src/HOL/Nat.thy
author obua
Tue, 11 May 2004 20:11:08 +0200
changeset 14738 83f1a514dcb4
parent 14691 e1eedc8cad37
child 14740 c8e1937110c2
permissions -rw-r--r--
changes made due to new Ring_and_Field theory
     1 (*  Title:      HOL/Nat.thy
     2     ID:         $Id$
     3     Author:     Tobias Nipkow and Lawrence C Paulson
     4 
     5 Type "nat" is a linear order, and a datatype; arithmetic operators + -
     6 and * (for div, mod and dvd, see theory Divides).
     7 *)
     8 
     9 header {* Natural numbers *}
    10 
    11 theory Nat = Wellfounded_Recursion + Ring_and_Field:
    12 
    13 subsection {* Type @{text ind} *}
    14 
    15 typedecl ind
    16 
    17 consts
    18   Zero_Rep      :: ind
    19   Suc_Rep       :: "ind => ind"
    20 
    21 axioms
    22   -- {* the axiom of infinity in 2 parts *}
    23   inj_Suc_Rep:          "inj Suc_Rep"
    24   Suc_Rep_not_Zero_Rep: "Suc_Rep x \<noteq> Zero_Rep"
    25 
    26 
    27 subsection {* Type nat *}
    28 
    29 text {* Type definition *}
    30 
    31 consts
    32   Nat :: "ind set"
    33 
    34 inductive Nat
    35 intros
    36   Zero_RepI: "Zero_Rep : Nat"
    37   Suc_RepI: "i : Nat ==> Suc_Rep i : Nat"
    38 
    39 global
    40 
    41 typedef (open Nat)
    42   nat = Nat by (rule exI, rule Nat.Zero_RepI)
    43 
    44 instance nat :: "{ord, zero, one}" ..
    45 
    46 
    47 text {* Abstract constants and syntax *}
    48 
    49 consts
    50   Suc :: "nat => nat"
    51   pred_nat :: "(nat * nat) set"
    52 
    53 local
    54 
    55 defs
    56   Zero_nat_def: "0 == Abs_Nat Zero_Rep"
    57   Suc_def: "Suc == (%n. Abs_Nat (Suc_Rep (Rep_Nat n)))"
    58   One_nat_def [simp]: "1 == Suc 0"
    59 
    60   -- {* nat operations *}
    61   pred_nat_def: "pred_nat == {(m, n). n = Suc m}"
    62 
    63   less_def: "m < n == (m, n) : trancl pred_nat"
    64 
    65   le_def: "m \<le> (n::nat) == ~ (n < m)"
    66 
    67 
    68 text {* Induction *}
    69 
    70 theorem nat_induct: "P 0 ==> (!!n. P n ==> P (Suc n)) ==> P n"
    71   apply (unfold Zero_nat_def Suc_def)
    72   apply (rule Rep_Nat_inverse [THEN subst]) -- {* types force good instantiation *}
    73   apply (erule Rep_Nat [THEN Nat.induct])
    74   apply (rules elim: Abs_Nat_inverse [THEN subst])
    75   done
    76 
    77 
    78 text {* Isomorphisms: @{text Abs_Nat} and @{text Rep_Nat} *}
    79 
    80 lemma inj_Rep_Nat: "inj Rep_Nat"
    81   apply (rule inj_on_inverseI)
    82   apply (rule Rep_Nat_inverse)
    83   done
    84 
    85 lemma inj_on_Abs_Nat: "inj_on Abs_Nat Nat"
    86   apply (rule inj_on_inverseI)
    87   apply (erule Abs_Nat_inverse)
    88   done
    89 
    90 text {* Distinctness of constructors *}
    91 
    92 lemma Suc_not_Zero [iff]: "Suc m \<noteq> 0"
    93   apply (unfold Zero_nat_def Suc_def)
    94   apply (rule inj_on_Abs_Nat [THEN inj_on_contraD])
    95   apply (rule Suc_Rep_not_Zero_Rep)
    96   apply (rule Rep_Nat Nat.Suc_RepI Nat.Zero_RepI)+
    97   done
    98 
    99 lemma Zero_not_Suc [iff]: "0 \<noteq> Suc m"
   100   by (rule not_sym, rule Suc_not_Zero not_sym)
   101 
   102 lemma Suc_neq_Zero: "Suc m = 0 ==> R"
   103   by (rule notE, rule Suc_not_Zero)
   104 
   105 lemma Zero_neq_Suc: "0 = Suc m ==> R"
   106   by (rule Suc_neq_Zero, erule sym)
   107 
   108 text {* Injectiveness of @{term Suc} *}
   109 
   110 lemma inj_Suc: "inj Suc"
   111   apply (unfold Suc_def)
   112   apply (rule inj_onI)
   113   apply (drule inj_on_Abs_Nat [THEN inj_onD])
   114   apply (rule Rep_Nat Nat.Suc_RepI)+
   115   apply (drule inj_Suc_Rep [THEN injD])
   116   apply (erule inj_Rep_Nat [THEN injD])
   117   done
   118 
   119 lemma Suc_inject: "Suc x = Suc y ==> x = y"
   120   by (rule inj_Suc [THEN injD])
   121 
   122 lemma Suc_Suc_eq [iff]: "(Suc m = Suc n) = (m = n)"
   123   apply (rule iffI)
   124   apply (erule Suc_inject)
   125   apply (erule arg_cong)
   126   done
   127 
   128 lemma nat_not_singleton: "(\<forall>x. x = (0::nat)) = False"
   129   by auto
   130 
   131 text {* @{typ nat} is a datatype *}
   132 
   133 rep_datatype nat
   134   distinct  Suc_not_Zero Zero_not_Suc
   135   inject    Suc_Suc_eq
   136   induction nat_induct
   137 
   138 lemma n_not_Suc_n: "n \<noteq> Suc n"
   139   by (induct n) simp_all
   140 
   141 lemma Suc_n_not_n: "Suc t \<noteq> t"
   142   by (rule not_sym, rule n_not_Suc_n)
   143 
   144 text {* A special form of induction for reasoning
