src/HOL/Integ/Parity.thy
author obua
Tue, 11 May 2004 20:11:08 +0200
changeset 14738 83f1a514dcb4
parent 14473 846c237bd9b3
child 14981 e73f8140af78
permissions -rw-r--r--
changes made due to new Ring_and_Field theory
     1 (*  Title:      Parity.thy
     2     ID:         $Id$
     3     Author:     Jeremy Avigad
     4     License:    GPL (GNU GENERAL PUBLIC LICENSE)
     5 *)
     6 
     7 header {* Parity: Even and Odd for ints and nats*}
     8 
     9 theory Parity = Divides + IntDiv + NatSimprocs:
    10 
    11 axclass even_odd < type
    12 
    13 instance int :: even_odd ..
    14 instance nat :: even_odd ..
    15 
    16 consts
    17   even :: "'a::even_odd => bool"
    18 
    19 syntax 
    20   odd :: "'a::even_odd => bool"
    21 
    22 translations 
    23   "odd x" == "~even x" 
    24 
    25 defs (overloaded)
    26   even_def: "even (x::int) == x mod 2 = 0"
    27   even_nat_def: "even (x::nat) == even (int x)"
    28 
    29 
    30 subsection {* Casting a nat power to an integer *}
    31 
    32 lemma zpow_int: "int (x^y) = (int x)^y"
    33   apply (induct_tac y)
    34   apply (simp, simp add: zmult_int [THEN sym])
    35   done
    36 
    37 subsection {* Even and odd are mutually exclusive *}
    38 
    39 lemma int_pos_lt_two_imp_zero_or_one: 
    40     "0 <= x ==> (x::int) < 2 ==> x = 0 | x = 1"
    41   by auto
    42 
    43 lemma neq_one_mod_two [simp]: "((x::int) mod 2 ~= 0) = (x mod 2 = 1)"
    44   apply (subgoal_tac "x mod 2 = 0 | x mod 2 = 1", force)
    45   apply (rule int_pos_lt_two_imp_zero_or_one, auto)
    46   done
    47 
    48 subsection {* Behavior under integer arithmetic operations *}
    49 
    50 lemma even_times_anything: "even (x::int) ==> even (x * y)"
    51   by (simp add: even_def zmod_zmult1_eq')
    52 
    53 lemma anything_times_even: "even (y::int) ==> even (x * y)"
    54   by (simp add: even_def zmod_zmult1_eq)
    55 
    56 lemma odd_times_odd: "odd (x::int) ==> odd y ==> odd (x * y)"
    57   by (simp add: even_def zmod_zmult1_eq)
    58 
    59 lemma even_product: "even((x::int) * y) = (even x | even y)"
    60   apply (auto simp add: even_times_anything anything_times_even) 
    61   apply (rule ccontr)
    62   apply (auto simp add: odd_times_odd)
    63   done
    64 
    65 lemma even_plus_even: "even (x::int) ==> even y ==> even (x + y)"
    66   by (simp add: even_def zmod_zadd1_eq)
    67 
    68 lemma even_plus_odd: "even (x::int) ==> odd y ==> odd (x + y)"
    69   by (simp add: even_def zmod_zadd1_eq)
    70 
    71 lemma odd_plus_even: "odd (x::int) ==> even y ==> odd (x + y)"
    72   by (simp add: even_def zmod_zadd1_eq)
    73 
    74 lemma odd_plus_odd: "odd (x::int) ==> odd y ==> even (x + y)"
    75   by (simp add: even_def zmod_zadd1_eq)
    76 
    77 lemma even_sum: "even ((x::int) + y) = ((even x & even y) | (odd x & odd y))"
    78   apply (auto intro: even_plus_even odd_plus_odd)
    79   apply (rule ccontr, simp add: even_plus_odd)
    80   apply (rule ccontr, simp add: odd_plus_even)
    81   done
    82 
    83 lemma even_neg: "even (-(x::int)) = even x"
    84   by (auto simp add: even_def zmod_zminus1_eq_if)
    85 
    86 lemma even_difference: 
    87   "even ((x::int) - y) = ((even x & even y) | (odd x & odd y))"
    88   by (simp only: diff_minus even_sum even_neg)
    89 
    90 lemma even_pow_gt_zero [rule_format]: 
    91     "even (x::int) ==> 0 < n --> even (x^n)"
    92   apply (induct_tac n)
    93   apply (auto simp add: even_product)
    94   done
    95 
    96 lemma odd_pow: "odd x ==> odd((x::int)^n)"
    97   apply (induct_tac n)
    98   apply (simp add: even_def)
    99   apply (simp add: even_product)
   100   done
   101 
   102 lemma even_power: "even ((x::int)^n) = (even x & 0 < n)"
   103   apply (auto simp add: even_pow_gt_zero) 
   104   apply (erule contrapos_pp, erule odd_pow)
   105   apply (erule contrapos_pp, simp add: even_def)
   106   done
   107 
   108 lemma even_zero: "even (0::int)"
