doc-src/Nitpick/nitpick.tex
author blanchet
Wed, 17 Feb 2010 11:19:48 +0100
changeset 35183 8580ba651489
parent 35180 c57dba973391
child 35185 9b8f351cced6
permissions -rw-r--r--
reintroduce structural induction hint in Nitpick
     1 \documentclass[a4paper,12pt]{article}
     2 \usepackage[T1]{fontenc}
     3 \usepackage{amsmath}
     4 \usepackage{amssymb}
     5 \usepackage[english,french]{babel}
     6 \usepackage{color}
     7 \usepackage{graphicx}
     8 %\usepackage{mathpazo}
     9 \usepackage{multicol}
    10 \usepackage{stmaryrd}
    11 %\usepackage[scaled=.85]{beramono}
    12 \usepackage{../iman,../pdfsetup}
    13 
    14 %\oddsidemargin=4.6mm
    15 %\evensidemargin=4.6mm
    16 %\textwidth=150mm
    17 %\topmargin=4.6mm
    18 %\headheight=0mm
    19 %\headsep=0mm
    20 %\textheight=234mm
    21 
    22 \def\Colon{\mathord{:\mkern-1.5mu:}}
    23 %\def\lbrakk{\mathopen{\lbrack\mkern-3.25mu\lbrack}}
    24 %\def\rbrakk{\mathclose{\rbrack\mkern-3.255mu\rbrack}}
    25 \def\lparr{\mathopen{(\mkern-4mu\mid}}
    26 \def\rparr{\mathclose{\mid\mkern-4mu)}}
    27 
    28 \def\unk{{?}}
    29 \def\undef{(\lambda x.\; \unk)}
    30 %\def\unr{\textit{others}}
    31 \def\unr{\ldots}
    32 \def\Abs#1{\hbox{\rm{\flqq}}{\,#1\,}\hbox{\rm{\frqq}}}
    33 \def\Q{{\smash{\lower.2ex\hbox{$\scriptstyle?$}}}}
    34 
    35 \hyphenation{Mini-Sat size-change First-Steps grand-parent nit-pick
    36 counter-example counter-examples data-type data-types co-data-type 
    37 co-data-types in-duc-tive co-in-duc-tive}
    38 
    39 \urlstyle{tt}
    40 
    41 \begin{document}
    42 
    43 \selectlanguage{english}
    44 
    45 \title{\includegraphics[scale=0.5]{isabelle_nitpick} \\[4ex]
    46 Picking Nits \\[\smallskipamount]
    47 \Large A User's Guide to Nitpick for Isabelle/HOL}
    48 \author{\hbox{} \\
    49 Jasmin Christian Blanchette \\
    50 {\normalsize Institut f\"ur Informatik, Technische Universit\"at M\"unchen} \\
    51 \hbox{}}
    52 
    53 \maketitle
    54 
    55 \tableofcontents
    56 
    57 \setlength{\parskip}{.7em plus .2em minus .1em}
    58 \setlength{\parindent}{0pt}
    59 \setlength{\abovedisplayskip}{\parskip}
    60 \setlength{\abovedisplayshortskip}{.9\parskip}
    61 \setlength{\belowdisplayskip}{\parskip}
    62 \setlength{\belowdisplayshortskip}{.9\parskip}
    63 
    64 % General-purpose enum environment with correct spacing
    65 \newenvironment{enum}%
    66     {\begin{list}{}{%
    67         \setlength{\topsep}{.1\parskip}%
    68         \setlength{\partopsep}{.1\parskip}%
    69         \setlength{\itemsep}{\parskip}%
    70         \advance\itemsep by-\parsep}}
    71     {\end{list}}
    72 
    73 \def\pre{\begingroup\vskip0pt plus1ex\advance\leftskip by\leftmargin
    74 \advance\rightskip by\leftmargin}
    75 \def\post{\vskip0pt plus1ex\endgroup}
    76 
    77 \def\prew{\pre\advance\rightskip by-\leftmargin}
    78 \def\postw{\post}
    79 
    80 \section{Introduction}
    81 \label{introduction}
    82 
    83 Nitpick \cite{blanchette-nipkow-2009} is a counterexample generator for
    84 Isabelle/HOL \cite{isa-tutorial} that is designed to handle formulas
    85 combining (co)in\-duc\-tive datatypes, (co)in\-duc\-tively defined predicates, and
    86 quantifiers. It builds on Kodkod \cite{torlak-jackson-2007}, a highly optimized
    87 first-order relational model finder developed by the Software Design Group at
    88 MIT. It is conceptually similar to Refute \cite{weber-2008}, from which it
    89 borrows many ideas and code fragments, but it benefits from Kodkod's
    90 optimizations and a new encoding scheme. The name Nitpick is shamelessly
    91 appropriated from a now retired Alloy precursor.
    92 
    93 Nitpick is easy to use---you simply enter \textbf{nitpick} after a putative
    94 theorem and wait a few seconds. Nonetheless, there are situations where knowing
    95 how it works under the hood and how it reacts to various options helps
    96 increase the test coverage. This manual also explains how to install the tool on
    97 your workstation. Should the motivation fail you, think of the many hours of
    98 hard work Nitpick will save you. Proving non-theorems is \textsl{hard work}.
    99 
   100 Another common use of Nitpick is to find out whether the axioms of a locale are
   101 satisfiable, while the locale is being developed. To check this, it suffices to
   102 write
   103 
   104 \prew
   105 \textbf{lemma}~``$\textit{False}$'' \\
   106 \textbf{nitpick}~[\textit{show\_all}]
   107 \postw
   108 
   109 after the locale's \textbf{begin} keyword. To falsify \textit{False}, Nitpick
   110 must find a model for the axioms. If it finds no model, we have an indication
   111 that the axioms might be unsatisfiable.
   112 
   113 Nitpick requires the Kodkodi package for Isabelle as well as a Java 1.5 virtual
   114 machine called \texttt{java}. The examples presented in this manual can be found
   115 in Isabelle's \texttt{src/HOL/Nitpick\_Examples/Manual\_Nits.thy} theory.
   116 
   117 Throughout this manual, we will explicitly invoke the \textbf{nitpick} command.
   118 Nitpick also provides an automatic mode that can be enabled using the
   119 ``Auto Nitpick'' option from the ``Isabelle'' menu in Proof General. In this
   120 mode, Nitpick is run on every newly entered theorem, much like Auto Quickcheck.
   121 The collective time limit for Auto Nitpick and Auto Quickcheck can be set using
   122 the ``Auto Counterexample Time Limit'' option.
   123 
   124 \newbox\boxA
   125 \setbox\boxA=\hbox{\texttt{nospam}}
   126 
   127 The known bugs and limitations at the time of writing are listed in
   128 \S\ref{known-bugs-and-limitations}. Comments and bug reports concerning Nitpick
   129 or this manual should be directed to
   130 \texttt{blan{\color{white}nospam}\kern-\wd\boxA{}chette@\allowbreak
   131 in.\allowbreak tum.\allowbreak de}.
   132 
   133 \vskip2.5\smallskipamount
   134 
   135 \textbf{Acknowledgment.} The author would like to thank Mark Summerfield for
   136 suggesting several textual improvements.
   137 % and Perry James for reporting a typo.
   138 
   139 \section{First Steps}
   140 \label{first-steps}
   141 
   142 This section introduces Nitpick by presenting small examples. If possible, you
   143 should try out the examples on your workstation. Your theory file should start
   144 the standard way:
   145 
   146 \prew
   147 \textbf{theory}~\textit{Scratch} \\
   148 \textbf{imports}~\textit{Main} \\
   149 \textbf{begin}
   150 \postw
   151 
   152 The results presented here were obtained using the JNI version of MiniSat and
   153 with multithreading disabled to reduce nondeterminism. This was done by adding
   154 the line
   155 
   156 \prew
   157 \textbf{nitpick\_params} [\textit{sat\_solver}~= \textit{MiniSat\_JNI}, \,\textit{max\_threads}~= 1]
   158 \postw
   159 
   160 after the \textbf{begin} keyword. The JNI version of MiniSat is bundled with
   161 Kodkodi and is precompiled for the major platforms. Other SAT solvers can also
   162 be installed, as explained in \S\ref{optimizations}. If you have already
   163 configured SAT solvers in Isabelle (e.g., for Refute), these will also be
   164 available to Nitpick.
   165 
   166 \subsection{Propositional Logic}
   167 \label{propositional-logic}
   168 
   169 Let's start with a trivial example from propositional logic:
   170 
   171 \prew
   172 \textbf{lemma}~``$P \longleftrightarrow Q$'' \\
   173 \textbf{nitpick}
   174 \postw
   175 
   176 You should get the following output:
   177 
   178 \prew
   179 \slshape
   180 Nitpick found a counterexample: \\[2\smallskipamount]
   181 \hbox{}\qquad Free variables: \nopagebreak \\
   182 \hbox{}\qquad\qquad $P = \textit{True}$ \\
   183 \hbox{}\qquad\qquad $Q = \textit{False}$
   184 \postw
   185 
   186 Nitpick can also be invoked on individual subgoals, as in the example below:
   187 
   188 \prew
   189 \textbf{apply}~\textit{auto} \\[2\smallskipamount]
   190 {\slshape goal (2 subgoals): \\
   191 \phantom{0}1. $P\,\Longrightarrow\, Q$ \\
   192 \phantom{0}2. $Q\,\Longrightarrow\, P$} \\[2\smallskipamount]
   193 \textbf{nitpick}~1 \\[2\smallskipamount]
   194 {\slshape Nitpick found a counterexample: \\[2\smallskipamount]
   195 \hbox{}\qquad Free variables: \nopagebreak \\
   196 \hbox{}\qquad\qquad $P = \textit{True}$ \\
   197 \hbox{}\qquad\qquad $Q = \textit{False}$} \\[2\smallskipamount]
   198 \textbf{nitpick}~2 \\[2\smallskipamount]
   199 {\slshape Nitpick found a counterexample: \\[2\smallskipamount]
   200 \hbox{}\qquad Free variables: \nopagebreak \\
   201 \hbox{}\qquad\qquad $P = \textit{False}$ \\
   202 \hbox{}\qquad\qquad $Q = \textit{True}$} \\[2\smallskipamount]
   203 \textbf{oops}
   204 \postw
   205 
   206 \subsection{Type Variables}
   207 \label{type-variables}
   208 
   209 If you are left unimpressed by the previous example, don't worry. The next
   210 one is more mind- and computer-boggling:
   211 
   212 \prew
   213 \textbf{lemma} ``$P~x\,\Longrightarrow\, P~(\textrm{THE}~y.\;P~y)$''
   214 \postw
   215 \pagebreak[2] %% TYPESETTING
   216 
   217 The putative lemma involves the definite description operator, {THE}, presented
   218 in section 5.10.1 of the Isabelle tutorial \cite{isa-tutorial}. The
   219 operator is defined by the axiom $(\textrm{THE}~x.\; x = a) = a$. The putative
   220 lemma is merely asserting the indefinite description operator axiom with {THE}
   221 substituted for {SOME}.
   222 
   223 The free variable $x$ and the bound variable $y$ have type $'a$. For formulas
   224 containing type variables, Nitpick enumerates the possible domains for each type
   225 variable, up to a given cardinality (8 by default), looking for a finite
   226 countermodel:
   227 
   228 \prew
   229 \textbf{nitpick} [\textit{verbose}] \\[2\smallskipamount]
   230 \slshape
   231 Trying 8 scopes: \nopagebreak \\
   232 \hbox{}\qquad \textit{card}~$'a$~= 1; \\
   233 \hbox{}\qquad \textit{card}~$'a$~= 2; \\
   234 \hbox{}\qquad $\qquad\vdots$ \\[.5\smallskipamount]
   235 \hbox{}\qquad \textit{card}~$'a$~= 8. \\[2\smallskipamount]
   236 Nitpick found a counterexample for \textit{card} $'a$~= 3: \\[2\smallskipamount]
   237 \hbox{}\qquad Free variables: \nopagebreak \\
   238 \hbox{}\qquad\qquad $P = \{a_2,\, a_3\}$ \\
   239 \hbox{}\qquad\qquad $x = a_3$ \\[2\smallskipamount]
   240 Total time: 580 ms.
   241 \postw
   242 
   243 Nitpick found a counterexample in which $'a$ has cardinality 3. (For
   244 cardinalities 1 and 2, the formula holds.) In the counterexample, the three
   245 values of type $'a$ are written $a_1$, $a_2$, and $a_3$.
   246 
   247 The message ``Trying $n$ scopes: {\ldots}''\ is shown only if the option
   248 \textit{verbose} is enabled. You can specify \textit{verbose} each time you
   249 invoke \textbf{nitpick}, or you can set it globally using the command
   250 
   251 \prew
   252 \textbf{nitpick\_params} [\textit{verbose}]
   253 \postw
   254 
   255 This command also displays the current default values for all of the options
   256 supported by Nitpick. The options are listed in \S\ref{option-reference}.
   257 
   258 \subsection{Constants}
   259 \label{constants}
   260 
   261 By just looking at Nitpick's output, it might not be clear why the
   262 counterexample in \S\ref{type-variables} is genuine. Let's invoke Nitpick again,
   263 this time telling it to show the values of the constants that occur in the
   264 formula:
   265 
   266 \prew
   267 \textbf{lemma}~``$P~x\,\Longrightarrow\, P~(\textrm{THE}~y.\;P~y)$'' \\
   268 \textbf{nitpick}~[\textit{show\_consts}] \\[2\smallskipamount]
   269 \slshape
   270 Nitpick found a counterexample for \textit{card} $'a$~= 3: \\[2\smallskipamount]
   271 \hbox{}\qquad Free variables: \nopagebreak \\
   272 \hbox{}\qquad\qquad $P = \{a_2,\, a_3\}$ \\
   273 \hbox{}\qquad\qquad $x = a_3$ \\
   274 \hbox{}\qquad Constant: \nopagebreak \\
   275 \hbox{}\qquad\qquad $\textit{The}~\textsl{fallback} = a_1$
   276 \postw
   277 
   278 We can see more clearly now. Since the predicate $P$ isn't true for a unique
   279 value, $\textrm{THE}~y.\;P~y$ can denote any value of type $'a$, even
   280 $a_1$. Since $P~a_1$ is false, the entire formula is falsified.
   281 
   282 As an optimization, Nitpick's preprocessor introduced the special constant
   283 ``\textit{The} fallback'' corresponding to $\textrm{THE}~y.\;P~y$ (i.e.,
   284 $\mathit{The}~(\lambda y.\;P~y)$) when there doesn't exist a unique $y$
   285 satisfying $P~y$. We disable this optimization by passing the
   286 \textit{full\_descrs} option:
   287 
   288 \prew
   289 \textbf{nitpick}~[\textit{full\_descrs},\, \textit{show\_consts}] \\[2\smallskipamount]
   290 \slshape
   291 Nitpick found a counterexample for \textit{card} $'a$~= 3: \\[2\smallskipamount]
   292 \hbox{}\qquad Free variables: \nopagebreak \\
   293 \hbox{}\qquad\qquad $P = \{a_2,\, a_3\}$ \\
   294 \hbox{}\qquad\qquad $x = a_3$ \\
   295 \hbox{}\qquad Constant: \nopagebreak \\
   296 \hbox{}\qquad\qquad $\hbox{\slshape THE}~y.\;P~y = a_1$
   297 \postw
   298 
   299 As the result of another optimization, Nitpick directly assigned a value to the
   300 subterm $\textrm{THE}~y.\;P~y$, rather than to the \textit{The} constant. If we
   301 disable this second optimization by using the command
   302 
   303 \prew
   304 \textbf{nitpick}~[\textit{dont\_specialize},\, \textit{full\_descrs},\,
   305 \textit{show\_consts}]
   306 \postw
   307 
   308 we finally get \textit{The}:
   309 
   310 \prew
   311 \slshape Constant: \nopagebreak \\
   312 \hbox{}\qquad $\mathit{The} = \undef{}
   313     (\!\begin{aligned}[t]%
   314     & \{a_1, a_2, a_3\} := a_3,\> \{a_1, a_2\} := a_3,\> \{a_1, a_3\} := a_3, \\[-2pt] %% TYPESETTING
   315     & \{a_1\} := a_1,\> \{a_2, a_3\} := a_1,\> \{a_2\} := a_2, \\[-2pt]
   316     & \{a_3\} := a_3,\> \{\} := a_3)\end{aligned}$
   317 \postw
   318 
   319 Notice that $\textit{The}~(\lambda y.\;P~y) = \textit{The}~\{a_2, a_3\} = a_1$,
   320 just like before.\footnote{The Isabelle/HOL notation $f(x :=
   321 y)$ denotes the function that maps $x$ to $y$ and that otherwise behaves like
   322 $f$.}
   323 
   324 Our misadventures with THE suggest adding `$\exists!x{.}$' (``there exists a
   325 unique $x$ such that'') at the front of our putative lemma's assumption:
   326 
   327 \prew
   328 \textbf{lemma}~``$\exists {!}x.\; P~x\,\Longrightarrow\, P~(\textrm{THE}~y.\;P~y)$''
   329 \postw
   330 
   331 The fix appears to work:
   332 
   333 \prew
   334 \textbf{nitpick} \\[2\smallskipamount]
   335 \slshape Nitpick found no counterexample.
   336 \postw
   337 
   338 We can further increase our confidence in the formula by exhausting all
   339 cardinalities up to 50:
   340 
   341 \prew
   342 \textbf{nitpick} [\textit{card} $'a$~= 1--50]\footnote{The symbol `--'
   343 can be entered as \texttt{-} (hyphen) or
   344 \texttt{\char`\\\char`\<midarrow\char`\>}.} \\[2\smallskipamount]
   345 \slshape Nitpick found no counterexample.
   346 \postw
   347 
   348 Let's see if Sledgehammer \cite{sledgehammer-2009} can find a proof:
   349 
   350 \prew
   351 \textbf{sledgehammer} \\[2\smallskipamount]
   352 {\slshape Sledgehammer: external prover ``$e$'' for subgoal 1: \\
   353 $\exists{!}x.\; P~x\,\Longrightarrow\, P~(\hbox{\slshape THE}~y.\; P~y)$ \\
   354 Try this command: \textrm{apply}~(\textit{metis~the\_equality})} \\[2\smallskipamount]
   355 \textbf{apply}~(\textit{metis~the\_equality\/}) \nopagebreak \\[2\smallskipamount]
   356 {\slshape No subgoals!}% \\[2\smallskipamount]
   357 %\textbf{done}
   358 \postw
   359 
   360 This must be our lucky day.
   361 
   362 \subsection{Skolemization}
   363 \label{skolemization}
   364 
   365 Are all invertible functions onto? Let's find out:
   366 
   367 \prew
   368 \textbf{lemma} ``$\exists g.\; \forall x.~g~(f~x) = x
   369  \,\Longrightarrow\, \forall y.\; \exists x.~y = f~x$'' \\
   370 \textbf{nitpick} \\[2\smallskipamount]
   371 \slshape
   372 Nitpick found a counterexample for \textit{card} $'a$~= 2 and \textit{card} $'b$~=~1: \\[2\smallskipamount]
   373 \hbox{}\qquad Free variable: \nopagebreak \\
   374 \hbox{}\qquad\qquad $f = \undef{}(b_1 := a_1)$ \\
   375 \hbox{}\qquad Skolem constants: \nopagebreak \\
   376 \hbox{}\qquad\qquad $g = \undef{}(a_1 := b_1,\> a_2 := b_1)$ \\
   377 \hbox{}\qquad\qquad $y = a_2$
   378 \postw
   379 
   380 Although $f$ is the only free variable occurring in the formula, Nitpick also
   381 displays values for the bound variables $g$ and $y$. These values are available
   382 to Nitpick because it performs skolemization as a preprocessing step.
   383 
   384 In the previous example, skolemization only affected the outermost quantifiers.
   385 This is not always the case, as illustrated below:
   386 
   387 \prew
   388 \textbf{lemma} ``$\exists x.\; \forall f.\; f~x = x$'' \\
   389 \textbf{nitpick} \\[2\smallskipamount]
   390 \slshape
   391 Nitpick found a counterexample for \textit{card} $'a$~= 2: \\[2\smallskipamount]
   392 \hbox{}\qquad Skolem constant: \nopagebreak \\
   393 \hbox{}\qquad\qquad $\lambda x.\; f =
   394     \undef{}(\!\begin{aligned}[t]
   395     & a_1 := \undef{}(a_1 := a_2,\> a_2 := a_1), \\[-2pt]
   396     & a_2 := \undef{}(a_1 := a_1,\> a_2 := a_1))\end{aligned}$
   397 \postw
   398 
   399 The variable $f$ is bound within the scope of $x$; therefore, $f$ depends on
   400 $x$, as suggested by the notation $\lambda x.\,f$. If $x = a_1$, then $f$ is the
   401 function that maps $a_1$ to $a_2$ and vice versa; otherwise, $x = a_2$ and $f$
   402 maps both $a_1$ and $a_2$ to $a_1$. In both cases, $f~x \not= x$.
