src/Pure/Isar/code.ML
author wenzelm
Wed, 06 Jul 2011 20:46:06 +0200
changeset 44563 85388f5570c4
parent 44510 9cba66fb109a
child 46082 3dd426ae6bea
permissions -rw-r--r--
prefer Synchronized.var;
     1 (*  Title:      Pure/Isar/code.ML
     2     Author:     Florian Haftmann, TU Muenchen
     3 
     4 Abstract executable ingredients of theory.  Management of data
     5 dependent on executable ingredients as synchronized cache; purged
     6 on any change of underlying executable ingredients.
     7 *)
     8 
     9 signature CODE =
    10 sig
    11   (*constants*)
    12   val check_const: theory -> term -> string
    13   val read_bare_const: theory -> string -> string * typ
    14   val read_const: theory -> string -> string
    15   val string_of_const: theory -> string -> string
    16   val cert_signature: theory -> typ -> typ
    17   val read_signature: theory -> string -> typ
    18   val const_typ: theory -> string -> typ
    19   val subst_signatures: theory -> term -> term
    20   val args_number: theory -> string -> int
    21 
    22   (*constructor sets*)
    23   val constrset_of_consts: theory -> (string * typ) list
    24     -> string * ((string * sort) list * (string * ((string * sort) list * typ list)) list)
    25 
    26   (*code equations and certificates*)
    27   val mk_eqn: theory -> thm * bool -> thm * bool
    28   val mk_eqn_warning: theory -> thm -> (thm * bool) option
    29   val mk_eqn_liberal: theory -> thm -> (thm * bool) option
    30   val assert_eqn: theory -> thm * bool -> thm * bool
    31   val const_typ_eqn: theory -> thm -> string * typ
    32   val expand_eta: theory -> int -> thm -> thm
    33   type cert
    34   val empty_cert: theory -> string -> cert
    35   val cert_of_eqns: theory -> string -> (thm * bool) list -> cert
    36   val constrain_cert: theory -> sort list -> cert -> cert
    37   val typargs_deps_of_cert: theory -> cert -> (string * sort) list * (string * typ list) list
    38   val equations_of_cert: theory -> cert -> ((string * sort) list * typ)
    39     * (((term * string option) list * (term * string option)) * (thm option * bool)) list
    40   val bare_thms_of_cert: theory -> cert -> thm list
    41   val pretty_cert: theory -> cert -> Pretty.T list
    42 
    43   (*executable code*)
    44   val add_type: string -> theory -> theory
    45   val add_type_cmd: string -> theory -> theory
    46   val add_signature: string * typ -> theory -> theory
    47   val add_signature_cmd: string * string -> theory -> theory
    48   val add_datatype: (string * typ) list -> theory -> theory
    49   val add_datatype_cmd: string list -> theory -> theory
    50   val datatype_interpretation:
    51     (string * ((string * sort) list * (string * ((string * sort) list * typ list)) list)
    52       -> theory -> theory) -> theory -> theory
    53   val add_abstype: thm -> theory -> theory
    54   val abstype_interpretation:
    55     (string * ((string * sort) list * ((string * ((string * sort) list * typ)) * (string * thm)))
    56       -> theory -> theory) -> theory -> theory
    57   val add_eqn: thm -> theory -> theory
    58   val add_nbe_eqn: thm -> theory -> theory
    59   val add_default_eqn: thm -> theory -> theory
    60   val add_default_eqn_attribute: attribute
    61   val add_default_eqn_attrib: Attrib.src
    62   val add_nbe_default_eqn: thm -> theory -> theory
    63   val add_nbe_default_eqn_attribute: attribute
    64   val add_nbe_default_eqn_attrib: Attrib.src
    65   val del_eqn: thm -> theory -> theory
    66   val del_eqns: string -> theory -> theory
    67   val add_case: thm -> theory -> theory
    68   val add_undefined: string -> theory -> theory
    69   val get_type: theory -> string
    70     -> ((string * sort) list * (string * ((string * sort) list * typ list)) list) * bool
    71   val get_type_of_constr_or_abstr: theory -> string -> (string * bool) option
    72   val is_constr: theory -> string -> bool
    73   val is_abstr: theory -> string -> bool
    74   val get_cert: theory -> ((thm * bool) list -> (thm * bool) list) -> string -> cert
    75   val get_case_scheme: theory -> string -> (int * (int * string list)) option
    76   val get_case_cong: theory -> string -> thm option
    77   val undefineds: theory -> string list
    78   val print_codesetup: theory -> unit
    79 
    80   (*infrastructure*)
    81   val set_code_target_attr: (string -> thm -> theory -> theory) -> theory -> theory
    82 end;
    83 
    84 signature CODE_DATA_ARGS =
    85 sig
    86   type T
    87   val empty: T
    88 end;
    89 
    90 signature CODE_DATA =
    91 sig
    92   type T
    93   val change: theory option -> (T -> T) -> T
    94   val change_yield: theory option -> (T -> 'a * T) -> 'a * T
    95 end;
    96 
    97 signature PRIVATE_CODE =
    98 sig
    99   include CODE
   100   val declare_data: Object.T -> serial
   101   val change_yield_data: serial * ('a -> Object.T) * (Object.T -> 'a)
   102     -> theory -> ('a -> 'b * 'a) -> 'b * 'a
   103 end;
   104 
   105 structure Code : PRIVATE_CODE =
   106 struct
   107 
   108 (** auxiliary **)
   109 
   110 (* printing *)
   111 
   112 fun string_of_typ thy =
   113   Syntax.string_of_typ (Config.put show_sorts true (Syntax.init_pretty_global thy));
   114 
   115 fun string_of_const thy c =
   116   let val ctxt = Proof_Context.init_global thy in
   117     case AxClass.inst_of_param thy c of
   118       SOME (c, tyco) =>
   119         Proof_Context.extern_const ctxt c ^ " " ^ enclose "[" "]"
   120           (Proof_Context.extern_type ctxt tyco)
   121     | NONE => Proof_Context.extern_const ctxt c
   122   end;
   123 
   124 
   125 (* constants *)
   126 
   127 fun typ_equiv tys = Type.raw_instance tys andalso Type.raw_instance (swap tys);
   128 
   129 fun check_bare_const thy t = case try dest_Const t
   130  of SOME c_ty => c_ty
   131   | NONE => error ("Not a constant: " ^ Syntax.string_of_term_global thy t);
   132 
   133 fun check_unoverload thy (c, ty) =
   134   let
   135     val c' = AxClass.unoverload_const thy (c, ty);
   136     val ty_decl = Sign.the_const_type thy c';
   137   in if Sign.typ_equiv thy
   138       (Type.strip_sorts ty_decl, Type.strip_sorts (Logic.varifyT_global ty)) then c'
   139     else error ("Type\n" ^ string_of_typ thy ty
   140       ^ "\nof constant " ^ quote c
   141       ^ "\nis too specific compared to declared type\n"
   142       ^ string_of_typ thy ty_decl)
   143   end; 
   144 
   145 fun check_const thy = check_unoverload thy o check_bare_const thy;
   146 
   147 fun read_bare_const thy = check_bare_const thy o Syntax.read_term_global thy;
   148 
   149 fun read_const thy = check_unoverload thy o read_bare_const thy;
   150 
   151 
   152 (** data store **)
   153 
   154 (* datatypes *)
   155 
   156 datatype typ_spec = Constructors of (string * ((string * sort) list * typ list)) list *
   157       string list (*references to associated case constructors*)
   158   | Abstractor of (string * ((string * sort) list * typ)) * (string * thm);
   159 
   160 fun constructors_of (Constructors (cos, _)) = (cos, false)
   161   | constructors_of (Abstractor ((co, (vs, ty)), _)) = ([(co, (vs, [ty]))], true);
   162 
   163 fun case_consts_of (Constructors (_, case_consts)) = case_consts
   164   | case_consts_of (Abstractor _) = [];
   165 
   166 (* functions *)
   167 
   168 datatype fun_spec = Default of (thm * bool) list * (thm * bool) list lazy
   169       (* (cache for default equations, lazy computation of default equations)
   170          -- helps to restore natural order of default equations *)