   109   by (simp add: even_def)
   110 
   111 lemma odd_one: "odd (1::int)"
   112   by (simp add: even_def)
   113 
   114 lemmas even_odd_simps [simp] = even_def[of "number_of v",standard] even_zero 
   115   odd_one even_product even_sum even_neg even_difference even_power
   116 
   117 
   118 subsection {* Equivalent definitions *}
   119 
   120 lemma two_times_even_div_two: "even (x::int) ==> 2 * (x div 2) = x" 
   121   by (auto simp add: even_def)
   122 
   123 lemma two_times_odd_div_two_plus_one: "odd (x::int) ==> 
   124     2 * (x div 2) + 1 = x"
   125   apply (insert zmod_zdiv_equality [of x 2, THEN sym])
   126   by (simp add: even_def)
   127 
   128 lemma even_equiv_def: "even (x::int) = (EX y. x = 2 * y)"
   129   apply auto
   130   apply (rule exI)
   131   by (erule two_times_even_div_two [THEN sym])
   132 
   133 lemma odd_equiv_def: "odd (x::int) = (EX y. x = 2 * y + 1)"
   134   apply auto
   135   apply (rule exI)
   136   by (erule two_times_odd_div_two_plus_one [THEN sym])
   137 
   138 
   139 subsection {* even and odd for nats *}
   140 
   141 lemma pos_int_even_equiv_nat_even: "0 \<le> x ==> even x = even (nat x)"
   142   by (simp add: even_nat_def)
   143 
   144 lemma even_nat_product: "even((x::nat) * y) = (even x | even y)"
   145   by (simp add: even_nat_def zmult_int [THEN sym])
   146 
   147 lemma even_nat_sum: "even ((x::nat) + y) = 
   148     ((even x & even y) | (odd x & odd y))"
   149   by (unfold even_nat_def, simp)
   150 
   151 lemma even_nat_difference: 
   152     "even ((x::nat) - y) = (x < y | (even x & even y) | (odd x & odd y))"
   153   apply (auto simp add: even_nat_def zdiff_int [THEN sym])
   154   apply (case_tac "x < y", auto simp add: zdiff_int [THEN sym])
   155   apply (case_tac "x < y", auto simp add: zdiff_int [THEN sym])
   156   done
   157 
   158 lemma even_nat_Suc: "even (Suc x) = odd x"
   159   by (simp add: even_nat_def)
   160 
   161 text{*Compatibility, in case Avigad uses this*}
   162 lemmas even_nat_suc = even_nat_Suc
   163 
   164 lemma even_nat_power: "even ((x::nat)^y) = (even x & 0 < y)"
   165   by (simp add: even_nat_def zpow_int)
   166 
   167 lemma even_nat_zero: "even (0::nat)"
   168   by (simp add: even_nat_def)
   169 
   170 lemmas even_odd_nat_simps [simp] = even_nat_def[of "number_of v",standard] 
   171   even_nat_zero even_nat_Suc even_nat_product even_nat_sum even_nat_power
   172 
   173 
   174 subsection {* Equivalent definitions *}
   175 
   176 lemma nat_lt_two_imp_zero_or_one: "(x::nat) < Suc (Suc 0) ==> 
   177     x = 0 | x = Suc 0"
   178   by auto
   179 
   180 lemma even_nat_mod_two_eq_zero: "even (x::nat) ==> x mod (Suc (Suc 0)) = 0"
   181   apply (insert mod_div_equality [of x "Suc (Suc 0)", THEN sym])
   182   apply (drule subst, assumption)
   183   apply (subgoal_tac "x mod Suc (Suc 0) = 0 | x mod Suc (Suc 0) = Suc 0")
   184   apply force
   185   apply (subgoal_tac "0 < Suc (Suc 0)")
   186   apply (frule mod_less_divisor [of "Suc (Suc 0)" x])
   187   apply (erule nat_lt_two_imp_zero_or_one, auto)
   188   done
   189 
   190 lemma odd_nat_mod_two_eq_one: "odd (x::nat) ==> x mod (Suc (Suc 0)) = Suc 0"
   191   apply (insert mod_div_equality [of x "Suc (Suc 0)", THEN sym])
   192   apply (drule subst, assumption)
   193   apply (subgoal_tac "x mod Suc (Suc 0) = 0 | x mod Suc (Suc 0) = Suc 0")
   194   apply force 
   195   apply (subgoal_tac "0 < Suc (Suc 0)")
   196   apply (frule mod_less_divisor [of "Suc (Suc 0)" x])
   197   apply (erule nat_lt_two_imp_zero_or_one, auto)
   198   done
   199 
   200 lemma even_nat_equiv_def: "even (x::nat) = (x mod Suc (Suc 0) = 0)" 
   201   apply (rule iffI)
   202   apply (erule even_nat_mod_two_eq_zero)
   203   apply (insert odd_nat_mod_two_eq_one [of x], auto)
   204   done
   205 
   206 lemma odd_nat_equiv_def: "odd (x::nat) = (x mod Suc (Suc 0) = Suc 0)"
   207   apply (auto simp add: even_nat_equiv_def)
   208   apply (subgoal_tac "x mod (Suc (Suc 0)) < Suc (Suc 0)")