   403 
   404 The source of the Skolem constants is sometimes more obscure:
   405 
   406 \prew
   407 \textbf{lemma} ``$\mathit{refl}~r\,\Longrightarrow\, \mathit{sym}~r$'' \\
   408 \textbf{nitpick} \\[2\smallskipamount]
   409 \slshape
   410 Nitpick found a counterexample for \textit{card} $'a$~= 2: \\[2\smallskipamount]
   411 \hbox{}\qquad Free variable: \nopagebreak \\
   412 \hbox{}\qquad\qquad $r = \{(a_1, a_1),\, (a_2, a_1),\, (a_2, a_2)\}$ \\
   413 \hbox{}\qquad Skolem constants: \nopagebreak \\
   414 \hbox{}\qquad\qquad $\mathit{sym}.x = a_2$ \\
   415 \hbox{}\qquad\qquad $\mathit{sym}.y = a_1$
   416 \postw
   417 
   418 What happened here is that Nitpick expanded the \textit{sym} constant to its
   419 definition:
   420 
   421 \prew
   422 $\mathit{sym}~r \,\equiv\,
   423  \forall x\> y.\,\> (x, y) \in r \longrightarrow (y, x) \in r.$
   424 \postw
   425 
   426 As their names suggest, the Skolem constants $\mathit{sym}.x$ and
   427 $\mathit{sym}.y$ are simply the bound variables $x$ and $y$
   428 from \textit{sym}'s definition.
   429 
   430 Although skolemization is a useful optimization, you can disable it by invoking
   431 Nitpick with \textit{dont\_skolemize}. See \S\ref{optimizations} for details.
   432 
   433 \subsection{Natural Numbers and Integers}
   434 \label{natural-numbers-and-integers}
   435 
   436 Because of the axiom of infinity, the type \textit{nat} does not admit any
   437 finite models. To deal with this, Nitpick's approach is to consider finite
   438 subsets $N$ of \textit{nat} and maps all numbers $\notin N$ to the undefined
   439 value (displayed as `$\unk$'). The type \textit{int} is handled similarly.
   440 Internally, undefined values lead to a three-valued logic.
   441 
   442 Here is an example involving \textit{int}:
   443 
   444 \prew
   445 \textbf{lemma} ``$\lbrakk i \le j;\> n \le (m{\Colon}\mathit{int})\rbrakk \,\Longrightarrow\, i * n + j * m \le i * m + j * n$'' \\
   446 \textbf{nitpick} \\[2\smallskipamount]
   447 \slshape Nitpick found a counterexample: \\[2\smallskipamount]
   448 \hbox{}\qquad Free variables: \nopagebreak \\
   449 \hbox{}\qquad\qquad $i = 0$ \\
   450 \hbox{}\qquad\qquad $j = 1$ \\
   451 \hbox{}\qquad\qquad $m = 1$ \\
   452 \hbox{}\qquad\qquad $n = 0$
   453 \postw
   454 
   455 Internally, Nitpick uses either a unary or a binary representation of numbers.
   456 The unary representation is more efficient but only suitable for numbers very
   457 close to zero. By default, Nitpick attempts to choose the more appropriate
   458 encoding by inspecting the formula at hand. This behavior can be overridden by
   459 passing either \textit{unary\_ints} or \textit{binary\_ints} as option. For
   460 binary notation, the number of bits to use can be specified using
   461 the \textit{bits} option. For example:
   462 
   463 \prew
   464 \textbf{nitpick} [\textit{binary\_ints}, \textit{bits}${} = 16$]
   465 \postw
   466 
   467 With infinite types, we don't always have the luxury of a genuine counterexample
   468 and must often content ourselves with a potential one. The tedious task of
   469 finding out whether the potential counterexample is in fact genuine can be
   470 outsourced to \textit{auto} by passing \textit{check\_potential}. For example:
   471 
   472 \prew
   473 \textbf{lemma} ``$\forall n.\; \textit{Suc}~n \mathbin{\not=} n \,\Longrightarrow\, P$'' \\
   474 \textbf{nitpick} [\textit{card~nat}~= 100, \textit{check\_potential}] \\[2\smallskipamount]
   475 \slshape Nitpick found a potential counterexample: \\[2\smallskipamount]
   476 \hbox{}\qquad Free variable: \nopagebreak \\
   477 \hbox{}\qquad\qquad $P = \textit{False}$ \\[2\smallskipamount]
   478 Confirmation by ``\textit{auto}'': The above counterexample is genuine.
   479 \postw
   480 
   481 You might wonder why the counterexample is first reported as potential. The root
   482 of the problem is that the bound variable in $\forall n.\; \textit{Suc}~n
   483 \mathbin{\not=} n$ ranges over an infinite type. If Nitpick finds an $n$ such
   484 that $\textit{Suc}~n \mathbin{=} n$, it evaluates the assumption to
   485 \textit{False}; but otherwise, it does not know anything about values of $n \ge
   486 \textit{card~nat}$ and must therefore evaluate the assumption to $\unk$, not
   487 \textit{True}. Since the assumption can never be satisfied, the putative lemma
   488 can never be falsified.
   489 
   490 Incidentally, if you distrust the so-called genuine counterexamples, you can
   491 enable \textit{check\_\allowbreak genuine} to verify them as well. However, be
   492 aware that \textit{auto} will usually fail to prove that the counterexample is
   493 genuine or spurious.
   494 
   495 Some conjectures involving elementary number theory make Nitpick look like a
   496 giant with feet of clay:
   497 
   498 \prew
   499 \textbf{lemma} ``$P~\textit{Suc}$'' \\
   500 \textbf{nitpick} [\textit{card} = 1--6] \\[2\smallskipamount]
   501 \slshape
   502 Nitpick found no counterexample.
   503 \postw
   504 
   505 On any finite set $N$, \textit{Suc} is a partial function; for example, if $N =
   506 \{0, 1, \ldots, k\}$, then \textit{Suc} is $\{0 \mapsto 1,\, 1 \mapsto 2,\,
   507 \ldots,\, k \mapsto \unk\}$, which evaluates to $\unk$ when passed as
   508 argument to $P$. As a result, $P~\textit{Suc}$ is always $\unk$. The next
   509 example is similar:
   510 
   511 \prew
   512 \textbf{lemma} ``$P~(\textit{op}~{+}\Colon
   513 \textit{nat}\mathbin{\Rightarrow}\textit{nat}\mathbin{\Rightarrow}\textit{nat})$'' \\
   514 \textbf{nitpick} [\textit{card nat} = 1] \\[2\smallskipamount]
   515 {\slshape Nitpick found a counterexample:} \\[2\smallskipamount]
   516 \hbox{}\qquad Free variable: \nopagebreak \\
   517 \hbox{}\qquad\qquad $P = \{\}$ \\[2\smallskipamount]
   518 \textbf{nitpick} [\textit{card nat} = 2] \\[2\smallskipamount]
   519 {\slshape Nitpick found no counterexample.}
   520 \postw
   521 
   522 The problem here is that \textit{op}~+ is total when \textit{nat} is taken to be
   523 $\{0\}$ but becomes partial as soon as we add $1$, because $1 + 1 \notin \{0,
   524 1\}$.
   525 
   526 Because numbers are infinite and are approximated using a three-valued logic,
   527 there is usually no need to systematically enumerate domain sizes. If Nitpick
   528 cannot find a genuine counterexample for \textit{card~nat}~= $k$, it is very
   529 unlikely that one could be found for smaller domains. (The $P~(\textit{op}~{+})$
   530 example above is an exception to this principle.) Nitpick nonetheless enumerates
   531 all cardinalities from 1 to 8 for \textit{nat}, mainly because smaller
   532 cardinalities are fast to handle and give rise to simpler counterexamples. This
   533 is explained in more detail in \S\ref{scope-monotonicity}.
   534 
   535 \subsection{Inductive Datatypes}
   536 \label{inductive-datatypes}
   537 
   538 Like natural numbers and integers, inductive datatypes with recursive
   539 constructors admit no finite models and must be approximated by a subterm-closed
   540 subset. For example, using a cardinality of 10 for ${'}a~\textit{list}$,
   541 Nitpick looks for all counterexamples that can be built using at most 10
   542 different lists.
   543 
   544 Let's see with an example involving \textit{hd} (which returns the first element
   545 of a list) and $@$ (which concatenates two lists):
   546 
   547 \prew
   548 \textbf{lemma} ``$\textit{hd}~(\textit{xs} \mathbin{@} [y, y]) = \textit{hd}~\textit{xs}$'' \\
   549 \textbf{nitpick} \\[2\smallskipamount]
   550 \slshape Nitpick found a counterexample for \textit{card} $'a$~= 3: \\[2\smallskipamount]
   551 \hbox{}\qquad Free variables: \nopagebreak \\
   552 \hbox{}\qquad\qquad $\textit{xs} = []$ \\
   553 \hbox{}\qquad\qquad $\textit{y} = a_1$
   554 \postw
   555 
   556 To see why the counterexample is genuine, we enable \textit{show\_consts}
   557 and \textit{show\_\allowbreak datatypes}:
   558 
   559 \prew
   560 {\slshape Datatype:} \\
   561 \hbox{}\qquad $'a$~\textit{list}~= $\{[],\, [a_1],\, [a_1, a_1],\, \unr\}$ \\
   562 {\slshape Constants:} \\
   563 \hbox{}\qquad $\lambda x_1.\; x_1 \mathbin{@} [y, y] = \undef([] := [a_1, a_1])$ \\
   564 \hbox{}\qquad $\textit{hd} = \undef([] := a_2,\> [a_1] := a_1,\> [a_1, a_1] := a_1)$
   565 \postw
   566 
   567 Since $\mathit{hd}~[]$ is undefined in the logic, it may be given any value,
   568 including $a_2$.
   569 
   570 The second constant, $\lambda x_1.\; x_1 \mathbin{@} [y, y]$, is simply the
   571 append operator whose second argument is fixed to be $[y, y]$. Appending $[a_1,
   572 a_1]$ to $[a_1]$ would normally give $[a_1, a_1, a_1]$, but this value is not
   573 representable in the subset of $'a$~\textit{list} considered by Nitpick, which
   574 is shown under the ``Datatype'' heading; hence the result is $\unk$. Similarly,
   575 appending $[a_1, a_1]$ to itself gives $\unk$.
   576 
   577 Given \textit{card}~$'a = 3$ and \textit{card}~$'a~\textit{list} = 3$, Nitpick
   578 considers the following subsets:
   579 
   580 \kern-.5\smallskipamount %% TYPESETTING
   581 
   582 \prew
   583 \begin{multicols}{3}
   584 $\{[],\, [a_1],\, [a_2]\}$; \\
   585 $\{[],\, [a_1],\, [a_3]\}$; \\
   586 $\{[],\, [a_2],\, [a_3]\}$; \\
   587 $\{[],\, [a_1],\, [a_1, a_1]\}$; \\
   588 $\{[],\, [a_1],\, [a_2, a_1]\}$; \\
   589 $\{[],\, [a_1],\, [a_3, a_1]\}$; \\
   590 $\{[],\, [a_2],\, [a_1, a_2]\}$; \\
   591 $\{[],\, [a_2],\, [a_2, a_2]\}$; \\
   592 $\{[],\, [a_2],\, [a_3, a_2]\}$; \\
   593 $\{[],\, [a_3],\, [a_1, a_3]\}$; \\
   594 $\{[],\, [a_3],\, [a_2, a_3]\}$; \\
   595 $\{[],\, [a_3],\, [a_3, a_3]\}$.
   596 \end{multicols}
   597 \postw
   598 
   599 \kern-2\smallskipamount %% TYPESETTING
   600 
   601 All subterm-closed subsets of $'a~\textit{list}$ consisting of three values
   602 are listed and only those. As an example of a non-subterm-closed subset,
   603 consider $\mathcal{S} = \{[],\, [a_1],\,\allowbreak [a_1, a_2]\}$, and observe
   604 that $[a_1, a_2]$ (i.e., $a_1 \mathbin{\#} [a_2]$) has $[a_2] \notin
   605 \mathcal{S}$ as a subterm.
   606 
   607 Here's another m\"ochtegern-lemma that Nitpick can refute without a blink:
   608 
   609 \prew
   610 \textbf{lemma} ``$\lbrakk \textit{length}~\textit{xs} = 1;\> \textit{length}~\textit{ys} = 1
   611 \rbrakk \,\Longrightarrow\, \textit{xs} = \textit{ys}$''
   612 \\
   613 \textbf{nitpick} [\textit{show\_datatypes}] \\[2\smallskipamount]
   614 \slshape Nitpick found a counterexample for \textit{card} $'a$~= 3: \\[2\smallskipamount]
   615 \hbox{}\qquad Free variables: \nopagebreak \\
   616 \hbox{}\qquad\qquad $\textit{xs} = [a_1]$ \\
   617 \hbox{}\qquad\qquad $\textit{ys} = [a_2]$ \\
   618 \hbox{}\qquad Datatypes: \\
   619 \hbox{}\qquad\qquad $\textit{nat} = \{0,\, 1,\, 2,\, \unr\}$ \\
   620 \hbox{}\qquad\qquad $'a$~\textit{list} = $\{[],\, [a_1],\, [a_2],\, \unr\}$
   621 \postw
   622 
   623 Because datatypes are approximated using a three-valued logic, there is usually
   624 no need to systematically enumerate cardinalities: If Nitpick cannot find a
   625 genuine counterexample for \textit{card}~$'a~\textit{list}$~= 10, it is very
   626 unlikely that one could be found for smaller cardinalities.
   627 
   628 \subsection{Typedefs, Records, Rationals, and Reals}
   629 \label{typedefs-records-rationals-and-reals}
   630 
   631 Nitpick generally treats types declared using \textbf{typedef} as datatypes
   632 whose single constructor is the corresponding \textit{Abs\_\kern.1ex} function.
   633 For example:
   634 
   635 \prew
   636 \textbf{typedef}~\textit{three} = ``$\{0\Colon\textit{nat},\, 1,\, 2\}$'' \\
   637 \textbf{by}~\textit{blast} \\[2\smallskipamount]
   638 \textbf{definition}~$A \mathbin{\Colon} \textit{three}$ \textbf{where} ``\kern-.1em$A \,\equiv\, \textit{Abs\_\allowbreak three}~0$'' \\
   639 \textbf{definition}~$B \mathbin{\Colon} \textit{three}$ \textbf{where} ``$B \,\equiv\, \textit{Abs\_three}~1$'' \\
   640 \textbf{definition}~$C \mathbin{\Colon} \textit{three}$ \textbf{where} ``$C \,\equiv\, \textit{Abs\_three}~2$'' \\[2\smallskipamount]
   641 \textbf{lemma} ``$\lbrakk P~A;\> P~B\rbrakk \,\Longrightarrow\, P~x$'' \\
   642 \textbf{nitpick} [\textit{show\_datatypes}] \\[2\smallskipamount]
   643 \slshape Nitpick found a counterexample: \\[2\smallskipamount]
   644 \hbox{}\qquad Free variables: \nopagebreak \\
   645 \hbox{}\qquad\qquad $P = \{\Abs{0},\, \Abs{1}\}$ \\
   646 \hbox{}\qquad\qquad $x = \Abs{2}$ \\
   647 \hbox{}\qquad Datatypes: \\
   648 \hbox{}\qquad\qquad $\textit{nat} = \{0,\, 1,\, 2,\, \unr\}$ \\
   649 \hbox{}\qquad\qquad $\textit{three} = \{\Abs{0},\, \Abs{1},\, \Abs{2},\, \unr\}$
   650 \postw
   651 
   652 %% MARK
   653 In the output above, $\Abs{n}$ abbreviates $\textit{Abs\_three}~n$.
   654 
   655 %% MARK
   656 Records, which are implemented as \textbf{typedef}s behind the scenes, are
   657 handled in much the same way:
   658 
   659 \prew
   660 \textbf{record} \textit{point} = \\
   661 \hbox{}\quad $\textit{Xcoord} \mathbin{\Colon} \textit{int}$ \\
   662 \hbox{}\quad $\textit{Ycoord} \mathbin{\Colon} \textit{int}$ \\[2\smallskipamount]
   663 \textbf{lemma} ``$\textit{Xcoord}~(p\Colon\textit{point}) = \textit{Xcoord}~(q\Colon\textit{point})$'' \\
   664 \textbf{nitpick} [\textit{show\_datatypes}] \\[2\smallskipamount]
   665 \slshape Nitpick found a counterexample: \\[2\smallskipamount]
   666 \hbox{}\qquad Free variables: \nopagebreak \\
   667 \hbox{}\qquad\qquad $p = \lparr\textit{Xcoord} = 1,\> \textit{Ycoord} = 1\rparr$ \\
   668 \hbox{}\qquad\qquad $q = \lparr\textit{Xcoord} = 0,\> \textit{Ycoord} = 0\rparr$ \\
   669 \hbox{}\qquad Datatypes: \\
   670 \hbox{}\qquad\qquad $\textit{int} = \{0,\, 1,\, \unr\}$ \\
   671 \hbox{}\qquad\qquad $\textit{point} = \{\!\begin{aligned}[t]
   672 & \lparr\textit{Xcoord} = 0,\> \textit{Ycoord} = 0\rparr, \\[-2pt] %% TYPESETTING
   673 & \lparr\textit{Xcoord} = 1,\> \textit{Ycoord} = 1\rparr,\, \unr\}\end{aligned}$
   674 \postw
   675 
   676 Finally, Nitpick provides rudimentary support for rationals and reals using a
   677 similar approach:
   678 
   679 \prew
   680 \textbf{lemma} ``$4 * x + 3 * (y\Colon\textit{real}) \not= 1/2$'' \\
   681 \textbf{nitpick} [\textit{show\_datatypes}] \\[2\smallskipamount]
   682 \slshape Nitpick found a counterexample: \\[2\smallskipamount]
   683 \hbox{}\qquad Free variables: \nopagebreak \\
   684 \hbox{}\qquad\qquad $x = 1/2$ \\
   685 \hbox{}\qquad\qquad $y = -1/2$ \\
   686 \hbox{}\qquad Datatypes: \\
   687 \hbox{}\qquad\qquad $\textit{nat} = \{0,\, 1,\, 2,\, 3,\, 4,\, 5,\, 6,\, 7,\, \unr\}$ \\
   688 \hbox{}\qquad\qquad $\textit{int} = \{0,\, 1,\, 2,\, 3,\, 4,\, -3,\, -2,\, -1,\, \unr\}$ \\
   689 \hbox{}\qquad\qquad $\textit{real} = \{1,\, 0,\, 4,\, -3/2,\, 3,\, 2,\, 1/2,\, -1/2,\, \unr\}$
   690 \postw
   691 
   692 \subsection{Inductive and Coinductive Predicates}
   693 \label{inductive-and-coinductive-predicates}
   694 
   695 Inductively defined predicates (and sets) are particularly problematic for
   696 counterexample generators. They can make Quickcheck~\cite{berghofer-nipkow-2004}
   697 loop forever and Refute~\cite{weber-2008} run out of resources. The crux of
   698 the problem is that they are defined using a least fixed point construction.
   699 
   700 Nitpick's philosophy is that not all inductive predicates are equal. Consider
   701 the \textit{even} predicate below:
   702 
   703 \prew
   704 \textbf{inductive}~\textit{even}~\textbf{where} \\
   705 ``\textit{even}~0'' $\,\mid$ \\
   706 ``\textit{even}~$n\,\Longrightarrow\, \textit{even}~(\textit{Suc}~(\textit{Suc}~n))$''
   707 \postw
   708 
   709 This predicate enjoys the desirable property of being well-founded, which means
   710 that the introduction rules don't give rise to infinite chains of the form
   711 
   712 \prew
   713 $\cdots\,\Longrightarrow\, \textit{even}~k''
   714        \,\Longrightarrow\, \textit{even}~k'
   715        \,\Longrightarrow\, \textit{even}~k.$
   716 \postw
   717 
   718 For \textit{even}, this is obvious: Any chain ending at $k$ will be of length
   719 $k/2 + 1$:
   720 
   721 \prew
   722 $\textit{even}~0\,\Longrightarrow\, \textit{even}~2\,\Longrightarrow\, \cdots
   723        \,\Longrightarrow\, \textit{even}~(k - 2)
   724        \,\Longrightarrow\, \textit{even}~k.$
   725 \postw
   726 
   727 Wellfoundedness is desirable because it enables Nitpick to use a very efficient
   728 fixed point computation.%
   729 \footnote{If an inductive predicate is
   730 well-founded, then it has exactly one fixed point, which is simultaneously the
   731 least and the greatest fixed point. In these circumstances, the computation of
   732 the least fixed point amounts to the computation of an arbitrary fixed point,
   733 which can be performed using a straightforward recursive equation.}
   734 Moreover, Nitpick can prove wellfoundedness of most well-founded predicates,
   735 just as Isabelle's \textbf{function} package usually discharges termination
   736 proof obligations automatically.