   145   about @{term "m < n"} and @{term "m - n"} *}
   146 
   147 theorem diff_induct: "(!!x. P x 0) ==> (!!y. P 0 (Suc y)) ==>
   148     (!!x y. P x y ==> P (Suc x) (Suc y)) ==> P m n"
   149   apply (rule_tac x = m in spec)
   150   apply (induct_tac n)
   151   prefer 2
   152   apply (rule allI)
   153   apply (induct_tac x, rules+)
   154   done
   155 
   156 subsection {* Basic properties of "less than" *}
   157 
   158 lemma wf_pred_nat: "wf pred_nat"
   159   apply (unfold wf_def pred_nat_def, clarify)
   160   apply (induct_tac x, blast+)
   161   done
   162 
   163 lemma wf_less: "wf {(x, y::nat). x < y}"
   164   apply (unfold less_def)
   165   apply (rule wf_pred_nat [THEN wf_trancl, THEN wf_subset], blast)
   166   done
   167 
   168 lemma less_eq: "((m, n) : pred_nat^+) = (m < n)"
   169   apply (unfold less_def)
   170   apply (rule refl)
   171   done
   172 
   173 subsubsection {* Introduction properties *}
   174 
   175 lemma less_trans: "i < j ==> j < k ==> i < (k::nat)"
   176   apply (unfold less_def)
   177   apply (rule trans_trancl [THEN transD], assumption+)
   178   done
   179 
   180 lemma lessI [iff]: "n < Suc n"
   181   apply (unfold less_def pred_nat_def)
   182   apply (simp add: r_into_trancl)
   183   done
   184 
   185 lemma less_SucI: "i < j ==> i < Suc j"
   186   apply (rule less_trans, assumption)
   187   apply (rule lessI)
   188   done
   189 
   190 lemma zero_less_Suc [iff]: "0 < Suc n"
   191   apply (induct n)
   192   apply (rule lessI)
   193   apply (erule less_trans)
   194   apply (rule lessI)
   195   done
   196 
   197 subsubsection {* Elimination properties *}
   198 
   199 lemma less_not_sym: "n < m ==> ~ m < (n::nat)"
   200   apply (unfold less_def)
   201   apply (blast intro: wf_pred_nat wf_trancl [THEN wf_asym])
   202   done
   203 
   204 lemma less_asym:
   205   assumes h1: "(n::nat) < m" and h2: "~ P ==> m < n" shows P
   206   apply (rule contrapos_np)
   207   apply (rule less_not_sym)
   208   apply (rule h1)
   209   apply (erule h2)
   210   done
   211 
   212 lemma less_not_refl: "~ n < (n::nat)"
   213   apply (unfold less_def)
   214   apply (rule wf_pred_nat [THEN wf_trancl, THEN wf_not_refl])
   215   done
   216 
   217 lemma less_irrefl [elim!]: "(n::nat) < n ==> R"
   218   by (rule notE, rule less_not_refl)
   219 
   220 lemma less_not_refl2: "n < m ==> m \<noteq> (n::nat)" by blast
   221 
   222 lemma less_not_refl3: "(s::nat) < t ==> s \<noteq> t"
   223   by (rule not_sym, rule less_not_refl2)
   224 
   225 lemma lessE:
   226   assumes major: "i < k"
   227   and p1: "k = Suc i ==> P" and p2: "!!j. i < j ==> k = Suc j ==> P"
   228   shows P
   229   apply (rule major [unfolded less_def pred_nat_def, THEN tranclE], simp_all)
   230   apply (erule p1)
   231   apply (rule p2)
   232   apply (simp add: less_def pred_nat_def, assumption)
   233   done
   234 
   235 lemma not_less0 [iff]: "~ n < (0::nat)"
   236   by (blast elim: lessE)
   237 
   238 lemma less_zeroE: "(n::nat) < 0 ==> R"
   239   by (rule notE, rule not_less0)
   240 
   241 lemma less_SucE: assumes major: "m < Suc n"
   242   and less: "m < n ==> P" and eq: "m = n ==> P" shows P
   243   apply (rule major [THEN lessE])
   244   apply (rule eq, blast)
   245   apply (rule less, blast)
   246   done
   247 
   248 lemma less_Suc_eq: "(m < Suc n) = (m < n | m = n)"
   249   by (blast elim!: less_SucE intro: less_trans)
   250 
   251 lemma less_one [iff]: "(n < (1::nat)) = (n = 0)"
   252   by (simp add: less_Suc_eq)
   253 
   254 lemma less_Suc0 [iff]: "(n < Suc 0) = (n = 0)"
   255   by (simp add: less_Suc_eq)
   256 
   257 lemma Suc_mono: "m < n ==> Suc m < Suc n"
   258   by (induct n) (fast elim: less_trans lessE)+
   259 
   260 text {* "Less than" is a linear ordering *}
   261 lemma less_linear: "m < n | m = n | n < (m::nat)"
   262   apply (induct_tac m)
   263   apply (induct_tac n)
   264   apply (rule refl [THEN disjI1, THEN disjI2])
   265   apply (rule zero_less_Suc [THEN disjI1])
   266   apply (blast intro: Suc_mono less_SucI elim: lessE)
   267   done
   268 
   269 text {* "Less than" is antisymmetric, sort of *}
   270 lemma less_antisym: "\<lbrakk> \<not> n < m; n < Suc m \<rbrakk> \<Longrightarrow> m = n"
   271 apply(simp only:less_Suc_eq)
   272 apply blast
   273 done
   274 
   275 lemma nat_neq_iff: "((m::nat) \<noteq> n) = (m < n | n < m)"
   276   using less_linear by blast
   277 
   278 lemma nat_less_cases: assumes major: "(m::nat) < n ==> P n m"