   171   | Eqns of (thm * bool) list
   172   | Proj of term * string
   173   | Abstr of thm * string;
   174 
   175 val empty_fun_spec = Default ([], Lazy.value []);
   176 
   177 fun is_default (Default _) = true
   178   | is_default _ = false;
   179 
   180 fun associated_abstype (Abstr (_, tyco)) = SOME tyco
   181   | associated_abstype _ = NONE;
   182 
   183 
   184 (* executable code data *)
   185 
   186 datatype spec = Spec of {
   187   history_concluded: bool,
   188   signatures: int Symtab.table * typ Symtab.table,
   189   functions: ((bool * fun_spec) * (serial * fun_spec) list) Symtab.table
   190     (*with explicit history*),
   191   types: ((serial * ((string * sort) list * typ_spec)) list) Symtab.table
   192     (*with explicit history*),
   193   cases: ((int * (int * string list)) * thm) Symtab.table * unit Symtab.table
   194 };
   195 
   196 fun make_spec (history_concluded, ((signatures, functions), (types, cases))) =
   197   Spec { history_concluded = history_concluded,
   198     signatures = signatures, functions = functions, types = types, cases = cases };
   199 fun map_spec f (Spec { history_concluded = history_concluded, signatures = signatures,
   200   functions = functions, types = types, cases = cases }) =
   201   make_spec (f (history_concluded, ((signatures, functions), (types, cases))));
   202 fun merge_spec (Spec { history_concluded = _, signatures = (tycos1, sigs1), functions = functions1,
   203     types = types1, cases = (cases1, undefs1) },
   204   Spec { history_concluded = _, signatures = (tycos2, sigs2), functions = functions2,
   205     types = types2, cases = (cases2, undefs2) }) =
   206   let
   207     val signatures = (Symtab.merge (op =) (tycos1, tycos2),
   208       Symtab.merge typ_equiv (sigs1, sigs2));
   209     val types = Symtab.join (K (AList.merge (op =) (K true))) (types1, types2);
   210     val case_consts_of' = (maps case_consts_of o map (snd o snd o hd o snd) o Symtab.dest);
   211     fun merge_functions ((_, history1), (_, history2)) =
   212       let
   213         val raw_history = AList.merge (op = : serial * serial -> bool)
   214           (K true) (history1, history2);
   215         val filtered_history = filter_out (is_default o snd) raw_history;
   216         val history = if null filtered_history
   217           then raw_history else filtered_history;
   218       in ((false, (snd o hd) history), history) end;
   219     val all_datatype_specs = map (snd o snd o hd o snd) (Symtab.dest types);
   220     val all_constructors = maps (map fst o fst o constructors_of) all_datatype_specs;
   221     val invalidated_case_consts = union (op =) (case_consts_of' types1) (case_consts_of' types2)
   222       |> subtract (op =) (maps case_consts_of all_datatype_specs)
   223     val functions = Symtab.join (K merge_functions) (functions1, functions2)
   224       |> fold (fn c => Symtab.map_entry c (apfst (K (true, empty_fun_spec)))) all_constructors;
   225     val cases = (Symtab.merge (K true) (cases1, cases2)
   226       |> fold Symtab.delete invalidated_case_consts, Symtab.merge (K true) (undefs1, undefs2));
   227   in make_spec (false, ((signatures, functions), (types, cases))) end;
   228 
   229 fun history_concluded (Spec { history_concluded, ... }) = history_concluded;
   230 fun the_signatures (Spec { signatures, ... }) = signatures;
   231 fun the_functions (Spec { functions, ... }) = functions;
   232 fun the_types (Spec { types, ... }) = types;
   233 fun the_cases (Spec { cases, ... }) = cases;
   234 val map_history_concluded = map_spec o apfst;
   235 val map_signatures = map_spec o apsnd o apfst o apfst;
   236 val map_functions = map_spec o apsnd o apfst o apsnd;
   237 val map_typs = map_spec o apsnd o apsnd o apfst;
   238 val map_cases = map_spec o apsnd o apsnd o apsnd;
   239 
   240 
   241 (* data slots dependent on executable code *)
   242 
   243 (*private copy avoids potential conflict of table exceptions*)
   244 structure Datatab = Table(type key = int val ord = int_ord);
   245 
   246 local
   247 
   248 type kind = { empty: Object.T };
   249 
   250 val kinds = Synchronized.var "Code_Data" (Datatab.empty: kind Datatab.table);
   251 
   252 fun invoke f k =
   253   (case Datatab.lookup (Synchronized.value kinds) k of
   254     SOME kind => f kind
   255   | NONE => raise Fail "Invalid code data identifier");
   256 
   257 in
   258 
   259 fun declare_data empty =
   260   let
   261     val k = serial ();
   262     val kind = { empty = empty };
   263     val _ = Synchronized.change kinds (Datatab.update (k, kind));
   264   in k end;
   265 
   266 fun invoke_init k = invoke (fn kind => #empty kind) k;
   267 
   268 end; (*local*)
   269 
   270 
   271 (* theory store *)
   272 
   273 local
   274 
   275 type data = Object.T Datatab.table;
   276 fun empty_dataref () = Synchronized.var "code data" (NONE : (data * theory_ref) option);
   277 
   278 structure Code_Data = Theory_Data
   279 (
   280   type T = spec * (data * theory_ref) option Synchronized.var;
   281   val empty = (make_spec (false, (((Symtab.empty, Symtab.empty), Symtab.empty),
   282     (Symtab.empty, (Symtab.empty, Symtab.empty)))), empty_dataref ());
   283   val extend = I  (* FIXME empty_dataref!?! *)
   284   fun merge ((spec1, _), (spec2, _)) =
   285     (merge_spec (spec1, spec2), empty_dataref ());
   286 );
   287 
   288 in
   289 
   290 
   291 (* access to executable code *)
   292 
   293 val the_exec = fst o Code_Data.get;
   294 
   295 fun map_exec_purge f = Code_Data.map (fn (exec, _) => (f exec, empty_dataref ()));
   296 
   297 fun change_fun_spec delete c f = (map_exec_purge o map_functions
   298   o (if delete then Symtab.map_entry c else Symtab.map_default (c, ((false, empty_fun_spec), [])))
   299     o apfst) (fn (_, spec) => (true, f spec));
   300 
   301 
   302 (* tackling equation history *)
   303 
   304 fun continue_history thy = if (history_concluded o the_exec) thy
   305   then thy
   306     |> (Code_Data.map o apfst o map_history_concluded) (K false)
   307     |> SOME
   308   else NONE;
   309 
   310 fun conclude_history thy = if (history_concluded o the_exec) thy
   311   then NONE
   312   else thy
   313     |> (Code_Data.map o apfst)
   314         ((map_functions o Symtab.map) (fn _ => fn ((changed, current), history) =>
   315           ((false, current),
   316             if changed then (serial (), current) :: history else history))
   317         #> map_history_concluded (K true))
   318     |> SOME;
   319 
   320 val _ = Context.>> (Context.map_theory (Theory.at_begin continue_history #> Theory.at_end conclude_history));
   321 
   322 
   323 (* access to data dependent on abstract executable code *)
   324 
   325 fun change_yield_data (kind, mk, dest) theory f =
   326   let
   327     val dataref = (snd o Code_Data.get) theory;
   328     val (datatab, thy_ref) = case Synchronized.value dataref
   329      of SOME (datatab, thy_ref) => if Theory.eq_thy (theory, Theory.deref thy_ref)
   330           then (datatab, thy_ref)
   331           else (Datatab.empty, Theory.check_thy theory)
   332       | NONE => (Datatab.empty, Theory.check_thy theory)
   333     val data = case Datatab.lookup datatab kind
   334      of SOME data => data
   335       | NONE => invoke_init kind;
   336     val result as (_, data') = f (dest data);
   337     val _ = Synchronized.change dataref
   338       ((K o SOME) (Datatab.update (kind, mk data') datatab, thy_ref));
   339   in result end;
   340 
   341 end; (*local*)
   342 
   343 
   344 (** foundation **)
   345 
   346 (* constants *)