   737 
   738 Let's try an example:
   739 
   740 \prew
   741 \textbf{lemma} ``$\exists n.\; \textit{even}~n \mathrel{\land} \textit{even}~(\textit{Suc}~n)$'' \\
   742 \textbf{nitpick}~[\textit{card nat}~= 100, \textit{unary\_ints}, \textit{verbose}] \\[2\smallskipamount]
   743 \slshape The inductive predicate ``\textit{even}'' was proved well-founded.
   744 Nitpick can compute it efficiently. \\[2\smallskipamount]
   745 Trying 1 scope: \\
   746 \hbox{}\qquad \textit{card nat}~= 100. \\[2\smallskipamount]
   747 Nitpick found a potential counterexample for \textit{card nat}~= 100: \\[2\smallskipamount]
   748 \hbox{}\qquad Empty assignment \\[2\smallskipamount]
   749 Nitpick could not find a better counterexample. \\[2\smallskipamount]
   750 Total time: 2274 ms.
   751 \postw
   752 
   753 No genuine counterexample is possible because Nitpick cannot rule out the
   754 existence of a natural number $n \ge 100$ such that both $\textit{even}~n$ and
   755 $\textit{even}~(\textit{Suc}~n)$ are true. To help Nitpick, we can bound the
   756 existential quantifier:
   757 
   758 \prew
   759 \textbf{lemma} ``$\exists n \mathbin{\le} 99.\; \textit{even}~n \mathrel{\land} \textit{even}~(\textit{Suc}~n)$'' \\
   760 \textbf{nitpick}~[\textit{card nat}~= 100, \textit{unary\_ints}] \\[2\smallskipamount]
   761 \slshape Nitpick found a counterexample: \\[2\smallskipamount]
   762 \hbox{}\qquad Empty assignment
   763 \postw
   764 
   765 So far we were blessed by the wellfoundedness of \textit{even}. What happens if
   766 we use the following definition instead?
   767 
   768 \prew
   769 \textbf{inductive} $\textit{even}'$ \textbf{where} \\
   770 ``$\textit{even}'~(0{\Colon}\textit{nat})$'' $\,\mid$ \\
   771 ``$\textit{even}'~2$'' $\,\mid$ \\
   772 ``$\lbrakk\textit{even}'~m;\> \textit{even}'~n\rbrakk \,\Longrightarrow\, \textit{even}'~(m + n)$''
   773 \postw
   774 
   775 This definition is not well-founded: From $\textit{even}'~0$ and
   776 $\textit{even}'~0$, we can derive that $\textit{even}'~0$. Nonetheless, the
   777 predicates $\textit{even}$ and $\textit{even}'$ are equivalent.
   778 
   779 Let's check a property involving $\textit{even}'$. To make up for the
   780 foreseeable computational hurdles entailed by non-wellfoundedness, we decrease
   781 \textit{nat}'s cardinality to a mere 10:
   782 
   783 \prew
   784 \textbf{lemma}~``$\exists n \in \{0, 2, 4, 6, 8\}.\;
   785 \lnot\;\textit{even}'~n$'' \\
   786 \textbf{nitpick}~[\textit{card nat}~= 10,\, \textit{verbose},\, \textit{show\_consts}] \\[2\smallskipamount]
   787 \slshape
   788 The inductive predicate ``$\textit{even}'\!$'' could not be proved well-founded.
   789 Nitpick might need to unroll it. \\[2\smallskipamount]
   790 Trying 6 scopes: \\
   791 \hbox{}\qquad \textit{card nat}~= 10 and \textit{iter} $\textit{even}'$~= 0; \\
   792 \hbox{}\qquad \textit{card nat}~= 10 and \textit{iter} $\textit{even}'$~= 1; \\
   793 \hbox{}\qquad \textit{card nat}~= 10 and \textit{iter} $\textit{even}'$~= 2; \\
   794 \hbox{}\qquad \textit{card nat}~= 10 and \textit{iter} $\textit{even}'$~= 4; \\
   795 \hbox{}\qquad \textit{card nat}~= 10 and \textit{iter} $\textit{even}'$~= 8; \\
   796 \hbox{}\qquad \textit{card nat}~= 10 and \textit{iter} $\textit{even}'$~= 9. \\[2\smallskipamount]
   797 Nitpick found a counterexample for \textit{card nat}~= 10 and \textit{iter} $\textit{even}'$~= 2: \\[2\smallskipamount]
   798 \hbox{}\qquad Constant: \nopagebreak \\
   799 \hbox{}\qquad\qquad $\lambda i.\; \textit{even}'$ = $\undef(\!\begin{aligned}[t]
   800 & 2 := \{0, 2, 4, 6, 8, 1^\Q, 3^\Q, 5^\Q, 7^\Q, 9^\Q\}, \\[-2pt]
   801 & 1 := \{0, 2, 4, 1^\Q, 3^\Q, 5^\Q, 6^\Q, 7^\Q, 8^\Q, 9^\Q\}, \\[-2pt]
   802 & 0 := \{0, 2, 1^\Q, 3^\Q, 4^\Q, 5^\Q, 6^\Q, 7^\Q, 8^\Q, 9^\Q\})\end{aligned}$ \\[2\smallskipamount]
   803 Total time: 1140 ms.
   804 \postw
   805 
   806 Nitpick's output is very instructive. First, it tells us that the predicate is
   807 unrolled, meaning that it is computed iteratively from the empty set. Then it
   808 lists six scopes specifying different bounds on the numbers of iterations:\ 0,
   809 1, 2, 4, 8, and~9.
   810 
   811 The output also shows how each iteration contributes to $\textit{even}'$. The
   812 notation $\lambda i.\; \textit{even}'$ indicates that the value of the
   813 predicate depends on an iteration counter. Iteration 0 provides the basis
   814 elements, $0$ and $2$. Iteration 1 contributes $4$ ($= 2 + 2$). Iteration 2
   815 throws $6$ ($= 2 + 4 = 4 + 2$) and $8$ ($= 4 + 4$) into the mix. Further
   816 iterations would not contribute any new elements.
   817 
   818 Some values are marked with superscripted question
   819 marks~(`\lower.2ex\hbox{$^\Q$}'). These are the elements for which the
   820 predicate evaluates to $\unk$. Thus, $\textit{even}'$ evaluates to either
   821 \textit{True} or $\unk$, never \textit{False}.
   822 
   823 When unrolling a predicate, Nitpick tries 0, 1, 2, 4, 8, 12, 16, and 24
   824 iterations. However, these numbers are bounded by the cardinality of the
   825 predicate's domain. With \textit{card~nat}~= 10, no more than 9 iterations are
   826 ever needed to compute the value of a \textit{nat} predicate. You can specify
   827 the number of iterations using the \textit{iter} option, as explained in
   828 \S\ref{scope-of-search}.
   829 
   830 In the next formula, $\textit{even}'$ occurs both positively and negatively:
   831 
   832 \prew
   833 \textbf{lemma} ``$\textit{even}'~(n - 2) \,\Longrightarrow\, \textit{even}'~n$'' \\
   834 \textbf{nitpick} [\textit{card nat} = 10, \textit{show\_consts}] \\[2\smallskipamount]
   835 \slshape Nitpick found a counterexample: \\[2\smallskipamount]
   836 \hbox{}\qquad Free variable: \nopagebreak \\
   837 \hbox{}\qquad\qquad $n = 1$ \\
   838 \hbox{}\qquad Constants: \nopagebreak \\
   839 \hbox{}\qquad\qquad $\lambda i.\; \textit{even}'$ = $\undef(\!\begin{aligned}[t]
   840 & 0 := \{0, 2, 1^\Q, 3^\Q, 4^\Q, 5^\Q, 6^\Q, 7^\Q, 8^\Q, 9^\Q\})\end{aligned}$  \\
   841 \hbox{}\qquad\qquad $\textit{even}' \subseteq \{0, 2, 4, 6, 8, \unr\}$
   842 \postw
   843 
   844 Notice the special constraint $\textit{even}' \subseteq \{0,\, 2,\, 4,\, 6,\,
   845 8,\, \unr\}$ in the output, whose right-hand side represents an arbitrary
   846 fixed point (not necessarily the least one). It is used to falsify
   847 $\textit{even}'~n$. In contrast, the unrolled predicate is used to satisfy
   848 $\textit{even}'~(n - 2)$.
   849 
   850 Coinductive predicates are handled dually. For example:
   851 
   852 \prew
   853 \textbf{coinductive} \textit{nats} \textbf{where} \\
   854 ``$\textit{nats}~(x\Colon\textit{nat}) \,\Longrightarrow\, \textit{nats}~x$'' \\[2\smallskipamount]
   855 \textbf{lemma} ``$\textit{nats} = \{0, 1, 2, 3, 4\}$'' \\
   856 \textbf{nitpick}~[\textit{card nat} = 10,\, \textit{show\_consts}] \\[2\smallskipamount]
   857 \slshape Nitpick found a counterexample:
   858 \\[2\smallskipamount]
   859 \hbox{}\qquad Constants: \nopagebreak \\
   860 \hbox{}\qquad\qquad $\lambda i.\; \textit{nats} = \undef(0 := \{\!\begin{aligned}[t]
   861 & 0^\Q, 1^\Q, 2^\Q, 3^\Q, 4^\Q, 5^\Q, 6^\Q, 7^\Q, 8^\Q, 9^\Q, \\[-2pt]
   862 & \unr\})\end{aligned}$ \\
   863 \hbox{}\qquad\qquad $nats \supseteq \{9, 5^\Q, 6^\Q, 7^\Q, 8^\Q, \unr\}$
   864 \postw
   865 
   866 As a special case, Nitpick uses Kodkod's transitive closure operator to encode
   867 negative occurrences of non-well-founded ``linear inductive predicates,'' i.e.,
   868 inductive predicates for which each the predicate occurs in at most one
   869 assumption of each introduction rule. For example:
   870 
   871 \prew
   872 \textbf{inductive} \textit{odd} \textbf{where} \\
   873 ``$\textit{odd}~1$'' $\,\mid$ \\
   874 ``$\lbrakk \textit{odd}~m;\>\, \textit{even}~n\rbrakk \,\Longrightarrow\, \textit{odd}~(m + n)$'' \\[2\smallskipamount]
   875 \textbf{lemma}~``$\textit{odd}~n \,\Longrightarrow\, \textit{odd}~(n - 2)$'' \\
   876 \textbf{nitpick}~[\textit{card nat} = 10,\, \textit{show\_consts}] \\[2\smallskipamount]
   877 \slshape Nitpick found a counterexample:
   878 \\[2\smallskipamount]
   879 \hbox{}\qquad Free variable: \nopagebreak \\
   880 \hbox{}\qquad\qquad $n = 1$ \\
   881 \hbox{}\qquad Constants: \nopagebreak \\
   882 \hbox{}\qquad\qquad $\textit{even} = \{0, 2, 4, 6, 8, \unr\}$ \\
   883 \hbox{}\qquad\qquad $\textit{odd}_{\textsl{base}} = \{1, \unr\}$ \\
   884 \hbox{}\qquad\qquad $\textit{odd}_{\textsl{step}} = \!
   885 \!\begin{aligned}[t]
   886   & \{(0, 0), (0, 2), (0, 4), (0, 6), (0, 8), (1, 1), (1, 3), (1, 5), \\[-2pt]
   887   & \phantom{\{} (1, 7), (1, 9), (2, 2), (2, 4), (2, 6), (2, 8), (3, 3),
   888        (3, 5), \\[-2pt]
   889   & \phantom{\{} (3, 7), (3, 9), (4, 4), (4, 6), (4, 8), (5, 5), (5, 7), (5, 9), \\[-2pt]
   890   & \phantom{\{} (6, 6), (6, 8), (7, 7), (7, 9), (8, 8), (9, 9), \unr\}\end{aligned}$ \\
   891 \hbox{}\qquad\qquad $\textit{odd} \subseteq \{1, 3, 5, 7, 9, 8^\Q, \unr\}$
   892 \postw
   893 
   894 \noindent
   895 In the output, $\textit{odd}_{\textrm{base}}$ represents the base elements and
   896 $\textit{odd}_{\textrm{step}}$ is a transition relation that computes new
   897 elements from known ones. The set $\textit{odd}$ consists of all the values
   898 reachable through the reflexive transitive closure of
   899 $\textit{odd}_{\textrm{step}}$ starting with any element from
   900 $\textit{odd}_{\textrm{base}}$, namely 1, 3, 5, 7, and 9. Using Kodkod's
   901 transitive closure to encode linear predicates is normally either more thorough
   902 or more efficient than unrolling (depending on the value of \textit{iter}), but
   903 for those cases where it isn't you can disable it by passing the
   904 \textit{dont\_star\_linear\_preds} option.
   905 
   906 \subsection{Coinductive Datatypes}
   907 \label{coinductive-datatypes}
   908 
   909 While Isabelle regrettably lacks a high-level mechanism for defining coinductive
   910 datatypes, the \textit{Coinductive\_List} theory provides a coinductive ``lazy
   911 list'' datatype, $'a~\textit{llist}$, defined the hard way. Nitpick supports
   912 these lazy lists seamlessly and provides a hook, described in
   913 \S\ref{registration-of-coinductive-datatypes}, to register custom coinductive
   914 datatypes.
   915 
   916 (Co)intuitively, a coinductive datatype is similar to an inductive datatype but
   917 allows infinite objects. Thus, the infinite lists $\textit{ps}$ $=$ $[a, a, a,
   918 \ldots]$, $\textit{qs}$ $=$ $[a, b, a, b, \ldots]$, and $\textit{rs}$ $=$ $[0,
   919 1, 2, 3, \ldots]$ can be defined as lazy lists using the
   920 $\textit{LNil}\mathbin{\Colon}{'}a~\textit{llist}$ and
   921 $\textit{LCons}\mathbin{\Colon}{'}a \mathbin{\Rightarrow} {'}a~\textit{llist}
   922 \mathbin{\Rightarrow} {'}a~\textit{llist}$ constructors.
   923 
   924 Although it is otherwise no friend of infinity, Nitpick can find counterexamples
   925 involving cyclic lists such as \textit{ps} and \textit{qs} above as well as
   926 finite lists:
   927 
   928 \prew
   929 \textbf{lemma} ``$\textit{xs} \not= \textit{LCons}~a~\textit{xs}$'' \\
   930 \textbf{nitpick} \\[2\smallskipamount]
   931 \slshape Nitpick found a counterexample for {\itshape card}~$'a$ = 1: \\[2\smallskipamount]
   932 \hbox{}\qquad Free variables: \nopagebreak \\
   933 \hbox{}\qquad\qquad $\textit{a} = a_1$ \\
   934 \hbox{}\qquad\qquad $\textit{xs} = \textsl{THE}~\omega.\; \omega = \textit{LCons}~a_1~\omega$
   935 \postw
   936 
   937 The notation $\textrm{THE}~\omega.\; \omega = t(\omega)$ stands
   938 for the infinite term $t(t(t(\ldots)))$. Hence, \textit{xs} is simply the
   939 infinite list $[a_1, a_1, a_1, \ldots]$.
   940 
   941 The next example is more interesting:
   942 
   943 \prew
   944 \textbf{lemma}~``$\lbrakk\textit{xs} = \textit{LCons}~a~\textit{xs};\>\,
   945 \textit{ys} = \textit{iterates}~(\lambda b.\> a)~b\rbrakk \,\Longrightarrow\, \textit{xs} = \textit{ys}$'' \\
   946 \textbf{nitpick} [\textit{verbose}] \\[2\smallskipamount]
   947 \slshape The type ``\kern1pt$'a$'' passed the monotonicity test. Nitpick might be able to skip
   948 some scopes. \\[2\smallskipamount]
   949 Trying 8 scopes: \\
   950 \hbox{}\qquad \textit{card} $'a$~= 1, \textit{card} ``\kern1pt$'a~\textit{list}$''~= 1,
   951 and \textit{bisim\_depth}~= 0. \\
   952 \hbox{}\qquad $\qquad\vdots$ \\[.5\smallskipamount]
   953 \hbox{}\qquad \textit{card} $'a$~= 8, \textit{card} ``\kern1pt$'a~\textit{list}$''~= 8,
   954 and \textit{bisim\_depth}~= 7. \\[2\smallskipamount]
   955 Nitpick found a counterexample for {\itshape card}~$'a$ = 2,
   956 \textit{card}~``\kern1pt$'a~\textit{list}$''~= 2, and \textit{bisim\_\allowbreak
   957 depth}~= 1:
   958 \\[2\smallskipamount]
   959 \hbox{}\qquad Free variables: \nopagebreak \\
   960 \hbox{}\qquad\qquad $\textit{a} = a_1$ \\
   961 \hbox{}\qquad\qquad $\textit{b} = a_2$ \\
   962 \hbox{}\qquad\qquad $\textit{xs} = \textsl{THE}~\omega.\; \omega = \textit{LCons}~a_1~\omega$ \\
   963 \hbox{}\qquad\qquad $\textit{ys} = \textit{LCons}~a_2~(\textsl{THE}~\omega.\; \omega = \textit{LCons}~a_1~\omega)$ \\[2\smallskipamount]
   964 Total time: 726 ms.
   965 \postw
   966 
   967 The lazy list $\textit{xs}$ is simply $[a_1, a_1, a_1, \ldots]$, whereas
   968 $\textit{ys}$ is $[a_2, a_1, a_1, a_1, \ldots]$, i.e., a lasso-shaped list with
   969 $[a_2]$ as its stem and $[a_1]$ as its cycle. In general, the list segment
   970 within the scope of the {THE} binder corresponds to the lasso's cycle, whereas
   971 the segment leading to the binder is the stem.
   972 
   973 A salient property of coinductive datatypes is that two objects are considered
   974 equal if and only if they lead to the same observations. For example, the lazy
   975 lists $\textrm{THE}~\omega.\; \omega =
   976 \textit{LCons}~a~(\textit{LCons}~b~\omega)$ and
   977 $\textit{LCons}~a~(\textrm{THE}~\omega.\; \omega =
   978 \textit{LCons}~b~(\textit{LCons}~a~\omega))$ are identical, because both lead
   979 to the sequence of observations $a$, $b$, $a$, $b$, \hbox{\ldots} (or,
   980 equivalently, both encode the infinite list $[a, b, a, b, \ldots]$). This
   981 concept of equality for coinductive datatypes is called bisimulation and is
   982 defined coinductively.
   983 
   984 Internally, Nitpick encodes the coinductive bisimilarity predicate as part of
   985 the Kodkod problem to ensure that distinct objects lead to different
   986 observations. This precaution is somewhat expensive and often unnecessary, so it
   987 can be disabled by setting the \textit{bisim\_depth} option to $-1$. The
   988 bisimilarity check is then performed \textsl{after} the counterexample has been
   989 found to ensure correctness. If this after-the-fact check fails, the
   990 counterexample is tagged as ``likely genuine'' and Nitpick recommends to try
   991 again with \textit{bisim\_depth} set to a nonnegative integer. Disabling the
   992 check for the previous example saves approximately 150~milli\-seconds; the speed
   993 gains can be more significant for larger scopes.
   994 
   995 The next formula illustrates the need for bisimilarity (either as a Kodkod
   996 predicate or as an after-the-fact check) to prevent spurious counterexamples:
   997 
   998 \prew
   999 \textbf{lemma} ``$\lbrakk xs = \textit{LCons}~a~\textit{xs};\>\, \textit{ys} = \textit{LCons}~a~\textit{ys}\rbrakk
  1000 \,\Longrightarrow\, \textit{xs} = \textit{ys}$'' \\
  1001 \textbf{nitpick} [\textit{bisim\_depth} = $-1$, \textit{show\_datatypes}] \\[2\smallskipamount]
  1002 \slshape Nitpick found a likely genuine counterexample for $\textit{card}~'a$ = 2: \\[2\smallskipamount]
  1003 \hbox{}\qquad Free variables: \nopagebreak \\
  1004 \hbox{}\qquad\qquad $a = a_1$ \\
  1005 \hbox{}\qquad\qquad $\textit{xs} = \textsl{THE}~\omega.\; \omega =
  1006 \textit{LCons}~a_1~\omega$ \\
  1007 \hbox{}\qquad\qquad $\textit{ys} = \textsl{THE}~\omega.\; \omega = \textit{LCons}~a_1~\omega$ \\
  1008 \hbox{}\qquad Codatatype:\strut \nopagebreak \\
  1009 \hbox{}\qquad\qquad $'a~\textit{llist} =
  1010 \{\!\begin{aligned}[t]
  1011   & \textsl{THE}~\omega.\; \omega = \textit{LCons}~a_1~\omega, \\[-2pt]
  1012   & \textsl{THE}~\omega.\; \omega = \textit{LCons}~a_1~\omega,\> \unr\}\end{aligned}$
  1013 \\[2\smallskipamount]
  1014 Try again with ``\textit{bisim\_depth}'' set to a nonnegative value to confirm
  1015 that the counterexample is genuine. \\[2\smallskipamount]
  1016 {\upshape\textbf{nitpick}} \\[2\smallskipamount]
  1017 \slshape Nitpick found no counterexample.