   279   and eqCase: "m = n ==> P n m" and lessCase: "n<m ==> P n m"
   280   shows "P n m"
   281   apply (rule less_linear [THEN disjE])
   282   apply (erule_tac [2] disjE)
   283   apply (erule lessCase)
   284   apply (erule sym [THEN eqCase])
   285   apply (erule major)
   286   done
   287 
   288 
   289 subsubsection {* Inductive (?) properties *}
   290 
   291 lemma Suc_lessI: "m < n ==> Suc m \<noteq> n ==> Suc m < n"
   292   apply (simp add: nat_neq_iff)
   293   apply (blast elim!: less_irrefl less_SucE elim: less_asym)
   294   done
   295 
   296 lemma Suc_lessD: "Suc m < n ==> m < n"
   297   apply (induct n)
   298   apply (fast intro!: lessI [THEN less_SucI] elim: less_trans lessE)+
   299   done
   300 
   301 lemma Suc_lessE: assumes major: "Suc i < k"
   302   and minor: "!!j. i < j ==> k = Suc j ==> P" shows P
   303   apply (rule major [THEN lessE])
   304   apply (erule lessI [THEN minor])
   305   apply (erule Suc_lessD [THEN minor], assumption)
   306   done
   307 
   308 lemma Suc_less_SucD: "Suc m < Suc n ==> m < n"
   309   by (blast elim: lessE dest: Suc_lessD)
   310 
   311 lemma Suc_less_eq [iff]: "(Suc m < Suc n) = (m < n)"
   312   apply (rule iffI)
   313   apply (erule Suc_less_SucD)
   314   apply (erule Suc_mono)
   315   done
   316 
   317 lemma less_trans_Suc:
   318   assumes le: "i < j" shows "j < k ==> Suc i < k"
   319   apply (induct k, simp_all)
   320   apply (insert le)
   321   apply (simp add: less_Suc_eq)
   322   apply (blast dest: Suc_lessD)
   323   done
   324 
   325 text {* Can be used with @{text less_Suc_eq} to get @{term "n = m | n < m"} *}
   326 lemma not_less_eq: "(~ m < n) = (n < Suc m)"
   327 by (rule_tac m = m and n = n in diff_induct, simp_all)
   328 
   329 text {* Complete induction, aka course-of-values induction *}
   330 lemma nat_less_induct:
   331   assumes prem: "!!n. \<forall>m::nat. m < n --> P m ==> P n" shows "P n"
   332   apply (rule_tac a=n in wf_induct)
   333   apply (rule wf_pred_nat [THEN wf_trancl])
   334   apply (rule prem)
   335   apply (unfold less_def, assumption)
   336   done
   337 
   338 lemmas less_induct = nat_less_induct [rule_format, case_names less]
   339 
   340 subsection {* Properties of "less than or equal" *}
   341 
   342 text {* Was @{text le_eq_less_Suc}, but this orientation is more useful *}
   343 lemma less_Suc_eq_le: "(m < Suc n) = (m \<le> n)"
   344   by (unfold le_def, rule not_less_eq [symmetric])
   345 
   346 lemma le_imp_less_Suc: "m \<le> n ==> m < Suc n"
   347   by (rule less_Suc_eq_le [THEN iffD2])
   348 
   349 lemma le0 [iff]: "(0::nat) \<le> n"
   350   by (unfold le_def, rule not_less0)
   351 
   352 lemma Suc_n_not_le_n: "~ Suc n \<le> n"
   353   by (simp add: le_def)
   354 
   355 lemma le_0_eq [iff]: "((i::nat) \<le> 0) = (i = 0)"
   356   by (induct i) (simp_all add: le_def)
   357 
   358 lemma le_Suc_eq: "(m \<le> Suc n) = (m \<le> n | m = Suc n)"
   359   by (simp del: less_Suc_eq_le add: less_Suc_eq_le [symmetric] less_Suc_eq)
   360 
   361 lemma le_SucE: "m \<le> Suc n ==> (m \<le> n ==> R) ==> (m = Suc n ==> R) ==> R"
   362   by (drule le_Suc_eq [THEN iffD1], rules+)
   363 
   364 lemma leI: "~ n < m ==> m \<le> (n::nat)" by (simp add: le_def)
   365 
   366 lemma leD: "m \<le> n ==> ~ n < (m::nat)"
   367   by (simp add: le_def)
   368 
   369 lemmas leE = leD [elim_format]
   370 
   371 lemma not_less_iff_le: "(~ n < m) = (m \<le> (n::nat))"
   372   by (blast intro: leI elim: leE)
   373 
   374 lemma not_leE: "~ m \<le> n ==> n<(m::nat)"
   375   by (simp add: le_def)
   376 
   377 lemma not_le_iff_less: "(~ n \<le> m) = (m < (n::nat))"
   378   by (simp add: le_def)
   379 
   380 lemma Suc_leI: "m < n ==> Suc(m) \<le> n"
   381   apply (simp add: le_def less_Suc_eq)
   382   apply (blast elim!: less_irrefl less_asym)
   383   done -- {* formerly called lessD *}
   384 
   385 lemma Suc_leD: "Suc(m) \<le> n ==> m \<le> n"
   386   by (simp add: le_def less_Suc_eq)
   387 
   388 text {* Stronger version of @{text Suc_leD} *}
   389 lemma Suc_le_lessD: "Suc m \<le> n ==> m < n"
   390   apply (simp add: le_def less_Suc_eq)
   391   using less_linear
   392   apply blast
   393   done
   394 
   395 lemma Suc_le_eq: "(Suc m \<le> n) = (m < n)"
   396   by (blast intro: Suc_leI Suc_le_lessD)
   397 
   398 lemma le_SucI: "m \<le> n ==> m \<le> Suc n"
   399   by (unfold le_def) (blast dest: Suc_lessD)
   400 