   347 
   348 fun arity_number thy tyco = case Symtab.lookup ((fst o the_signatures o the_exec) thy) tyco
   349  of SOME n => n
   350   | NONE => Sign.arity_number thy tyco;
   351 
   352 fun build_tsig thy =
   353   let
   354     val ctxt = Syntax.init_pretty_global thy;
   355     val (tycos, _) = the_signatures (the_exec thy);
   356     val decls = #types (Type.rep_tsig (Sign.tsig_of thy))
   357       |> snd 
   358       |> Symtab.fold (fn (tyco, n) =>
   359           Symtab.update (tyco, Type.LogicalType n)) tycos;
   360   in
   361     Type.empty_tsig
   362     |> Symtab.fold (fn (tyco, Type.LogicalType n) => Type.add_type ctxt Name_Space.default_naming
   363         (Binding.qualified_name tyco, n) | _ => I) decls
   364   end;
   365 
   366 fun cert_signature thy =
   367   Logic.varifyT_global o Type.cert_typ (build_tsig thy) o Type.no_tvars;
   368 
   369 fun read_signature thy =
   370   cert_signature thy o Type.strip_sorts o Syntax.parse_typ (Proof_Context.init_global thy);
   371 
   372 fun expand_signature thy = Type.cert_typ_mode Type.mode_syntax (Sign.tsig_of thy);
   373 
   374 fun lookup_typ thy = Symtab.lookup ((snd o the_signatures o the_exec) thy);
   375 
   376 fun const_typ thy c = case lookup_typ thy c
   377  of SOME ty => ty
   378   | NONE => (Type.strip_sorts o Sign.the_const_type thy) c;
   379 
   380 fun args_number thy = length o binder_types o const_typ thy;
   381 
   382 fun subst_signature thy c ty =
   383   let
   384     fun mk_subst (Type (_, tys1)) (Type (_, tys2)) =
   385           fold2 mk_subst tys1 tys2
   386       | mk_subst ty (TVar (v, _)) = Vartab.update (v, ([], ty))
   387   in case lookup_typ thy c
   388    of SOME ty' => Envir.subst_type (mk_subst ty (expand_signature thy ty') Vartab.empty) ty'
   389     | NONE => ty
   390   end;
   391 
   392 fun subst_signatures thy = map_aterms (fn Const (c, ty) => Const (c, subst_signature thy c ty) | t => t);
   393 
   394 fun logical_typscheme thy (c, ty) =
   395   (map dest_TFree (Sign.const_typargs thy (c, ty)), Type.strip_sorts ty);
   396 
   397 fun typscheme thy (c, ty) = logical_typscheme thy (c, subst_signature thy c ty);
   398 
   399 
   400 (* datatypes *)
   401 
   402 fun no_constr thy s (c, ty) = error ("Not a datatype constructor:\n" ^ string_of_const thy c
   403   ^ " :: " ^ string_of_typ thy ty ^ "\n" ^ enclose "(" ")" s);
   404 
   405 fun analyze_constructor thy (c, raw_ty) =
   406   let
   407     val _ = Thm.cterm_of thy (Const (c, raw_ty));
   408     val ty = subst_signature thy c raw_ty;
   409     val ty_decl = (Logic.unvarifyT_global o const_typ thy) c;
   410     fun last_typ c_ty ty =
   411       let
   412         val tfrees = Term.add_tfreesT ty [];
   413         val (tyco, vs) = (apsnd o map) dest_TFree (dest_Type (body_type ty))
   414           handle TYPE _ => no_constr thy "bad type" c_ty
   415         val _ = if tyco = "fun" then no_constr thy "bad type" c_ty else ();
   416         val _ = if has_duplicates (eq_fst (op =)) vs
   417           then no_constr thy "duplicate type variables in datatype" c_ty else ();
   418         val _ = if length tfrees <> length vs
   419           then no_constr thy "type variables missing in datatype" c_ty else ();
   420       in (tyco, vs) end;
   421     val (tyco, _) = last_typ (c, ty) ty_decl;
   422     val (_, vs) = last_typ (c, ty) ty;
   423   in ((tyco, map snd vs), (c, (map fst vs, ty))) end;
   424 
   425 fun constrset_of_consts thy cs =
   426   let
   427     val _ = map (fn (c, _) => if (is_some o AxClass.class_of_param thy) c
   428       then error ("Is a class parameter: " ^ string_of_const thy c) else ()) cs;
   429     fun add ((tyco', sorts'), c) ((tyco, sorts), cs) =
   430       let
   431         val _ = if (tyco' : string) <> tyco
   432           then error "Different type constructors in constructor set"
   433           else ();
   434         val sorts'' =
   435           map2 (curry (Sorts.inter_sort (Sign.classes_of thy))) sorts' sorts
   436       in ((tyco, sorts''), c :: cs) end;
   437     fun inst vs' (c, (vs, ty)) =
   438       let
   439         val the_v = the o AList.lookup (op =) (vs ~~ vs');
   440         val ty' = map_type_tfree (fn (v, _) => TFree (the_v v)) ty;
   441         val (vs'', _) = logical_typscheme thy (c, ty');
   442       in (c, (vs'', binder_types ty')) end;
   443     val c' :: cs' = map (analyze_constructor thy) cs;
   444     val ((tyco, sorts), cs'') = fold add cs' (apsnd single c');
   445     val vs = Name.invent_names Name.context Name.aT sorts;
   446     val cs''' = map (inst vs) cs'';
   447   in (tyco, (vs, rev cs''')) end;
   448 
   449 fun get_type_entry thy tyco = case these (Symtab.lookup ((the_types o the_exec) thy) tyco)
   450  of (_, entry) :: _ => SOME entry
   451   | _ => NONE;
   452 
   453 fun get_type thy tyco = case get_type_entry thy tyco
   454  of SOME (vs, spec) => apfst (pair vs) (constructors_of spec)
   455   | NONE => arity_number thy tyco
   456       |> Name.invent Name.context Name.aT
   457       |> map (rpair [])
   458       |> rpair []
   459       |> rpair false;
   460 
   461 fun get_abstype_spec thy tyco = case get_type_entry thy tyco
   462  of SOME (vs, Abstractor spec) => (vs, spec)
   463   | _ => error ("Not an abstract type: " ^ tyco);
   464  
   465 fun get_type_of_constr_or_abstr thy c =
   466   case (body_type o const_typ thy) c
   467    of Type (tyco, _) => let val ((_, cos), abstract) = get_type thy tyco
   468         in if member (op =) (map fst cos) c then SOME (tyco, abstract) else NONE end
   469     | _ => NONE;
   470 
   471 fun is_constr thy c = case get_type_of_constr_or_abstr thy c
   472  of SOME (_, false) => true
   473    | _ => false;
   474 
   475 fun is_abstr thy c = case get_type_of_constr_or_abstr thy c
   476  of SOME (_, true) => true
   477    | _ => false;
   478 
   479 
   480 (* bare code equations *)
   481 
   482 (* convention for variables:
   483     ?x ?'a   for free-floating theorems (e.g. in the data store)
   484     ?x  'a   for certificates
   485      x  'a   for final representation of equations
   486 *)
   487 
   488 exception BAD_THM of string;
   489 fun bad_thm msg = raise BAD_THM msg;
   490 fun error_thm f thm = f thm handle BAD_THM msg => error msg;
   491 fun warning_thm f thm = SOME (f thm) handle BAD_THM msg => (warning msg; NONE)
   492 fun try_thm f thm = SOME (f thm) handle BAD_THM _ => NONE;
   493 
   494 fun is_linear thm =
   495   let val (_, args) = (strip_comb o fst o Logic.dest_equals o Thm.plain_prop_of) thm
   496   in not (has_duplicates (op =) ((fold o fold_aterms)
   497     (fn Var (v, _) => cons v | _ => I) args [])) end;
   498 
   499 fun check_decl_ty thy (c, ty) =
   500   let
   501     val ty_decl = Sign.the_const_type thy c;
   502   in if Sign.typ_equiv thy (Type.strip_sorts ty_decl, Type.strip_sorts ty) then ()
   503     else bad_thm ("Type\n" ^ string_of_typ thy ty
   504       ^ "\nof constant " ^ quote c
   505       ^ "\nis too specific compared to declared type\n"
   506       ^ string_of_typ thy ty_decl)
   507   end; 
   508 
   509 fun check_eqn thy { allow_nonlinear, allow_consts, allow_pats } thm (lhs, rhs) =
   510   let
   511     fun bad s = bad_thm (s ^ ":\n" ^ Display.string_of_thm_global thy thm);
   512     fun vars_of t = fold_aterms (fn Var (v, _) => insert (op =) v
   513       | Free _ => bad "Illegal free variable in equation"
   514       | _ => I) t [];
   515     fun tvars_of t = fold_term_types (fn _ =>
   516       fold_atyps (fn TVar (v, _) => insert (op =) v
   517         | TFree _ => bad "Illegal free type variable in equation")) t [];