  1018 \postw
  1019 
  1020 In the first \textbf{nitpick} invocation, the after-the-fact check discovered 
  1021 that the two known elements of type $'a~\textit{llist}$ are bisimilar.
  1022 
  1023 A compromise between leaving out the bisimilarity predicate from the Kodkod
  1024 problem and performing the after-the-fact check is to specify a lower
  1025 nonnegative \textit{bisim\_depth} value than the default one provided by
  1026 Nitpick. In general, a value of $K$ means that Nitpick will require all lists to
  1027 be distinguished from each other by their prefixes of length $K$. Be aware that
  1028 setting $K$ to a too low value can overconstrain Nitpick, preventing it from
  1029 finding any counterexamples.
  1030 
  1031 \subsection{Boxing}
  1032 \label{boxing}
  1033 
  1034 Nitpick normally maps function and product types directly to the corresponding
  1035 Kodkod concepts. As a consequence, if $'a$ has cardinality 3 and $'b$ has
  1036 cardinality 4, then $'a \times {'}b$ has cardinality 12 ($= 4 \times 3$) and $'a
  1037 \Rightarrow {'}b$ has cardinality 64 ($= 4^3$). In some circumstances, it pays
  1038 off to treat these types in the same way as plain datatypes, by approximating
  1039 them by a subset of a given cardinality. This technique is called ``boxing'' and
  1040 is particularly useful for functions passed as arguments to other functions, for
  1041 high-arity functions, and for large tuples. Under the hood, boxing involves
  1042 wrapping occurrences of the types $'a \times {'}b$ and $'a \Rightarrow {'}b$ in
  1043 isomorphic datatypes, as can be seen by enabling the \textit{debug} option.
  1044 
  1045 To illustrate boxing, we consider a formalization of $\lambda$-terms represented
  1046 using de Bruijn's notation:
  1047 
  1048 \prew
  1049 \textbf{datatype} \textit{tm} = \textit{Var}~\textit{nat}~$\mid$~\textit{Lam}~\textit{tm} $\mid$ \textit{App~tm~tm}
  1050 \postw
  1051 
  1052 The $\textit{lift}~t~k$ function increments all variables with indices greater
  1053 than or equal to $k$ by one:
  1054 
  1055 \prew
  1056 \textbf{primrec} \textit{lift} \textbf{where} \\
  1057 ``$\textit{lift}~(\textit{Var}~j)~k = \textit{Var}~(\textrm{if}~j < k~\textrm{then}~j~\textrm{else}~j + 1)$'' $\mid$ \\
  1058 ``$\textit{lift}~(\textit{Lam}~t)~k = \textit{Lam}~(\textit{lift}~t~(k + 1))$'' $\mid$ \\
  1059 ``$\textit{lift}~(\textit{App}~t~u)~k = \textit{App}~(\textit{lift}~t~k)~(\textit{lift}~u~k)$''
  1060 \postw
  1061 
  1062 The $\textit{loose}~t~k$ predicate returns \textit{True} if and only if
  1063 term $t$ has a loose variable with index $k$ or more:
  1064 
  1065 \prew
  1066 \textbf{primrec}~\textit{loose} \textbf{where} \\
  1067 ``$\textit{loose}~(\textit{Var}~j)~k = (j \ge k)$'' $\mid$ \\
  1068 ``$\textit{loose}~(\textit{Lam}~t)~k = \textit{loose}~t~(\textit{Suc}~k)$'' $\mid$ \\
  1069 ``$\textit{loose}~(\textit{App}~t~u)~k = (\textit{loose}~t~k \mathrel{\lor} \textit{loose}~u~k)$''
  1070 \postw
  1071 
  1072 Next, the $\textit{subst}~\sigma~t$ function applies the substitution $\sigma$
  1073 on $t$:
  1074 
  1075 \prew
  1076 \textbf{primrec}~\textit{subst} \textbf{where} \\
  1077 ``$\textit{subst}~\sigma~(\textit{Var}~j) = \sigma~j$'' $\mid$ \\
  1078 ``$\textit{subst}~\sigma~(\textit{Lam}~t) = {}$\phantom{''} \\
  1079 \phantom{``}$\textit{Lam}~(\textit{subst}~(\lambda n.\> \textrm{case}~n~\textrm{of}~0 \Rightarrow \textit{Var}~0 \mid \textit{Suc}~m \Rightarrow \textit{lift}~(\sigma~m)~1)~t)$'' $\mid$ \\
  1080 ``$\textit{subst}~\sigma~(\textit{App}~t~u) = \textit{App}~(\textit{subst}~\sigma~t)~(\textit{subst}~\sigma~u)$''
  1081 \postw
  1082 
  1083 A substitution is a function that maps variable indices to terms. Observe that
  1084 $\sigma$ is a function passed as argument and that Nitpick can't optimize it
  1085 away, because the recursive call for the \textit{Lam} case involves an altered
  1086 version. Also notice the \textit{lift} call, which increments the variable
  1087 indices when moving under a \textit{Lam}.
  1088 
  1089 A reasonable property to expect of substitution is that it should leave closed
  1090 terms unchanged. Alas, even this simple property does not hold:
  1091 
  1092 \pre
  1093 \textbf{lemma}~``$\lnot\,\textit{loose}~t~0 \,\Longrightarrow\, \textit{subst}~\sigma~t = t$'' \\
  1094 \textbf{nitpick} [\textit{verbose}] \\[2\smallskipamount]
  1095 \slshape
  1096 Trying 8 scopes: \nopagebreak \\
  1097 \hbox{}\qquad \textit{card~nat}~= 1, \textit{card tm}~= 1, and \textit{card} ``$\textit{nat} \Rightarrow \textit{tm}$'' = 1; \\
  1098 \hbox{}\qquad \textit{card~nat}~= 2, \textit{card tm}~= 2, and \textit{card} ``$\textit{nat} \Rightarrow \textit{tm}$'' = 2; \\
  1099 \hbox{}\qquad $\qquad\vdots$ \\[.5\smallskipamount]
  1100 \hbox{}\qquad \textit{card~nat}~= 8, \textit{card tm}~= 8, and \textit{card} ``$\textit{nat} \Rightarrow \textit{tm}$'' = 8. \\[2\smallskipamount]
  1101 Nitpick found a counterexample for \textit{card~nat}~= 6, \textit{card~tm}~= 6,
  1102 and \textit{card}~``$\textit{nat} \Rightarrow \textit{tm}$''~= 6: \\[2\smallskipamount]
  1103 \hbox{}\qquad Free variables: \nopagebreak \\
  1104 \hbox{}\qquad\qquad $\sigma = \undef(\!\begin{aligned}[t]
  1105 & 0 := \textit{Var}~0,\>
  1106   1 := \textit{Var}~0,\>
  1107   2 := \textit{Var}~0, \\[-2pt]
  1108 & 3 := \textit{Var}~0,\>
  1109   4 := \textit{Var}~0,\>
  1110   5 := \textit{Var}~0)\end{aligned}$ \\
  1111 \hbox{}\qquad\qquad $t = \textit{Lam}~(\textit{Lam}~(\textit{Var}~1))$ \\[2\smallskipamount]
  1112 Total time: $4679$ ms.
  1113 \postw
  1114 
  1115 Using \textit{eval}, we find out that $\textit{subst}~\sigma~t =
  1116 \textit{Lam}~(\textit{Lam}~(\textit{Var}~0))$. Using the traditional
  1117 $\lambda$-term notation, $t$~is
  1118 $\lambda x\, y.\> x$ whereas $\textit{subst}~\sigma~t$ is $\lambda x\, y.\> y$.
  1119 The bug is in \textit{subst}: The $\textit{lift}~(\sigma~m)~1$ call should be
  1120 replaced with $\textit{lift}~(\sigma~m)~0$.
  1121 
  1122 An interesting aspect of Nitpick's verbose output is that it assigned inceasing
  1123 cardinalities from 1 to 8 to the type $\textit{nat} \Rightarrow \textit{tm}$.
  1124 For the formula of interest, knowing 6 values of that type was enough to find
  1125 the counterexample. Without boxing, $46\,656$ ($= 6^6$) values must be
  1126 considered, a hopeless undertaking:
  1127 
  1128 \prew
  1129 \textbf{nitpick} [\textit{dont\_box}] \\[2\smallskipamount]
  1130 {\slshape Nitpick ran out of time after checking 4 of 8 scopes.}
  1131 \postw
  1132 
  1133 {\looseness=-1
  1134 Boxing can be enabled or disabled globally or on a per-type basis using the
  1135 \textit{box} option. Moreover, setting the cardinality of a function or
  1136 product type implicitly enables boxing for that type. Nitpick usually performs
  1137 reasonable choices about which types should be boxed, but option tweaking
  1138 sometimes helps.
  1139 
  1140 }
  1141 
  1142 \subsection{Scope Monotonicity}
  1143 \label{scope-monotonicity}
  1144 
  1145 The \textit{card} option (together with \textit{iter}, \textit{bisim\_depth},
  1146 and \textit{max}) controls which scopes are actually tested. In general, to
  1147 exhaust all models below a certain cardinality bound, the number of scopes that
  1148 Nitpick must consider increases exponentially with the number of type variables
  1149 (and \textbf{typedecl}'d types) occurring in the formula. Given the default
  1150 cardinality specification of 1--8, no fewer than $8^4 = 4096$ scopes must be
  1151 considered for a formula involving $'a$, $'b$, $'c$, and $'d$.
  1152 
  1153 Fortunately, many formulas exhibit a property called \textsl{scope
  1154 monotonicity}, meaning that if the formula is falsifiable for a given scope,
  1155 it is also falsifiable for all larger scopes \cite[p.~165]{jackson-2006}.
  1156 
  1157 Consider the formula
  1158 
  1159 \prew
  1160 \textbf{lemma}~``$\textit{length~xs} = \textit{length~ys} \,\Longrightarrow\, \textit{rev}~(\textit{zip~xs~ys}) = \textit{zip~xs}~(\textit{rev~ys})$''
  1161 \postw
  1162 
  1163 where \textit{xs} is of type $'a~\textit{list}$ and \textit{ys} is of type
  1164 $'b~\textit{list}$. A priori, Nitpick would need to consider 512 scopes to
  1165 exhaust the specification \textit{card}~= 1--8. However, our intuition tells us
  1166 that any counterexample found with a small scope would still be a counterexample
  1167 in a larger scope---by simply ignoring the fresh $'a$ and $'b$ values provided
  1168 by the larger scope. Nitpick comes to the same conclusion after a careful
  1169 inspection of the formula and the relevant definitions:
  1170 
  1171 \prew
  1172 \textbf{nitpick}~[\textit{verbose}] \\[2\smallskipamount]
  1173 \slshape
  1174 The types ``\kern1pt$'a$'' and ``\kern1pt$'b$'' passed the monotonicity test.
  1175 Nitpick might be able to skip some scopes.
  1176  \\[2\smallskipamount]
  1177 Trying 8 scopes: \\
  1178 \hbox{}\qquad \textit{card} $'a$~= 1, \textit{card} $'b$~= 1,
  1179 \textit{card} \textit{nat}~= 1, \textit{card} ``$('a \times {'}b)$
  1180 \textit{list}''~= 1, \\
  1181 \hbox{}\qquad\quad \textit{card} ``\kern1pt$'a$ \textit{list}''~= 1, and
  1182 \textit{card} ``\kern1pt$'b$ \textit{list}''~= 1. \\
  1183 \hbox{}\qquad \textit{card} $'a$~= 2, \textit{card} $'b$~= 2,
  1184 \textit{card} \textit{nat}~= 2, \textit{card} ``$('a \times {'}b)$
  1185 \textit{list}''~= 2, \\
  1186 \hbox{}\qquad\quad \textit{card} ``\kern1pt$'a$ \textit{list}''~= 2, and
  1187 \textit{card} ``\kern1pt$'b$ \textit{list}''~= 2. \\
  1188 \hbox{}\qquad $\qquad\vdots$ \\[.5\smallskipamount]
  1189 \hbox{}\qquad \textit{card} $'a$~= 8, \textit{card} $'b$~= 8,
  1190 \textit{card} \textit{nat}~= 8, \textit{card} ``$('a \times {'}b)$
  1191 \textit{list}''~= 8, \\
  1192 \hbox{}\qquad\quad \textit{card} ``\kern1pt$'a$ \textit{list}''~= 8, and
  1193 \textit{card} ``\kern1pt$'b$ \textit{list}''~= 8.
  1194 \\[2\smallskipamount]
  1195 Nitpick found a counterexample for
  1196 \textit{card} $'a$~= 5, \textit{card} $'b$~= 5,
  1197 \textit{card} \textit{nat}~= 5, \textit{card} ``$('a \times {'}b)$
  1198 \textit{list}''~= 5, \textit{card} ``\kern1pt$'a$ \textit{list}''~= 5, and
  1199 \textit{card} ``\kern1pt$'b$ \textit{list}''~= 5:
  1200 \\[2\smallskipamount]
  1201 \hbox{}\qquad Free variables: \nopagebreak \\
  1202 \hbox{}\qquad\qquad $\textit{xs} = [a_1, a_2]$ \\
  1203 \hbox{}\qquad\qquad $\textit{ys} = [b_1, b_1]$ \\[2\smallskipamount]
  1204 Total time: 1636 ms.
  1205 \postw
  1206 
  1207 In theory, it should be sufficient to test a single scope:
  1208 
  1209 \prew
  1210 \textbf{nitpick}~[\textit{card}~= 8]
  1211 \postw
  1212 
  1213 However, this is often less efficient in practice and may lead to overly complex
  1214 counterexamples.
  1215 
  1216 If the monotonicity check fails but we believe that the formula is monotonic (or
  1217 we don't mind missing some counterexamples), we can pass the
  1218 \textit{mono} option. To convince yourself that this option is risky,
  1219 simply consider this example from \S\ref{skolemization}:
  1220 
  1221 \prew
  1222 \textbf{lemma} ``$\exists g.\; \forall x\Colon 'b.~g~(f~x) = x
  1223  \,\Longrightarrow\, \forall y\Colon {'}a.\; \exists x.~y = f~x$'' \\
  1224 \textbf{nitpick} [\textit{mono}] \\[2\smallskipamount]
  1225 {\slshape Nitpick found no counterexample.} \\[2\smallskipamount]
  1226 \textbf{nitpick} \\[2\smallskipamount]
  1227 \slshape
  1228 Nitpick found a counterexample for \textit{card} $'a$~= 2 and \textit{card} $'b$~=~1: \\
  1229 \hbox{}\qquad $\vdots$
  1230 \postw
  1231 
  1232 (It turns out the formula holds if and only if $\textit{card}~'a \le
  1233 \textit{card}~'b$.) Although this is rarely advisable, the automatic
  1234 monotonicity checks can be disabled by passing \textit{non\_mono}
  1235 (\S\ref{optimizations}).
  1236 
  1237 As insinuated in \S\ref{natural-numbers-and-integers} and
  1238 \S\ref{inductive-datatypes}, \textit{nat}, \textit{int}, and inductive datatypes
  1239 are normally monotonic and treated as such. The same is true for record types,
  1240 \textit{rat}, \textit{real}, and some \textbf{typedef}'d types. Thus, given the
  1241 cardinality specification 1--8, a formula involving \textit{nat}, \textit{int},
  1242 \textit{int~list}, \textit{rat}, and \textit{rat~list} will lead Nitpick to
  1243 consider only 8~scopes instead of $32\,768$.
  1244 
  1245 \subsection{Inductive Properties}
  1246 \label{inductive-properties}
  1247 
  1248 Inductive properties are a particular pain to prove, because the failure to
  1249 establish an induction step can mean several things:
  1250 %
  1251 \begin{enumerate}
  1252 \item The property is invalid.
  1253 \item The property is valid but is too weak to support the induction step.
  1254 \item The property is valid and strong enough; it's just that we haven't found
  1255 the proof yet.
  1256 \end{enumerate}
  1257 %
  1258 Depending on which scenario applies, we would take the appropriate course of
  1259 action:
  1260 %
  1261 \begin{enumerate}
  1262 \item Repair the statement of the property so that it becomes valid.
  1263 \item Generalize the property and/or prove auxiliary properties.
  1264 \item Work harder on a proof.
  1265 \end{enumerate}
  1266 %
  1267 How can we distinguish between the three scenarios? Nitpick's normal mode of
  1268 operation can often detect scenario 1, and Isabelle's automatic tactics help with
  1269 scenario 3. Using appropriate techniques, it is also often possible to use
  1270 Nitpick to identify scenario 2. Consider the following transition system,
  1271 in which natural numbers represent states:
  1272 
  1273 \prew
  1274 \textbf{inductive\_set}~\textit{reach}~\textbf{where} \\
  1275 ``$(4\Colon\textit{nat}) \in \textit{reach\/}$'' $\mid$ \\
  1276 ``$\lbrakk n < 4;\> n \in \textit{reach\/}\rbrakk \,\Longrightarrow\, 3 * n + 1 \in \textit{reach\/}$'' $\mid$ \\
  1277 ``$n \in \textit{reach} \,\Longrightarrow n + 2 \in \textit{reach\/}$''
  1278 \postw
  1279 
  1280 We will try to prove that only even numbers are reachable:
  1281 
  1282 \prew
  1283 \textbf{lemma}~``$n \in \textit{reach} \,\Longrightarrow\, 2~\textrm{dvd}~n$''
  1284 \postw
  1285 
  1286 Does this property hold? Nitpick cannot find a counterexample within 30 seconds,
  1287 so let's attempt a proof by induction:
  1288 
  1289 \prew
  1290 \textbf{apply}~(\textit{induct~set}{:}~\textit{reach\/}) \\
  1291 \textbf{apply}~\textit{auto}
  1292 \postw
  1293 
  1294 This leaves us in the following proof state:
  1295 
  1296 \prew
  1297 {\slshape goal (2 subgoals): \\
  1298 \phantom{0}1. ${\bigwedge}n.\;\, \lbrakk n \in \textit{reach\/};\, n < 4;\, 2~\textsl{dvd}~n\rbrakk \,\Longrightarrow\, 2~\textsl{dvd}~\textit{Suc}~(3 * n)$ \\
  1299 \phantom{0}2. ${\bigwedge}n.\;\, \lbrakk n \in \textit{reach\/};\, 2~\textsl{dvd}~n\rbrakk \,\Longrightarrow\, 2~\textsl{dvd}~\textit{Suc}~(\textit{Suc}~n)$
  1300 }
  1301 \postw
  1302 
  1303 If we run Nitpick on the first subgoal, it still won't find any
  1304 counterexample; and yet, \textit{auto} fails to go further, and \textit{arith}
  1305 is helpless. However, notice the $n \in \textit{reach}$ assumption, which
  1306 strengthens the induction hypothesis but is not immediately usable in the proof.
  1307 If we remove it and invoke Nitpick, this time we get a counterexample:
  1308 
  1309 \prew
  1310 \textbf{apply}~(\textit{thin\_tac}~``$n \in \textit{reach\/}$'') \\
  1311 \textbf{nitpick} \\[2\smallskipamount]
  1312 \slshape Nitpick found a counterexample: \\[2\smallskipamount]
  1313 \hbox{}\qquad Skolem constant: \nopagebreak \\
  1314 \hbox{}\qquad\qquad $n = 0$
  1315 \postw
  1316 
  1317 Indeed, 0 < 4, 2 divides 0, but 2 does not divide 1. We can use this information
  1318 to strength the lemma:
  1319 
  1320 \prew
  1321 \textbf{lemma}~``$n \in \textit{reach} \,\Longrightarrow\, 2~\textrm{dvd}~n \mathrel{\lor} n \not= 0$''
  1322 \postw
  1323 
  1324 Unfortunately, the proof by induction still gets stuck, except that Nitpick now
  1325 finds the counterexample $n = 2$. We generalize the lemma further to
  1326 
  1327 \prew
  1328 \textbf{lemma}~``$n \in \textit{reach} \,\Longrightarrow\, 2~\textrm{dvd}~n \mathrel{\lor} n \ge 4$''
  1329 \postw
  1330 
  1331 and this time \textit{arith} can finish off the subgoals.