   401 lemma less_imp_le: "m < n ==> m \<le> (n::nat)"
   402   by (unfold le_def) (blast elim: less_asym)
   403 
   404 text {* For instance, @{text "(Suc m < Suc n) = (Suc m \<le> n) = (m < n)"} *}
   405 lemmas le_simps = less_imp_le less_Suc_eq_le Suc_le_eq
   406 
   407 
   408 text {* Equivalence of @{term "m \<le> n"} and @{term "m < n | m = n"} *}
   409 
   410 lemma le_imp_less_or_eq: "m \<le> n ==> m < n | m = (n::nat)"
   411   apply (unfold le_def)
   412   using less_linear
   413   apply (blast elim: less_irrefl less_asym)
   414   done
   415 
   416 lemma less_or_eq_imp_le: "m < n | m = n ==> m \<le> (n::nat)"
   417   apply (unfold le_def)
   418   using less_linear
   419   apply (blast elim!: less_irrefl elim: less_asym)
   420   done
   421 
   422 lemma le_eq_less_or_eq: "(m \<le> (n::nat)) = (m < n | m=n)"
   423   by (rules intro: less_or_eq_imp_le le_imp_less_or_eq)
   424 
   425 text {* Useful with @{text Blast}. *}
   426 lemma eq_imp_le: "(m::nat) = n ==> m \<le> n"
   427   by (rule less_or_eq_imp_le, rule disjI2)
   428 
   429 lemma le_refl: "n \<le> (n::nat)"
   430   by (simp add: le_eq_less_or_eq)
   431 
   432 lemma le_less_trans: "[| i \<le> j; j < k |] ==> i < (k::nat)"
   433   by (blast dest!: le_imp_less_or_eq intro: less_trans)
   434 
   435 lemma less_le_trans: "[| i < j; j \<le> k |] ==> i < (k::nat)"
   436   by (blast dest!: le_imp_less_or_eq intro: less_trans)
   437 
   438 lemma le_trans: "[| i \<le> j; j \<le> k |] ==> i \<le> (k::nat)"
   439   by (blast dest!: le_imp_less_or_eq intro: less_or_eq_imp_le less_trans)
   440 
   441 lemma le_anti_sym: "[| m \<le> n; n \<le> m |] ==> m = (n::nat)"
   442   by (blast dest!: le_imp_less_or_eq elim!: less_irrefl elim: less_asym)
   443 
   444 lemma Suc_le_mono [iff]: "(Suc n \<le> Suc m) = (n \<le> m)"
   445   by (simp add: le_simps)
   446 
   447 text {* Axiom @{text order_less_le} of class @{text order}: *}
   448 lemma nat_less_le: "((m::nat) < n) = (m \<le> n & m \<noteq> n)"
   449   by (simp add: le_def nat_neq_iff) (blast elim!: less_asym)
   450 
   451 lemma le_neq_implies_less: "(m::nat) \<le> n ==> m \<noteq> n ==> m < n"
   452   by (rule iffD2, rule nat_less_le, rule conjI)
   453 
   454 text {* Axiom @{text linorder_linear} of class @{text linorder}: *}
   455 lemma nat_le_linear: "(m::nat) \<le> n | n \<le> m"
   456   apply (simp add: le_eq_less_or_eq)
   457   using less_linear
   458   apply blast
   459   done
   460 
   461 text {* Type {@typ nat} is a wellfounded linear order *}
   462 
   463 instance nat :: "{order, linorder, wellorder}"
   464   by intro_classes
   465     (assumption |
   466       rule le_refl le_trans le_anti_sym nat_less_le nat_le_linear wf_less)+
   467 
   468 lemma not_less_less_Suc_eq: "~ n < m ==> (n < Suc m) = (n = m)"
   469   by (blast elim!: less_SucE)
   470 
   471 text {*
   472   Rewrite @{term "n < Suc m"} to @{term "n = m"}
   473   if @{term "~ n < m"} or @{term "m \<le> n"} hold.
   474   Not suitable as default simprules because they often lead to looping
   475 *}
   476 lemma le_less_Suc_eq: "m \<le> n ==> (n < Suc m) = (n = m)"
   477   by (rule not_less_less_Suc_eq, rule leD)
   478 
   479 lemmas not_less_simps = not_less_less_Suc_eq le_less_Suc_eq
   480 
   481 
   482 text {*
   483   Re-orientation of the equations @{text "0 = x"} and @{text "1 = x"}. 
   484   No longer added as simprules (they loop) 
   485   but via @{text reorient_simproc} in Bin
   486 *}
   487 
   488 text {* Polymorphic, not just for @{typ nat} *}
   489 lemma zero_reorient: "(0 = x) = (x = 0)"
   490   by auto
   491 
   492 lemma one_reorient: "(1 = x) = (x = 1)"
   493   by auto
   494 
   495 subsection {* Arithmetic operators *}
   496 
   497 axclass power < type
   498 
   499 consts
   500   power :: "('a::power) => nat => 'a"            (infixr "^" 80)
   501 
   502 
   503 text {* arithmetic operators @{text "+ -"} and @{text "*"} *}
   504 
   505 instance nat :: "{plus, minus, times, power}" ..
   506 
   507 text {* size of a datatype value; overloaded *}
   508 consts size :: "'a => nat"
   509 
   510 primrec
   511   add_0:    "0 + n = n"
   512   add_Suc:  "Suc m + n = Suc (m + n)"
   513 
   514 primrec
   515   diff_0:   "m - 0 = m"
   516   diff_Suc: "m - Suc n = (case m - n of 0 => 0 | Suc k => k)"
   517 
   518 primrec
   519   mult_0:   "0 * n = 0"
   520   mult_Suc: "Suc m * n = n + (m * n)"
   521 
   522 text {* These two rules ease the use of primitive recursion. 
