem' ((domID, pblID, metID), oris, hdl, fmz_, ctxt_specify, f))
   286       (l as (_, ctxt)) (pt, (p, _)) =
   287       let
   288   	    val (pt, c) = Ctree.cappend_problem pt p l (fmz_, (domID, pblID, metID))
   289   	      (oris, (domID, pblID, metID), hdl, ctxt_specify)
   290   	    val f = Syntax.string_of_term (ThyC.to_ctxt (Proof_Context.theory_of ctxt)) f
   291       in
   292         ((p, Pos.Pbl), c, Generate.FormKF f, pt)
   293       end
   294   | add m' _ (_, pos) =
   295       raise ERROR ("Solve_Step.add: not impl.for " ^ Tactic.string_of m' ^ " at " ^ Pos.pos'2str pos)
   296 
   297 (* LI switches between solve-phase and specify-phase *)
   298 fun add_general tac ic cs =
   299   if Tactic.for_specify' tac
   300   then Generate.generate1 tac ic cs
   301   else add tac ic cs
   302 
   303 (* tacis are in reverse order from do_next/specify_: last = fst to insert *)
   304 fun s_add_general [] ptp = ptp
   305   | s_add_general tacis (pt, c, _) = 
   306     let
   307       val (tacis', (_, tac_, (p, is))) = split_last tacis
   308 	    val (p',c',_,pt') = add_general tac_ is (pt, p)
   309     in
   310       s_add_general tacis' (pt', c@c', p')
   311     end
   312 
   313 
   314 (**)end(**);