  1332 
  1333 A similar technique can be employed for structural induction. The
  1334 following mini formalization of full binary trees will serve as illustration:
  1335 
  1336 \prew
  1337 \textbf{datatype} $\kern1pt'a$~\textit{bin\_tree} = $\textit{Leaf}~{\kern1pt'a}$ $\mid$ $\textit{Branch}$ ``\kern1pt$'a$ \textit{bin\_tree}'' ``\kern1pt$'a$ \textit{bin\_tree}'' \\[2\smallskipamount]
  1338 \textbf{primrec}~\textit{labels}~\textbf{where} \\
  1339 ``$\textit{labels}~(\textit{Leaf}~a) = \{a\}$'' $\mid$ \\
  1340 ``$\textit{labels}~(\textit{Branch}~t~u) = \textit{labels}~t \mathrel{\cup} \textit{labels}~u$'' \\[2\smallskipamount]
  1341 \textbf{primrec}~\textit{swap}~\textbf{where} \\
  1342 ``$\textit{swap}~(\textit{Leaf}~c)~a~b =$ \\
  1343 \phantom{``}$(\textrm{if}~c = a~\textrm{then}~\textit{Leaf}~b~\textrm{else~if}~c = b~\textrm{then}~\textit{Leaf}~a~\textrm{else}~\textit{Leaf}~c)$'' $\mid$ \\
  1344 ``$\textit{swap}~(\textit{Branch}~t~u)~a~b = \textit{Branch}~(\textit{swap}~t~a~b)~(\textit{swap}~u~a~b)$''
  1345 \postw
  1346 
  1347 The \textit{labels} function returns the set of labels occurring on leaves of a
  1348 tree, and \textit{swap} exchanges two labels. Intuitively, if two distinct
  1349 labels $a$ and $b$ occur in a tree $t$, they should also occur in the tree
  1350 obtained by swapping $a$ and $b$:
  1351 
  1352 \prew
  1353 \textbf{lemma} $``\{a, b\} \subseteq \textit{labels}~t \,\Longrightarrow\, \textit{labels}~(\textit{swap}~t~a~b) = \textit{labels}~t$''
  1354 \postw
  1355 
  1356 Nitpick can't find any counterexample, so we proceed with induction
  1357 (this time favoring a more structured style):
  1358 
  1359 \prew
  1360 \textbf{proof}~(\textit{induct}~$t$) \\
  1361 \hbox{}\quad \textbf{case}~\textit{Leaf}~\textbf{thus}~\textit{?case}~\textbf{by}~\textit{simp} \\
  1362 \textbf{next} \\
  1363 \hbox{}\quad \textbf{case}~$(\textit{Branch}~t~u)$~\textbf{thus} \textit{?case}
  1364 \postw
  1365 
  1366 Nitpick can't find any counterexample at this point either, but it makes the
  1367 following suggestion:
  1368 
  1369 \prew
  1370 \slshape
  1371 Hint: To check that the induction hypothesis is general enough, try this command:
  1372 \textbf{nitpick}~[\textit{non\_std}, \textit{show\_all}].
  1373 \postw
  1374 
  1375 If we follow the hint, we get a ``nonstandard'' counterexample for the step:
  1376 
  1377 \prew
  1378 \slshape Nitpick found a nonstandard counterexample for \textit{card} $'a$ = 3: \\[2\smallskipamount]
  1379 \hbox{}\qquad Free variables: \nopagebreak \\
  1380 \hbox{}\qquad\qquad $a = a_1$ \\
  1381 \hbox{}\qquad\qquad $b = a_2$ \\
  1382 \hbox{}\qquad\qquad $t = \xi_1$ \\
  1383 \hbox{}\qquad\qquad $u = \xi_2$ \\
  1384 \hbox{}\qquad Datatype: \nopagebreak \\
  1385 \hbox{}\qquad\qquad $\alpha~\textit{btree} = \{\xi_1 \mathbin{=} \textit{Branch}~\xi_1~\xi_1,\> \xi_2 \mathbin{=} \textit{Branch}~\xi_2~\xi_2,\> \textit{Branch}~\xi_1~\xi_2\}$ \\
  1386 \hbox{}\qquad {\slshape Constants:} \nopagebreak \\
  1387 \hbox{}\qquad\qquad $\textit{labels} = \undef
  1388     (\!\begin{aligned}[t]%
  1389     & \xi_1 := \{a_2, a_3\},\> \xi_2 := \{a_1\},\> \\[-2pt]
  1390     & \textit{Branch}~\xi_1~\xi_2 := \{a_1, a_2, a_3\})\end{aligned}$ \\
  1391 \hbox{}\qquad\qquad $\lambda x_1.\> \textit{swap}~x_1~a~b = \undef
  1392     (\!\begin{aligned}[t]%
  1393     & \xi_1 := \xi_2,\> \xi_2 := \xi_2, \\[-2pt]
  1394     & \textit{Branch}~\xi_1~\xi_2 := \xi_2)\end{aligned}$ \\[2\smallskipamount]
  1395 The existence of a nonstandard model suggests that the induction hypothesis is not general enough or perhaps
  1396 even wrong. See the ``Inductive Properties'' section of the Nitpick manual for details (``\textit{isabelle doc nitpick}'').
  1397 \postw
  1398 
  1399 Reading the Nitpick manual is a most excellent idea.
  1400 But what's going on? The \textit{non\_std} option told the tool to look for
  1401 nonstandard models of binary trees, which means that new ``nonstandard'' trees
  1402 $\xi_1, \xi_2, \ldots$, are now allowed in addition to the standard trees
  1403 generated by the \textit{Leaf} and \textit{Branch} constructors.%
  1404 \footnote{Notice the similarity between allowing nonstandard trees here and
  1405 allowing unreachable states in the preceding example (by removing the ``$n \in
  1406 \textit{reach\/}$'' assumption). In both cases, we effectively enlarge the
  1407 set of objects over which the induction is performed while doing the step
  1408 in order to test the induction hypothesis's strength.}
  1409 Unlike standard trees, these new trees contain cycles. We will see later that
  1410 every property of acyclic trees that can be proved without using induction also
  1411 holds for cyclic trees. Hence,
  1412 %
  1413 \begin{quote}
  1414 \textsl{If the induction
  1415 hypothesis is strong enough, the induction step will hold even for nonstandard
  1416 objects, and Nitpick won't find any nonstandard counterexample.}
  1417 \end{quote}
  1418 %
  1419 But here the tool find some nonstandard trees $t = \xi_1$
  1420 and $u = \xi_2$ such that $a \notin \textit{labels}~t$, $b \in
  1421 \textit{labels}~t$, $a \in \textit{labels}~u$, and $b \notin \textit{labels}~u$.
  1422 Because neither tree contains both $a$ and $b$, the induction hypothesis tells
  1423 us nothing about the labels of $\textit{swap}~t~a~b$ and $\textit{swap}~u~a~b$,
  1424 and as a result we know nothing about the labels of the tree
  1425 $\textit{swap}~(\textit{Branch}~t~u)~a~b$, which by definition equals
  1426 $\textit{Branch}$ $(\textit{swap}~t~a~b)$ $(\textit{swap}~u~a~b)$, whose
  1427 labels are $\textit{labels}$ $(\textit{swap}~t~a~b) \mathrel{\cup}
  1428 \textit{labels}$ $(\textit{swap}~u~a~b)$.
  1429 
  1430 The solution is to ensure that we always know what the labels of the subtrees
  1431 are in the inductive step, by covering the cases where $a$ and/or~$b$ is not in
  1432 $t$ in the statement of the lemma:
  1433 
  1434 \prew
  1435 \textbf{lemma} ``$\textit{labels}~(\textit{swap}~t~a~b) = {}$ \\
  1436 \phantom{\textbf{lemma} ``}$(\textrm{if}~a \in \textit{labels}~t~\textrm{then}$ \nopagebreak \\
  1437 \phantom{\textbf{lemma} ``(\quad}$\textrm{if}~b \in \textit{labels}~t~\textrm{then}~\textit{labels}~t~\textrm{else}~(\textit{labels}~t - \{a\}) \mathrel{\cup} \{b\}$ \\
  1438 \phantom{\textbf{lemma} ``(}$\textrm{else}$ \\
  1439 \phantom{\textbf{lemma} ``(\quad}$\textrm{if}~b \in \textit{labels}~t~\textrm{then}~(\textit{labels}~t - \{b\}) \mathrel{\cup} \{a\}~\textrm{else}~\textit{labels}~t)$''
  1440 \postw
  1441 
  1442 This time, Nitpick won't find any nonstandard counterexample, and we can perform
  1443 the induction step using \textit{auto}.
  1444 
  1445 \section{Case Studies}
  1446 \label{case-studies}
  1447 
  1448 As a didactic device, the previous section focused mostly on toy formulas whose
  1449 validity can easily be assessed just by looking at the formula. We will now
  1450 review two somewhat more realistic case studies that are within Nitpick's
  1451 reach:\ a context-free grammar modeled by mutually inductive sets and a
  1452 functional implementation of AA trees. The results presented in this
  1453 section were produced with the following settings:
  1454 
  1455 \prew
  1456 \textbf{nitpick\_params} [\textit{max\_potential}~= 0,\, \textit{max\_threads} = 2]
  1457 \postw
  1458 
  1459 \subsection{A Context-Free Grammar}
  1460 \label{a-context-free-grammar}
  1461 
  1462 Our first case study is taken from section 7.4 in the Isabelle tutorial
  1463 \cite{isa-tutorial}. The following grammar, originally due to Hopcroft and
  1464 Ullman, produces all strings with an equal number of $a$'s and $b$'s:
  1465 
  1466 \prew
  1467 \begin{tabular}{@{}r@{$\;\,$}c@{$\;\,$}l@{}}
  1468 $S$ & $::=$ & $\epsilon \mid bA \mid aB$ \\
  1469 $A$ & $::=$ & $aS \mid bAA$ \\
  1470 $B$ & $::=$ & $bS \mid aBB$
  1471 \end{tabular}
  1472 \postw
  1473 
  1474 The intuition behind the grammar is that $A$ generates all string with one more
  1475 $a$ than $b$'s and $B$ generates all strings with one more $b$ than $a$'s.
  1476 
  1477 The alphabet consists exclusively of $a$'s and $b$'s:
  1478 
  1479 \prew
  1480 \textbf{datatype} \textit{alphabet}~= $a$ $\mid$ $b$
  1481 \postw
  1482 
  1483 Strings over the alphabet are represented by \textit{alphabet list}s.
  1484 Nonterminals in the grammar become sets of strings. The production rules
  1485 presented above can be expressed as a mutually inductive definition:
  1486 
  1487 \prew
  1488 \textbf{inductive\_set} $S$ \textbf{and} $A$ \textbf{and} $B$ \textbf{where} \\
  1489 \textit{R1}:\kern.4em ``$[] \in S$'' $\,\mid$ \\
  1490 \textit{R2}:\kern.4em ``$w \in A\,\Longrightarrow\, b \mathbin{\#} w \in S$'' $\,\mid$ \\
  1491 \textit{R3}:\kern.4em ``$w \in B\,\Longrightarrow\, a \mathbin{\#} w \in S$'' $\,\mid$ \\
  1492 \textit{R4}:\kern.4em ``$w \in S\,\Longrightarrow\, a \mathbin{\#} w \in A$'' $\,\mid$ \\
  1493 \textit{R5}:\kern.4em ``$w \in S\,\Longrightarrow\, b \mathbin{\#} w \in S$'' $\,\mid$ \\
  1494 \textit{R6}:\kern.4em ``$\lbrakk v \in B;\> v \in B\rbrakk \,\Longrightarrow\, a \mathbin{\#} v \mathbin{@} w \in B$''
  1495 \postw
  1496 
  1497 The conversion of the grammar into the inductive definition was done manually by
  1498 Joe Blow, an underpaid undergraduate student. As a result, some errors might
  1499 have sneaked in.
  1500 
  1501 Debugging faulty specifications is at the heart of Nitpick's \textsl{raison
  1502 d'\^etre}. A good approach is to state desirable properties of the specification
  1503 (here, that $S$ is exactly the set of strings over $\{a, b\}$ with as many $a$'s
  1504 as $b$'s) and check them with Nitpick. If the properties are correctly stated,
  1505 counterexamples will point to bugs in the specification. For our grammar
  1506 example, we will proceed in two steps, separating the soundness and the
  1507 completeness of the set $S$. First, soundness:
  1508 
  1509 \prew
  1510 \textbf{theorem}~\textit{S\_sound}: \\
  1511 ``$w \in S \longrightarrow \textit{length}~[x\mathbin{\leftarrow} w.\; x = a] =
  1512   \textit{length}~[x\mathbin{\leftarrow} w.\; x = b]$'' \\
  1513 \textbf{nitpick} \\[2\smallskipamount]
  1514 \slshape Nitpick found a counterexample: \\[2\smallskipamount]
  1515 \hbox{}\qquad Free variable: \nopagebreak \\
  1516 \hbox{}\qquad\qquad $w = [b]$
  1517 \postw
  1518 
  1519 It would seem that $[b] \in S$. How could this be? An inspection of the
  1520 introduction rules reveals that the only rule with a right-hand side of the form
  1521 $b \mathbin{\#} {\ldots} \in S$ that could have introduced $[b]$ into $S$ is
  1522 \textit{R5}:
  1523 
  1524 \prew
  1525 ``$w \in S\,\Longrightarrow\, b \mathbin{\#} w \in S$''
  1526 \postw
  1527 
  1528 On closer inspection, we can see that this rule is wrong. To match the
  1529 production $B ::= bS$, the second $S$ should be a $B$. We fix the typo and try
  1530 again:
  1531 
  1532 \prew
  1533 \textbf{nitpick} \\[2\smallskipamount]
  1534 \slshape Nitpick found a counterexample: \\[2\smallskipamount]
  1535 \hbox{}\qquad Free variable: \nopagebreak \\
  1536 \hbox{}\qquad\qquad $w = [a, a, b]$
  1537 \postw
  1538 
  1539 Some detective work is necessary to find out what went wrong here. To get $[a,
  1540 a, b] \in S$, we need $[a, b] \in B$ by \textit{R3}, which in turn can only come
  1541 from \textit{R6}:
  1542 
  1543 \prew
  1544 ``$\lbrakk v \in B;\> v \in B\rbrakk \,\Longrightarrow\, a \mathbin{\#} v \mathbin{@} w \in B$''
  1545 \postw
  1546 
  1547 Now, this formula must be wrong: The same assumption occurs twice, and the
  1548 variable $w$ is unconstrained. Clearly, one of the two occurrences of $v$ in
  1549 the assumptions should have been a $w$.
  1550 
  1551 With the correction made, we don't get any counterexample from Nitpick. Let's
  1552 move on and check completeness:
  1553 
  1554 \prew
  1555 \textbf{theorem}~\textit{S\_complete}: \\
  1556 ``$\textit{length}~[x\mathbin{\leftarrow} w.\; x = a] =
  1557    \textit{length}~[x\mathbin{\leftarrow} w.\; x = b]
  1558   \longrightarrow w \in S$'' \\
  1559 \textbf{nitpick} \\[2\smallskipamount]
  1560 \slshape Nitpick found a counterexample: \\[2\smallskipamount]
  1561 \hbox{}\qquad Free variable: \nopagebreak \\
  1562 \hbox{}\qquad\qquad $w = [b, b, a, a]$
  1563 \postw
  1564 
  1565 Apparently, $[b, b, a, a] \notin S$, even though it has the same numbers of
  1566 $a$'s and $b$'s. But since our inductive definition passed the soundness check,
  1567 the introduction rules we have are probably correct. Perhaps we simply lack an
  1568 introduction rule. Comparing the grammar with the inductive definition, our
  1569 suspicion is confirmed: Joe Blow simply forgot the production $A ::= bAA$,
  1570 without which the grammar cannot generate two or more $b$'s in a row. So we add
  1571 the rule
  1572 
  1573 \prew
  1574 ``$\lbrakk v \in A;\> w \in A\rbrakk \,\Longrightarrow\, b \mathbin{\#} v \mathbin{@} w \in A$''
  1575 \postw
  1576 
  1577 With this last change, we don't get any counterexamples from Nitpick for either
  1578 soundness or completeness. We can even generalize our result to cover $A$ and
  1579 $B$ as well:
  1580 
  1581 \prew
  1582 \textbf{theorem} \textit{S\_A\_B\_sound\_and\_complete}: \\
  1583 ``$w \in S \longleftrightarrow \textit{length}~[x \mathbin{\leftarrow} w.\; x = a] = \textit{length}~[x \mathbin{\leftarrow} w.\; x = b]$'' \\
  1584 ``$w \in A \longleftrightarrow \textit{length}~[x \mathbin{\leftarrow} w.\; x = a] = \textit{length}~[x \mathbin{\leftarrow} w.\; x = b] + 1$'' \\
  1585 ``$w \in B \longleftrightarrow \textit{length}~[x \mathbin{\leftarrow} w.\; x = b] = \textit{length}~[x \mathbin{\leftarrow} w.\; x = a] + 1$'' \\
  1586 \textbf{nitpick} \\[2\smallskipamount]
  1587 \slshape Nitpick found no counterexample.
  1588 \postw
  1589 
  1590 \subsection{AA Trees}
  1591 \label{aa-trees}
  1592 
  1593 AA trees are a kind of balanced trees discovered by Arne Andersson that provide
  1594 similar performance to red-black trees, but with a simpler implementation
  1595 \cite{andersson-1993}. They can be used to store sets of elements equipped with
  1596 a total order $<$. We start by defining the datatype and some basic extractor
  1597 functions:
  1598 
  1599 \prew
  1600 \textbf{datatype} $'a$~\textit{aa\_tree} = \\
  1601 \hbox{}\quad $\Lambda$ $\mid$ $N$ ``\kern1pt$'a\Colon \textit{linorder}$'' \textit{nat} ``\kern1pt$'a$ \textit{aa\_tree}'' ``\kern1pt$'a$ \textit{aa\_tree}''  \\[2\smallskipamount]
  1602 \textbf{primrec} \textit{data} \textbf{where} \\
  1603 ``$\textit{data}~\Lambda = \undef$'' $\,\mid$ \\
  1604 ``$\textit{data}~(N~x~\_~\_~\_) = x$'' \\[2\smallskipamount]
  1605 \textbf{primrec} \textit{dataset} \textbf{where} \\
  1606 ``$\textit{dataset}~\Lambda = \{\}$'' $\,\mid$ \\
  1607 ``$\textit{dataset}~(N~x~\_~t~u) = \{x\} \cup \textit{dataset}~t \mathrel{\cup} \textit{dataset}~u$'' \\[2\smallskipamount]
  1608 \textbf{primrec} \textit{level} \textbf{where} \\
  1609 ``$\textit{level}~\Lambda = 0$'' $\,\mid$ \\
  1610 ``$\textit{level}~(N~\_~k~\_~\_) = k$'' \\[2\smallskipamount]
  1611 \textbf{primrec} \textit{left} \textbf{where} \\
  1612 ``$\textit{left}~\Lambda = \Lambda$'' $\,\mid$ \\
  1613 ``$\textit{left}~(N~\_~\_~t~\_) = t$'' \\[2\smallskipamount]
  1614 \textbf{primrec} \textit{right} \textbf{where} \\
  1615 ``$\textit{right}~\Lambda = \Lambda$'' $\,\mid$ \\
  1616 ``$\textit{right}~(N~\_~\_~\_~u) = u$''
  1617 \postw
  1618 
  1619 The wellformedness criterion for AA trees is fairly complex. Wikipedia states it
  1620 as follows \cite{wikipedia-2009-aa-trees}:
  1621 
  1622 \kern.2\parskip %% TYPESETTING
  1623 
  1624 \pre
  1625 Each node has a level field, and the following invariants must remain true for
  1626 the tree to be valid:
  1627 
  1628 \raggedright
  1629 
  1630 \kern-.4\parskip %% TYPESETTING
  1631 
  1632 \begin{enum}
  1633 \item[]
  1634 \begin{enum}
  1635 \item[1.] The level of a leaf node is one.
  1636 \item[2.] The level of a left child is strictly less than that of its parent.
  1637 \item[3.] The level of a right child is less than or equal to that of its parent.
  1638 \item[4.] The level of a right grandchild is strictly less than that of its grandparent.
  1639 \item[5.] Every node of level greater than one must have two children.