   523 NOTE USE OF @{text "=="} *}
   524 lemma def_nat_rec_0: "(!!n. f n == nat_rec c h n) ==> f 0 = c"
   525   by simp
   526 
   527 lemma def_nat_rec_Suc: "(!!n. f n == nat_rec c h n) ==> f (Suc n) = h n (f n)"
   528   by simp
   529 
   530 lemma not0_implies_Suc: "n \<noteq> 0 ==> \<exists>m. n = Suc m"
   531   by (case_tac n) simp_all
   532 
   533 lemma gr_implies_not0: "!!n::nat. m<n ==> n \<noteq> 0"
   534   by (case_tac n) simp_all
   535 
   536 lemma neq0_conv [iff]: "!!n::nat. (n \<noteq> 0) = (0 < n)"
   537   by (case_tac n) simp_all
   538 
   539 text {* This theorem is useful with @{text blast} *}
   540 lemma gr0I: "((n::nat) = 0 ==> False) ==> 0 < n"
   541   by (rule iffD1, rule neq0_conv, rules)
   542 
   543 lemma gr0_conv_Suc: "(0 < n) = (\<exists>m. n = Suc m)"
   544   by (fast intro: not0_implies_Suc)
   545 
   546 lemma not_gr0 [iff]: "!!n::nat. (~ (0 < n)) = (n = 0)"
   547   apply (rule iffI)
   548   apply (rule ccontr, simp_all)
   549   done
   550 
   551 lemma Suc_le_D: "(Suc n \<le> m') ==> (? m. m' = Suc m)"
   552   by (induct m') simp_all
   553 
   554 text {* Useful in certain inductive arguments *}
   555 lemma less_Suc_eq_0_disj: "(m < Suc n) = (m = 0 | (\<exists>j. m = Suc j & j < n))"
   556   by (case_tac m) simp_all
   557 
   558 lemma nat_induct2: "[|P 0; P (Suc 0); !!k. P k ==> P (Suc (Suc k))|] ==> P n"
   559   apply (rule nat_less_induct)
   560   apply (case_tac n)
   561   apply (case_tac [2] nat)
   562   apply (blast intro: less_trans)+
   563   done
   564 
   565 subsection {* @{text LEAST} theorems for type @{typ nat} by specialization *}
   566 
   567 lemmas LeastI = wellorder_LeastI
   568 lemmas Least_le = wellorder_Least_le
   569 lemmas not_less_Least = wellorder_not_less_Least
   570 
   571 lemma Least_Suc:
   572      "[| P n; ~ P 0 |] ==> (LEAST n. P n) = Suc (LEAST m. P(Suc m))"
   573   apply (case_tac "n", auto)
   574   apply (frule LeastI)
   575   apply (drule_tac P = "%x. P (Suc x) " in LeastI)
   576   apply (subgoal_tac " (LEAST x. P x) \<le> Suc (LEAST x. P (Suc x))")
   577   apply (erule_tac [2] Least_le)
   578   apply (case_tac "LEAST x. P x", auto)
   579   apply (drule_tac P = "%x. P (Suc x) " in Least_le)
   580   apply (blast intro: order_antisym)
   581   done
   582 
   583 lemma Least_Suc2:
   584      "[|P n; Q m; ~P 0; !k. P (Suc k) = Q k|] ==> Least P = Suc (Least Q)"
   585   by (erule (1) Least_Suc [THEN ssubst], simp)
   586 
   587 
   588 
   589 subsection {* @{term min} and @{term max} *}
   590 
   591 lemma min_0L [simp]: "min 0 n = (0::nat)"
   592   by (rule min_leastL) simp
   593 
   594 lemma min_0R [simp]: "min n 0 = (0::nat)"
   595   by (rule min_leastR) simp
   596 
   597 lemma min_Suc_Suc [simp]: "min (Suc m) (Suc n) = Suc (min m n)"
   598   by (simp add: min_of_mono)
   599 
   600 lemma max_0L [simp]: "max 0 n = (n::nat)"
   601   by (rule max_leastL) simp
   602 
   603 lemma max_0R [simp]: "max n 0 = (n::nat)"
   604   by (rule max_leastR) simp
   605 
   606 lemma max_Suc_Suc [simp]: "max (Suc m) (Suc n) = Suc(max m n)"
   607   by (simp add: max_of_mono)
   608 
   609 
   610 subsection {* Basic rewrite rules for the arithmetic operators *}
   611 
   612 text {* Difference *}
   613 
   614 lemma diff_0_eq_0 [simp, code]: "0 - n = (0::nat)"
   615   by (induct_tac n) simp_all
   616 
   617 lemma diff_Suc_Suc [simp, code]: "Suc(m) - Suc(n) = m - n"
   618   by (induct_tac n) simp_all
   619 
   620 
   621 text {*
   622   Could be (and is, below) generalized in various ways
   623   However, none of the generalizations are currently in the simpset,
   624   and I dread to think what happens if I put them in
   625 *}
   626 lemma Suc_pred [simp]: "0 < n ==> Suc (n - Suc 0) = n"
   627   by (simp split add: nat.split)
   628 
   629 declare diff_Suc [simp del, code del]
   630 
   631 
   632 subsection {* Addition *}
   633 
   634 lemma add_0_right [simp]: "m + 0 = (m::nat)"
   635   by (induct m) simp_all
   636 
   637 lemma add_Suc_right [simp]: "m + Suc n = Suc (m + n)"
   638   by (induct m) simp_all
   639 
   640 lemma [code]: "Suc m + n = m + Suc n" by simp
   641 
   642 
   643 text {* Associative law for addition *}
   644 lemma nat_add_assoc: "(m + n) + k = m + ((n + k)::nat)"
   645   by (induct m) simp_all
   646 
   647 text {* Commutative law for addition *}
   648 lemma nat_add_commute: "m + n = n + (m::nat)"
   649   by (induct m) simp_all
   650 
   651 lemma nat_add_left_commute: "x + (y + z) = y + ((x + z)::nat)"
   652   apply (rule mk_left_commute [of "op +"])
   653   apply (rule nat_add_assoc)
   654   apply (rule nat_add_commute)
   655   done
   656 
   657 lemma nat_add_left_cancel [simp]: "(k + m = k + n) = (m = (n::nat))"
   658   by (induct k) simp_all
   659 
   660 lemma nat_add_right_cancel [simp]: "(m + k = n + k) = (m=(n::nat))"
   661   by (induct k) simp_all
   662 
   663 lemma nat_add_left_cancel_le [simp]: "(k + m \<le> k + n) = (m\<le>(n::nat))"
   664   by (induct k) simp_all