   209   apply (frule nat_lt_two_imp_zero_or_one, auto)
   210   done
   211 
   212 lemma even_nat_div_two_times_two: "even (x::nat) ==> 
   213     Suc (Suc 0) * (x div Suc (Suc 0)) = x"
   214   apply (insert mod_div_equality [of x "Suc (Suc 0)", THEN sym])
   215   apply (drule even_nat_mod_two_eq_zero, simp)
   216   done
   217 
   218 lemma odd_nat_div_two_times_two_plus_one: "odd (x::nat) ==> 
   219     Suc( Suc (Suc 0) * (x div Suc (Suc 0))) = x"  
   220   apply (insert mod_div_equality [of x "Suc (Suc 0)", THEN sym])
   221   apply (drule odd_nat_mod_two_eq_one, simp)
   222   done
   223 
   224 lemma even_nat_equiv_def2: "even (x::nat) = (EX y. x = Suc (Suc 0) * y)"
   225   apply (rule iffI, rule exI)
   226   apply (erule even_nat_div_two_times_two [THEN sym], auto)
   227   done
   228 
   229 lemma odd_nat_equiv_def2: "odd (x::nat) = (EX y. x = Suc(Suc (Suc 0) * y))"
   230   apply (rule iffI, rule exI)
   231   apply (erule odd_nat_div_two_times_two_plus_one [THEN sym], auto)
   232   done
   233 
   234 subsection {* Powers of negative one *}
   235 
   236 lemma neg_one_even_odd_power:
   237      "(even x --> (-1::'a::{number_ring,ringpower})^x = 1) & 
   238       (odd x --> (-1::'a)^x = -1)"
   239   apply (induct_tac x)
   240   apply (simp, simp add: power_Suc)
   241   done
   242 
   243 lemma neg_one_even_power [simp]:
   244      "even x ==> (-1::'a::{number_ring,ringpower})^x = 1"
   245   by (rule neg_one_even_odd_power [THEN conjunct1, THEN mp], assumption)
   246 
   247 lemma neg_one_odd_power [simp]:
   248      "odd x ==> (-1::'a::{number_ring,ringpower})^x = -1"
   249   by (rule neg_one_even_odd_power [THEN conjunct2, THEN mp], assumption)
   250 
   251 lemma neg_power_if:
   252      "(-x::'a::{comm_ring_1,ringpower}) ^ n = 
   253       (if even n then (x ^ n) else -(x ^ n))"
   254   by (induct n, simp_all split: split_if_asm add: power_Suc) 
   255 
   256 
   257 subsection {* An Equivalence for @{term "0 \<le> a^n"} *}
   258 
   259 lemma even_power_le_0_imp_0:
   260      "a ^ (2*k) \<le> (0::'a::{ordered_idom,ringpower}) ==> a=0"
   261 apply (induct k) 
   262 apply (auto simp add: zero_le_mult_iff mult_le_0_iff power_Suc)  
   263 done
   264 
   265 lemma zero_le_power_iff:
   266      "(0 \<le> a^n) = (0 \<le> (a::'a::{ordered_idom,ringpower}) | even n)"
   267       (is "?P n")
   268 proof cases
   269   assume even: "even n"
   270   then obtain k where "n = 2*k"
   271     by (auto simp add: even_nat_equiv_def2 numeral_2_eq_2)
   272   thus ?thesis by (simp add: zero_le_even_power even) 
   273 next
   274   assume odd: "odd n"
   275   then obtain k where "n = Suc(2*k)"
   276     by (auto simp add: odd_nat_equiv_def2 numeral_2_eq_2)
   277   thus ?thesis
   278     by (auto simp add: power_Suc zero_le_mult_iff zero_le_even_power 
   279              dest!: even_power_le_0_imp_0) 
   280 qed 
   281 
   282 subsection {* Miscellaneous *}
   283 
   284 lemma even_plus_one_div_two: "even (x::int) ==> (x + 1) div 2 = x div 2"
   285   apply (subst zdiv_zadd1_eq)
   286   apply (simp add: even_def)
   287   done
   288 
   289 lemma odd_plus_one_div_two: "odd (x::int) ==> (x + 1) div 2 = x div 2 + 1"
   290   apply (subst zdiv_zadd1_eq)
   291   apply (simp add: even_def)
   292   done
   293 
   294 lemma div_Suc: "Suc a div c = a div c + Suc 0 div c + 
   295     (a mod c + Suc 0 mod c) div c"
   296   apply (subgoal_tac "Suc a = a + Suc 0")
   297   apply (erule ssubst)
   298   apply (rule div_add1_eq, simp)
   299   done
   300 
   301 lemma even_nat_plus_one_div_two: "even (x::nat) ==> 
   302    (Suc x) div Suc (Suc 0) = x div Suc (Suc 0)"
   303   apply (subst div_Suc)
   304   apply (simp add: even_nat_equiv_def)
   305   done
   306 
   307 lemma odd_nat_plus_one_div_two: "odd (x::nat) ==> 
   308     (Suc x) div Suc (Suc 0) = Suc (x div Suc (Suc 0))"
   309   apply (subst div_Suc)
   310   apply (simp add: odd_nat_equiv_def)
   311   done
   312 
   313 end