  1640 \end{enum}
  1641 \end{enum}
  1642 \post
  1643 
  1644 \kern.4\parskip %% TYPESETTING
  1645 
  1646 The \textit{wf} predicate formalizes this description:
  1647 
  1648 \prew
  1649 \textbf{primrec} \textit{wf} \textbf{where} \\
  1650 ``$\textit{wf}~\Lambda = \textit{True}$'' $\,\mid$ \\
  1651 ``$\textit{wf}~(N~\_~k~t~u) =$ \\
  1652 \phantom{``}$(\textrm{if}~t = \Lambda~\textrm{then}$ \\
  1653 \phantom{``$(\quad$}$k = 1 \mathrel{\land} (u = \Lambda \mathrel{\lor} (\textit{level}~u = 1 \mathrel{\land} \textit{left}~u = \Lambda \mathrel{\land} \textit{right}~u = \Lambda))$ \\
  1654 \phantom{``$($}$\textrm{else}$ \\
  1655 \hbox{}\phantom{``$(\quad$}$\textit{wf}~t \mathrel{\land} \textit{wf}~u
  1656 \mathrel{\land} u \not= \Lambda \mathrel{\land} \textit{level}~t < k
  1657 \mathrel{\land} \textit{level}~u \le k$ \\
  1658 \hbox{}\phantom{``$(\quad$}${\land}\; \textit{level}~(\textit{right}~u) < k)$''
  1659 \postw
  1660 
  1661 Rebalancing the tree upon insertion and removal of elements is performed by two
  1662 auxiliary functions called \textit{skew} and \textit{split}, defined below:
  1663 
  1664 \prew
  1665 \textbf{primrec} \textit{skew} \textbf{where} \\
  1666 ``$\textit{skew}~\Lambda = \Lambda$'' $\,\mid$ \\
  1667 ``$\textit{skew}~(N~x~k~t~u) = {}$ \\
  1668 \phantom{``}$(\textrm{if}~t \not= \Lambda \mathrel{\land} k =
  1669 \textit{level}~t~\textrm{then}$ \\
  1670 \phantom{``(\quad}$N~(\textit{data}~t)~k~(\textit{left}~t)~(N~x~k~
  1671 (\textit{right}~t)~u)$ \\
  1672 \phantom{``(}$\textrm{else}$ \\
  1673 \phantom{``(\quad}$N~x~k~t~u)$''
  1674 \postw
  1675 
  1676 \prew
  1677 \textbf{primrec} \textit{split} \textbf{where} \\
  1678 ``$\textit{split}~\Lambda = \Lambda$'' $\,\mid$ \\
  1679 ``$\textit{split}~(N~x~k~t~u) = {}$ \\
  1680 \phantom{``}$(\textrm{if}~u \not= \Lambda \mathrel{\land} k =
  1681 \textit{level}~(\textit{right}~u)~\textrm{then}$ \\
  1682 \phantom{``(\quad}$N~(\textit{data}~u)~(\textit{Suc}~k)~
  1683 (N~x~k~t~(\textit{left}~u))~(\textit{right}~u)$ \\
  1684 \phantom{``(}$\textrm{else}$ \\
  1685 \phantom{``(\quad}$N~x~k~t~u)$''
  1686 \postw
  1687 
  1688 Performing a \textit{skew} or a \textit{split} should have no impact on the set
  1689 of elements stored in the tree:
  1690 
  1691 \prew
  1692 \textbf{theorem}~\textit{dataset\_skew\_split}:\\
  1693 ``$\textit{dataset}~(\textit{skew}~t) = \textit{dataset}~t$'' \\
  1694 ``$\textit{dataset}~(\textit{split}~t) = \textit{dataset}~t$'' \\
  1695 \textbf{nitpick} \\[2\smallskipamount]
  1696 {\slshape Nitpick found no counterexample.}
  1697 \postw
  1698 
  1699 Furthermore, applying \textit{skew} or \textit{split} to a well-formed tree
  1700 should not alter the tree:
  1701 
  1702 \prew
  1703 \textbf{theorem}~\textit{wf\_skew\_split}:\\
  1704 ``$\textit{wf}~t\,\Longrightarrow\, \textit{skew}~t = t$'' \\
  1705 ``$\textit{wf}~t\,\Longrightarrow\, \textit{split}~t = t$'' \\
  1706 \textbf{nitpick} \\[2\smallskipamount]
  1707 {\slshape Nitpick found no counterexample.}
  1708 \postw
  1709 
  1710 Insertion is implemented recursively. It preserves the sort order:
  1711 
  1712 \prew
  1713 \textbf{primrec}~\textit{insort} \textbf{where} \\
  1714 ``$\textit{insort}~\Lambda~x = N~x~1~\Lambda~\Lambda$'' $\,\mid$ \\
  1715 ``$\textit{insort}~(N~y~k~t~u)~x =$ \\
  1716 \phantom{``}$({*}~(\textit{split} \circ \textit{skew})~{*})~(N~y~k~(\textrm{if}~x < y~\textrm{then}~\textit{insort}~t~x~\textrm{else}~t)$ \\
  1717 \phantom{``$({*}~(\textit{split} \circ \textit{skew})~{*})~(N~y~k~$}$(\textrm{if}~x > y~\textrm{then}~\textit{insort}~u~x~\textrm{else}~u))$''
  1718 \postw
  1719 
  1720 Notice that we deliberately commented out the application of \textit{skew} and
  1721 \textit{split}. Let's see if this causes any problems:
  1722 
  1723 \prew
  1724 \textbf{theorem}~\textit{wf\_insort}:\kern.4em ``$\textit{wf}~t\,\Longrightarrow\, \textit{wf}~(\textit{insort}~t~x)$'' \\
  1725 \textbf{nitpick} \\[2\smallskipamount]
  1726 \slshape Nitpick found a counterexample for \textit{card} $'a$ = 4: \\[2\smallskipamount]
  1727 \hbox{}\qquad Free variables: \nopagebreak \\
  1728 \hbox{}\qquad\qquad $t = N~a_1~1~\Lambda~\Lambda$ \\
  1729 \hbox{}\qquad\qquad $x = a_2$
  1730 \postw
  1731 
  1732 It's hard to see why this is a counterexample. To improve readability, we will
  1733 restrict the theorem to \textit{nat}, so that we don't need to look up the value
  1734 of the $\textit{op}~{<}$ constant to find out which element is smaller than the
  1735 other. In addition, we will tell Nitpick to display the value of
  1736 $\textit{insort}~t~x$ using the \textit{eval} option. This gives
  1737 
  1738 \prew
  1739 \textbf{theorem} \textit{wf\_insort\_nat}:\kern.4em ``$\textit{wf}~t\,\Longrightarrow\, \textit{wf}~(\textit{insort}~t~(x\Colon\textit{nat}))$'' \\
  1740 \textbf{nitpick} [\textit{eval} = ``$\textit{insort}~t~x$''] \\[2\smallskipamount]
  1741 \slshape Nitpick found a counterexample: \\[2\smallskipamount]
  1742 \hbox{}\qquad Free variables: \nopagebreak \\
  1743 \hbox{}\qquad\qquad $t = N~1~1~\Lambda~\Lambda$ \\
  1744 \hbox{}\qquad\qquad $x = 0$ \\
  1745 \hbox{}\qquad Evaluated term: \\
  1746 \hbox{}\qquad\qquad $\textit{insort}~t~x = N~1~1~(N~0~1~\Lambda~\Lambda)~\Lambda$
  1747 \postw
  1748 
  1749 Nitpick's output reveals that the element $0$ was added as a left child of $1$,
  1750 where both have a level of 1. This violates the second AA tree invariant, which
  1751 states that a left child's level must be less than its parent's. This shouldn't
  1752 come as a surprise, considering that we commented out the tree rebalancing code.
  1753 Reintroducing the code seems to solve the problem:
  1754 
  1755 \prew
  1756 \textbf{theorem}~\textit{wf\_insort}:\kern.4em ``$\textit{wf}~t\,\Longrightarrow\, \textit{wf}~(\textit{insort}~t~x)$'' \\
  1757 \textbf{nitpick} \\[2\smallskipamount]
  1758 {\slshape Nitpick ran out of time after checking 7 of 8 scopes.}
  1759 \postw
  1760 
  1761 Insertion should transform the set of elements represented by the tree in the
  1762 obvious way:
  1763 
  1764 \prew
  1765 \textbf{theorem} \textit{dataset\_insort}:\kern.4em
  1766 ``$\textit{dataset}~(\textit{insort}~t~x) = \{x\} \cup \textit{dataset}~t$'' \\
  1767 \textbf{nitpick} \\[2\smallskipamount]
  1768 {\slshape Nitpick ran out of time after checking 6 of 8 scopes.}
  1769 \postw
  1770 
  1771 We could continue like this and sketch a complete theory of AA trees. Once the
  1772 definitions and main theorems are in place and have been thoroughly tested using
  1773 Nitpick, we could start working on the proofs. Developing theories this way
  1774 usually saves time, because faulty theorems and definitions are discovered much
  1775 earlier in the process.
  1776 
  1777 \section{Option Reference}
  1778 \label{option-reference}
  1779 
  1780 \def\flushitem#1{\item[]\noindent\kern-\leftmargin \textbf{#1}}
  1781 \def\qty#1{$\left<\textit{#1}\right>$}
  1782 \def\qtybf#1{$\mathbf{\left<\textbf{\textit{#1}}\right>}$}
  1783 \def\optrue#1#2{\flushitem{\textit{#1} $\bigl[$= \qtybf{bool}$\bigr]$\quad [\textit{true}]\hfill (neg.: \textit{#2})}\nopagebreak\\[\parskip]}
  1784 \def\opfalse#1#2{\flushitem{\textit{#1} $\bigl[$= \qtybf{bool}$\bigr]$\quad [\textit{false}]\hfill (neg.: \textit{#2})}\nopagebreak\\[\parskip]}
  1785 \def\opsmart#1#2{\flushitem{\textit{#1} $\bigl[$= \qtybf{bool\_or\_smart}$\bigr]$\quad [\textit{smart}]\hfill (neg.: \textit{#2})}\nopagebreak\\[\parskip]}
  1786 \def\opnodefault#1#2{\flushitem{\textit{#1} = \qtybf{#2}} \nopagebreak\\[\parskip]}
  1787 \def\opdefault#1#2#3{\flushitem{\textit{#1} = \qtybf{#2}\quad [\textit{#3}]} \nopagebreak\\[\parskip]}
  1788 \def\oparg#1#2#3{\flushitem{\textit{#1} \qtybf{#2} = \qtybf{#3}} \nopagebreak\\[\parskip]}
  1789 \def\opargbool#1#2#3{\flushitem{\textit{#1} \qtybf{#2} $\bigl[$= \qtybf{bool}$\bigr]$\hfill (neg.: \textit{#3})}\nopagebreak\\[\parskip]}
  1790 \def\opargboolorsmart#1#2#3{\flushitem{\textit{#1} \qtybf{#2} $\bigl[$= \qtybf{bool\_or\_smart}$\bigr]$\hfill (neg.: \textit{#3})}\nopagebreak\\[\parskip]}
  1791 
  1792 Nitpick's behavior can be influenced by various options, which can be specified
  1793 in brackets after the \textbf{nitpick} command. Default values can be set
  1794 using \textbf{nitpick\_\allowbreak params}. For example:
  1795 
  1796 \prew
  1797 \textbf{nitpick\_params} [\textit{verbose}, \,\textit{timeout} = 60$\,s$]
  1798 \postw
  1799 
  1800 The options are categorized as follows:\ mode of operation
  1801 (\S\ref{mode-of-operation}), scope of search (\S\ref{scope-of-search}), output
  1802 format (\S\ref{output-format}), automatic counterexample checks
  1803 (\S\ref{authentication}), optimizations
  1804 (\S\ref{optimizations}), and timeouts (\S\ref{timeouts}).
  1805 
  1806 You can instruct Nitpick to run automatically on newly entered theorems by
  1807 enabling the ``Auto Nitpick'' option from the ``Isabelle'' menu in Proof
  1808 General. For automatic runs, \textit{user\_axioms} (\S\ref{mode-of-operation})
  1809 and \textit{assms} (\S\ref{mode-of-operation}) are implicitly enabled,
  1810 \textit{blocking} (\S\ref{mode-of-operation}), \textit{verbose}
  1811 (\S\ref{output-format}), and \textit{debug} (\S\ref{output-format}) are
  1812 disabled, \textit{max\_potential} (\S\ref{output-format}) is taken to be 0, and
  1813 \textit{timeout} (\S\ref{timeouts}) is superseded by the ``Auto Counterexample
  1814 Time Limit'' in Proof General's ``Isabelle'' menu. Nitpick's output is also more
  1815 concise.
  1816 
  1817 The number of options can be overwhelming at first glance. Do not let that worry
  1818 you: Nitpick's defaults have been chosen so that it almost always does the right
  1819 thing, and the most important options have been covered in context in
  1820 \S\ref{first-steps}.
  1821 
  1822 The descriptions below refer to the following syntactic quantities:
  1823 
  1824 \begin{enum}
  1825 \item[$\bullet$] \qtybf{string}: A string.
  1826 \item[$\bullet$] \qtybf{bool}: \textit{true} or \textit{false}.
  1827 \item[$\bullet$] \qtybf{bool\_or\_smart}: \textit{true}, \textit{false}, or \textit{smart}.
  1828 \item[$\bullet$] \qtybf{int}: An integer. Negative integers are prefixed with a hyphen.
  1829 \item[$\bullet$] \qtybf{int\_or\_smart}: An integer or \textit{smart}.
  1830 \item[$\bullet$] \qtybf{int\_range}: An integer (e.g., 3) or a range
  1831 of nonnegative integers (e.g., $1$--$4$). The range symbol `--' can be entered as \texttt{-} (hyphen) or \texttt{\char`\\\char`\<midarrow\char`\>}.
  1832 
  1833 \item[$\bullet$] \qtybf{int\_seq}: A comma-separated sequence of ranges of integers (e.g.,~1{,}3{,}\allowbreak6--8).
  1834 \item[$\bullet$] \qtybf{time}: An integer followed by $\textit{min}$ (minutes), $s$ (seconds), or \textit{ms}
  1835 (milliseconds), or the keyword \textit{none} ($\infty$ years).
  1836 \item[$\bullet$] \qtybf{const}: The name of a HOL constant.
  1837 \item[$\bullet$] \qtybf{term}: A HOL term (e.g., ``$f~x$'').
  1838 \item[$\bullet$] \qtybf{term\_list}: A space-separated list of HOL terms (e.g.,
  1839 ``$f~x$''~``$g~y$'').
  1840 \item[$\bullet$] \qtybf{type}: A HOL type.
  1841 \end{enum}
  1842 
  1843 Default values are indicated in square brackets. Boolean options have a negated
  1844 counterpart (e.g., \textit{blocking} vs.\ \textit{no\_blocking}). When setting
  1845 Boolean options, ``= \textit{true}'' may be omitted.
  1846 
  1847 \subsection{Mode of Operation}
  1848 \label{mode-of-operation}
  1849 
  1850 \begin{enum}
  1851 \optrue{blocking}{non\_blocking}
  1852 Specifies whether the \textbf{nitpick} command should operate synchronously.
  1853 The asynchronous (non-blocking) mode lets the user start proving the putative
  1854 theorem while Nitpick looks for a counterexample, but it can also be more
  1855 confusing. For technical reasons, automatic runs currently always block.
  1856 
  1857 \optrue{falsify}{satisfy}
  1858 Specifies whether Nitpick should look for falsifying examples (countermodels) or
  1859 satisfying examples (models). This manual assumes throughout that
  1860 \textit{falsify} is enabled.
  1861 
  1862 \opsmart{user\_axioms}{no\_user\_axioms}
  1863 Specifies whether the user-defined axioms (specified using 
  1864 \textbf{axiomatization} and \textbf{axioms}) should be considered. If the option
  1865 is set to \textit{smart}, Nitpick performs an ad hoc axiom selection based on
  1866 the constants that occur in the formula to falsify. The option is implicitly set
  1867 to \textit{true} for automatic runs.
  1868 
  1869 \textbf{Warning:} If the option is set to \textit{true}, Nitpick might
  1870 nonetheless ignore some polymorphic axioms. Counterexamples generated under
  1871 these conditions are tagged as ``likely genuine.'' The \textit{debug}
  1872 (\S\ref{output-format}) option can be used to find out which axioms were
  1873 considered.
  1874 
  1875 \nopagebreak
  1876 {\small See also \textit{assms} (\S\ref{mode-of-operation}) and \textit{debug}
  1877 (\S\ref{output-format}).}
  1878 
  1879 \optrue{assms}{no\_assms}
  1880 Specifies whether the relevant assumptions in structured proof should be
  1881 considered. The option is implicitly enabled for automatic runs.
  1882 
  1883 \nopagebreak
  1884 {\small See also \textit{user\_axioms} (\S\ref{mode-of-operation}).}
  1885 
  1886 \opfalse{overlord}{no\_overlord}
  1887 Specifies whether Nitpick should put its temporary files in
  1888 \texttt{\$ISABELLE\_\allowbreak HOME\_\allowbreak USER}, which is useful for
  1889 debugging Nitpick but also unsafe if several instances of the tool are run
  1890 simultaneously. The files are identified by the extensions
  1891 \texttt{.kki}, \texttt{.cnf}, \texttt{.out}, and
  1892 \texttt{.err}; you may safely remove them after Nitpick has run.
  1893 
  1894 \nopagebreak
  1895 {\small See also \textit{debug} (\S\ref{output-format}).}
  1896 \end{enum}
  1897 
  1898 \subsection{Scope of Search}
  1899 \label{scope-of-search}
  1900 
  1901 \begin{enum}
  1902 \oparg{card}{type}{int\_seq}
  1903 Specifies the sequence of cardinalities to use for a given type.
  1904 For free types, and often also for \textbf{typedecl}'d types, it usually makes
  1905 sense to specify cardinalities as a range of the form \textit{$1$--$n$}.
  1906 Although function and product types are normally mapped directly to the
  1907 corresponding Kodkod concepts, setting
  1908 the cardinality of such types is also allowed and implicitly enables ``boxing''
  1909 for them, as explained in the description of the \textit{box}~\qty{type}
  1910 and \textit{box} (\S\ref{scope-of-search}) options.
  1911 
  1912 \nopagebreak
  1913 {\small See also \textit{mono} (\S\ref{scope-of-search}).}
  1914 
  1915 \opdefault{card}{int\_seq}{$\mathbf{1}$--$\mathbf{8}$}
  1916 Specifies the default sequence of cardinalities to use. This can be overridden
  1917 on a per-type basis using the \textit{card}~\qty{type} option described above.
  1918 
  1919 \oparg{max}{const}{int\_seq}
  1920 Specifies the sequence of maximum multiplicities to use for a given
  1921 (co)in\-duc\-tive datatype constructor. A constructor's multiplicity is the
  1922 number of distinct values that it can construct. Nonsensical values (e.g.,
  1923 \textit{max}~[]~$=$~2) are silently repaired. This option is only available for
  1924 datatypes equipped with several constructors.
  1925 
  1926 \opnodefault{max}{int\_seq}
  1927 Specifies the default sequence of maximum multiplicities to use for
  1928 (co)in\-duc\-tive datatype constructors. This can be overridden on a per-constructor
  1929 basis using the \textit{max}~\qty{const} option described above.
  1930 
  1931 \opsmart{binary\_ints}{unary\_ints}
  1932 Specifies whether natural numbers and integers should be encoded using a unary
  1933 or binary notation. In unary mode, the cardinality fully specifies the subset
  1934 used to approximate the type. For example:
  1935 %
  1936 $$\hbox{\begin{tabular}{@{}rll@{}}%
  1937 \textit{card nat} = 4 & induces & $\{0,\, 1,\, 2,\, 3\}$ \\
  1938 \textit{card int} = 4 & induces & $\{-1,\, 0,\, +1,\, +2\}$ \\
  1939 \textit{card int} = 5 & induces & $\{-2,\, -1,\, 0,\, +1,\, +2\}.$%
  1940 \end{tabular}}$$
  1941 %
  1942 In general:
  1943 %
  1944 $$\hbox{\begin{tabular}{@{}rll@{}}%
  1945 \textit{card nat} = $K$ & induces & $\{0,\, \ldots,\, K - 1\}$ \\
  1946 \textit{card int} = $K$ & induces & $\{-\lceil K/2 \rceil + 1,\, \ldots,\, +\lfloor K/2 \rfloor\}.$%
  1947 \end{tabular}}$$
  1948 %
  1949 In binary mode, the cardinality specifies the number of distinct values that can
  1950 be constructed. Each of these value is represented by a bit pattern whose length
  1951 is specified by the \textit{bits} (\S\ref{scope-of-search}) option. By default,
  1952 Nitpick attempts to choose the more appropriate encoding by inspecting the
  1953 formula at hand, preferring the binary notation for problems involving
  1954 multiplicative operators or large constants.
  1955 
  1956 \textbf{Warning:} For technical reasons, Nitpick always reverts to unary for
  1957 problems that refer to the types \textit{rat} or \textit{real} or the constants
  1958 \textit{Suc}, \textit{gcd}, or \textit{lcm}.
  1959 
  1960 {\small See also \textit{bits} (\S\ref{scope-of-search}) and
  1961 \textit{show\_datatypes} (\S\ref{output-format}).}
  1962 
  1963 \opdefault{bits}{int\_seq}{$\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{6},\mathbf{8},\mathbf{10},\mathbf{12}$}
  1964 Specifies the number of bits to use to represent natural numbers and integers in
  1965 binary, excluding the sign bit. The minimum is 1 and the maximum is 31.
  1966 
  1967 {\small See also \textit{binary\_ints} (\S\ref{scope-of-search}).}
  1968 
  1969 \opargboolorsmart{wf}{const}{non\_wf}
  1970 Specifies whether the specified (co)in\-duc\-tively defined predicate is
  1971 well-founded. The option can take the following values:
  1972 
  1973 \begin{enum}
  1974 \item[$\bullet$] \textbf{\textit{true}}: Tentatively treat the (co)in\-duc\-tive
  1975 predicate as if it were well-founded. Since this is generally not sound when the
  1976 predicate is not well-founded, the counterexamples are tagged as ``likely
  1977 genuine.''
  1978 
  1979 \item[$\bullet$] \textbf{\textit{false}}: Treat the (co)in\-duc\-tive predicate
  1980 as if it were not well-founded. The predicate is then unrolled as prescribed by
  1981 the \textit{star\_linear\_preds}, \textit{iter}~\qty{const}, and \textit{iter}
  1982 options.