   518     val lhs_vs = vars_of lhs;
   519     val rhs_vs = vars_of rhs;
   520     val lhs_tvs = tvars_of lhs;
   521     val rhs_tvs = tvars_of rhs;
   522     val _ = if null (subtract (op =) lhs_vs rhs_vs)
   523       then ()
   524       else bad "Free variables on right hand side of equation";
   525     val _ = if null (subtract (op =) lhs_tvs rhs_tvs)
   526       then ()
   527       else bad "Free type variables on right hand side of equation";
   528     val (head, args) = strip_comb lhs;
   529     val (c, ty) = case head
   530      of Const (c_ty as (_, ty)) => (AxClass.unoverload_const thy c_ty, ty)
   531       | _ => bad "Equation not headed by constant";
   532     fun check _ (Abs _) = bad "Abstraction on left hand side of equation"
   533       | check 0 (Var _) = ()
   534       | check _ (Var _) = bad "Variable with application on left hand side of equation"
   535       | check n (t1 $ t2) = (check (n+1) t1; check 0 t2)
   536       | check n (Const (c_ty as (c, ty))) =
   537           if allow_pats then let
   538             val c' = AxClass.unoverload_const thy c_ty
   539           in if n = (length o binder_types o subst_signature thy c') ty
   540             then if allow_consts orelse is_constr thy c'
   541               then ()
   542               else bad (quote c ^ " is not a constructor, on left hand side of equation")
   543             else bad ("Partially applied constant " ^ quote c ^ " on left hand side of equation")
   544           end else bad ("Pattern not allowed here, but constant " ^ quote c ^ " encountered on left hand side")
   545     val _ = map (check 0) args;
   546     val _ = if allow_nonlinear orelse is_linear thm then ()
   547       else bad "Duplicate variables on left hand side of equation";
   548     val _ = if (is_none o AxClass.class_of_param thy) c then ()
   549       else bad "Overloaded constant as head in equation";
   550     val _ = if not (is_constr thy c) then ()
   551       else bad "Constructor as head in equation";
   552     val _ = if not (is_abstr thy c) then ()
   553       else bad "Abstractor as head in equation";
   554     val _ = check_decl_ty thy (c, ty);
   555   in () end;
   556 
   557 fun gen_assert_eqn thy check_patterns (thm, proper) =
   558   let
   559     fun bad s = bad_thm (s ^ ":\n" ^ Display.string_of_thm_global thy thm);
   560     val (lhs, rhs) = (Logic.dest_equals o Thm.plain_prop_of) thm
   561       handle TERM _ => bad "Not an equation"
   562            | THM _ => bad "Not a proper equation";
   563     val _ = check_eqn thy { allow_nonlinear = not proper,
   564       allow_consts = not (proper andalso check_patterns), allow_pats = true } thm (lhs, rhs);
   565   in (thm, proper) end;
   566 
   567 fun assert_abs_eqn thy some_tyco thm =
   568   let
   569     fun bad s = bad_thm (s ^ ":\n" ^ Display.string_of_thm_global thy thm);
   570     val (full_lhs, rhs) = (Logic.dest_equals o Thm.plain_prop_of) thm
   571       handle TERM _ => bad "Not an equation"
   572            | THM _ => bad "Not a proper equation";
   573     val (rep, lhs) = dest_comb full_lhs
   574       handle TERM _ => bad "Not an abstract equation";
   575     val (rep_const, ty) = dest_Const rep;
   576     val (tyco, Ts) = (dest_Type o domain_type) ty
   577       handle TERM _ => bad "Not an abstract equation"
   578            | TYPE _ => bad "Not an abstract equation";
   579     val _ = case some_tyco of SOME tyco' => if tyco = tyco' then ()
   580           else bad ("Abstract type mismatch:" ^ quote tyco ^ " vs. " ^ quote tyco')
   581       | NONE => ();
   582     val (vs', (_, (rep', _))) = get_abstype_spec thy tyco;
   583     val _ = if rep_const = rep' then ()
   584       else bad ("Projection mismatch: " ^ quote rep_const ^ " vs. " ^ quote rep');
   585     val _ = check_eqn thy { allow_nonlinear = false,
   586       allow_consts = false, allow_pats = false } thm (lhs, rhs);
   587     val _ = if forall2 (fn T => fn (_, sort) => Sign.of_sort thy (T, sort)) Ts vs' then ()
   588       else error ("Type arguments do not satisfy sort constraints of abstype certificate.");
   589   in (thm, tyco) end;
   590 
   591 fun assert_eqn thy = error_thm (gen_assert_eqn thy true);
   592 
   593 fun meta_rewrite thy = Local_Defs.meta_rewrite_rule (Proof_Context.init_global thy);
   594 
   595 fun mk_eqn thy = error_thm (gen_assert_eqn thy false) o
   596   apfst (meta_rewrite thy);
   597 
   598 fun mk_eqn_warning thy = Option.map (fn (thm, _) => (thm, is_linear thm))
   599   o warning_thm (gen_assert_eqn thy false) o rpair false o meta_rewrite thy;
   600 
   601 fun mk_eqn_liberal thy = Option.map (fn (thm, _) => (thm, is_linear thm))
   602   o try_thm (gen_assert_eqn thy false) o rpair false o meta_rewrite thy;
   603 
   604 fun mk_abs_eqn thy = error_thm (assert_abs_eqn thy NONE) o meta_rewrite thy;
   605 
   606 val head_eqn = dest_Const o fst o strip_comb o fst o Logic.dest_equals o Thm.plain_prop_of;
   607 
   608 fun const_typ_eqn thy thm =
   609   let
   610     val (c, ty) = head_eqn thm;
   611     val c' = AxClass.unoverload_const thy (c, ty);
   612       (*permissive wrt. to overloaded constants!*)
   613   in (c', ty) end;
   614 
   615 fun const_eqn thy = fst o const_typ_eqn thy;
   616 
   617 fun const_abs_eqn thy = AxClass.unoverload_const thy o dest_Const o fst o strip_comb o snd
   618   o dest_comb o fst o Logic.dest_equals o Thm.plain_prop_of;
   619 
   620 fun mk_proj tyco vs ty abs rep =
   621   let
   622     val ty_abs = Type (tyco, map TFree vs);
   623     val xarg = Var (("x", 0), ty);
   624   in Logic.mk_equals (Const (rep, ty_abs --> ty) $ (Const (abs, ty --> ty_abs) $ xarg), xarg) end;
   625 
   626 
   627 (* technical transformations of code equations *)
   628 
   629 fun expand_eta thy k thm =
   630   let
   631     val (lhs, rhs) = (Logic.dest_equals o Thm.plain_prop_of) thm;
   632     val (_, args) = strip_comb lhs;
   633     val l = if k = ~1
   634       then (length o fst o strip_abs) rhs
   635       else Int.max (0, k - length args);
   636     val (raw_vars, _) = Term.strip_abs_eta l rhs;
   637     val vars = burrow_fst (Name.variant_list (map (fst o fst) (Term.add_vars lhs [])))
   638       raw_vars;
   639     fun expand (v, ty) thm = Drule.fun_cong_rule thm
   640       (Thm.cterm_of thy (Var ((v, 0), ty)));
   641   in
   642     thm
   643     |> fold expand vars
   644     |> Conv.fconv_rule Drule.beta_eta_conversion
   645   end;
   646 
   647 fun same_arity thy thms =
   648   let
   649     val num_args_of = length o snd o strip_comb o fst o Logic.dest_equals;
   650     val k = fold (Integer.max o num_args_of o Thm.prop_of) thms 0;
   651   in map (expand_eta thy k) thms end;
   652 
   653 fun mk_desymbolization pre post mk vs =
   654   let
   655     val names = map (pre o fst o fst) vs
   656       |> map (Name.desymbolize false)
   657       |> Name.variant_list []
   658       |> map post;
   659   in map_filter (fn (((v, i), x), v') =>
   660     if v = v' andalso i = 0 then NONE
   661     else SOME (((v, i), x), mk ((v', 0), x))) (vs ~~ names)
   662   end;
   663 
   664 fun desymbolize_tvars thms =
   665   let
   666     val tvs = fold (Term.add_tvars o Thm.prop_of) thms [];
   667     val tvar_subst = mk_desymbolization (unprefix "'") (prefix "'") TVar tvs;
   668   in map (Thm.certify_instantiate (tvar_subst, [])) thms end;
   669 
   670 fun desymbolize_vars thm =
   671   let
   672     val vs = Term.add_vars (Thm.prop_of thm) [];
   673     val var_subst = mk_desymbolization I I Var vs;