   665 
   666 lemma nat_add_left_cancel_less [simp]: "(k + m < k + n) = (m<(n::nat))"
   667   by (induct k) simp_all
   668 
   669 text {* Reasoning about @{text "m + 0 = 0"}, etc. *}
   670 
   671 lemma add_is_0 [iff]: "!!m::nat. (m + n = 0) = (m = 0 & n = 0)"
   672   by (case_tac m) simp_all
   673 
   674 lemma add_is_1: "(m+n= Suc 0) = (m= Suc 0 & n=0 | m=0 & n= Suc 0)"
   675   by (case_tac m) simp_all
   676 
   677 lemma one_is_add: "(Suc 0 = m + n) = (m = Suc 0 & n = 0 | m = 0 & n = Suc 0)"
   678   by (rule trans, rule eq_commute, rule add_is_1)
   679 
   680 lemma add_gr_0 [iff]: "!!m::nat. (0 < m + n) = (0 < m | 0 < n)"
   681   by (simp del: neq0_conv add: neq0_conv [symmetric])
   682 
   683 lemma add_eq_self_zero: "!!m::nat. m + n = m ==> n = 0"
   684   apply (drule add_0_right [THEN ssubst])
   685   apply (simp add: nat_add_assoc del: add_0_right)
   686   done
   687 
   688 
   689 subsection {* Multiplication *}
   690 
   691 text {* right annihilation in product *}
   692 lemma mult_0_right [simp]: "(m::nat) * 0 = 0"
   693   by (induct m) simp_all
   694 
   695 text {* right successor law for multiplication *}
   696 lemma mult_Suc_right [simp]: "m * Suc n = m + (m * n)"
   697   by (induct m) (simp_all add: nat_add_left_commute)
   698 
   699 text {* Commutative law for multiplication *}
   700 lemma nat_mult_commute: "m * n = n * (m::nat)"
   701   by (induct m) simp_all
   702 
   703 text {* addition distributes over multiplication *}
   704 lemma add_mult_distrib: "(m + n) * k = (m * k) + ((n * k)::nat)"
   705   by (induct m) (simp_all add: nat_add_assoc nat_add_left_commute)
   706 
   707 lemma add_mult_distrib2: "k * (m + n) = (k * m) + ((k * n)::nat)"
   708   by (induct m) (simp_all add: nat_add_assoc)
   709 
   710 text {* Associative law for multiplication *}
   711 lemma nat_mult_assoc: "(m * n) * k = m * ((n * k)::nat)"
   712   by (induct m) (simp_all add: add_mult_distrib)
   713 
   714 
   715 text{*The Naturals Form A comm_semiring_1_cancel*}
   716 instance nat :: comm_semiring_1_cancel
   717 proof
   718   fix i j k :: nat
   719   show "(i + j) + k = i + (j + k)" by (rule nat_add_assoc)
   720   show "i + j = j + i" by (rule nat_add_commute)
   721   show "0 + i = i" by simp
   722   show "(i * j) * k = i * (j * k)" by (rule nat_mult_assoc)
   723   show "i * j = j * i" by (rule nat_mult_commute)
   724   show "1 * i = i" by simp
   725   show "(i + j) * k = i * k + j * k" by (simp add: add_mult_distrib)
   726   show "0 \<noteq> (1::nat)" by simp
   727   assume "k+i = k+j" thus "i=j" by simp
   728 qed
   729 
   730 lemma mult_is_0 [simp]: "((m::nat) * n = 0) = (m=0 | n=0)"
   731   apply (induct_tac m)
   732   apply (induct_tac [2] n, simp_all)
   733   done
   734 
   735 subsection {* Monotonicity of Addition *}
   736 
   737 text {* strict, in 1st argument *}
   738 lemma add_less_mono1: "i < j ==> i + k < j + (k::nat)"
   739   by (induct k) simp_all
   740 
   741 text {* strict, in both arguments *}
   742 lemma add_less_mono: "[|i < j; k < l|] ==> i + k < j + (l::nat)"
   743   apply (rule add_less_mono1 [THEN less_trans], assumption+)
   744   apply (induct_tac j, simp_all)
   745   done
   746 
   747 text {* Deleted @{text less_natE}; use @{text "less_imp_Suc_add RS exE"} *}
   748 lemma less_imp_Suc_add: "m < n ==> (\<exists>k. n = Suc (m + k))"
   749   apply (induct n)
   750   apply (simp_all add: order_le_less)
   751   apply (blast elim!: less_SucE 
   752                intro!: add_0_right [symmetric] add_Suc_right [symmetric])
   753   done
   754 
   755 text {* strict, in 1st argument; proof is by induction on @{text "k > 0"} *}
   756 lemma mult_less_mono2: "(i::nat) < j ==> 0 < k ==> k * i < k * j"
   757   apply (erule_tac m1 = 0 in less_imp_Suc_add [THEN exE], simp)
   758   apply (induct_tac x) 
   759   apply (simp_all add: add_less_mono)
   760   done
   761 
   762 
   763 text{*The Naturals Form an Ordered comm_semiring_1_cancel*}
   764 instance nat :: ordered_semidom
   765 proof
   766   fix i j k :: nat
   767   show "0 < (1::nat)" by simp
   768   show "i \<le> j ==> k + i \<le> k + j" by simp
   769   show "i < j ==> 0 < k ==> k * i < k * j" by (simp add: mult_less_mono2)
   770 qed
   771 
   772 lemma nat_mult_1: "(1::nat) * n = n"
   773   by simp
   774 
   775 lemma nat_mult_1_right: "n * (1::nat) = n"
   776   by simp
   777 
   778 
   779 subsection {* Additional theorems about "less than" *}
   780 
   781 text {* A [clumsy] way of lifting @{text "<"}
   782   monotonicity to @{text "\<le>"} monotonicity *}
   783 lemma less_mono_imp_le_mono:
   784   assumes lt_mono: "!!i j::nat. i < j ==> f i < f j"
   785   and le: "i \<le> j" shows "f i \<le> ((f j)::nat)" using le
   786   apply (simp add: order_le_less)
   787   apply (blast intro!: lt_mono)
   788   done
   789 
   790 text {* non-strict, in 1st argument *}
   791 lemma add_le_mono1: "i \<le> j ==> i + k \<le> j + (k::nat)"
   792   by (rule add_right_mono)
   793 