  1983 
  1984 \item[$\bullet$] \textbf{\textit{smart}}: Try to prove that the inductive
  1985 predicate is well-founded using Isabelle's \textit{lexicographic\_order} and
  1986 \textit{size\_change} tactics. If this succeeds (or the predicate occurs with an
  1987 appropriate polarity in the formula to falsify), use an efficient fixed point
  1988 equation as specification of the predicate; otherwise, unroll the predicates
  1989 according to the \textit{iter}~\qty{const} and \textit{iter} options.
  1990 \end{enum}
  1991 
  1992 \nopagebreak
  1993 {\small See also \textit{iter} (\S\ref{scope-of-search}),
  1994 \textit{star\_linear\_preds} (\S\ref{optimizations}), and \textit{tac\_timeout}
  1995 (\S\ref{timeouts}).}
  1996 
  1997 \opsmart{wf}{non\_wf}
  1998 Specifies the default wellfoundedness setting to use. This can be overridden on
  1999 a per-predicate basis using the \textit{wf}~\qty{const} option above.
  2000 
  2001 \oparg{iter}{const}{int\_seq}
  2002 Specifies the sequence of iteration counts to use when unrolling a given
  2003 (co)in\-duc\-tive predicate. By default, unrolling is applied for inductive
  2004 predicates that occur negatively and coinductive predicates that occur
  2005 positively in the formula to falsify and that cannot be proved to be
  2006 well-founded, but this behavior is influenced by the \textit{wf} option. The
  2007 iteration counts are automatically bounded by the cardinality of the predicate's
  2008 domain.
  2009 
  2010 {\small See also \textit{wf} (\S\ref{scope-of-search}) and
  2011 \textit{star\_linear\_preds} (\S\ref{optimizations}).}
  2012 
  2013 \opdefault{iter}{int\_seq}{$\mathbf{1{,}2{,}4{,}8{,}12{,}16{,}24{,}32}$}
  2014 Specifies the sequence of iteration counts to use when unrolling (co)in\-duc\-tive
  2015 predicates. This can be overridden on a per-predicate basis using the
  2016 \textit{iter} \qty{const} option above.
  2017 
  2018 \opdefault{bisim\_depth}{int\_seq}{$\mathbf{7}$}
  2019 Specifies the sequence of iteration counts to use when unrolling the
  2020 bisimilarity predicate generated by Nitpick for coinductive datatypes. A value
  2021 of $-1$ means that no predicate is generated, in which case Nitpick performs an
  2022 after-the-fact check to see if the known coinductive datatype values are
  2023 bidissimilar. If two values are found to be bisimilar, the counterexample is
  2024 tagged as ``likely genuine.'' The iteration counts are automatically bounded by
  2025 the sum of the cardinalities of the coinductive datatypes occurring in the
  2026 formula to falsify.
  2027 
  2028 \opargboolorsmart{box}{type}{dont\_box}
  2029 Specifies whether Nitpick should attempt to wrap (``box'') a given function or
  2030 product type in an isomorphic datatype internally. Boxing is an effective mean
  2031 to reduce the search space and speed up Nitpick, because the isomorphic datatype
  2032 is approximated by a subset of the possible function or pair values;
  2033 like other drastic optimizations, it can also prevent the discovery of
  2034 counterexamples. The option can take the following values:
  2035 
  2036 \begin{enum}
  2037 \item[$\bullet$] \textbf{\textit{true}}: Box the specified type whenever
  2038 practicable.
  2039 \item[$\bullet$] \textbf{\textit{false}}: Never box the type.
  2040 \item[$\bullet$] \textbf{\textit{smart}}: Box the type only in contexts where it
  2041 is likely to help. For example, $n$-tuples where $n > 2$ and arguments to
  2042 higher-order functions are good candidates for boxing.
  2043 \end{enum}
  2044 
  2045 Setting the \textit{card}~\qty{type} option for a function or product type
  2046 implicitly enables boxing for that type.
  2047 
  2048 \nopagebreak
  2049 {\small See also \textit{verbose} (\S\ref{output-format})
  2050 and \textit{debug} (\S\ref{output-format}).}
  2051 
  2052 \opsmart{box}{dont\_box}
  2053 Specifies the default boxing setting to use. This can be overridden on a
  2054 per-type basis using the \textit{box}~\qty{type} option described above.
  2055 
  2056 \opargboolorsmart{mono}{type}{non\_mono}
  2057 Specifies whether the given type should be considered monotonic when
  2058 enumerating scopes. If the option is set to \textit{smart}, Nitpick performs a
  2059 monotonicity check on the type. Setting this option to \textit{true} can reduce
  2060 the number of scopes tried, but it also diminishes the theoretical chance of
  2061 finding a counterexample, as demonstrated in \S\ref{scope-monotonicity}.
  2062 
  2063 \nopagebreak
  2064 {\small See also \textit{card} (\S\ref{scope-of-search}),
  2065 \textit{merge\_type\_vars} (\S\ref{scope-of-search}), and \textit{verbose}
  2066 (\S\ref{output-format}).}
  2067 
  2068 \opsmart{mono}{non\_box}
  2069 Specifies the default monotonicity setting to use. This can be overridden on a
  2070 per-type basis using the \textit{mono}~\qty{type} option described above.
  2071 
  2072 \opfalse{merge\_type\_vars}{dont\_merge\_type\_vars}
  2073 Specifies whether type variables with the same sort constraints should be
  2074 merged. Setting this option to \textit{true} can reduce the number of scopes
  2075 tried and the size of the generated Kodkod formulas, but it also diminishes the
  2076 theoretical chance of finding a counterexample.
  2077 
  2078 {\small See also \textit{mono} (\S\ref{scope-of-search}).}
  2079 
  2080 \opargbool{std}{type}{non\_std}
  2081 Specifies whether the given type should be given standard models.
  2082 Nonstandard models are unsound but can help debug inductive arguments,
  2083 as explained in \S\ref{inductive-properties}.
  2084 
  2085 \optrue{std}{non\_std}
  2086 Specifies the default standardness to use. This can be overridden on a per-type
  2087 basis using the \textit{std}~\qty{type} option described above.
  2088 \end{enum}
  2089 
  2090 \subsection{Output Format}
  2091 \label{output-format}
  2092 
  2093 \begin{enum}
  2094 \opfalse{verbose}{quiet}
  2095 Specifies whether the \textbf{nitpick} command should explain what it does. This
  2096 option is useful to determine which scopes are tried or which SAT solver is
  2097 used. This option is implicitly disabled for automatic runs.
  2098 
  2099 \opfalse{debug}{no\_debug}
  2100 Specifies whether Nitpick should display additional debugging information beyond
  2101 what \textit{verbose} already displays. Enabling \textit{debug} also enables
  2102 \textit{verbose} and \textit{show\_all} behind the scenes. The \textit{debug}
  2103 option is implicitly disabled for automatic runs.
  2104 
  2105 \nopagebreak
  2106 {\small See also \textit{overlord} (\S\ref{mode-of-operation}) and
  2107 \textit{batch\_size} (\S\ref{optimizations}).}
  2108 
  2109 \optrue{show\_skolems}{hide\_skolem}
  2110 Specifies whether the values of Skolem constants should be displayed as part of
  2111 counterexamples. Skolem constants correspond to bound variables in the original
  2112 formula and usually help us to understand why the counterexample falsifies the
  2113 formula.
  2114 
  2115 \nopagebreak
  2116 {\small See also \textit{skolemize} (\S\ref{optimizations}).}
  2117 
  2118 \opfalse{show\_datatypes}{hide\_datatypes}
  2119 Specifies whether the subsets used to approximate (co)in\-duc\-tive datatypes should
  2120 be displayed as part of counterexamples. Such subsets are sometimes helpful when
  2121 investigating whether a potential counterexample is genuine or spurious, but
  2122 their potential for clutter is real.
  2123 
  2124 \opfalse{show\_consts}{hide\_consts}
  2125 Specifies whether the values of constants occurring in the formula (including
  2126 its axioms) should be displayed along with any counterexample. These values are
  2127 sometimes helpful when investigating why a counterexample is
  2128 genuine, but they can clutter the output.
  2129 
  2130 \opfalse{show\_all}{dont\_show\_all}
  2131 Enabling this option effectively enables \textit{show\_skolems},
  2132 \textit{show\_datatypes}, and \textit{show\_consts}.
  2133 
  2134 \opdefault{max\_potential}{int}{$\mathbf{1}$}
  2135 Specifies the maximum number of potential counterexamples to display. Setting
  2136 this option to 0 speeds up the search for a genuine counterexample. This option
  2137 is implicitly set to 0 for automatic runs. If you set this option to a value
  2138 greater than 1, you will need an incremental SAT solver: For efficiency, it is
  2139 recommended to install the JNI version of MiniSat and set \textit{sat\_solver} =
  2140 \textit{MiniSat\_JNI}. Also be aware that many of the counterexamples may look
  2141 identical, unless the \textit{show\_all} (\S\ref{output-format}) option is
  2142 enabled.
  2143 
  2144 \nopagebreak
  2145 {\small See also \textit{check\_potential} (\S\ref{authentication}) and
  2146 \textit{sat\_solver} (\S\ref{optimizations}).}
  2147 
  2148 \opdefault{max\_genuine}{int}{$\mathbf{1}$}
  2149 Specifies the maximum number of genuine counterexamples to display. If you set
  2150 this option to a value greater than 1, you will need an incremental SAT solver:
  2151 For efficiency, it is recommended to install the JNI version of MiniSat and set
  2152 \textit{sat\_solver} = \textit{MiniSat\_JNI}. Also be aware that many of the
  2153 counterexamples may look identical, unless the \textit{show\_all}
  2154 (\S\ref{output-format}) option is enabled.
  2155 
  2156 \nopagebreak
  2157 {\small See also \textit{check\_genuine} (\S\ref{authentication}) and
  2158 \textit{sat\_solver} (\S\ref{optimizations}).}
  2159 
  2160 \opnodefault{eval}{term\_list}
  2161 Specifies the list of terms whose values should be displayed along with
  2162 counterexamples. This option suffers from an ``observer effect'': Nitpick might
  2163 find different counterexamples for different values of this option.
  2164 
  2165 \oparg{format}{term}{int\_seq}
  2166 Specifies how to uncurry the value displayed for a variable or constant.
  2167 Uncurrying sometimes increases the readability of the output for high-arity
  2168 functions. For example, given the variable $y \mathbin{\Colon} {'a}\Rightarrow
  2169 {'b}\Rightarrow {'c}\Rightarrow {'d}\Rightarrow {'e}\Rightarrow {'f}\Rightarrow
  2170 {'g}$, setting \textit{format}~$y$ = 3 tells Nitpick to group the last three
  2171 arguments, as if the type had been ${'a}\Rightarrow {'b}\Rightarrow
  2172 {'c}\Rightarrow {'d}\times {'e}\times {'f}\Rightarrow {'g}$. In general, a list
  2173 of values $n_1,\ldots,n_k$ tells Nitpick to show the last $n_k$ arguments as an
  2174 $n_k$-tuple, the previous $n_{k-1}$ arguments as an $n_{k-1}$-tuple, and so on;
  2175 arguments that are not accounted for are left alone, as if the specification had
  2176 been $1,\ldots,1,n_1,\ldots,n_k$.
  2177 
  2178 \nopagebreak
  2179 {\small See also \textit{uncurry} (\S\ref{optimizations}).}
  2180 
  2181 \opdefault{format}{int\_seq}{$\mathbf{1}$}
  2182 Specifies the default format to use. Irrespective of the default format, the
  2183 extra arguments to a Skolem constant corresponding to the outer bound variables
  2184 are kept separated from the remaining arguments, the \textbf{for} arguments of
  2185 an inductive definitions are kept separated from the remaining arguments, and
  2186 the iteration counter of an unrolled inductive definition is shown alone. The
  2187 default format can be overridden on a per-variable or per-constant basis using
  2188 the \textit{format}~\qty{term} option described above.
  2189 \end{enum}
  2190 
  2191 %% MARK: Authentication
  2192 \subsection{Authentication}
  2193 \label{authentication}
  2194 
  2195 \begin{enum}
  2196 \opfalse{check\_potential}{trust\_potential}
  2197 Specifies whether potential counterexamples should be given to Isabelle's
  2198 \textit{auto} tactic to assess their validity. If a potential counterexample is
  2199 shown to be genuine, Nitpick displays a message to this effect and terminates.
  2200 
  2201 \nopagebreak
  2202 {\small See also \textit{max\_potential} (\S\ref{output-format}).}
  2203 
  2204 \opfalse{check\_genuine}{trust\_genuine}
  2205 Specifies whether genuine and likely genuine counterexamples should be given to
  2206 Isabelle's \textit{auto} tactic to assess their validity. If a ``genuine''
  2207 counterexample is shown to be spurious, the user is kindly asked to send a bug
  2208 report to the author at
  2209 \texttt{blan{\color{white}nospam}\kern-\wd\boxA{}chette@in.tum.de}.
  2210 
  2211 \nopagebreak
  2212 {\small See also \textit{max\_genuine} (\S\ref{output-format}).}
  2213 
  2214 \opnodefault{expect}{string}
  2215 Specifies the expected outcome, which must be one of the following:
  2216 
  2217 \begin{enum}
  2218 \item[$\bullet$] \textbf{\textit{genuine}}: Nitpick found a genuine counterexample.
  2219 \item[$\bullet$] \textbf{\textit{likely\_genuine}}: Nitpick found a ``likely
  2220 genuine'' counterexample (i.e., a counterexample that is genuine unless
  2221 it contradicts a missing axiom or a dangerous option was used inappropriately).
  2222 \item[$\bullet$] \textbf{\textit{potential}}: Nitpick found a potential counterexample.
  2223 \item[$\bullet$] \textbf{\textit{none}}: Nitpick found no counterexample.
  2224 \item[$\bullet$] \textbf{\textit{unknown}}: Nitpick encountered some problem (e.g.,
  2225 Kodkod ran out of memory).
  2226 \end{enum}
  2227 
  2228 Nitpick emits an error if the actual outcome differs from the expected outcome.
  2229 This option is useful for regression testing.
  2230 \end{enum}
  2231 
  2232 \subsection{Optimizations}
  2233 \label{optimizations}
  2234 
  2235 \def\cpp{C\nobreak\raisebox{.1ex}{+}\nobreak\raisebox{.1ex}{+}}
  2236 
  2237 \sloppy
  2238 
  2239 \begin{enum}
  2240 \opdefault{sat\_solver}{string}{smart}
  2241 Specifies which SAT solver to use. SAT solvers implemented in C or \cpp{} tend
  2242 to be faster than their Java counterparts, but they can be more difficult to
  2243 install. Also, if you set the \textit{max\_potential} (\S\ref{output-format}) or
  2244 \textit{max\_genuine} (\S\ref{output-format}) option to a value greater than 1,
  2245 you will need an incremental SAT solver, such as \textit{MiniSat\_JNI}
  2246 (recommended) or \textit{SAT4J}.
  2247 
  2248 The supported solvers are listed below:
  2249 
  2250 \begin{enum}
  2251 
  2252 \item[$\bullet$] \textbf{\textit{MiniSat}}: MiniSat is an efficient solver
  2253 written in \cpp{}. To use MiniSat, set the environment variable
  2254 \texttt{MINISAT\_HOME} to the directory that contains the \texttt{minisat}
  2255 executable. The \cpp{} sources and executables for MiniSat are available at
  2256 \url{http://minisat.se/MiniSat.html}. Nitpick has been tested with versions 1.14
  2257 and 2.0 beta (2007-07-21).
  2258 
  2259 \item[$\bullet$] \textbf{\textit{MiniSat\_JNI}}: The JNI (Java Native Interface)
  2260 version of MiniSat is bundled in \texttt{nativesolver.\allowbreak tgz}, which
  2261 you will find on Kodkod's web site \cite{kodkod-2009}. Unlike the standard
  2262 version of MiniSat, the JNI version can be used incrementally.
  2263 
  2264 %%% No longer true:
  2265 %%% "It is bundled with Kodkodi and requires no further installation or
  2266 %%% configuration steps. Alternatively,"
  2267 \item[$\bullet$] \textbf{\textit{PicoSAT}}: PicoSAT is an efficient solver
  2268 written in C. You can install a standard version of
  2269 PicoSAT and set the environment variable \texttt{PICOSAT\_HOME} to the directory
  2270 that contains the \texttt{picosat} executable. The C sources for PicoSAT are
  2271 available at \url{http://fmv.jku.at/picosat/} and are also bundled with Kodkodi.
  2272 Nitpick has been tested with version 913.
  2273 
  2274 \item[$\bullet$] \textbf{\textit{zChaff}}: zChaff is an efficient solver written
  2275 in \cpp{}. To use zChaff, set the environment variable \texttt{ZCHAFF\_HOME} to
  2276 the directory that contains the \texttt{zchaff} executable. The \cpp{} sources
  2277 and executables for zChaff are available at
  2278 \url{http://www.princeton.edu/~chaff/zchaff.html}. Nitpick has been tested with
  2279 versions 2004-05-13, 2004-11-15, and 2007-03-12.
  2280 
  2281 \item[$\bullet$] \textbf{\textit{zChaff\_JNI}}: The JNI version of zChaff is
  2282 bundled in \texttt{native\-solver.\allowbreak tgz}, which you will find on
  2283 Kodkod's web site \cite{kodkod-2009}.
  2284 
  2285 \item[$\bullet$] \textbf{\textit{RSat}}: RSat is an efficient solver written in
  2286 \cpp{}. To use RSat, set the environment variable \texttt{RSAT\_HOME} to the
  2287 directory that contains the \texttt{rsat} executable. The \cpp{} sources for
  2288 RSat are available at \url{http://reasoning.cs.ucla.edu/rsat/}. Nitpick has been
  2289 tested with version 2.01.
  2290 
  2291 \item[$\bullet$] \textbf{\textit{BerkMin}}: BerkMin561 is an efficient solver
  2292 written in C. To use BerkMin, set the environment variable
  2293 \texttt{BERKMIN\_HOME} to the directory that contains the \texttt{BerkMin561}
  2294 executable. The BerkMin executables are available at
  2295 \url{http://eigold.tripod.com/BerkMin.html}.
  2296 
  2297 \item[$\bullet$] \textbf{\textit{BerkMin\_Alloy}}: Variant of BerkMin that is
  2298 included with Alloy 4 and calls itself ``sat56'' in its banner text. To use this
  2299 version of BerkMin, set the environment variable
  2300 \texttt{BERKMINALLOY\_HOME} to the directory that contains the \texttt{berkmin}
  2301 executable.
  2302 
  2303 \item[$\bullet$] \textbf{\textit{Jerusat}}: Jerusat 1.3 is an efficient solver
  2304 written in C. To use Jerusat, set the environment variable
  2305 \texttt{JERUSAT\_HOME} to the directory that contains the \texttt{Jerusat1.3}
  2306 executable. The C sources for Jerusat are available at
  2307 \url{http://www.cs.tau.ac.il/~ale1/Jerusat1.3.tgz}.
  2308 
  2309 \item[$\bullet$] \textbf{\textit{SAT4J}}: SAT4J is a reasonably efficient solver
  2310 written in Java that can be used incrementally. It is bundled with Kodkodi and
  2311 requires no further installation or configuration steps. Do not attempt to
  2312 install the official SAT4J packages, because their API is incompatible with
  2313 Kodkod.
  2314 
  2315 \item[$\bullet$] \textbf{\textit{SAT4J\_Light}}: Variant of SAT4J that is
  2316 optimized for small problems. It can also be used incrementally.
  2317 
  2318 \item[$\bullet$] \textbf{\textit{HaifaSat}}: HaifaSat 1.0 beta is an
  2319 experimental solver written in \cpp. To use HaifaSat, set the environment
  2320 variable \texttt{HAIFASAT\_\allowbreak HOME} to the directory that contains the
  2321 \texttt{HaifaSat} executable. The \cpp{} sources for HaifaSat are available at
  2322 \url{http://cs.technion.ac.il/~gershman/HaifaSat.htm}.
  2323 
  2324 \item[$\bullet$] \textbf{\textit{smart}}: If \textit{sat\_solver} is set to
  2325 \textit{smart}, Nitpick selects the first solver among MiniSat,
  2326 PicoSAT, zChaff, RSat, BerkMin, BerkMin\_Alloy, Jerusat, MiniSat\_JNI, and zChaff\_JNI
  2327 that is recognized by Isabelle. If none is found, it falls back on SAT4J, which
  2328 should always be available. If \textit{verbose} (\S\ref{output-format}) is
  2329 enabled, Nitpick displays which SAT solver was chosen.
  2330 \end{enum}
  2331 \fussy
  2332 
  2333 \opdefault{batch\_size}{int\_or\_smart}{smart}
  2334 Specifies the maximum number of Kodkod problems that should be lumped together
  2335 when invoking Kodkodi. Each problem corresponds to one scope. Lumping problems
  2336 together ensures that Kodkodi is launched less often, but it makes the verbose
  2337 output less readable and is sometimes detrimental to performance. If
  2338 \textit{batch\_size} is set to \textit{smart}, the actual value used is 1 if
  2339 \textit{debug} (\S\ref{output-format}) is set and 64 otherwise.