   674   in Thm.certify_instantiate ([], var_subst) thm end;
   675 
   676 fun canonize_thms thy = desymbolize_tvars #> same_arity thy #> map desymbolize_vars;
   677 
   678 
   679 (* abstype certificates *)
   680 
   681 fun check_abstype_cert thy proto_thm =
   682   let
   683     val thm = (AxClass.unoverload thy o meta_rewrite thy) proto_thm;
   684     fun bad s = bad_thm (s ^ ":\n" ^ Display.string_of_thm_global thy thm);
   685     val (lhs, rhs) = Logic.dest_equals (Thm.plain_prop_of thm)
   686       handle TERM _ => bad "Not an equation"
   687            | THM _ => bad "Not a proper equation";
   688     val ((abs, raw_ty), ((rep, rep_ty), param)) = (apsnd (apfst dest_Const o dest_comb)
   689         o apfst dest_Const o dest_comb) lhs
   690       handle TERM _ => bad "Not an abstype certificate";
   691     val _ = pairself (fn c => if (is_some o AxClass.class_of_param thy) c
   692       then error ("Is a class parameter: " ^ string_of_const thy c) else ()) (abs, rep);
   693     val _ = check_decl_ty thy (abs, raw_ty);
   694     val _ = check_decl_ty thy (rep, rep_ty);
   695     val _ = (fst o dest_Var) param
   696       handle TERM _ => bad "Not an abstype certificate";
   697     val _ = if param = rhs then () else bad "Not an abstype certificate";
   698     val ((tyco, sorts), (abs, (vs, ty'))) = analyze_constructor thy (abs, Logic.unvarifyT_global raw_ty);
   699     val ty = domain_type ty';
   700     val (vs', _) = logical_typscheme thy (abs, ty');
   701   in (tyco, (vs ~~ sorts, ((abs, (vs', ty)), (rep, thm)))) end;
   702 
   703 
   704 (* code equation certificates *)
   705 
   706 fun build_head thy (c, ty) =
   707   Thm.cterm_of thy (Logic.mk_equals (Free ("HEAD", ty), Const (c, ty)));
   708 
   709 fun get_head thy cert_thm =
   710   let
   711     val [head] = (#hyps o Thm.crep_thm) cert_thm;
   712     val (_, Const (c, ty)) = (Logic.dest_equals o Thm.term_of) head;
   713   in (typscheme thy (c, ty), head) end;
   714 
   715 fun typscheme_projection thy =
   716   typscheme thy o dest_Const o fst o dest_comb o fst o Logic.dest_equals;
   717 
   718 fun typscheme_abs thy =
   719   typscheme thy o dest_Const o fst o strip_comb o snd o dest_comb o fst o Logic.dest_equals o Thm.prop_of;
   720 
   721 fun constrain_thm thy vs sorts thm =
   722   let
   723     val mapping = map2 (fn (v, sort) => fn sort' =>
   724       (v, Sorts.inter_sort (Sign.classes_of thy) (sort, sort'))) vs sorts;
   725     val inst = map2 (fn (v, sort) => fn (_, sort') =>
   726       (((v, 0), sort), TFree (v, sort'))) vs mapping;
   727     val subst = (map_types o map_type_tfree)
   728       (fn (v, _) => TFree (v, the (AList.lookup (op =) mapping v)));
   729   in
   730     thm
   731     |> Thm.varifyT_global
   732     |> Thm.certify_instantiate (inst, [])
   733     |> pair subst
   734   end;
   735 
   736 fun concretify_abs thy tyco abs_thm =
   737   let
   738     val (_, ((c, _), (_, cert))) = get_abstype_spec thy tyco;
   739     val lhs = (fst o Logic.dest_equals o Thm.prop_of) abs_thm
   740     val ty = fastype_of lhs;
   741     val ty_abs = (fastype_of o snd o dest_comb) lhs;
   742     val abs = Thm.cterm_of thy (Const (c, ty --> ty_abs));
   743     val raw_concrete_thm = Drule.transitive_thm OF [Thm.symmetric cert, Thm.combination (Thm.reflexive abs) abs_thm];
   744   in (c, (Thm.varifyT_global o zero_var_indexes) raw_concrete_thm) end;
   745 
   746 fun add_rhss_of_eqn thy t =
   747   let
   748     val (args, rhs) = (apfst (snd o strip_comb) o Logic.dest_equals o subst_signatures thy) t;
   749     fun add_const (Const (c, ty)) = insert (op =) (c, Sign.const_typargs thy (c, ty))
   750       | add_const _ = I
   751     val add_consts = fold_aterms add_const
   752   in add_consts rhs o fold add_consts args end;
   753 
   754 fun dest_eqn thy =
   755   apfst (snd o strip_comb) o Logic.dest_equals o subst_signatures thy o Logic.unvarify_global;
   756 
   757 abstype cert = Equations of thm * bool list
   758   | Projection of term * string
   759   | Abstract of thm * string
   760 with
   761 
   762 fun empty_cert thy c = 
   763   let
   764     val raw_ty = Logic.unvarifyT_global (const_typ thy c);
   765     val (vs, _) = logical_typscheme thy (c, raw_ty);
   766     val sortargs = case AxClass.class_of_param thy c
   767      of SOME class => [[class]]
   768       | NONE => (case get_type_of_constr_or_abstr thy c
   769          of SOME (tyco, _) => (map snd o fst o the)
   770               (AList.lookup (op =) ((snd o fst o get_type thy) tyco) c)
   771           | NONE => replicate (length vs) []);
   772     val the_sort = the o AList.lookup (op =) (map fst vs ~~ sortargs);
   773     val ty = map_type_tfree (fn (v, _) => TFree (v, the_sort v)) raw_ty
   774     val chead = build_head thy (c, ty);
   775   in Equations (Thm.weaken chead Drule.dummy_thm, []) end;
   776 
   777 fun cert_of_eqns thy c [] = empty_cert thy c
   778   | cert_of_eqns thy c raw_eqns = 
   779       let
   780         val eqns = burrow_fst (canonize_thms thy) raw_eqns;
   781         val _ = map (assert_eqn thy) eqns;
   782         val (thms, propers) = split_list eqns;
   783         val _ = map (fn thm => if c = const_eqn thy thm then ()
   784           else error ("Wrong head of code equation,\nexpected constant "
   785             ^ string_of_const thy c ^ "\n" ^ Display.string_of_thm_global thy thm)) thms;
   786         fun tvars_of T = rev (Term.add_tvarsT T []);
   787         val vss = map (tvars_of o snd o head_eqn) thms;
   788         fun inter_sorts vs =
   789           fold (curry (Sorts.inter_sort (Sign.classes_of thy)) o snd) vs [];
   790         val sorts = map_transpose inter_sorts vss;
   791         val vts = Name.invent_names Name.context Name.aT sorts;
   792         val thms' =
   793           map2 (fn vs => Thm.certify_instantiate (vs ~~ map TFree vts, [])) vss thms;
   794         val head_thm = Thm.symmetric (Thm.assume (build_head thy (head_eqn (hd thms'))));
   795         fun head_conv ct = if can Thm.dest_comb ct
   796           then Conv.fun_conv head_conv ct
   797           else Conv.rewr_conv head_thm ct;
   798         val rewrite_head = Conv.fconv_rule (Conv.arg1_conv head_conv);
   799         val cert_thm = Conjunction.intr_balanced (map rewrite_head thms');
   800       in Equations (cert_thm, propers) end;
   801 
   802 fun cert_of_proj thy c tyco =
   803   let
   804     val (vs, ((abs, (_, ty)), (rep, _))) = get_abstype_spec thy tyco;
   805     val _ = if c = rep then () else
   806       error ("Wrong head of projection,\nexpected constant " ^ string_of_const thy rep);
   807   in Projection (mk_proj tyco vs ty abs rep, tyco) end;
   808 
   809 fun cert_of_abs thy tyco c raw_abs_thm =
   810   let
   811     val abs_thm = singleton (canonize_thms thy) raw_abs_thm;
   812     val _ = assert_abs_eqn thy (SOME tyco) abs_thm;
   813     val _ = if c = const_abs_eqn thy abs_thm then ()
   814       else error ("Wrong head of abstract code equation,\nexpected constant "
   815         ^ string_of_const thy c ^ "\n" ^ Display.string_of_thm_global thy abs_thm);
   816   in Abstract (Thm.legacy_freezeT abs_thm, tyco) end;
   817 
   818 fun constrain_cert thy sorts (Equations (cert_thm, propers)) =
   819       let
   820         val ((vs, _), head) = get_head thy cert_thm;
   821         val (subst, cert_thm') = cert_thm
   822           |> Thm.implies_intr head
   823           |> constrain_thm thy vs sorts;
   824         val head' = Thm.term_of head
   825           |> subst
   826           |> Thm.cterm_of thy;
   827         val cert_thm'' = cert_thm'