   794 text {* non-strict, in both arguments *}
   795 lemma add_le_mono: "[| i \<le> j;  k \<le> l |] ==> i + k \<le> j + (l::nat)"
   796   by (rule add_mono)
   797 
   798 lemma le_add2: "n \<le> ((m + n)::nat)"
   799   by (insert add_right_mono [of 0 m n], simp) 
   800 
   801 lemma le_add1: "n \<le> ((n + m)::nat)"
   802   by (simp add: add_commute, rule le_add2)
   803 
   804 lemma less_add_Suc1: "i < Suc (i + m)"
   805   by (rule le_less_trans, rule le_add1, rule lessI)
   806 
   807 lemma less_add_Suc2: "i < Suc (m + i)"
   808   by (rule le_less_trans, rule le_add2, rule lessI)
   809 
   810 lemma less_iff_Suc_add: "(m < n) = (\<exists>k. n = Suc (m + k))"
   811   by (rules intro!: less_add_Suc1 less_imp_Suc_add)
   812 
   813 lemma trans_le_add1: "(i::nat) \<le> j ==> i \<le> j + m"
   814   by (rule le_trans, assumption, rule le_add1)
   815 
   816 lemma trans_le_add2: "(i::nat) \<le> j ==> i \<le> m + j"
   817   by (rule le_trans, assumption, rule le_add2)
   818 
   819 lemma trans_less_add1: "(i::nat) < j ==> i < j + m"
   820   by (rule less_le_trans, assumption, rule le_add1)
   821 
   822 lemma trans_less_add2: "(i::nat) < j ==> i < m + j"
   823   by (rule less_le_trans, assumption, rule le_add2)
   824 
   825 lemma add_lessD1: "i + j < (k::nat) ==> i < k"
   826   apply (rule le_less_trans [of _ "i+j"]) 
   827   apply (simp_all add: le_add1)
   828   done
   829 
   830 lemma not_add_less1 [iff]: "~ (i + j < (i::nat))"
   831   apply (rule notI)
   832   apply (erule add_lessD1 [THEN less_irrefl])
   833   done
   834 
   835 lemma not_add_less2 [iff]: "~ (j + i < (i::nat))"
   836   by (simp add: add_commute not_add_less1)
   837 
   838 lemma add_leD1: "m + k \<le> n ==> m \<le> (n::nat)"
   839   apply (rule order_trans [of _ "m+k"]) 
   840   apply (simp_all add: le_add1)
   841   done
   842 
   843 lemma add_leD2: "m + k \<le> n ==> k \<le> (n::nat)"
   844   apply (simp add: add_commute)
   845   apply (erule add_leD1)
   846   done
   847 
   848 lemma add_leE: "(m::nat) + k \<le> n ==> (m \<le> n ==> k \<le> n ==> R) ==> R"
   849   by (blast dest: add_leD1 add_leD2)
   850 
   851 text {* needs @{text "!!k"} for @{text add_ac} to work *}
   852 lemma less_add_eq_less: "!!k::nat. k < l ==> m + l = k + n ==> m < n"
   853   by (force simp del: add_Suc_right
   854     simp add: less_iff_Suc_add add_Suc_right [symmetric] add_ac)
   855 
   856 
   857 
   858 subsection {* Difference *}
   859 
   860 lemma diff_self_eq_0 [simp]: "(m::nat) - m = 0"
   861   by (induct m) simp_all
   862 
   863 text {* Addition is the inverse of subtraction:
   864   if @{term "n \<le> m"} then @{term "n + (m - n) = m"}. *}
   865 lemma add_diff_inverse: "~  m < n ==> n + (m - n) = (m::nat)"
   866   by (induct m n rule: diff_induct) simp_all
   867 
   868 lemma le_add_diff_inverse [simp]: "n \<le> m ==> n + (m - n) = (m::nat)"
   869   by (simp add: add_diff_inverse not_less_iff_le)
   870 
   871 lemma le_add_diff_inverse2 [simp]: "n \<le> m ==> (m - n) + n = (m::nat)"
   872   by (simp add: le_add_diff_inverse add_commute)
   873 
   874 
   875 subsection {* More results about difference *}
   876 
   877 lemma Suc_diff_le: "n \<le> m ==> Suc m - n = Suc (m - n)"
   878   by (induct m n rule: diff_induct) simp_all
   879 
   880 lemma diff_less_Suc: "m - n < Suc m"
   881   apply (induct m n rule: diff_induct)
   882   apply (erule_tac [3] less_SucE)
   883   apply (simp_all add: less_Suc_eq)
   884   done
   885 
   886 lemma diff_le_self [simp]: "m - n \<le> (m::nat)"
   887   by (induct m n rule: diff_induct) (simp_all add: le_SucI)
   888 
   889 lemma less_imp_diff_less: "(j::nat) < k ==> j - n < k"
   890   by (rule le_less_trans, rule diff_le_self)
   891 
   892 lemma diff_diff_left: "(i::nat) - j - k = i - (j + k)"
   893   by (induct i j rule: diff_induct) simp_all
   894 
   895 lemma Suc_diff_diff [simp]: "(Suc m - n) - Suc k = m - n - k"
   896   by (simp add: diff_diff_left)
   897 
   898 lemma diff_Suc_less [simp]: "0<n ==> n - Suc i < n"
   899   apply (case_tac "n", safe)
   900   apply (simp add: le_simps)
   901   done
   902 
   903 text {* This and the next few suggested by Florian Kammueller *}
   904 lemma diff_commute: "(i::nat) - j - k = i - k - j"
   905   by (simp add: diff_diff_left add_commute)
   906 
   907 lemma diff_add_assoc: "k \<le> (j::nat) ==> (i + j) - k = i + (j - k)"
   908   by (induct j k rule: diff_induct) simp_all
   909 
   910 lemma diff_add_assoc2: "k \<le> (j::nat) ==> (j + i) - k = (j - k) + i"
   911   by (simp add: add_commute diff_add_assoc)
   912 
   913 lemma diff_add_inverse: "(n + m) - n = (m::nat)"
   914   by (induct n) simp_all
   915 
   916 lemma diff_add_inverse2: "(m + n) - n = (m::nat)"
   917   by (simp add: diff_add_assoc)
   918 
   919 lemma le_imp_diff_is_add: "i \<le> (j::nat) ==> (j - i = k) = (j = k + i)"
   920   apply safe
   921   apply (simp_all add: diff_add_inverse2)
   922   done
   923 
   924 lemma diff_is_0_eq [simp]: "((m::nat) - n = 0) = (m \<le> n)"