  2340 
  2341 \optrue{destroy\_constrs}{dont\_destroy\_constrs}
  2342 Specifies whether formulas involving (co)in\-duc\-tive datatype constructors should
  2343 be rewritten to use (automatically generated) discriminators and destructors.
  2344 This optimization can drastically reduce the size of the Boolean formulas given
  2345 to the SAT solver.
  2346 
  2347 \nopagebreak
  2348 {\small See also \textit{debug} (\S\ref{output-format}).}
  2349 
  2350 \optrue{specialize}{dont\_specialize}
  2351 Specifies whether functions invoked with static arguments should be specialized.
  2352 This optimization can drastically reduce the search space, especially for
  2353 higher-order functions.
  2354 
  2355 \nopagebreak
  2356 {\small See also \textit{debug} (\S\ref{output-format}) and
  2357 \textit{show\_consts} (\S\ref{output-format}).}
  2358 
  2359 \optrue{skolemize}{dont\_skolemize}
  2360 Specifies whether the formula should be skolemized. For performance reasons,
  2361 (positive) $\forall$-quanti\-fiers that occur in the scope of a higher-order
  2362 (positive) $\exists$-quanti\-fier are left unchanged.
  2363 
  2364 \nopagebreak
  2365 {\small See also \textit{debug} (\S\ref{output-format}) and
  2366 \textit{show\_skolems} (\S\ref{output-format}).}
  2367 
  2368 \optrue{star\_linear\_preds}{dont\_star\_linear\_preds}
  2369 Specifies whether Nitpick should use Kodkod's transitive closure operator to
  2370 encode non-well-founded ``linear inductive predicates,'' i.e., inductive
  2371 predicates for which each the predicate occurs in at most one assumption of each
  2372 introduction rule. Using the reflexive transitive closure is in principle
  2373 equivalent to setting \textit{iter} to the cardinality of the predicate's
  2374 domain, but it is usually more efficient.
  2375 
  2376 {\small See also \textit{wf} (\S\ref{scope-of-search}), \textit{debug}
  2377 (\S\ref{output-format}), and \textit{iter} (\S\ref{scope-of-search}).}
  2378 
  2379 \optrue{uncurry}{dont\_uncurry}
  2380 Specifies whether Nitpick should uncurry functions. Uncurrying has on its own no
  2381 tangible effect on efficiency, but it creates opportunities for the boxing 
  2382 optimization.
  2383 
  2384 \nopagebreak
  2385 {\small See also \textit{box} (\S\ref{scope-of-search}), \textit{debug}
  2386 (\S\ref{output-format}), and \textit{format} (\S\ref{output-format}).}
  2387 
  2388 \optrue{fast\_descrs}{full\_descrs}
  2389 Specifies whether Nitpick should optimize the definite and indefinite
  2390 description operators (THE and SOME). The optimized versions usually help
  2391 Nitpick generate more counterexamples or at least find them faster, but only the
  2392 unoptimized versions are complete when all types occurring in the formula are
  2393 finite.
  2394 
  2395 {\small See also \textit{debug} (\S\ref{output-format}).}
  2396 
  2397 \optrue{peephole\_optim}{no\_peephole\_optim}
  2398 Specifies whether Nitpick should simplify the generated Kodkod formulas using a
  2399 peephole optimizer. These optimizations can make a significant difference.
  2400 Unless you are tracking down a bug in Nitpick or distrust the peephole
  2401 optimizer, you should leave this option enabled.
  2402 
  2403 \opdefault{sym\_break}{int}{20}
  2404 Specifies an upper bound on the number of relations for which Kodkod generates
  2405 symmetry breaking predicates. According to the Kodkod documentation
  2406 \cite{kodkod-2009-options}, ``in general, the higher this value, the more
  2407 symmetries will be broken, and the faster the formula will be solved. But,
  2408 setting the value too high may have the opposite effect and slow down the
  2409 solving.''
  2410 
  2411 \opdefault{sharing\_depth}{int}{3}
  2412 Specifies the depth to which Kodkod should check circuits for equivalence during
  2413 the translation to SAT. The default of 3 is the same as in Alloy. The minimum
  2414 allowed depth is 1. Increasing the sharing may result in a smaller SAT problem,
  2415 but can also slow down Kodkod.
  2416 
  2417 \opfalse{flatten\_props}{dont\_flatten\_props}
  2418 Specifies whether Kodkod should try to eliminate intermediate Boolean variables.
  2419 Although this might sound like a good idea, in practice it can drastically slow
  2420 down Kodkod.
  2421 
  2422 \opdefault{max\_threads}{int}{0}
  2423 Specifies the maximum number of threads to use in Kodkod. If this option is set
  2424 to 0, Kodkod will compute an appropriate value based on the number of processor
  2425 cores available.
  2426 
  2427 \nopagebreak
  2428 {\small See also \textit{batch\_size} (\S\ref{optimizations}) and
  2429 \textit{timeout} (\S\ref{timeouts}).}
  2430 \end{enum}
  2431 
  2432 \subsection{Timeouts}
  2433 \label{timeouts}
  2434 
  2435 \begin{enum}
  2436 \opdefault{timeout}{time}{$\mathbf{30}$ s}
  2437 Specifies the maximum amount of time that the \textbf{nitpick} command should
  2438 spend looking for a counterexample. Nitpick tries to honor this constraint as
  2439 well as it can but offers no guarantees. For automatic runs,
  2440 \textit{timeout} is ignored; instead, Auto Quickcheck and Auto Nitpick share
  2441 a time slot whose length is specified by the ``Auto Counterexample Time
  2442 Limit'' option in Proof General.
  2443 
  2444 \nopagebreak
  2445 {\small See also \textit{max\_threads} (\S\ref{optimizations}).}
  2446 
  2447 \opdefault{tac\_timeout}{time}{$\mathbf{500}$\,ms}
  2448 Specifies the maximum amount of time that the \textit{auto} tactic should use
  2449 when checking a counterexample, and similarly that \textit{lexicographic\_order}
  2450 and \textit{size\_change} should use when checking whether a (co)in\-duc\-tive
  2451 predicate is well-founded. Nitpick tries to honor this constraint as well as it
  2452 can but offers no guarantees.
  2453 
  2454 \nopagebreak
  2455 {\small See also \textit{wf} (\S\ref{scope-of-search}),
  2456 \textit{check\_potential} (\S\ref{authentication}),
  2457 and \textit{check\_genuine} (\S\ref{authentication}).}
  2458 \end{enum}
  2459 
  2460 \section{Attribute Reference}
  2461 \label{attribute-reference}
  2462 
  2463 Nitpick needs to consider the definitions of all constants occurring in a
  2464 formula in order to falsify it. For constants introduced using the
  2465 \textbf{definition} command, the definition is simply the associated
  2466 \textit{\_def} axiom. In contrast, instead of using the internal representation
  2467 of functions synthesized by Isabelle's \textbf{primrec}, \textbf{function}, and
  2468 \textbf{nominal\_primrec} packages, Nitpick relies on the more natural
  2469 equational specification entered by the user.
  2470 
  2471 Behind the scenes, Isabelle's built-in packages and theories rely on the
  2472 following attributes to affect Nitpick's behavior:
  2473 
  2474 \begin{itemize}
  2475 \flushitem{\textit{nitpick\_def}}
  2476 
  2477 \nopagebreak
  2478 This attribute specifies an alternative definition of a constant. The
  2479 alternative definition should be logically equivalent to the constant's actual
  2480 axiomatic definition and should be of the form
  2481 
  2482 \qquad $c~{?}x_1~\ldots~{?}x_n \,\equiv\, t$,
  2483 
  2484 where ${?}x_1, \ldots, {?}x_n$ are distinct variables and $c$ does not occur in
  2485 $t$.
  2486 
  2487 \flushitem{\textit{nitpick\_simp}}
  2488 
  2489 \nopagebreak
  2490 This attribute specifies the equations that constitute the specification of a
  2491 constant. For functions defined using the \textbf{primrec}, \textbf{function},
  2492 and \textbf{nominal\_\allowbreak primrec} packages, this corresponds to the
  2493 \textit{simps} rules. The equations must be of the form
  2494 
  2495 \qquad $c~t_1~\ldots\ t_n \,=\, u.$
  2496 
  2497 \flushitem{\textit{nitpick\_psimp}}
  2498 
  2499 \nopagebreak
  2500 This attribute specifies the equations that constitute the partial specification
  2501 of a constant. For functions defined using the \textbf{function} package, this
  2502 corresponds to the \textit{psimps} rules. The conditional equations must be of
  2503 the form
  2504 
  2505 \qquad $\lbrakk P_1;\> \ldots;\> P_m\rbrakk \,\Longrightarrow\, c\ t_1\ \ldots\ t_n \,=\, u$.
  2506 
  2507 \flushitem{\textit{nitpick\_intro}}
  2508 
  2509 \nopagebreak
  2510 This attribute specifies the introduction rules of a (co)in\-duc\-tive predicate.
  2511 For predicates defined using the \textbf{inductive} or \textbf{coinductive}
  2512 command, this corresponds to the \textit{intros} rules. The introduction rules
  2513 must be of the form
  2514 
  2515 \qquad $\lbrakk P_1;\> \ldots;\> P_m;\> M~(c\ t_{11}\ \ldots\ t_{1n});\>
  2516 \ldots;\> M~(c\ t_{k1}\ \ldots\ t_{kn})\rbrakk \,\Longrightarrow\, c\ u_1\
  2517 \ldots\ u_n$,
  2518 
  2519 where the $P_i$'s are side conditions that do not involve $c$ and $M$ is an
  2520 optional monotonic operator. The order of the assumptions is irrelevant.
  2521 
  2522 \end{itemize}
  2523 
  2524 When faced with a constant, Nitpick proceeds as follows:
  2525 
  2526 \begin{enum}
  2527 \item[1.] If the \textit{nitpick\_simp} set associated with the constant
  2528 is not empty, Nitpick uses these rules as the specification of the constant.
  2529 
  2530 \item[2.] Otherwise, if the \textit{nitpick\_psimp} set associated with
  2531 the constant is not empty, it uses these rules as the specification of the
  2532 constant.
  2533 
  2534 \item[3.] Otherwise, it looks up the definition of the constant:
  2535 
  2536 \begin{enum}
  2537 \item[1.] If the \textit{nitpick\_def} set associated with the constant
  2538 is not empty, it uses the latest rule added to the set as the definition of the
  2539 constant; otherwise it uses the actual definition axiom.
  2540 \item[2.] If the definition is of the form
  2541 
  2542 \qquad $c~{?}x_1~\ldots~{?}x_m \,\equiv\, \lambda y_1~\ldots~y_n.\; \textit{lfp}~(\lambda f.\; t)$,
  2543 
  2544 then Nitpick assumes that the definition was made using an inductive package and
  2545 based on the introduction rules marked with \textit{nitpick\_\allowbreak
  2546 ind\_\allowbreak intros} tries to determine whether the definition is
  2547 well-founded.
  2548 \end{enum}
  2549 \end{enum}
  2550 
  2551 As an illustration, consider the inductive definition
  2552 
  2553 \prew
  2554 \textbf{inductive}~\textit{odd}~\textbf{where} \\
  2555 ``\textit{odd}~1'' $\,\mid$ \\
  2556 ``\textit{odd}~$n\,\Longrightarrow\, \textit{odd}~(\textit{Suc}~(\textit{Suc}~n))$''
  2557 \postw
  2558 
  2559 Isabelle automatically attaches the \textit{nitpick\_intro} attribute to
  2560 the above rules. Nitpick then uses the \textit{lfp}-based definition in
  2561 conjunction with these rules. To override this, we can specify an alternative
  2562 definition as follows:
  2563 
  2564 \prew
  2565 \textbf{lemma} $\mathit{odd\_def}'$ [\textit{nitpick\_def}]: ``$\textit{odd}~n \,\equiv\, n~\textrm{mod}~2 = 1$''
  2566 \postw
  2567 
  2568 Nitpick then expands all occurrences of $\mathit{odd}~n$ to $n~\textrm{mod}~2
  2569 = 1$. Alternatively, we can specify an equational specification of the constant:
  2570 
  2571 \prew
  2572 \textbf{lemma} $\mathit{odd\_simp}'$ [\textit{nitpick\_simp}]: ``$\textit{odd}~n = (n~\textrm{mod}~2 = 1)$''
  2573 \postw
  2574 
  2575 Such tweaks should be done with great care, because Nitpick will assume that the
  2576 constant is completely defined by its equational specification. For example, if
  2577 you make ``$\textit{odd}~(2 * k + 1)$'' a \textit{nitpick\_simp} rule and neglect to provide rules to handle the $2 * k$ case, Nitpick will define
  2578 $\textit{odd}~n$ arbitrarily for even values of $n$. The \textit{debug}
  2579 (\S\ref{output-format}) option is extremely useful to understand what is going
  2580 on when experimenting with \textit{nitpick\_} attributes.
  2581 
  2582 \section{Standard ML Interface}
  2583 \label{standard-ml-interface}
  2584 
  2585 Nitpick provides a rich Standard ML interface used mainly for internal purposes
  2586 and debugging. Among the most interesting functions exported by Nitpick are
  2587 those that let you invoke the tool programmatically and those that let you
  2588 register and unregister custom coinductive datatypes.
  2589 
  2590 \subsection{Invocation of Nitpick}
  2591 \label{invocation-of-nitpick}
  2592 
  2593 The \textit{Nitpick} structure offers the following functions for invoking your
  2594 favorite counterexample generator:
  2595 
  2596 \prew
  2597 $\textbf{val}\,~\textit{pick\_nits\_in\_term} : \\
  2598 \hbox{}\quad\textit{Proof.state} \rightarrow \textit{params} \rightarrow \textit{bool} \rightarrow \textit{term~list} \rightarrow \textit{term} \\
  2599 \hbox{}\quad{\rightarrow}\; \textit{string} * \textit{Proof.state}$ \\
  2600 $\textbf{val}\,~\textit{pick\_nits\_in\_subgoal} : \\
  2601 \hbox{}\quad\textit{Proof.state} \rightarrow \textit{params} \rightarrow \textit{bool} \rightarrow \textit{int} \rightarrow \textit{string} * \textit{Proof.state}$
  2602 \postw
  2603 
  2604 The return value is a new proof state paired with an outcome string
  2605 (``genuine'', ``likely\_genuine'', ``potential'', ``none'', or ``unknown''). The
  2606 \textit{params} type is a large record that lets you set Nitpick's options. The
  2607 current default options can be retrieved by calling the following function
  2608 defined in the \textit{Nitpick\_Isar} structure:
  2609 
  2610 \prew
  2611 $\textbf{val}\,~\textit{default\_params} :\,
  2612 \textit{theory} \rightarrow (\textit{string} * \textit{string})~\textit{list} \rightarrow \textit{params}$
  2613 \postw
  2614 
  2615 The second argument lets you override option values before they are parsed and
  2616 put into a \textit{params} record. Here is an example:
  2617 
  2618 \prew
  2619 $\textbf{val}\,~\textit{params} = \textit{Nitpick\_Isar.default\_params}~\textit{thy}~[(\textrm{``}\textrm{timeout}\textrm{''},\, \textrm{``}\textrm{none}\textrm{''})]$ \\
  2620 $\textbf{val}\,~(\textit{outcome},\, \textit{state}') = \textit{Nitpick.pick\_nits\_in\_subgoal}~\begin{aligned}[t]
  2621 & \textit{state}~\textit{params}~\textit{false} \\[-2pt]
  2622 & \textit{subgoal}\end{aligned}$
  2623 \postw
  2624 
  2625 \let\antiq=\textrm
  2626 
  2627 \subsection{Registration of Coinductive Datatypes}
  2628 \label{registration-of-coinductive-datatypes}
  2629 
  2630 If you have defined a custom coinductive datatype, you can tell Nitpick about
  2631 it, so that it can use an efficient Kodkod axiomatization similar to the one it
  2632 uses for lazy lists. The interface for registering and unregistering coinductive
  2633 datatypes consists of the following pair of functions defined in the
  2634 \textit{Nitpick} structure:
  2635 
  2636 \prew
  2637 $\textbf{val}\,~\textit{register\_codatatype} :\,
  2638 \textit{typ} \rightarrow \textit{string} \rightarrow \textit{styp~list} \rightarrow \textit{theory} \rightarrow \textit{theory}$ \\
  2639 $\textbf{val}\,~\textit{unregister\_codatatype} :\,
  2640 \textit{typ} \rightarrow \textit{theory} \rightarrow \textit{theory}$
  2641 \postw
  2642 
  2643 The type $'a~\textit{llist}$ of lazy lists is already registered; had it
  2644 not been, you could have told Nitpick about it by adding the following line
  2645 to your theory file:
  2646 
  2647 \prew
  2648 $\textbf{setup}~\,\{{*}\,~\!\begin{aligned}[t]
  2649 & \textit{Nitpick.register\_codatatype} \\[-2pt]
  2650 & \qquad @\{\antiq{typ}~``\kern1pt'a~\textit{llist}\textrm{''}\}~@\{\antiq{const\_name}~ \textit{llist\_case}\} \\[-2pt] %% TYPESETTING
  2651 & \qquad (\textit{map}~\textit{dest\_Const}~[@\{\antiq{term}~\textit{LNil}\},\, @\{\antiq{term}~\textit{LCons}\}])\,\ {*}\}\end{aligned}$
  2652 \postw
  2653 
  2654 The \textit{register\_codatatype} function takes a coinductive type, its case
  2655 function, and the list of its constructors. The case function must take its
  2656 arguments in the order that the constructors are listed. If no case function
  2657 with the correct signature is available, simply pass the empty string.
  2658 
  2659 On the other hand, if your goal is to cripple Nitpick, add the following line to
  2660 your theory file and try to check a few conjectures about lazy lists:
  2661 
  2662 \prew
  2663 $\textbf{setup}~\,\{{*}\,~\textit{Nitpick.unregister\_codatatype}~@\{\antiq{typ}~``
  2664 \kern1pt'a~\textit{list}\textrm{''}\}\ \,{*}\}$
  2665 \postw
  2666 
  2667 Inductive datatypes can be registered as coinductive datatypes, given
  2668 appropriate coinductive constructors. However, doing so precludes
  2669 the use of the inductive constructors---Nitpick will generate an error if they
  2670 are needed.
  2671 
  2672 \section{Known Bugs and Limitations}
  2673 \label{known-bugs-and-limitations}
  2674 
  2675 Here are the known bugs and limitations in Nitpick at the time of writing:
  2676 
  2677 \begin{enum}
  2678 \item[$\bullet$] Underspecified functions defined using the \textbf{primrec},
  2679 \textbf{function}, or \textbf{nominal\_\allowbreak primrec} packages can lead
  2680 Nitpick to generate spurious counterexamples for theorems that refer to values
  2681 for which the function is not defined. For example:
  2682 
  2683 \prew
  2684 \textbf{primrec} \textit{prec} \textbf{where} \\
  2685 ``$\textit{prec}~(\textit{Suc}~n) = n$'' \\[2\smallskipamount]
  2686 \textbf{lemma} ``$\textit{prec}~0 = \undef$'' \\
  2687 \textbf{nitpick} \\[2\smallskipamount]
  2688 \quad{\slshape Nitpick found a counterexample for \textit{card nat}~= 2: 
  2689 \nopagebreak
  2690 \\[2\smallskipamount]
  2691 \hbox{}\qquad Empty assignment} \nopagebreak\\[2\smallskipamount]
  2692 \textbf{by}~(\textit{auto simp}:~\textit{prec\_def})
  2693 \postw
  2694 
  2695 Such theorems are considered bad style because they rely on the internal
  2696 representation of functions synthesized by Isabelle, which is an implementation
  2697 detail.
  2698 
  2699 \item[$\bullet$] Nitpick maintains a global cache of wellfoundedness conditions,
  2700 which can become invalid if you change the definition of an inductive predicate
  2701 that is registered in the cache. To clear the cache,
  2702 run Nitpick with the \textit{tac\_timeout} option set to a new value (e.g.,
  2703 501$\,\textit{ms}$).
  2704 
  2705 \item[$\bullet$] Nitpick produces spurious counterexamples when invoked after a
  2706 \textbf{guess} command in a structured proof.
  2707 
  2708 \item[$\bullet$] The \textit{nitpick\_} attributes and the
  2709 \textit{Nitpick.register\_} functions can cause havoc if used improperly.
  2710 
  2711 \item[$\bullet$] Although this has never been observed, arbitrary theorem
  2712 morphisms could possibly confuse Nitpick, resulting in spurious counterexamples.
  2713 
  2714 \item[$\bullet$] Local definitions are not supported and result in an error.
  2715 
  2716 %\item[$\bullet$] All constants and types whose names start with
  2717 %\textit{Nitpick}{.} are reserved for internal use.
  2718 \end{enum}
  2719 
  2720 \let\em=\sl
  2721 \bibliography{../manual}{}
  2722 \bibliographystyle{abbrv}
  2723 
  2724 \end{document}