   828           |> Thm.elim_implies (Thm.assume head');
   829       in Equations (cert_thm'', propers) end
   830   | constrain_cert thy _ (cert as Projection _) =
   831       cert
   832   | constrain_cert thy sorts (Abstract (abs_thm, tyco)) =
   833       Abstract (snd (constrain_thm thy (fst (typscheme_abs thy abs_thm)) sorts abs_thm), tyco);
   834 
   835 fun typscheme_of_cert thy (Equations (cert_thm, _)) =
   836       fst (get_head thy cert_thm)
   837   | typscheme_of_cert thy (Projection (proj, _)) =
   838       typscheme_projection thy proj
   839   | typscheme_of_cert thy (Abstract (abs_thm, _)) =
   840       typscheme_abs thy abs_thm;
   841 
   842 fun typargs_deps_of_cert thy (Equations (cert_thm, propers)) =
   843       let
   844         val vs = (fst o fst) (get_head thy cert_thm);
   845         val equations = if null propers then [] else
   846           Thm.prop_of cert_thm
   847           |> Logic.dest_conjunction_balanced (length propers);
   848       in (vs, fold (add_rhss_of_eqn thy) equations []) end
   849   | typargs_deps_of_cert thy (Projection (t, _)) =
   850       (fst (typscheme_projection thy t), add_rhss_of_eqn thy t [])
   851   | typargs_deps_of_cert thy (Abstract (abs_thm, tyco)) =
   852       let
   853         val vs = fst (typscheme_abs thy abs_thm);
   854         val (_, concrete_thm) = concretify_abs thy tyco abs_thm;
   855       in (vs, add_rhss_of_eqn thy (map_types Logic.unvarifyT_global (Thm.prop_of concrete_thm)) []) end;
   856 
   857 fun equations_of_cert thy (cert as Equations (cert_thm, propers)) =
   858       let
   859         val tyscm = typscheme_of_cert thy cert;
   860         val thms = if null propers then [] else
   861           cert_thm
   862           |> Local_Defs.expand [snd (get_head thy cert_thm)]
   863           |> Thm.varifyT_global
   864           |> Conjunction.elim_balanced (length propers);
   865         fun abstractions (args, rhs) = (map (rpair NONE) args, (rhs, NONE));
   866       in (tyscm, map (abstractions o dest_eqn thy o Thm.prop_of) thms ~~ (map SOME thms ~~ propers)) end
   867   | equations_of_cert thy (Projection (t, tyco)) =
   868       let
   869         val (_, ((abs, _), _)) = get_abstype_spec thy tyco;
   870         val tyscm = typscheme_projection thy t;
   871         val t' = map_types Logic.varifyT_global t;
   872         fun abstractions (args, rhs) = (map (rpair (SOME abs)) args, (rhs, NONE));
   873       in (tyscm, [((abstractions o dest_eqn thy) t', (NONE, true))]) end
   874   | equations_of_cert thy (Abstract (abs_thm, tyco)) =
   875       let
   876         val tyscm = typscheme_abs thy abs_thm;
   877         val (abs, concrete_thm) = concretify_abs thy tyco abs_thm;
   878         fun abstractions (args, rhs) = (map (rpair NONE) args, (rhs, (SOME abs)));
   879       in
   880         (tyscm, [((abstractions o dest_eqn thy o Thm.prop_of) concrete_thm,
   881           (SOME (Thm.varifyT_global abs_thm), true))])
   882       end;
   883 
   884 fun pretty_cert thy (cert as Equations _) =
   885       (map_filter (Option.map (Display.pretty_thm_global thy o AxClass.overload thy) o fst o snd)
   886          o snd o equations_of_cert thy) cert
   887   | pretty_cert thy (Projection (t, _)) =
   888       [Syntax.pretty_term_global thy (map_types Logic.varifyT_global t)]
   889   | pretty_cert thy (Abstract (abs_thm, _)) =
   890       [(Display.pretty_thm_global thy o AxClass.overload thy o Thm.varifyT_global) abs_thm];
   891 
   892 fun bare_thms_of_cert thy (cert as Equations _) =
   893       (map_filter (fn (_, (some_thm, proper)) => if proper then some_thm else NONE)
   894         o snd o equations_of_cert thy) cert
   895   | bare_thms_of_cert thy (Projection _) = []
   896   | bare_thms_of_cert thy (Abstract (abs_thm, tyco)) =
   897       [Thm.varifyT_global (snd (concretify_abs thy tyco abs_thm))];
   898 
   899 end;
   900 
   901 
   902 (* code certificate access *)
   903 
   904 fun retrieve_raw thy c =
   905   Symtab.lookup ((the_functions o the_exec) thy) c
   906   |> Option.map (snd o fst)
   907   |> the_default empty_fun_spec
   908 
   909 fun get_cert thy f c = case retrieve_raw thy c
   910  of Default (_, eqns_lazy) => Lazy.force eqns_lazy
   911       |> (map o apfst) (Thm.transfer thy)
   912       |> f
   913       |> (map o apfst) (AxClass.unoverload thy)
   914       |> cert_of_eqns thy c
   915   | Eqns eqns => eqns
   916       |> (map o apfst) (Thm.transfer thy)
   917       |> f
   918       |> (map o apfst) (AxClass.unoverload thy)
   919       |> cert_of_eqns thy c
   920   | Proj (_, tyco) =>
   921       cert_of_proj thy c tyco
   922   | Abstr (abs_thm, tyco) => abs_thm
   923       |> Thm.transfer thy
   924       |> AxClass.unoverload thy
   925       |> cert_of_abs thy tyco c;
   926 
   927 
   928 (* cases *)
   929 
   930 fun case_certificate thm =
   931   let
   932     val ((head, raw_case_expr), cases) = (apfst Logic.dest_equals
   933       o apsnd Logic.dest_conjunctions o Logic.dest_implies o Thm.plain_prop_of) thm;
   934     val _ = case head of Free _ => true
   935       | Var _ => true
   936       | _ => raise TERM ("case_cert", []);
   937     val ([(case_var, _)], case_expr) = Term.strip_abs_eta 1 raw_case_expr;
   938     val (Const (case_const, _), raw_params) = strip_comb case_expr;
   939     val n = find_index (fn Free (v, _) => v = case_var | _ => false) raw_params;
   940     val _ = if n = ~1 then raise TERM ("case_cert", []) else ();
   941     val params = map (fst o dest_Var) (nth_drop n raw_params);
   942     fun dest_case t =
   943       let
   944         val (head' $ t_co, rhs) = Logic.dest_equals t;
   945         val _ = if head' = head then () else raise TERM ("case_cert", []);
   946         val (Const (co, _), args) = strip_comb t_co;
   947         val (Var (param, _), args') = strip_comb rhs;
   948         val _ = if args' = args then () else raise TERM ("case_cert", []);
   949       in (param, co) end;
   950     fun analyze_cases cases =
   951       let
   952         val co_list = fold (AList.update (op =) o dest_case) cases [];
   953       in map (the o AList.lookup (op =) co_list) params end;
   954     fun analyze_let t =
   955       let
   956         val (head' $ arg, Var (param', _) $ arg') = Logic.dest_equals t;
   957         val _ = if head' = head then () else raise TERM ("case_cert", []);
   958         val _ = if arg' = arg then () else raise TERM ("case_cert", []);
   959         val _ = if [param'] = params then () else raise TERM ("case_cert", []);
   960       in [] end;
   961     fun analyze (cases as [let_case]) =
   962           (analyze_cases cases handle Bind => analyze_let let_case)
   963       | analyze cases = analyze_cases cases;
   964   in (case_const, (n, analyze cases)) end;
   965 
   966 fun case_cert thm = case_certificate thm
   967   handle Bind => error "bad case certificate"
   968        | TERM _ => error "bad case certificate";
   969 
   970 fun get_case_scheme thy = Option.map fst o Symtab.lookup ((fst o the_cases o the_exec) thy);
   971 fun get_case_cong thy = Option.map snd o Symtab.lookup ((fst o the_cases o the_exec) thy);
   972 
   973 val undefineds = Symtab.keys o snd o the_cases o the_exec;
   974 
   975 
   976 (* diagnostic *)
   977 
   978 fun print_codesetup thy =
   979   let
   980     val ctxt = Proof_Context.init_global thy;
   981     val exec = the_exec thy;
   982     fun pretty_equations const thms =
   983       (Pretty.block o Pretty.fbreaks) (
   984         Pretty.str (string_of_const thy const) :: map (Display.pretty_thm ctxt) thms
   985       );