   925   by (induct m n rule: diff_induct) simp_all
   926 
   927 lemma diff_is_0_eq' [simp]: "m \<le> n ==> (m::nat) - n = 0"
   928   by (rule iffD2, rule diff_is_0_eq)
   929 
   930 lemma zero_less_diff [simp]: "(0 < n - (m::nat)) = (m < n)"
   931   by (induct m n rule: diff_induct) simp_all
   932 
   933 lemma less_imp_add_positive: "i < j  ==> \<exists>k::nat. 0 < k & i + k = j"
   934   apply (rule_tac x = "j - i" in exI)
   935   apply (simp (no_asm_simp) add: add_diff_inverse less_not_sym)
   936   done
   937 
   938 lemma zero_induct_lemma: "P k ==> (!!n. P (Suc n) ==> P n) ==> P (k - i)"
   939   apply (induct k i rule: diff_induct)
   940   apply (simp_all (no_asm))
   941   apply rules
   942   done
   943 
   944 lemma zero_induct: "P k ==> (!!n. P (Suc n) ==> P n) ==> P 0"
   945   apply (rule diff_self_eq_0 [THEN subst])
   946   apply (rule zero_induct_lemma, rules+)
   947   done
   948 
   949 lemma diff_cancel: "(k + m) - (k + n) = m - (n::nat)"
   950   by (induct k) simp_all
   951 
   952 lemma diff_cancel2: "(m + k) - (n + k) = m - (n::nat)"
   953   by (simp add: diff_cancel add_commute)
   954 
   955 lemma diff_add_0: "n - (n + m) = (0::nat)"
   956   by (induct n) simp_all
   957 
   958 
   959 text {* Difference distributes over multiplication *}
   960 
   961 lemma diff_mult_distrib: "((m::nat) - n) * k = (m * k) - (n * k)"
   962   by (induct m n rule: diff_induct) (simp_all add: diff_cancel)
   963 
   964 lemma diff_mult_distrib2: "k * ((m::nat) - n) = (k * m) - (k * n)"
   965   by (simp add: diff_mult_distrib mult_commute [of k])
   966   -- {* NOT added as rewrites, since sometimes they are used from right-to-left *}
   967 
   968 lemmas nat_distrib =
   969   add_mult_distrib add_mult_distrib2 diff_mult_distrib diff_mult_distrib2
   970 
   971 
   972 subsection {* Monotonicity of Multiplication *}
   973 
   974 lemma mult_le_mono1: "i \<le> (j::nat) ==> i * k \<le> j * k"
   975   by (simp add: mult_right_mono) 
   976 
   977 lemma mult_le_mono2: "i \<le> (j::nat) ==> k * i \<le> k * j"
   978   by (simp add: mult_left_mono) 
   979 
   980 text {* @{text "\<le>"} monotonicity, BOTH arguments *}
   981 lemma mult_le_mono: "i \<le> (j::nat) ==> k \<le> l ==> i * k \<le> j * l"
   982   by (simp add: mult_mono) 
   983 
   984 lemma mult_less_mono1: "(i::nat) < j ==> 0 < k ==> i * k < j * k"
   985   by (simp add: mult_strict_right_mono) 
   986 
   987 text{*Differs from the standard @{text zero_less_mult_iff} in that
   988       there are no negative numbers.*}
   989 lemma nat_0_less_mult_iff [simp]: "(0 < (m::nat) * n) = (0 < m & 0 < n)"
   990   apply (induct m)
   991   apply (case_tac [2] n, simp_all)
   992   done
   993 
   994 lemma one_le_mult_iff [simp]: "(Suc 0 \<le> m * n) = (1 \<le> m & 1 \<le> n)"
   995   apply (induct m)
   996   apply (case_tac [2] n, simp_all)
   997   done
   998 
   999 lemma mult_eq_1_iff [simp]: "(m * n = Suc 0) = (m = 1 & n = 1)"
  1000   apply (induct_tac m, simp)
  1001   apply (induct_tac n, simp, fastsimp)
  1002   done
  1003 
  1004 lemma one_eq_mult_iff [simp]: "(Suc 0 = m * n) = (m = 1 & n = 1)"
  1005   apply (rule trans)
  1006   apply (rule_tac [2] mult_eq_1_iff, fastsimp)
  1007   done
  1008 
  1009 lemma mult_less_cancel2 [simp]: "((m::nat) * k < n * k) = (0 < k & m < n)"
  1010   apply (safe intro!: mult_less_mono1)
  1011   apply (case_tac k, auto)
  1012   apply (simp del: le_0_eq add: linorder_not_le [symmetric])
  1013   apply (blast intro: mult_le_mono1)
  1014   done
  1015 
  1016 lemma mult_less_cancel1 [simp]: "(k * (m::nat) < k * n) = (0 < k & m < n)"
  1017   by (simp add: mult_commute [of k])
  1018 
  1019 lemma mult_le_cancel1 [simp]: "(k * (m::nat) \<le> k * n) = (0 < k --> m \<le> n)"
  1020 by (simp add: linorder_not_less [symmetric], auto)
  1021 
  1022 lemma mult_le_cancel2 [simp]: "((m::nat) * k \<le> n * k) = (0 < k --> m \<le> n)"
  1023 by (simp add: linorder_not_less [symmetric], auto)
  1024 
  1025 lemma mult_cancel2 [simp]: "(m * k = n * k) = (m = n | (k = (0::nat)))"
  1026   apply (cut_tac less_linear, safe, auto)
  1027   apply (drule mult_less_mono1, assumption, simp)+
  1028   done
  1029 
  1030 lemma mult_cancel1 [simp]: "(k * m = k * n) = (m = n | (k = (0::nat)))"
  1031   by (simp add: mult_commute [of k])
  1032 
  1033 lemma Suc_mult_less_cancel1: "(Suc k * m < Suc k * n) = (m < n)"
  1034   by (subst mult_less_cancel1) simp
  1035 
  1036 lemma Suc_mult_le_cancel1: "(Suc k * m \<le> Suc k * n) = (m \<le> n)"
  1037   by (subst mult_le_cancel1) simp
  1038 
  1039 lemma Suc_mult_cancel1: "(Suc k * m = Suc k * n) = (m = n)"
  1040   by (subst mult_cancel1) simp
  1041 
  1042 text {* Lemma for @{text gcd} *}
  1043 lemma mult_eq_self_implies_10: "(m::nat) = m * n ==> n = 1 | m = 0"
  1044   apply (drule sym)
  1045   apply (rule disjCI)
  1046   apply (rule nat_less_cases, erule_tac [2] _)
  1047   apply (fastsimp elim!: less_SucE)
  1048   apply (fastsimp dest: mult_less_mono2)
  1049   done
  1050 
  1051 end