   986     fun pretty_function (const, Default (_, eqns_lazy)) = pretty_equations const (map fst (Lazy.force eqns_lazy))
   987       | pretty_function (const, Eqns eqns) = pretty_equations const (map fst eqns)
   988       | pretty_function (const, Proj (proj, _)) = Pretty.block
   989           [Pretty.str (string_of_const thy const), Pretty.fbrk, Syntax.pretty_term ctxt proj]
   990       | pretty_function (const, Abstr (thm, _)) = pretty_equations const [thm];
   991     fun pretty_typ (tyco, vs) = Pretty.str
   992       (string_of_typ thy (Type (tyco, map TFree vs)));
   993     fun pretty_typspec (typ, (cos, abstract)) = if null cos
   994       then pretty_typ typ
   995       else (Pretty.block o Pretty.breaks) (
   996         pretty_typ typ
   997         :: Pretty.str "="
   998         :: (if abstract then [Pretty.str "(abstract)"] else [])
   999         @ separate (Pretty.str "|") (map (fn (c, (_, [])) => Pretty.str (string_of_const thy c)
  1000              | (c, (_, tys)) =>
  1001                  (Pretty.block o Pretty.breaks)
  1002                     (Pretty.str (string_of_const thy c)
  1003                       :: Pretty.str "of"
  1004                       :: map (Pretty.quote o Syntax.pretty_typ_global thy) tys)) cos)
  1005       );
  1006     fun pretty_case (const, ((_, (_, [])), _)) = Pretty.str (string_of_const thy const)
  1007       | pretty_case (const, ((_, (_, cos)), _)) = (Pretty.block o Pretty.breaks) [
  1008           Pretty.str (string_of_const thy const), Pretty.str "with",
  1009           (Pretty.block o Pretty.commas o map (Pretty.str o string_of_const thy)) cos];
  1010     val functions = the_functions exec
  1011       |> Symtab.dest
  1012       |> (map o apsnd) (snd o fst)
  1013       |> sort (string_ord o pairself fst);
  1014     val datatypes = the_types exec
  1015       |> Symtab.dest
  1016       |> map (fn (tyco, (_, (vs, spec)) :: _) =>
  1017           ((tyco, vs), constructors_of spec))
  1018       |> sort (string_ord o pairself (fst o fst));
  1019     val cases = Symtab.dest ((fst o the_cases o the_exec) thy);
  1020     val undefineds = Symtab.keys ((snd o the_cases o the_exec) thy);
  1021   in
  1022     (Pretty.writeln o Pretty.chunks) [
  1023       Pretty.block (
  1024         Pretty.str "code equations:" :: Pretty.fbrk
  1025         :: (Pretty.fbreaks o map pretty_function) functions
  1026       ),
  1027       Pretty.block (
  1028         Pretty.str "datatypes:" :: Pretty.fbrk
  1029         :: (Pretty.fbreaks o map pretty_typspec) datatypes
  1030       ),
  1031       Pretty.block (
  1032         Pretty.str "cases:" :: Pretty.fbrk
  1033         :: (Pretty.fbreaks o map pretty_case) cases
  1034       ),
  1035       Pretty.block (
  1036         Pretty.str "undefined:" :: Pretty.fbrk
  1037         :: (Pretty.commas o map (Pretty.str o string_of_const thy)) undefineds
  1038       )
  1039     ]
  1040   end;
  1041 
  1042 
  1043 (** declaring executable ingredients **)
  1044 
  1045 (* constant signatures *)
  1046 
  1047 fun add_type tyco thy =
  1048   case Symtab.lookup ((snd o #types o Type.rep_tsig o Sign.tsig_of) thy) tyco
  1049    of SOME (Type.Abbreviation (vs, _, _)) =>
  1050           (map_exec_purge o map_signatures o apfst)
  1051             (Symtab.update (tyco, length vs)) thy
  1052     | _ => error ("No such type abbreviation: " ^ quote tyco);
  1053 
  1054 fun add_type_cmd s thy = add_type (Sign.intern_type thy s) thy;
  1055 
  1056 fun gen_add_signature prep_const prep_signature (raw_c, raw_ty) thy =
  1057   let
  1058     val c = prep_const thy raw_c;
  1059     val ty = prep_signature thy raw_ty;
  1060     val ty' = expand_signature thy ty;
  1061     val ty'' = Sign.the_const_type thy c;
  1062     val _ = if typ_equiv (ty', ty'') then () else
  1063       error ("Illegal constant signature: " ^ Syntax.string_of_typ_global thy ty);
  1064   in
  1065     thy
  1066     |> (map_exec_purge o map_signatures o apsnd) (Symtab.update (c, ty))
  1067   end;
  1068 
  1069 val add_signature = gen_add_signature (K I) cert_signature;
  1070 val add_signature_cmd = gen_add_signature read_const read_signature;
  1071 
  1072 
  1073 (* code equations *)
  1074 
  1075 fun gen_add_eqn default (raw_thm, proper) thy =
  1076   let
  1077     val thm = Thm.close_derivation raw_thm;
  1078     val c = const_eqn thy thm;
  1079     fun update_subsume thy (thm, proper) eqns = 
  1080       let
  1081         val args_of = snd o chop_while is_Var o rev o snd o strip_comb
  1082           o map_types Type.strip_sorts o fst o Logic.dest_equals o Thm.plain_prop_of;
  1083         val args = args_of thm;
  1084         val incr_idx = Logic.incr_indexes ([], Thm.maxidx_of thm + 1);
  1085         fun matches_args args' =
  1086           let
  1087             val k = length args' - length args
  1088           in if k >= 0
  1089             then Pattern.matchess thy (args, (map incr_idx o drop k) args')
  1090             else false
  1091           end;
  1092         fun drop (thm', proper') = if (proper orelse not proper')
  1093           andalso matches_args (args_of thm') then 
  1094             (warning ("Code generator: dropping subsumed code equation\n" ^
  1095                 Display.string_of_thm_global thy thm'); true)
  1096           else false;
  1097       in (thm, proper) :: filter_out drop eqns end;
  1098     fun natural_order thy_ref eqns =
  1099       (eqns, Lazy.lazy (fn () => fold (update_subsume (Theory.deref thy_ref)) eqns []))
  1100     fun add_eqn' true (Default (eqns, _)) =
  1101           Default (natural_order (Theory.check_thy thy) ((thm, proper) :: eqns))
  1102           (*this restores the natural order and drops syntactic redundancies*)
  1103       | add_eqn' true fun_spec = fun_spec
  1104       | add_eqn' false (Eqns eqns) = Eqns (update_subsume thy (thm, proper) eqns)
  1105       | add_eqn' false _ = Eqns [(thm, proper)];
  1106   in change_fun_spec false c (add_eqn' default) thy end;
  1107 
  1108 fun add_eqn thm thy =
  1109   gen_add_eqn false (mk_eqn thy (thm, true)) thy;
  1110 
  1111 fun add_warning_eqn thm thy =
  1112   case mk_eqn_warning thy thm
  1113    of SOME eqn => gen_add_eqn false eqn thy
  1114     | NONE => thy;
  1115 
  1116 fun add_nbe_eqn thm thy =
  1117   gen_add_eqn false (mk_eqn thy (thm, false)) thy;
  1118 
  1119 fun add_default_eqn thm thy =
  1120   case mk_eqn_liberal thy thm
  1121    of SOME eqn => gen_add_eqn true eqn thy
  1122     | NONE => thy;
  1123 
  1124 val add_default_eqn_attribute = Thm.declaration_attribute
  1125   (fn thm => Context.mapping (add_default_eqn thm) I);
  1126 val add_default_eqn_attrib = Attrib.internal (K add_default_eqn_attribute);
  1127 
  1128 fun add_nbe_default_eqn thm thy =
  1129   gen_add_eqn true (mk_eqn thy (thm, false)) thy;
  1130 
  1131 val add_nbe_default_eqn_attribute = Thm.declaration_attribute
  1132   (fn thm => Context.mapping (add_nbe_default_eqn thm) I);
  1133 val add_nbe_default_eqn_attrib = Attrib.internal (K add_nbe_default_eqn_attribute);
  1134 
  1135 fun add_abs_eqn raw_thm thy =
  1136   let
  1137     val (abs_thm, tyco) = (apfst Thm.close_derivation o mk_abs_eqn thy) raw_thm;
  1138     val c = const_abs_eqn thy abs_thm;
  1139   in change_fun_spec false c (K (Abstr (abs_thm, tyco))) thy end;
  1140 
  1141 fun del_eqn thm thy = case mk_eqn_liberal thy thm
  1142  of SOME (thm, _) => let
  1143         fun del_eqn' (Default _) = empty_fun_spec
  1144           | del_eqn' (Eqns eqns) =
  1145               Eqns (filter_out (fn (thm', _) => Thm.eq_thm_prop (thm, thm')) eqns)
  1146           | del_eqn' spec = spec
  1147       in change_fun_spec true (const_eqn thy thm) del_eqn' thy end
  1148   | NONE => thy;
  1149 
  1150 fun del_eqns c = change_fun_spec true c (K empty_fun_spec);
  1151 
  1152 
  1153 (* cases *)
  1154 
  1155 fun case_cong thy case_const (num_args, (pos, _)) =
  1156   let
  1157     val ([x, y], ctxt) = fold_map Name.variant ["A", "A'"] Name.context;
  1158     val (zs, _) = fold_map Name.variant (replicate (num_args - 1) "") ctxt;
  1159     val (ws, vs) = chop pos zs;
  1160     val T = Logic.unvarifyT_global (Sign.the_const_type thy case_const);
  1161     val Ts = binder_types T;
  1162     val T_cong = nth Ts pos;
  1163     fun mk_prem z = Free (z, T_cong);
  1164     fun mk_concl z = list_comb (Const (case_const, T), map2 (curry Free) (ws @ z :: vs) Ts);
  1165     val (prem, concl) = pairself Logic.mk_equals (pairself mk_prem (x, y), pairself mk_concl (x, y));
  1166     fun tac { context, prems } = Simplifier.rewrite_goals_tac prems
  1167       THEN ALLGOALS (Proof_Context.fact_tac [Drule.reflexive_thm]);
  1168   in Skip_Proof.prove_global thy (x :: y :: zs) [prem] concl tac end;
  1169 
  1170 fun add_case thm thy =
  1171   let
  1172     val (case_const, (k, cos)) = case_cert thm;
  1173     val _ = case filter_out (is_constr thy) cos
  1174      of [] => ()
  1175       | cs => error ("Non-constructor(s) in case certificate: " ^ commas (map quote cs));
  1176     val entry = (1 + Int.max (1, length cos), (k, cos));
  1177     fun register_case cong = (map_cases o apfst)
  1178       (Symtab.update (case_const, (entry, cong)));
  1179     fun register_for_constructors (Constructors (cos', cases)) =
  1180          Constructors (cos',
  1181            if exists (fn (co, _) => member (op =) cos co) cos'
  1182            then insert (op =) case_const cases
  1183            else cases)
  1184       | register_for_constructors (x as Abstractor _) = x;
  1185     val register_type = (map_typs o Symtab.map)
  1186       (K ((map o apsnd o apsnd) register_for_constructors));
  1187   in
  1188     thy
  1189     |> Theory.checkpoint
  1190     |> `(fn thy => case_cong thy case_const entry)
  1191     |-> (fn cong => map_exec_purge (register_case cong #> register_type))
  1192   end;
  1193 
  1194 fun add_undefined c thy =
  1195   (map_exec_purge o map_cases o apsnd) (Symtab.update (c, ())) thy;
  1196 
  1197 
  1198 (* types *)
  1199 
  1200 fun register_type (tyco, vs_spec) thy =
  1201   let
  1202     val (old_constrs, some_old_proj) =
  1203       case these (Symtab.lookup ((the_types o the_exec) thy) tyco)
  1204        of (_, (_, Constructors (cos, _))) :: _ => (map fst cos, NONE)
  1205         | (_, (_, Abstractor ((co, _), (proj, _)))) :: _ => ([co], SOME proj)
  1206         | [] => ([], NONE);
  1207     val outdated_funs1 = (map fst o fst o constructors_of o snd) vs_spec;
  1208     val outdated_funs2 = case some_old_proj
  1209      of NONE => []
  1210       | SOME old_proj => Symtab.fold
  1211           (fn (c, ((_, spec), _)) =>
  1212             if member (op =) (the_list (associated_abstype spec)) tyco
  1213             then insert (op =) c else I)
  1214             ((the_functions o the_exec) thy) [old_proj];
  1215     fun drop_outdated_cases cases = fold Symtab.delete_safe
  1216       (Symtab.fold (fn (c, ((_, (_, cos)), _)) =>
  1217         if exists (member (op =) old_constrs) cos
  1218           then insert (op =) c else I) cases []) cases;
  1219   in
  1220     thy
  1221     |> fold del_eqns (outdated_funs1 @ outdated_funs2)
  1222     |> map_exec_purge
  1223         ((map_typs o Symtab.map_default (tyco, [])) (cons (serial (), vs_spec))
  1224         #> (map_cases o apfst) drop_outdated_cases)
  1225   end;
  1226 
  1227 fun unoverload_const_typ thy (c, ty) = (AxClass.unoverload_const thy (c, ty), ty);
  1228 
  1229 structure Datatype_Interpretation =
  1230   Interpretation(type T = string * serial val eq = eq_snd (op =) : T * T -> bool);
  1231 
  1232 fun datatype_interpretation f = Datatype_Interpretation.interpretation
  1233   (fn (tyco, _) => fn thy => f (tyco, fst (get_type thy tyco)) thy);
  1234 
  1235 fun add_datatype proto_constrs thy =
  1236   let
  1237     val constrs = map (unoverload_const_typ thy) proto_constrs;
  1238     val (tyco, (vs, cos)) = constrset_of_consts thy constrs;
  1239   in
  1240     thy
  1241     |> register_type (tyco, (vs, Constructors (cos, [])))
  1242     |> Datatype_Interpretation.data (tyco, serial ())
  1243   end;
  1244 
  1245 fun add_datatype_cmd raw_constrs thy =
  1246   add_datatype (map (read_bare_const thy) raw_constrs) thy;
  1247 
  1248 structure Abstype_Interpretation =
  1249   Interpretation(type T = string * serial val eq = eq_snd (op =) : T * T -> bool);
  1250 
  1251 fun abstype_interpretation f = Abstype_Interpretation.interpretation
  1252   (fn (tyco, _) => fn thy => f (tyco, get_abstype_spec thy tyco) thy);
  1253 
  1254 fun add_abstype proto_thm thy =
  1255   let
  1256     val (tyco, (vs, (abs_ty as (abs, (_, ty)), (rep, cert)))) =
  1257       error_thm (check_abstype_cert thy) proto_thm;
  1258   in
  1259     thy
  1260     |> register_type (tyco, (vs, Abstractor (abs_ty, (rep, cert))))
  1261     |> change_fun_spec false rep ((K o Proj)
  1262         (map_types Logic.varifyT_global (mk_proj tyco vs ty abs rep), tyco))
  1263     |> Abstype_Interpretation.data (tyco, serial ())
  1264   end;
  1265 
  1266 
  1267 (** infrastructure **)
  1268 
  1269 (* cf. src/HOL/Tools/recfun_codegen.ML *)
  1270 
  1271 structure Code_Target_Attr = Theory_Data
  1272 (
  1273   type T = (string -> thm -> theory -> theory) option;
  1274   val empty = NONE;
  1275   val extend = I;
  1276   val merge = merge_options;
  1277 );
  1278 
  1279 fun set_code_target_attr f = Code_Target_Attr.map (K (SOME f));
  1280 
  1281 fun code_target_attr prefix thm thy =
  1282   let
  1283     val attr = the_default ((K o K) I) (Code_Target_Attr.get thy);
  1284   in thy |> add_warning_eqn thm |> attr prefix thm end;
  1285 
  1286 
  1287 (* setup *)
  1288 
  1289 val _ = Context.>> (Context.map_theory
  1290   (let
  1291     fun mk_attribute f = Thm.declaration_attribute (fn thm => Context.mapping (f thm) I);
  1292     val code_attribute_parser =
  1293       Args.del |-- Scan.succeed (mk_attribute del_eqn)
  1294       || Args.$$$ "nbe" |-- Scan.succeed (mk_attribute add_nbe_eqn)
  1295       || Args.$$$ "abstype" |-- Scan.succeed (mk_attribute add_abstype)
  1296       || Args.$$$ "abstract" |-- Scan.succeed (mk_attribute add_abs_eqn)
  1297       || (Args.$$$ "target" |-- Args.colon |-- Args.name >>
  1298            (mk_attribute o code_target_attr))
  1299       || Scan.succeed (mk_attribute add_warning_eqn);
  1300   in
  1301     Datatype_Interpretation.init
  1302     #> Attrib.setup (Binding.name "code") (Scan.lift code_attribute_parser)
  1303         "declare theorems for code generation"
  1304   end));
  1305 
  1306 end; (*struct*)
  1307 
  1308 
  1309 (* type-safe interfaces for data dependent on executable code *)
  1310 
  1311 functor Code_Data(Data: CODE_DATA_ARGS): CODE_DATA =
  1312 struct
  1313 
  1314 type T = Data.T;
  1315 exception Data of T;
  1316 fun dest (Data x) = x
  1317 
  1318 val kind = Code.declare_data (Data Data.empty);
  1319 
  1320 val data_op = (kind, Data, dest);
  1321 
  1322 fun change_yield (SOME thy) f = Code.change_yield_data data_op thy f
  1323   | change_yield NONE f = f Data.empty
  1324 
  1325 fun change some_thy f = snd (change_yield some_thy (pair () o f));
  1326 
  1327 end;
  1328 
  1329 structure Code : CODE = struct open Code; end;